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ABSTRACT
Graph Neural Networks (GNNs) have emerged as the predomi-

nant approach for analyzing graph data on the web and beyond.

Contrastive learning (CL), a self-supervised paradigm, not only

mitigates reliance on annotations but also has potential in per-

formance. The hard negative sampling strategy that benefits CL

in other domains proves ineffective in the context of Graph Con-

trastive Learning (GCL) due to the message passing mechanism.

Embracing the subspace hypothesis in clustering, we propose a

method towards expansive and adaptive hard negative mining, re-

ferred to as Graph contRastive leArning via subsPace prEserving

(GRAPE). Beyond homophily, we argue that false negatives are

prevalent over an expansive range and exploring them confers ben-

efits upon GCL. Diverging from existing neighbor-based methods,

our method seeks to mine long-range hard negatives throughout

subspace, where message passing is conceived as interactions be-

tween subspaces. Additionally, our method adaptively scales the

hard negatives set through subspace preservation during training.

In practice, we develop two schemes to enhance GCL that are plug-

gable into existing GCL frameworks. The underlying mechanisms

are analyzed and the connections to related methods are investi-

gated. Comprehensive experiments demonstrate that our method

outperforms across diverse graph datasets and remains competitive

across varied application scenarios
1
.
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Our code is available at https://github.com/zz-haooo/WWW24-GRAPE.
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1 INTRODUCTION
Graph data is ubiquitous in both real-world and virtual realms,

encompassing a broad spectrum of areas such as social networks,

molecular structures, trade circulation. Recently, GNNs have wit-

nessed significant strides in analyzing graph data, exhibiting ex-

ceptional performance in tasks such as graph classification, node

clustering, link prediction, graph generation, etc. Following the pio-

neering contributions of GCN [27], GraphSAGE [17], GAT [64], etc.,

numerous GNN architectures have been developed and enhanced.

Almost all GNNs are built upon the message passing mechanism

between neighbors, where each node acquires feature information

from its neighbors and contributes its own feature information.

Analogous to most neural networks, GNNs are typically trained in

a supervised manner and require an abundance of annotations.

Contrastive Learning (CL), as the avant-garde framework for

self-supervised methods, has recently demonstrated a series of

state-of-the-art performances in various domains [6, 7, 12, 40, 94].

These studies emphasize that the representations learned by CL per-

form comparably to supervised learning in downstream tasks. The

essence of CL lies in learning representations that retain invariance

under a variety of distortions, referred to as "data augmentations"

[62, 63]. To achieve this, researchers develop InfoNCE objective

[15, 49], which maximizes a lower bound of mutual information

between augmented views [2, 20]. The core conception is to draw

positive pairs closer while repelling negative pairs apart [16].

The breakthroughs of CL in computer vision have motivated

studies to extend the analogous concepts from visual representation

learning to graph data, referred to as Graph Contrastive Learning

(GCL). These GCL methods achieve sota in both graph-level and

node-level tasks [18, 61, 75, 87, 95, 96]. GCL adheres to the typical CL

https://github.com/zz-haooo/WWW24-GRAPE
https://doi.org/10.1145/3589334.3645327
https://doi.org/10.1145/3589334.3645327
https://doi.org/10.1145/3589334.3645327
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Figure 1: A comparison of CL for visual, textual, and graph
data. The irregularity of graph data and themessage passing
mechanism of GNNs distinguish GCL from CL in other do-
mains. Graph convolutional operator introduces smoothing
property among neighbors, while necessitating some techni-
cal changes to GCL.
paradigm, albeit with specific variations [57, 65]. In general, the ap-

plication paradigms of CL in visual, textual, and graph data domains

can be illustrated as Figure 1. As demonstrated, existing research

in GCL can be summarized into the following two main threads:

(1) augmentation on graph [23, 32, 53, 59, 75, 84–86, 89, 93, 97],

which aims to adapt semantic-preserving augmentation techniques

from visual data to irregular graph data. (2) auxiliary task on graph

[18, 33, 58, 76, 87, 89, 96], which explores the loss functions suitable

for GNN training within CL framework. Our work falls into the

latter category. Unlike other mainstream instance-discriminating

backbones where instances do not exhibit explicit interactions,

GNNs rely on message passing among instances. A notable issue

arises where hard negative sampling techniques, proven to con-

tribute in CL [5, 24, 31, 48, 54, 74], does not confer benefits in GCL

and may even impair performance, which has been discussed in

[41, 58, 76, 95]. The main concept behind is that hard negatives in

GCL are prone to being false negatives, consequently, pushing away

the semantically similar representations leads to a degradation in

performance.

In this paper, we report that mining expansive and adaptive
hard negatives enhances node-level tasks. To achieve both objec-

tives, we introduce a negative hardness estimation scheme for GCL,

aligning with the subspace preservation hypothesis in clustering.

The core strength of our method lies in its ability to capture hard

negatives beyond the scope of message passing and adjust the hard

negatives set in a self-scaled manner. In node-level tasks, the con-

cept of subspace preservation is intuitive. For instance, in a citation

network, it can be elucidated as follows: from the semantic per-

spective, articles with the similar theme tends to share keywords

(features); from the structural perspective, mutual citations within

the same subfield are frequent whereas cross-domain article cita-

tions are limited. Prominent recommendation mechanisms within

social or e-commerce networks, which curate personalized content

for individual entities, have catalyzed the emergence of subspaces

[52, 72, 73]. We provide theoretical and experimental analyses to

illuminate why and how our method works. To the best of our

knowledge, our work is the first to address the GCL through sub-

space techniques.

In summary, the main contributions of this paper can be encap-

sulate in threefold:

• We show that more expansive and adaptive hard negative

mining is promising for enhancing node-level GCL. Embrac-

ing this philosophy, we propose GRAPE, a negative hardness

estimation method for GCL based on subspace theory.

• In GRAPE, the hard negatives beyond the scope of message

passing can be captured and the hard negatives set can be

adaptively scaled. Two schemes are devised to alleviate the

influence of false negative samples on GCL. Besides, we

provide a theoretical exposition of GRAPE’s properties and

uncover its connection with related methods.

• In comparison to several advanced GCL methods, GRAPE

exhibits superior performance on eight widely-used public

graph datasets. We conduct comprehensive experiments un-

der various settings to thoroughly analyze the results and

behaviors of GRAPE.

The proofs of involved theorems, experimental settings and sup-

plementary experiments are relegated to the appendix.

2 RELATEDWORK
In line with the focus of our work, we provide an overview of related

works on graph contrastive learning and subspace preserving.

2.1 Graph Contrastive Learning
Amidst the increasing recognition of contrastive learning’s expres-

sive capability, DGI [65] and InfoGraph [57] first leverage the maxi-

mization ofmutual information [20] at the node- and graph-level, re-

spectively, to attain effective representations. In subsequent works,

MVGRL [18] utilizes graph diffusion [13] to obtain augmented views

and applies contrastive learning at both the node and graph levels.

GMI [51] extends mutual information computations from vector

spaces to the graph domain and assesses the correlation between

input graphs and high-level hidden representations. GRACE [96],

GCA [97] employ the InfoNCE-style objective and obtain node rep-

resentations by treating others as negative samples, which serves as

a baseline in follow-up research. To mitigate the sampling bias issue,

BGRL [61] extends the BYOL [14] framework to graph. In this strand,

CCA-SSG [87] optimizes a feature-level objective derived from clas-

sical canonical correlation analysis. SpCo [37] is introduced as a

spectral GCL module based on the general graph augmentation rule

to enhance existing GCL methods. In another thread, ProGCL [76]

estimates the probability of a true negative using a two-component

beta mixture model. Empirical studies [95] verify that assigning

higher weights to hard negatives or generating hard negatives

fails to improve GCL. GDCL [91] jointly performs GCL and DEC

[78]; nevertheless, this unsupervised process may lead to training

collapse. COSTA [89] advocates generating covariance-preserving

augmented features inspired by matrix sketching. HomoGCL [33]

proposes utilizing the homophily in graph to filter positive pairs.

PHASES [58] employs a progressive negative masking strategy to

enhance tolerance between sample pairs. We recommend readers

to refer to [39, 77, 79] for a comprehensive overview.
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2.2 Subspace Preserving
One underlying tenet in machine learning is that the data con-

tains certain type of structure for intelligent representation. From

this, the subspace assumption, which runs through the research

journey of machine learning, can be described as follows [35]:

high-dimensional data is drawn from a union of multiple affine

or linear subspaces. In a simplified perspective, affine subspace

is more closely related to manifold learning [3, 19, 47, 55, 60, 82],

whereas linear subspace aligns more closely with dictionary learn-

ing [22, 30, 44, 70, 71]. Over the past decade, subspace learning

based on the self-expression model, which enjoys the benefits of

the both, has made significant strides [10, 34, 35, 42]. The main

divergence among these methods is the constraints imposed on the

self-expression coefficients, such as sparse constraint [10, 50, 69],

low-rank constraint [25, 35, 36], connectivity constraint [43, 81, 83],

and smooth constraint [4, 21, 29]. We adopt the fundamental princi-

ples of such methods to tackle hard negative mining in GCL. Both

empirical investigations and theoretical analyses confirm the suit-

ability in the context of GCL. Recent studies in graph dictionary

learning [38, 67, 80] focus on sparse encoding for molecules, which

are not directly related to our work.

3 METHODOLOGY
3.1 Notations and Preliminaries
Let𝐺 = (𝑨,𝑿 ) denotes a graph with 𝑛 nodes, where 𝑨 ∈ {0, 1}𝑛×𝑛
denotes the adjacency matrix and 𝑿 ∈ R𝑛×𝑑 denotes the feature

matrix. Let
ˆ𝑨 = 𝑨 + 𝑰𝑛 be the adjacency matrix with self-loops.

The normalized adjacency matrix is then given by
˜𝑨 = 𝑫−

1

2 ˆ𝑨𝑫−
1

2 ,

where 𝑫 is the degree matrix. Vectors and matrices in this paper are

denoted by bold lowercase and bold uppercase letters, respectively.

Our objective is to train a GNN encoder 𝑓Θ (𝑨,𝑿 )in a label-scarce
scenario, where Θ represents the network parameters. The output

node embeddings are supposed to be directly applicable for down-

stream tasks, such as node classification and node clustering in this

paper. Take GCN for example, the layer-wise forward-propagation

operation at the 𝑙-th layer is formulated as:

𝒁 (𝑙) = 𝜎
(
˜𝑨𝒁 (𝑙−1)𝑾 (𝑙)

)
, (1)

where𝑾𝑙 is the trainable weights for feature transformation and

𝒁𝑙 denotes the node embeddings at the 𝑙-th layer. Clearly, there is

𝒁 (0) = 𝑿 at the initial layer. 𝜎 (·) denotes an activation function

such as ReLU. In context of GCL, two views 𝐺1 = (𝑨1,𝑿1), 𝐺2 =

(𝑨2,𝑿2) are generated by augmentation strategies [92] each epoch.

𝐺1 and𝐺2 are fed into a Siamese GNN encoder [7] to produce node

embeddings {𝒖𝑖 }𝑛𝑖=1 and {𝒗𝑖 }
𝑛
𝑖=1

, respectively. The contrastive loss

can then be computed, followed by backpropagation. The common

baseline for graph contrastive loss is the InfoNCE-style loss in

GRACE [96]. Specifically, the contrastive loss for 𝒖𝑖 is defined as:

ℓ (𝒖𝑖 ) =

− log 𝑒𝜃 (𝒖𝑖 ,𝒗𝑖 )/𝜏

𝑒𝜃 (𝒖𝑖 ,𝒗𝑖 )/𝜏︸      ︷︷      ︸
positive pair

+
∑
𝑗≠𝑖

𝑒𝜃 (𝒖𝑖 ,𝒗𝑗 )/𝜏︸            ︷︷            ︸
inter-view negative pairs

+
∑
𝑗≠𝑖

𝑒𝜃 (𝒖𝑖 ,𝒖 𝑗 )/𝜏

︸            ︷︷            ︸
intra-view negative pairs

,

(2)

where 𝜃 (·, ·) denotes cosine similarity and 𝜏 is the temperature

parameter. The objective ℓ (𝒗𝑖 ) is defined symmetrically. Then the

overall loss is given as:

L =
1

2𝑛

𝑛∑
𝑖=1

(ℓ (𝒖𝑖 ) + ℓ (𝒗𝑖 )) . (3)

It can be observed in Eq. (2) that by minimizing loss L, embeddings

of the same sample under two augmentations are pulled closer

(positives), while embeddings of different samples are repelled

away (negatives). For simplicity, in this paper, we represent ℓ (𝒖𝑖 )
in the following form

ℓ (𝒖𝑖 ) = − log
pos(𝒖𝑖 )

pos(𝒖𝑖 ) + neg(𝒖𝑖 )
. (4)

3.2 An Empirical Investigation for GCL
Recent studies [76, 95] report that considering all samples other

than the anchor itself as negatives (Eq. (2)) unduly distances false
negatives (i.e., samples of the same class as the anchor). This so-

called "class collisions" phenomenon makes the marriage of CL

and GNNs seem subtle and, as a result, leads to performance de-

terioration. Hard negative mining provides a remedy to rectify

this deficiency, where hard negatives refer to negatives that are
most similar to the anchor (possibly false negatives). Let 𝚽𝑖 be the

hard negatives set of the 𝑖-th sample. With {𝚽𝑖 }𝑛𝑖=1 identified, hard
negative mining mainly employs two forms of loss: one explicitly

treats 𝚽𝑖 as positives [9, 33](referred to as "Positive" strategy), i.e.,

modifying the "pos" term in Eq. (4) to:

pos(𝒖𝑖 ) = 𝑒𝜃 (𝒖𝑖 ,𝒗𝑖 )/𝜏 +
∑
𝑗 ∈𝚽𝑖

𝑒𝜃 (𝒖𝑖 ,𝒗𝑗 )/𝜏 +
∑
𝑗 ∈𝚽𝑖

𝑒𝜃 (𝒖𝑖 ,𝒖 𝑗 )/𝜏
; (5)

another strategy masks 𝚽𝑖 within the negatives [8, 76] (referred to

as "Mask" strategy), i.e., modifying the "neg" term in Eq. (4) to:

neg(𝒖𝑖 ) = 𝑒𝜃 (𝒖𝑖 ,𝒗𝑖 )/𝜏 +
∑
𝑗∉𝚽𝑖

𝑒𝜃 (𝒖𝑖 ,𝒗𝑗 )/𝜏 +
∑
𝑗∉𝚽𝑖

𝑒𝜃 (𝒖𝑖 ,𝒖 𝑗 )/𝜏 . (6)

While both strategies are intuitive, their effectiveness on graphs

remains to be thoroughly explored. We employ GRACE with two-

layer GCN as a baseline and probe the quality of hard negative

mining on three datasets. The results are shown in Table 1, with

each value representing the average of 10 repeated runs. The dif-

ferent settings are explained as follows: "w/o MP" denotes GRACE
withoutmessage passing, "𝑥-hop" denotes randomly selecting neigh-

bors within 𝑥-hop as hard negatives, "𝑥-hop∗" denotes randomly

selecting false negatives (labels available) within 𝑥-hop as hard neg-

atives, and "all-hop∗" denotes randomly selecting hard negatives

from all false negatives. Here, 1-hop includes own neighbors for

each node, while 2-hop encompasses the neighbors of neighbors

and so forth. The "all-hop
∗
" setting is an extreme scenario with all

labels available in which ℓ (𝒖𝑖 ) is akin to the tuplet loss in metric

learning [26, 56]. To prevent label leakage, the number of selected

hard negatives in all settings are equal.

Through empirical study, we make the following observations:

(1) the performance of GCL significantly deteriorates in the absence

of message passing; (2) "𝑥-hop" settings provide limited benefits and

occasionally detrimental to GCL; (3) training under "𝑥-hop∗" setting
improves GCL performance; (4) "𝑥-hop∗" setting with larger 𝑥 leads

to more noticeable performance improvements. A follow-up query
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Table 1: Empirical study (node classification accuracy in per-
centage) on hard negative mining in GCL.

Datasets Cora CiteSeer PubMed

Settings Positive Mask Positive Mask Positive Mask

GRACE 81.05 71.27 79.57

w/o MP 44.34 60.52 72.94

1-hop 81.71 82.20 71.09 71.57 79.76 79.98

2-hop 80.68 81.95 69.43 71.52 77.41 78.80

3-hop 79.06 81.52 68.47 70.14 74.89 76.86

1-hop∗ 82.49 81.83 71.42 71.06 80.54 80.31

2-hop∗ 83.86 83.49 71.93 72.02 81.42 80.96

3-hop∗ 84.37 85.17 72.64 72.61 83.26 82.78

all-hop∗ 86.93 86.60 76.19 75.16 85.60 85.25

arises as to whether it is feasible to narrow the gap between "𝑥-hop"

and "𝑥-hop∗"? Drawing insights from above observations: (2) and

(3) inspire us to capture more "precise" hard negatives, while (4)

encourages capturing "expansive" hard negatives. In unsupervised

scenarios, the notion of "precise" may appear impractical, and thus,

we pivot towards the pursuit of an "adaptive" solution.
To further elucidate our perspective, i.e., the close neighbors of

an anchor inherently hard to distance, we conducted the following

experiment to show the proximity of embeddings at different hops

within a two-layer GCN backbone. The results on three datasets are

depicted in Figure 2, where the vertical axis represents the average

cosine similarity of all pairs of points within a given hop.

(a) Cora (b) CiteSeer (c) PubMed

Figure 2: Similarity of embeddings at different hops.

The line named with ’-’ corresponds to the results trained with

a small 𝜏 (𝜏 = 0.05), while the line named with ’+’ corresponds

to the results trained with a larger 𝜏 (𝜏 = 5). As analyzed in [68],

within CL, a small 𝜏 exerts strong repulsive forces on neighboring

points, whereas a larger 𝜏 exerts weaker repulsive forces. This

observation is corroborated in 2-hop and 3-hop scenarios. However,

this phenomenon is relatively subtle in the case of GCL’s 1-hop

scenario. As can be observed, the gap between the results of "1 −
ℎ𝑜𝑝+" and "1 − ℎ𝑜𝑝−" is quite narrow. We attribute this to the fact

that 1-hop neighbors often share the identical neighbors, and the

frequent message passing makes them hard to be separated.

Besides, we observed that in the context of training with a small

𝜏 (strong repulsive forces on neighbors), the similarity rankings

across different hops remained undisturbed, and the differences

across similarity at different hops even increase. This empirical evi-

dence weakens the motivation that "GCL may push close neighbors

further apart" [33, 48]. Moreover, it appears imprudent to address

this issue solely from graph structure due to the widespread het-

erophily on graphs.

The above empirical investigation gives rise to the following

concern: on the one hand, capturing more expansive false negatives

approximates the performance under "all labels" setting; on the

other hand, it is essential to prevent the capture of true negatives

and thus avert the occurrence of ’x-hop’ scenario. In other words,

this is promising intuitively and entails practical risks.

3.3 Graph Contrastive Learning via Subspace
Preserving

Beyond well-known graph homophily [45], we employ subspace

preserving techniques to remedy this issue. The essence behind

is to mine hard negatives across the entire subspace, rather than

limiting it to graph-structured neighbors. Next, we provide the brief

definition of subspace preserving.

Definition 1. (Subspace Preserving) The given data {𝒙𝑖 }𝑛𝑖=1 is
drawn from a union of an unknown number 𝑘 of subspaces {S𝑗 }𝑘𝑗=1
with unknown dimensions {𝑑𝑖 }𝑘𝑖=1. S𝑗 is subspace preserving if ∀𝒙𝑖 ∈
S𝑗 can be expressed as a linear combination of other points in S𝑗 .

Based on the so-called self-expressiveness property [10], the

coefficients representing the contribution to the anchor can be

obtained by solving the optimization problem:

min

𝒄
∥𝒛 − 𝑯𝒄 ∥2

2
+ 𝜆Ω(𝒄), (7)

where 𝒛 ∈ R𝑑 is the representation of the anchor, and matrix

𝑯 ∈ R𝑑×𝑚 is formed by concatenating the representations of𝑚

hard negatives of the anchor. Ω corresponds to a specific constraint

on 𝒄 . Note that the anchor in problem (7) represents any sample and

we omit subscript 𝑖 for simplicity. Upon comparative analysis, we

opt for elastic net [98] as Ω in this paper, which is a combination

of the ℓ1 and ℓ2-norms widely used in machine learning [11, 83,

88, 90]. ℓ1-penalty encourages sparsity, while ℓ2-penalty promotes

the connectivity. Furthermore, we expect to capture the consistent

contribute from each hard negative throughout the entire process.

The hard negatives selection for anchor 𝒛 turns out to be:

min

𝒄

𝐿∑
𝑙=1

1

2𝑑𝑙
∥ 𝑓𝑙 (𝒛) −

∑
𝑗 ∈𝚽

𝑓𝑙 (𝒙 𝑗 )𝒄 𝑗 ∥22 + 𝜆
(
𝜇∥𝒄 ∥1 +

1 − 𝜇
2

∥𝒄 ∥2
2

)
(8)

where 𝐿 is the number of network layers and 𝑑𝑙 is the dimension

of the 𝑙-th layer. There is 𝒛𝑙 ∈ R𝑑𝑙 and 𝑯𝑙 ∈ R𝑑𝑙×𝑚 . 𝜆 > 0 is

the regularization parameter and 𝜇 ∈ [0, 1] controls the trade-off
between two terms in the elastic net regularizer. As GNN performs

message passing between neighbors at each layer, the subspaces at

each layer may shift. Therefore, each forward propagation can be

regarded as interactions between subspaces: some nodes are drawn

into certain subspaces, while some are pushed out of their original

subspaces. Scalar
1

2𝑑𝑙
is for scale equilibrium. The interpretation of

the first term in Eq. (8) is to seek consistent coefficients 𝒄 across
training layers. In other words, if a node consistently resides in

the same subspace as the anchor, it is highly likely to be a false

negative of the anchor. The magnitude of this possibility depends

on the magnitude of self-expression coefficients.

Due to the sparse constraints, problem (8) can not be computed

in closed form by SVD. Multiple solutions are provided below.

Full parameterization: If each position of 𝒄 is considered as a

parameter, then problem (8) can be solved in fully parametric way,

such as Iterative Shrinkage Thresholding Algorithm (ISTA) [1].
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Figure 3: Qualitative schematic of our method.

Moreover, 𝒄 can also be solved by gradient-based training. Since

each sample serves as an anchor, the number of parameters in this

strategy is

∑𝑛
𝑖=1𝑚𝑖 . Updating these parameters during training may

bring computational burdens on large-scale data.

MLP parameterization: In this scheme, self-expression coeffi-

cients can be computed on the lower-dimensional representations

output from MLP. For example, SENet proposed in [88] employs

a lightweight query and key network to parameterize the self-

expression coefficients. Since MLP parameters does not depend on

𝑛, such methods alleviate computational overhead.

Attentive parameterization: Attentive models, such as GAT [64],

presuppose varying contributions of distinct features. These models

also utilize dimension-related memory to parameterize 𝒄 .
The number of parameters in the above three ways decreases

in order. Correspondingly, the expressive power decreases and the

efficiency increases. Since problem (8) is strongly convex, such accel-

erated proximal gradient mothed or linearized alternating direction

method can be applied for seeking unique solution. Selecting non-

zero indices in solution 𝒄 and applying strategies like Eq. (5) and

(6) may help attract false negatives within the subspace. Ideally, as

shown in Figure 3b, true negatives are pushed farther away while

false negatives are masked or explicitly drawn closer. It encour-

ages the emergence of clear class boundaries, i.e. the golden band

is stretched in Figure 3b. While the solution process is straight-

forward, problem (8) itself may not be static; in other words, the

pre-selected matrix 𝑯 may not be optimal. This naturally prompts

the question: how is the hard negatives set 𝑯 selected? Moreover,

when dealing with large-scale data, it is extravagant to employ the

self-representation of all samples on one single sample, we use a

subset instead. Instead, we necessitate the adaptive selection of a

subset.

Therefore, we aim to seek an adaptivematrix𝑯 which can be self-

scaled during the training process. The selected indices are expected

to effectively preserve hard negative samples without becoming

excessively large thus causing training difficulties. Remark that

problem (8) is independent for each sample. Next we introduce the

definition of Adaptive Hard Negative Set for individual anchor.

Definition 2. (Adaptive Hard Negative Set) Assume 𝒄̃ (𝚽) is the
optimal solution of problem (8) with the 𝑖-th sample as the anchor. 𝚽∗

is the adaptive hard negatives set of the 𝑖-th sample if the following
conditions are satisfied:

(𝑎) ∀𝑗 ∉ 𝚽
∗, 𝒄̃𝑇 (𝚽 ∪ { 𝑗}) =

[
𝒄̃𝑇 (𝚽) , 0

]
,

(𝑏) ∀𝑗 ∈ 𝚽∗, 𝒄̃𝑇 (𝚽 ∪ { 𝑗}) =
[
𝒒𝑇 (𝚽) , 𝛼 𝑗

]
,

(9)

where
[
𝒒𝑇 (𝚽) , 𝛼 𝑗

]
denotes the solution vector with scalar 𝛼 𝑗 ≠ 0.

The interpretation of this definition is intuitive: 𝑗 within 𝚽
∗

make a contribution to the self-expression of the anchor (i.e., the

optimal corresponding coefficient 𝛼 𝑗 are not zero), while 𝑗 outside

𝚽
∗
will not (i.e., the corresponding optimal coefficient equals to

zero).

Inspired by the active-set in subspace clustering [83], 𝚽
∗
can be

computed via the following theorem.

Theorem 1. Assume 𝒄̃ (𝚽) is the optimal solution of problem (8)
with the 𝑖-th sample as the anchor. The auxiliary function is defined
as

𝑔(𝑘) =
𝐿∑
𝑙=1

1

𝑑𝑙
𝑓𝑙 (𝒙𝑘 )𝑇

©­«𝑓𝑙 (𝒛) −
∑
𝑗 ∈𝚽

𝑓𝑙 (𝒙 𝑗 )𝒄𝑖 𝑗
ª®¬ . (10)

Then hard negatives set can be computed by 𝚽∗ = {𝑘 | |𝑔(𝑘) | > 𝜆𝜇} .

We can now give an understanding of what kind of samples are

"hard" for a given anchor in the subspace framework. Theorem

1 implies that a sample is indispensable for subspace preserving

if its representation sufficiently resembles the residual of existing

self-expression. This diverges from homophily and similarity-based

methods. Hence, our method exhibits "adaptive" in two aspects:

On the one hand, as evident from the proof, it is clear that 𝒄 𝑗 = 0

is equivalent to 𝑗 ∉ 𝚽
∗
. Therefore, it can be removed from the

adaptive hard negatives set by updating 𝚽 → 𝚽
∗
once. On the

other hand, throughout the training process, updating 𝚽 → 𝚽
∗

continuously expands the hard negatives set for the 𝑖-th sample.

We aim for the gradual expansion of 𝚽 with the training process.

Beginning with an initial set, 𝚽 can be periodically updated every

few epochs to reduce additional time overhead while capturing

expansive hard negatives. In addition, to avoid large-scale compu-

tations, the size of 𝚽 can be controlled by confining hard negatives

within a specified 𝐾-hop radius. The hyperparameter 𝐾 dictates

the range of selectable hard negatives.

Combining the solutions of all subproblems, the self-expression

matrix can be defined as 𝑪 = [𝒄1, · · · , 𝒄𝑛], where 𝑪𝑖 𝑗 reflects the
hardness of 𝑖 with respect to 𝑗 . To incorporate the subspace infor-

mation into the contrastive loss, the self-expression coefficients 𝑪𝑖 𝑗
is supposed to be mapped to the probability that 𝑗 serves as a false

negative for 𝑖 . This can be done through either a softmax operation

or a linear mapping as follows:

(𝑎) 𝑺𝑖 𝑗 =
exp

(
|𝑪𝑖 𝑗 |/𝜎

)∑
𝑘∈𝚽𝑗

exp

(
|𝑪𝑘 𝑗 |/𝜎

) , (𝑏) 𝑺𝑖 𝑗 = min

{ |𝑪𝑖 𝑗 |
𝜁

, 𝜌

}
. (11)

𝑺𝑖 𝑗 in (𝑎) satisfies probabilistic properties and 𝜎 is tunable. 𝑺𝑖 𝑗 in
(𝑏) is proportionally scaled from 𝑪𝑖 𝑗 , where 𝜁 is the maximum

value within a sampled subset

{
𝑪𝑖 𝑗

}
(𝑖, 𝑗) . The truncated parameter

𝜌 controls the ceiling of 𝑺𝑖 𝑗 and is set to 1 by default. In turn, 𝑺

can be symmetrized by 𝑺 ← (𝑺𝑇 + 𝑺)/2. Then two schemes can

be developed to enhance the performance of GCL based on the

obtained 𝑺 .
GRAPE𝑚𝑎𝑠𝑘 : GRACE in Eq. (2) treats all samples except itself as

negatives, whose negatives set for anchor 𝑖 can be denoted as
˜N𝑖 =

[𝑛] \ {𝑖}. While GRAPE estimates negatives’ hardness and obtains

the probability 𝑺 for false negatives in turn, it can subsequently

excluded the highly probable false negatives from
˜N𝑖 . Specifically,

in each epoch, 𝑗 is included in the false negatives set F𝑖 for anchor
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Figure 4: The model architecture of GRAPE. The two views are generated through data augmentation of the initial graph.
These three are fed into the parameter-sharing GNN encoder, where the projection header is alternative. The hard negatives
set and the corresponding subspace coefficients 𝑪 are computed within the middle pathway. The green line in contrastive loss
indicates hard negatives while the red line indicates true negatives, which are vary across epochs.

𝑖 with a probability of 𝑺 𝑗𝑖 . The negatives set in this case turns out

to be N𝑖 = ˜N𝑖 \ F𝑖 . Therefore, the objective for 𝒖𝑖 in GRAPE𝑚𝑎𝑠𝑘

is defined as:

ℓ𝑚𝑎𝑠𝑘 (𝒖𝑖 ) =

− log 𝑒𝜃 (𝒖𝑖 ,𝒗𝑖 )/𝜏

𝑒𝜃 (𝒖𝑖 ,𝒗𝑖 )/𝜏 +∑
𝑗 ∈N𝑖

(
𝑒𝜃 (𝒖𝑖 ,𝒗𝑗 )/𝜏 + 𝑒𝜃 (𝒖𝑖 ,𝒖 𝑗 )/𝜏

) , (12)

GRAPE𝑝𝑜𝑠 : GRACE in Eq. (2) exclusively treats itself as positives,

whose positives set for anchor 𝑖 is ˜P𝑖 = {𝑖}. For anchor 𝑖 , GRAPE𝑝𝑜𝑠
incorporates 𝑗 into the positives set with a probability of 𝑺 𝑗𝑖 each
epoch. The expanded positives set is denoted as P𝑖 . Therefore, the
objective for 𝒖𝑖 in GRAPE𝑝𝑜𝑠 is defined as:

ℓ𝑝𝑜𝑠 (𝒖𝑖 ) =

− log
𝑒𝜃 (𝒖𝑖 ,𝒗𝑖 )/𝜏 +∑

𝑘∈P𝑖

(
𝑒𝜃 (𝒖𝑖 ,𝒗𝑘 )/𝜏 + 𝑒𝜃 (𝒖𝑖 ,𝒖𝑘 )/𝜏

)
𝑒𝜃 (𝒖𝑖 ,𝒗𝑖 )/𝜏 +∑

𝑗≠𝑖

(
𝑒𝜃 (𝒖𝑖 ,𝒗𝑗 )/𝜏 + 𝑒𝜃 (𝒖𝑖 ,𝒖 𝑗 )/𝜏

) , (13)

It is noteworthy that loss (13) is a variant of MIL-NCE [46]. Opti-

mizing loss (13) enhances the overall similarity of positive pairs

relative to negative pairs, rather than focusing on instance-specific

distances.

Similar to GRACE, the overall contrastive loss is given as:

L𝑚𝑎𝑠𝑘/𝑝𝑜𝑠 =
1

2𝑛

𝑛∑
𝑖=1

(
ℓ𝑚𝑎𝑠𝑘/𝑝𝑜𝑠 (𝒖𝑖 ) + ℓ𝑚𝑎𝑠𝑘/𝑝𝑜𝑠 (𝒗𝑖 )

)
. (14)

Reviewing the results in Table 1, we can empirically summa-

rize that Grape𝑝𝑜𝑠 are suitable for high-confidence false negatives,

while Grape𝑚𝑎𝑠𝑘 tolerates low-confidence false negatives. There-

fore, Grape𝑚𝑎𝑠𝑘 is deemed as a more robust scheme. The model

architecture is presented in Figure 4 and the procedure for GRAPE

is detailed in Appendix A.

3.4 Theoretical Analysis
Why GRAPE works? Reflecting on our motivation: we aim to

identifies expansive and adaptive hard negatives as false negatives,

which appears to be empirically derived. The essence behind this

is the message-passing in GNNs: neighbors that encompass a sub-

stantial proportion of shared connections are not unduly distanced

from each other. Therefore, local hard negative mining yield limited

benefits. Recall the results in Table 1 that 1-hop
∗
(even 2-hop

∗
) does

not significantly boost the baseline, while 3-hop
∗
shows a leap,

which interprets the pursuit of expansive hard negatives. Besides,

the self-expression loss can be expanded as follows

min

𝒄

𝐿∑
𝑙=1

1

2𝑑𝑙
∥ 𝑓𝑙 (𝒛) −

∑
𝑗 ∈𝚽

𝑓𝑙 (𝒙 𝑗 )𝒄 𝑗 ∥22 ⇐⇒

min

𝒄
−2

∑
𝑗 ∈𝚽

(
𝐿∑
𝑙=1

1

2𝑑𝑙
𝑓 𝑇
𝑙
(𝒛) 𝑓𝑙 (𝒙 𝑗 )

)
𝒄 𝑗 +

∑
𝑖, 𝑗 ∈𝚽

(
𝐿∑
𝑙=1

1

2𝑑𝑙
𝑓 𝑇
𝑙
(𝒙𝑖 ) 𝑓𝑙 (𝒙 𝑗 )

)
𝒄𝑖 𝒄 𝑗

(15)

The first term endows larger self-expression coefficients for neg-

atives similar to the anchor, while the second term endows smaller

coefficients for those highly similar to the other negatives. In GCL,

the second term implies that the contributions of those involved

in message passing with other hard negatives are diminished in

self-expression, which is consistent with the intent in Figure 3a.

This is rooted in its capacity to capture global long-range interac-

tions, as discussed in [66]. In fact, the self-expression loss can also

be interpreted as self-supervised (i.e., reconstructing oneself using

others), which fuels contrastive learning in another self-supervised

way. Moreover, the regularizer in Eq. (8) exhibits sparsity as 𝜇 ap-

proaches 1 and group effect as 𝜇 approaches 0. The analysis of

subspace-preserving property is detailedly discussed in [83]. It is

worth noting that 𝜆 and 𝜇 directly impact the tightness of hard

negative selection. GRAPE with large 𝜆 and 𝜇 results in a small

hard negatives set.

By iteratively updating self-expression coefficients during train-

ing, the efficacy of GRAPE loss is qualitatively described as follows:

Proposition 1. In cases where GRAPE captures hard negatives
{Φ𝑖 }𝑛𝑖=1 within each individual subspace, both L𝑚𝑎𝑠𝑘 and L𝑝𝑜𝑠 con-
tribute to the inter-subspace separation and intra-subspace cohesion.

Furthermore, GRAPE is associated with various methods, such

as graph attention [64], nonlinear latent subspace clustering [50],

and uniformity-tolerance dilemma [68].
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Table 2: Node classification accuracy in percentage with standard deviation on eight real-world graph datasets. The bold and
underlined values indicate the best and the runner-up results respectively.

Methods Input Cora CiteSeer PubMed Wiki CS Am-Photo Am-Computer Co-CS Co-Physics
GCN 𝑿 ,𝑨, 𝒀 81.32 ± 0.5 70.84 ± 0.7 77.69 ± 0.3 76.85 ± 0.1 92.16 ± 0.2 87.06 ± 0.5 92.54 ± 0.3 95.65 ± 0.2

GAT 𝑿 ,𝑨, 𝒀 82.57 ± 1.0 71.96 ± 1.0 77.51 ± 0.3 78.35 ± 0.1 91.45 ± 0.4 86.80 ± 0.3 91.98 ± 0.3 95.47 ± 0.2

GAE 𝑿 ,𝑨 70.49 ± 1.8 63.56 ± 2.1 70.73 ± 1.0 72.08 ± 0.3 88.40 ± 0.3 82.93 ± 0.4 86.83 ± 0.6 92.50 ± 0.3

VGAE 𝑿 ,𝑨 74.18 ± 1.1 64.85 ± 1.0 71.71 ± 0.5 73.49 ± 0.3 92.20 ± 0.1 86.37 ± 0.2 92.11 ± 0.1 94.52 ± 0.0

DGI 𝑿 ,𝑨 82.90 ± 0.8 70.14 ± 0.8 76.80 ± 0.6 75.35 ± 0.1 91.61 ± 0.2 83.95 ± 0.5 92.15 ± 0.6 95.38 ± 0.1

GMI 𝑿 ,𝑨 82.43 ± 0.9 69.85 ± 1.3 79.90 ± 0.2 74.85 ± 0.1 90.68 ± 0.2 82.21 ± 0.3 OOM OOM

MVGRL 𝑿 ,𝑨 83.20 ± 0.7 69.85 ± 1.5 78.28 ± 0.2 77.52 ± 0.1 91.74 ± 0.1 87.52 ± 0.1 92.11 ± 0.1 95.13 ± 0.0

GRACE 𝑿 ,𝑨 81.05 ± 0.3 71.27 ± 0.4 79.57 ± 0.9 78.19 ± 0.0 92.15 ± 0.2 86.25 ± 0.3 92.26 ± 0.0 94.46 ± 0.6

CCA-SSG 𝑿 ,𝑨 84.20 ± 0.4 72.57 ± 0.3 81.10 ± 0.2 78.42 ± 0.1 92.05 ± 0.3 87.95 ± 0.3 92.03 ± 0.1 95.40 ± 0.1

BGRL 𝑿 ,𝑨 82.47 ± 0.2 71.13 ± 0.5 80.05 ± 0.2 78.06 ± 0.0 92.95 ± 0.3 88.19 ± 0.3 93.34 ± 0.1 95.54 ± 0.1
ProGCL𝑊 𝑿 ,𝑨 81.79 ± 0.6 68.63 ± 0.6 78.16 ± 0.2 78.30 ± 0.2 92.47 ± 0.2 87.23 ± 0.2 92.57 ± 0.1 OOM

COSTA𝑀𝑉 𝑿 ,𝑨 81.66 ± 0.2 72.42 ± 0.4 78.39 ± 0.6 78.67 ± 0.1 92.20 ± 0.3 88.09 ± 0.0 92.96 ± 0.1 95.24 ± 0.0

GRAPE𝑚𝑎𝑠𝑘 𝑿 ,𝑨 85.18 ± 0.0 72.59 ± 0.0 81.50 ± 0.2 79.11 ± 0.1 93.32 ± 0.0 88.42 ± 0.1 92.78 ± 0.0 95.37 ± 0.0

GRAPE𝑝𝑜𝑠 𝑿 ,𝑨 85.07 ± 0.0 73.54 ± 0.1 79.84 ± 0.2 78.13 ± 0.1 92.95 ± 0.0 87.46 ± 0.1 92.29 ± 0.1 95.08 ± 0.0

Maximizing mutual information The improvement of GRAPE

over the baseline can also be elucidated from the perspective of

maximizing Mutual Information (MI):

Theorem 2. The contrastive loss in Eq. (14) gives a stricter lower
bound of MI between input features 𝑿 and embeddings in two views
𝑼 and 𝑽 , compared with the contrastive loss L in Eq. (3) proposed by
GRACE. This can be written formally as

− L < −L𝑚𝑎𝑠𝑘/𝑝𝑜𝑠 ⩽ I (𝑼 ; 𝑽 ) (16)

Therefore, maximizing GRAPE loss corresponds to optimizing a

more rigorous lower bound for the mutual information between

node features and the acquired node representations, thereby fur-

nishing a theoretical justification for the performance enhancement.

Complexity Analysis Compared to our baseline, GRACE, extra

complexity arises from the periodic updating of hard negatives set

{𝚽𝑖 }𝑛𝑖=1 and the computation of self-expression coefficients {𝒄𝑖 }𝑛𝑖=1
every 𝐼𝑛𝑡𝑣𝑙 epochs. Each of these 𝑛 independent subproblems can

be solved concurrently in parallel. The additional time overhead is

O(𝑀𝑑), where𝑀 represents the largest cardinality within {𝚽𝑖 }𝑛𝑖=1.
Since the hard negatives sets are restricted within the 𝐾-hop, there

is𝑀 ≪ 𝑛. Therefore, the additional time overhead is manageable.

4 EXPERIMENTS
4.1 Experimental Protocol
We conducted comparisons between GRAPE and ten advanced

methods on eight node prediction datasets. The benchmark graph

datasets include: Cora, CiteSeer, PubMed, Wiki CS, Amazon
Photo,Amazon Computers, Coauthor CS, Coauthor Physics.
They are all hosted by DGL package

2
, where dataset informa-

tion is detailed. The comparative methods include: two supervised

baselines (GCN [27], GAT [64]), two autoencoder-based baselines

(GAE [28], VGAE [28]), eight state-of-the-art GCL methods (DGI
[65],GMI [51],MVGRL [18],GRACE [96],CCA-SSG [87],BGRL
[61], ProGCL𝑊 [76], COSTA𝑀𝑉 [89]).

For all augmentation-based methods, we adopt the most com-

monly used strategies for the graph augmentation: "edge remov-

ing" and "feature masking" [95]. At each epoch, "edge removal"

randomly removes a certain proportion of edges from the original

2
https://github.com/dmlc/dgl

graph, while "feature masking" randomly masks a certain propor-

tion of features. To be consistent with the comparison method, we

configure the GNN encoder as a two-layer GCN. Self-supervised

training is conducted on the entire graph and on the features of

all samples. The embeddings obtained are fed into a ℓ2-regularized

logistic regression to get the final result. For Cora, CiteSeer, and

PubMed datasets, we employ the standard split settings: 20 nodes

per class are available for training, 500 nodes for validation and

1000 for testing. For the other datasets, we randomly assign 10% of

the nodes for training, another 10% for validation, and allocate the

remaining 80% for testing. The overall model is trained using the

Adam optimizer.

We implement our GRAPE based on GRACE. The max training

epoch is set to 100. The dimensions in the two-layer GNN encoder

are set to 512 and 256, respectively. The learning rate for GRAPE is

set to 1× 10−3, while that for linear classifiers is set to 1× 10−2. The
interval for updating 𝑪 𝐼𝑛𝑡𝑣𝑙 is fixed to 5 and the truncated param-

eter 𝜌 is fixed to 1. Our graph augmentation is achieved through a

combination of 40% edge removal and 10% feature masking. The

trade-off parameter 𝜆 is selected within {10−1, 100, 101, 102} and 𝜇 is
selected within {0, 0.1, · · · , 0.9, 1.0}. The temperature parameter 𝜏

is selected within {0.1, 0.2, · · · , 1.0} and the range of hard negatives
𝐾 is selected within {1, · · · , 5}. For all comparative methods, we

adhere to the authors’ default parameter settings and, where neces-

sary, conduct parameter grid searches to achieve fair comparisons.

Their implementations are all open-sourced. All experiments are

conducted on NVIDIA RTX A6000 GPU with 48GB memory.

4.2 Main Results
The node classification results are presented in Table 2. The reported

results are averaged over 10 runs with random seeds. Accuracy is

rounded to two decimal places, while standard deviation is rounded

to one decimal place. The “Input” refers to data for training, where

𝑿 , 𝑨 and 𝒀 denotes feature matrix, adjacency matrix and label ma-

trix respectively. OOM denotes out of memory. It can be observed

that GRAPE achieves the state-of-the-art self-supervised perfor-

mance on the first six datasets and surpasses the performance of

supervised baselines (GCN, GAT) on the first seven datasets. Com-

pared to its baseline GRACE, GRAPE achieves a comprehensive

improvement. The hyperparameters involved in the experiment are

https://github.com/dmlc/dgl
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listed in Appendix C.1. We perform node clustering performance

evaluations in the completely unsupervised case in Appendix C.2.

These results corroborate GRAPE’s capacity for precise identifica-

tion of false negatives.

4.3 How GRAPE Affects Training?
Wang et al. [68] introduced the concept of uniformity-tolerance

dilemma in contrastive representation. We employ the two metrics

to showcase the difference between GRAPE and its baseline GRACE.

Specifically, the cohesion (CO) and uniformity (UN) of the learned

embeddings can be defined as follows:

CO =
∑
𝑦𝑖=𝑦 𝑗

(
𝑓 𝑇 (𝒙𝑖 ) 𝑓 (𝒙 𝑗 )

)
, UN =

∑
𝑖, 𝑗

exp

(
−𝑓 𝑇 (𝒙𝑖 ) 𝑓 (𝒙 𝑗 )

)
(17)

𝑓 denotes our GNN encoder 𝑓Θ (𝑨,𝑿 ). A higher CO implies higher

intra-class cohesion, while a higher UN implies a more uniform

embedding distribution. The comparison of the two metrics for

GRAPE and GRACE during training is depicted in Figure 5.
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Figure 5: Variation of cohesion and uniformity.

At the beginning of training, CO and UN for both GRAPE and

GRACE are nearly identical due to the similar initialization. As

discussed ahead, GRAPE explicitly or implicitly brings the repre-

sentations inside the same subspace closer, which strengthens the

intra-class cohesion and reduces the global uniformity. With the ex-

pansion of the hard negatives set, the margin of cohesion between

GRAPE and GRACE is enlarged, which is in line with our original

intention. Since the mask mechanism of GRAPE𝑚𝑎𝑠𝑘 is presented

in a probabilistic form, uniformity doesn’t exhibit significant de-

creases compared to GRACE. Additionally, Figure 6 shows how the

test accuracy steadily improves as the GRAPE loss is optimized.
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Figure 6: Variation of loss and test accuracy with training.

Furthermore, the efficiency of GRAPE can be enhanced through

aforementioned the scalable parameterization. The corresponding

results are provided in Appendix C.3.

We present intuitive results to illustrate the effectiveness of

GRAPE. Figure 7 shows the distributions of the true/false negatives

of the same anchor in different phases on Cora. The horizontal

axis denotes the cosine similarity between negatives and anchor,

which is non-negative due to the ReLU before output. The variation

with training is discernible, especially from (b) to (c), validating the

efficacy of adaptive hard negative selection.

(a) Initial (epoch=0) (b) Training (epoch=50) (c) Trained (epoch=100)

Figure 7: Negatives distributions in different phases.

We present t-SNE visualization of GRAPE’s running results with-

out labels (i.e., before classification). As depicted in Figure 8, nodes

are partitioned into multiple distinct clusters.

(a) Am-Photo (b) Co-CS (c) Co-Physics

Figure 8: Visualization of node embedding without labels.

The influence of the hyperparameters in GRAPE is examined to

validate the feasibility in Appendix C.4. Furthermore, in contrast to

methods such as BGRL, we observe that GRAPE displays a relatively

low sensitivity to graph augmentation. All results are under the

setting with 40% edge removal and 10% feature masking, which

provides a substantial advantage compared to other GCL methods.

5 CONCLUSION
In this paper we put forth a novel method for estimating nega-

tives’ hardness in GCL. Our method emphasizes the potential in

exploring expansive and adaptive negatives. These two goals are

coupled in our subspace preserving scheme. We shed light on the

motivation, provide empirical and theoretical underpinnings and

conduct comprehensive experiments to dissect the effectiveness of

GRAPE. The proposed method has two limitations: it is only mea-

sured on homogeneous graphs and is only applicable in transductive

learning settings. Drawing from the contributions of this paper,

we hopefully point out two interesting and promising avenues for

further research. First, since subspace theory is not directly reliant

on existing connections, it shows potential in addressing the impact

of noisy, incomplete, or vulnerable graph structures on GNNs (a

branch called graph structure learning). Second, self-expression

contribute to preserving local structures and may serve as a form

of constraint to slow down message passing for deeper GNNs.

ACKNOWLEDGMENTS This work was supported by the Na-

tional Science Foundation of China under Grant 62236001.



Towards Expansive and Adaptive Hard Negative Mining:
Graph Contrastive Learning via Subspace Preserving WWW ’24, May 13–17, 2024, Singapore, Singapore

REFERENCES
[1] Amir Beck and Marc Teboulle. 2009. A fast iterative shrinkage-thresholding

algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 1 (2009), 183–202.
[2] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua

Bengio, Aaron Courville, and Devon Hjelm. 2018. Mutual information neural

estimation. In ICML. 531–540.
[3] Peter N. Belhumeur, Joao P Hespanha, and David J. Kriegman. 1997. Eigenfaces

vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans.
Pattern Anal. Mach. Intell. 19, 7 (1997), 711–720.

[4] Xiaochun Cao, Changqing Zhang, Huazhu Fu, Si Liu, and Hua Zhang. 2015.

Diversity-induced multi-view subspace clustering. In CVPR. 586–594.
[5] Shuo Chen, Gang Niu, Chen Gong, Jun Li, Jian Yang, and Masashi Sugiyama.

2021. Large-margin contrastive learning with distance polarization regularizer.

In ICML. 1673–1683.
[6] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020.

A simple framework for contrastive learning of visual representations. In ICML.
1597–1607.

[7] Xinlei Chen and Kaiming He. 2021. Exploring simple siamese representation

learning. In CVPR. 15750–15758.
[8] Ching-Yao Chuang, Joshua Robinson, Yen-Chen Lin, Antonio Torralba, and Ste-

fanie Jegelka. 2020. Debiased contrastive learning. In NeurIPS, Vol. 33. 8765–8775.
[9] Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre Sermanet, andAndrew

Zisserman. 2021. With a little help frommy friends: Nearest-neighbor contrastive

learning of visual representations. In CVPR. 9588–9597.
[10] Ehsan Elhamifar and René Vidal. 2013. Sparse subspace clustering: Algorithm,

theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35, 11 (2013),

2765–2781.

[11] Yuqiang Fang, Ruili Wang, Bin Dai, and XindongWu. 2014. Graph-based learning

via auto-grouped sparse regularization and kernelized extension. IEEE Trans.
Knowl. Data Eng. 27, 1 (2014), 142–154.

[12] Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. SimCSE: Simple Contrastive

Learning of Sentence Embeddings. In EMNLP. 6894–6910.
[13] Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. 2019. Diffu-

sion improves graph learning. In NeurIPS, Vol. 32.
[14] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre

Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan

Guo, Mohammad Gheshlaghi Azar, et al. 2020. Bootstrap your own latent-a new

approach to self-supervised learning. In NeurIPS, Vol. 33. 21271–21284.
[15] Michael U Gutmann and Aapo Hyvärinen. 2012. Noise-Contrastive Estimation of

Unnormalized Statistical Models, with Applications to Natural Image Statistics.

J. Mach. Learn. Res. 13, 2 (2012).
[16] Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006. Dimensionality reduction

by learning an invariant mapping. In CVPR, Vol. 2. 1735–1742.
[17] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In NeurIPS, Vol. 30.
[18] Kaveh Hassani and Amir Hosein Khasahmadi. 2020. Contrastive multi-view

representation learning on graphs. In ICML. 4116–4126.
[19] Xiaofei He and Partha Niyogi. 2003. Locality preserving projections. In NeurIPS,

Vol. 16.

[20] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil

Bachman, Adam Trischler, and Yoshua Bengio. 2018. Learning deep representa-

tions by mutual information estimation and maximization. In ICLR.
[21] HanHu, Zhouchen Lin, Jianjiang Feng, and Jie Zhou. 2014. Smooth representation

clustering. In CVPR. 3834–3841.
[22] Anil Jain and Douglas Zongker. 1997. Feature selection: Evaluation, application,

and small sample performance. IEEE Trans. Pattern Anal. Mach. Intell. 19, 2 (1997),
153–158.

[23] Yizhu Jiao, Yun Xiong, Jiawei Zhang, Yao Zhang, Tianqi Zhang, and Yangyong

Zhu. 2020. Sub-graph contrast for scalable self-supervised graph representation

learning. In ICDM. 222–231.

[24] Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe Weinzaepfel, and

Diane Larlus. 2020. Hard negative mixing for contrastive learning. In NeurIPS,
Vol. 33. 21798–21809.

[25] Mohsen Kheirandishfard, Fariba Zohrizadeh, and Farhad Kamangar. 2020. Deep

low-rank subspace clustering. In CVPR. 864–865.
[26] Prannay Khosla, Piotr Teterwak, ChenWang, Aaron Sarna, Yonglong Tian, Phillip

Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. 2020. Supervised contrastive

learning. In NeurIPS, Vol. 33. 18661–18673.
[27] Thomas N Kipf and Max Welling. 2016. Semi-Supervised Classification with

Graph Convolutional Networks. In ICLR.
[28] Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv

preprint arXiv:1611.07308 (2016).
[29] Simin Kou, Xuesong Yin, YigangWang, Songcan Chen, Tieming Chen, and Zizhao

Wu. 2023. Structure-Aware Subspace Clustering. IEEE Trans. Knowl. Data Eng.
(2023).

[30] Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Ng. 2006. Efficient sparse

coding algorithms. In NeurIPS, Vol. 19.

[31] Kibok Lee, Yian Zhu, Kihyuk Sohn, Chun-Liang Li, Jinwoo Shin, and Honglak

Lee. 2020. 𝑖-Mix: A Domain-Agnostic Strategy for Contrastive Representation

Learning. In ICLR.
[32] Namkyeong Lee, Junseok Lee, and Chanyoung Park. 2022. Augmentation-free

self-supervised learning on graphs. In AAAI, Vol. 36. 7372–7380.
[33] Wen-Zhi Li, Chang-Dong Wang, Hui Xiong, and Jian-Huang Lai. 2023. Ho-

moGCL: Rethinking Homophily in Graph Contrastive Learning. arXiv preprint
arXiv:2306.09614 (2023).

[34] Zechao Li, Jing Liu, Jinhui Tang, and Hanqing Lu. 2015. Robust structured

subspace learning for data representation. IEEE Trans. Pattern Anal. Mach. Intell.
37, 10 (2015), 2085–2098.

[35] Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun, Yong Yu, and Yi Ma. 2012.

Robust recovery of subspace structures by low-rank representation. IEEE Trans.
Pattern Anal. Mach. Intell. 35, 1 (2012), 171–184.

[36] Guangcan Liu and Shuicheng Yan. 2011. Latent low-rank representation for

subspace segmentation and feature extraction. In ICCV. 1615–1622.
[37] Nian Liu, Xiao Wang, Deyu Bo, Chuan Shi, and Jian Pei. 2022. Revisiting graph

contrastive learning from the perspective of graph spectrum. In NeurIPS, Vol. 35.
2972–2983.

[38] Weijie Liu, Jiahao Xie, Chao Zhang, Makoto Yamada, Nenggan Zheng, and Hui

Qian. 2022. Robust Graph Dictionary Learning. In ICLR.
[39] Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia, and S Yu Philip.

2022. Graph self-supervised learning: A survey. IEEE Trans. Knowl. Data Eng. 35,
6 (2022), 5879–5900.

[40] Yue Liu, Xihong Yang, Sihang Zhou, and Xinwang Liu. 2023. Simple contrastive

graph clustering. IEEE TNNLS (2023).
[41] Yue Liu, Xihong Yang, Sihang Zhou, Xinwang Liu, Zhen Wang, Ke Liang, Wenx-

uan Tu, Liang Li, Jingcan Duan, and Cancan Chen. 2023. Hard sample aware

network for contrastive deep graph clustering. In AAAI, Vol. 37. 8914–8922.
[42] Canyi Lu, Jiashi Feng, Zhouchen Lin, TaoMei, and Shuicheng Yan. 2018. Subspace

clustering by block diagonal representation. IEEE Trans. Pattern Anal. Mach. Intell.
41, 2 (2018), 487–501.

[43] Can-Yi Lu, Hai Min, Zhong-Qiu Zhao, Lin Zhu, De-Shuang Huang, and Shuicheng

Yan. 2012. Robust and efficient subspace segmentation via least squares regression.

In ECCV. 347–360.
[44] Julien Mairal, Jean Ponce, Guillermo Sapiro, Andrew Zisserman, and Francis

Bach. 2008. Supervised dictionary learning. In NeurIPS, Vol. 21.
[45] Miller McPherson, Lynn Smith-Lovin, and James M Cook. 2001. Birds of a feather:

Homophily in social networks. Annual review of sociology 27, 1 (2001), 415–444.

[46] Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan Laptev, Josef Sivic, and

Andrew Zisserman. 2020. End-to-end learning of visual representations from

uncurated instructional videos. In CVPR. 9879–9889.
[47] AndrewNg,Michael Jordan, and YairWeiss. 2001. On spectral clustering: Analysis

and an algorithm. In NeurIPS, Vol. 14.
[48] Zhiyuan Ning, Pengfei Wang, Pengyang Wang, Ziyue Qiao, Wei Fan, Denghui

Zhang, Yi Du, and Yuanchun Zhou. [n.d.]. Graph soft-contrastive learning via

neighborhood ranking. ([n. d.]).

[49] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning

with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).
[50] Vishal M Patel, Hien Van Nguyen, and René Vidal. 2013. Latent space sparse

subspace clustering. In ICCV. 225–232.
[51] Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang

Xu, and Junzhou Huang. 2020. Graph representation learning via graphical

mutual information maximization. In WWW. 259–270.

[52] Xueming Qian, He Feng, Guoshuai Zhao, and Tao Mei. 2013. Personalized

recommendation combining user interest and social circle. IEEE Trans. Knowl.
Data Eng. 26, 7 (2013), 1763–1777.

[53] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,

Kuansan Wang, and Jie Tang. 2020. Gcc: Graph contrastive coding for graph

neural network pre-training. In KDD. 1150–1160.
[54] Joshua David Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. 2020.

Contrastive Learning with Hard Negative Samples. In ICLR.
[55] Sam T Roweis and Lawrence K Saul. 2000. Nonlinear dimensionality reduction

by locally linear embedding. Science 290, 5500 (2000), 2323–2326.
[56] Kihyuk Sohn. 2016. Improved deep metric learning with multi-class n-pair loss

objective. In NeurIPS, Vol. 29.
[57] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. 2019. Infograph: Un-

supervised and semi-supervised graph-level representation learning via mutual

information maximization. arXiv preprint arXiv:1908.01000 (2019).
[58] Qingqiang Sun, Wenjie Zhang, and Xuemin Lin. 2023. Progressive Hard Negative

Masking: From Global Uniformity to Local Tolerance. IEEE Trans. Knowl. Data
Eng. (2023).

[59] Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. 2021. Adversarial graph

augmentation to improve graph contrastive learning. In NeurIPS, Vol. 34. 15920–
15933.

[60] Joshua B Tenenbaum, Vin de Silva, and John C Langford. 2000. A global geometric

framework for nonlinear dimensionality reduction. Science 290, 5500 (2000), 2319–
2323.



WWW ’24, May 13–17, 2024, Singapore, Singapore Zhezheng Hao et al.

[61] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou,

Eva L Dyer, Remi Munos, Petar Veličković, and Michal Valko. 2021. Large-Scale

Representation Learning on Graphs via Bootstrapping. In ICLR.
[62] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip

Isola. 2020. What makes for good views for contrastive learning?. In NeurIPS,
Vol. 33. 6827–6839.

[63] Michael Tschannen, Josip Djolonga, Paul K Rubenstein, Sylvain Gelly, and Mario

Lucic. 2019. On Mutual Information Maximization for Representation Learning.

In ICLR.
[64] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.
[65] Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,

and R Devon Hjelm. 2018. Deep Graph Infomax. In ICLR.
[66] Rene Vidal. 2021. Attention: Self-Expression Is All You Need. (2021).

[67] Cédric Vincent-Cuaz, Titouan Vayer, Rémi Flamary, Marco Corneli, and Nicolas

Courty. 2021. Online graph dictionary learning. In ICML. 10564–10574.
[68] Feng Wang and Huaping Liu. 2021. Understanding the behaviour of contrastive

loss. In CVPR. 2495–2504.
[69] Yu-Xiang Wang and Huan Xu. 2013. Noisy sparse subspace clustering. In ICML.

89–97.

[70] Jason Weston, André Elisseeff, Bernhard Schölkopf, and Mike Tipping. 2003. Use

of the zero norm with linear models and kernel methods. J. Mach. Learn. Res. 3
(2003), 1439–1461.

[71] John Wright, Allen Y Yang, Arvind Ganesh, S Shankar Sastry, and Yi Ma. 2008.

Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach.
Intell. 31, 2 (2008), 210–227.

[72] ChuhanWu, FangzhaoWu,Mingxiao An, Jianqiang Huang, Yongfeng Huang, and

Xing Xie. 2019. NPA: neural news recommendation with personalized attention.

In KDD. 2576–2584.
[73] Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang, and Meng Wang. 2019.

A neural influence diffusion model for social recommendation. In SIGIR. 235–244.
[74] Mike Wu, Milan Mosse, Chengxu Zhuang, Daniel Yamins, and Noah Goodman.

2020. Conditional Negative Sampling for Contrastive Learning of Visual Repre-

sentations. In ICLR.
[75] Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z Li. 2022. Simgrace: A

simple framework for graph contrastive learning without data augmentation. In

WWW. 1070–1079.

[76] Jun Xia, LirongWu, GeWang, Jintao Chen, and Stan Z Li. 2022. ProGCL: Rethink-

ing Hard Negative Mining in Graph Contrastive Learning. In ICML. 24332–24346.
[77] Jun Xia, Yanqiao Zhu, Yuanqi Du, and Stan Z Li. 2022. A survey of pretraining on

graphs: Taxonomy, methods, and applications. arXiv preprint arXiv:2202.07893
(2022).

[78] Junyuan Xie, Ross Girshick, and Ali Farhadi. 2016. Unsupervised deep embedding

for clustering analysis. In ICML. 478–487.
[79] Yaochen Xie, Zhao Xu, Jingtun Zhang, Zhengyang Wang, and Shuiwang Ji. 2022.

Self-supervised learning of graph neural networks: A unified review. IEEE Trans.
Pattern Anal. Mach. Intell. 45, 2 (2022), 2412–2429.

[80] Hongteng Xu, Dixin Luo, Hongyuan Zha, and Lawrence Carin Duke. 2019.

Gromov-wasserstein learning for graph matching and node embedding. In ICML.
6932–6941.

[81] Jun Xu, Mengyang Yu, Ling Shao, Wangmeng Zuo, Deyu Meng, Lei Zhang, and

David Zhang. 2019. Scaled simplex representation for subspace clustering. IEEE
Trans. Cybern. 51, 3 (2019), 1493–1505.

[82] Shuicheng Yan, Dong Xu, Benyu Zhang, Hong-Jiang Zhang, Qiang Yang, and

Stephen Lin. 2006. Graph embedding and extensions: A general framework for

dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29, 1 (2006),

40–51.

[83] Chong You, Chun-Guang Li, Daniel P Robinson, and René Vidal. 2016. Oracle

based active set algorithm for scalable elastic net subspace clustering. In CVPR.
3928–3937.

[84] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. 2021. Graph

contrastive learning automated. In ICML. 12121–12132.
[85] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and

Yang Shen. 2020. Graph contrastive learning with augmentations. In NeurIPS,
Vol. 33. 5812–5823.

[86] Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen Cui, and Quoc Viet Hung

Nguyen. 2022. Are graph augmentations necessary? simple graph contrastive

learning for recommendation. In SIGIR. 1294–1303.
[87] Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, and Philip S Yu. 2021.

From canonical correlation analysis to self-supervised graph neural networks. In

NeurIPS, Vol. 34. 76–89.
[88] Shangzhi Zhang, Chong You, René Vidal, and Chun-Guang Li. 2021. Learning a

self-expressive network for subspace clustering. In CVPR. 12393–12403.
[89] Yifei Zhang, Hao Zhu, Zixing Song, Piotr Koniusz, and Irwin King. 2022. COSTA:

covariance-preserving feature augmentation for graph contrastive learning. In

KDD. 2524–2534.
[90] Zheng Zhang, Zhihui Lai, Yong Xu, Ling Shao, Jian Wu, and Guo-Sen Xie. 2017.

Discriminative elastic-net regularized linear regression. IEEE Trans Image Process

26, 3 (2017), 1466–1481.

[91] Han Zhao, Xu Yang, Zhenru Wang, Erkun Yang, and Cheng Deng. 2021. Graph

Debiased Contrastive Learning with Joint Representation Clustering.. In IJCAI.
3434–3440.

[92] Tong Zhao, Wei Jin, Yozen Liu, Yingheng Wang, Gang Liu, Stephan Günnemann,

Neil Shah, and Meng Jiang. 2022. Graph data augmentation for graph machine

learning: A survey. arXiv preprint arXiv:2202.08871 (2022).
[93] Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil

Shah. 2021. Data augmentation for graph neural networks. In AAAI, Vol. 35.
11015–11023.

[94] Jiangbin Zheng, Yile Wang, Ge Wang, Jun Xia, Yufei Huang, Guojiang Zhao, Yue

Zhang, and Stan Li. 2022. Using Context-to-Vector with Graph Retrofitting to

Improve Word Embeddings. In ACL. 8154–8163.
[95] Yanqiao Zhu, Yichen Xu, Qiang Liu, and Shu Wu. 2021. An empirical study of

graph contrastive learning. arXiv preprint arXiv:2109.01116 (2021).
[96] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2020.

Deep graph contrastive representation learning. arXiv preprint arXiv:2006.04131
(2020).

[97] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2021.

Graph contrastive learning with adaptive augmentation. In WWW. 2069–2080.

[98] Hui Zou and Trevor Hastie. 2005. Regularization and variable selection via the

elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology
67, 2 (2005), 301–320.

A PROCEDURE FOR GRAPE

Algorithm 1 Procedure for GRAPE.

Input: Initial graph𝐺 = (𝑿 ,𝑨), temperature parameter: 𝜏 , trade-

off parameters: 𝜆, 𝜇, range of hard negatives: 𝐾 , interval for

updating 𝑪 : 𝐼𝑛𝑡𝑣𝑙 , maximum epochs: 𝐸𝑝𝑜 .

1: Initialization: Randomly initialize the GNN parameters. De-

termine candidate set of hard negatives {𝚽𝑖 }𝑛𝑖=1 and set the

self-expression coefficients {𝒄𝑖 }𝑛𝑖=1 to zero.

2: for 𝑒𝑝𝑜𝑐ℎ = 1 to 𝐸𝑝𝑜 do
3: Generate two augmented graphs 𝐺1 = (𝑿1,𝑨1) and 𝐺2 =

(𝑿2,𝑨2). Feed𝐺,𝐺1,𝐺2 into GNN encoder to obtain embed-

dings {𝑧𝑖 }𝑛𝑖=1, {𝑢𝑖 }
𝑛
𝑖=1

and {𝑣𝑖 }𝑛𝑖=1.
4: if 𝑒𝑝𝑜𝑐ℎ%𝑖𝑛𝑡𝑣𝑙 == 0 then
5: Compute the self-expression coefficients {𝒄𝑖 }𝑛𝑖=1 on former

hard negatives by solving Eq. (8).

6: Update {𝚽𝑖 }𝑛𝑖=1 within 𝐾-hop with solution {𝒄𝑖 }𝑛𝑖=1.
7: Re-compute the self-expression coefficients {𝒄𝑖 }𝑛𝑖=1 on 𝚽

and obtain 𝑺 by Eq. (11)

8: end if
9: Compute contrastive loss L𝑚𝑎𝑠𝑘/𝑝𝑜𝑠 in Eq. (12) or (13).

10: Update 𝑓Θ (𝑨,𝑿 ) with Adam by minimizing the overall loss

in Eq. (14);

11: end for
Output: The trained 𝑓Θ (𝑨,𝑿 ) and the node embeddings {𝑧𝑖 }𝑛𝑖=1.

B DETAILED PROOF
Theorem 1. Assume 𝒄̃ (𝑯 ) is the optimal solution of problem (8).

The auxiliary function is defined as

𝑔(𝒉) =
𝐿∑
𝑙=1

1

𝑑𝑙
𝒉𝑙

𝑇 (𝒛𝑙 − 𝑯𝑙 𝒄̃ (𝑯 )) . (1)

Then hard negatives set can be computed by 𝚽 = {𝒉 | |𝑔(𝒉) | > 𝜆𝜇} .

Proof. Problem (8) can be reformulated as

min

𝒄

1

2

∥𝒛 − 𝑯𝒄 ∥2
2
+ 𝜆

(
𝜇∥𝒄 ∥1 +

1 − 𝜇
2

∥𝒄 ∥2
2

)
(2)
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where

𝒛 = [ 1

𝑑 (1)
𝒛 (1)

𝑇
, · · · , 1

𝑑 (𝐿)
𝒛 (𝐿)

𝑇 ]𝑇

𝑯 = [ 1

𝑑 (1)
𝑯 (1)

𝑇
, · · · , 1

𝑑 (𝐿)
𝑯 (𝐿)

𝑇 ]𝑇
(3)

By taking derivatives, the optimal solution 𝒄̃ (𝑯 ) to problem (2)

satisfies:

𝜆(1 − 𝜇)𝒄̃ (𝑯 ) = Γ𝜆𝜇

(
𝑯𝑇 (𝒛 − 𝑯𝒄̃ (𝑯 ))

)
. (4)

Let

[
𝒒𝑇 (𝑯 ) , 𝑔(𝒉)

]𝑇
be the optimal solution for problem

min

𝒄
∥𝒛 − [𝑯 ,𝒉] 𝒄 ∥2

2
+ 𝜆

(
𝜇∥𝒄 ∥1 +

1 − 𝜇
2

∥𝒄 ∥2
2

)
. (5)

Then there exist

𝜆(1−𝜇)
[
𝒒𝑇 (𝑯 ) , 𝑔(𝒉)

]𝑇
= Γ𝜆𝜇

(
[𝑯 ,𝒉]𝑇

(
𝒛 − [𝑯 ,𝒉]

[
𝒒𝑇 (𝑯 ) , 𝑔(𝒉)

]𝑇 ))
.

(6)

By splitting the counterpart terms, the following two equations

hold:

𝜆(1 − 𝜇)𝒒 (𝑯 ) = Γ𝜆𝜇

(
𝑯𝑇 (𝒛 − 𝑯𝒒 (𝑯 ) − 𝒉𝑔(𝒉))

)
(7)

𝜆(1 − 𝜇)𝑔(𝒉) = Γ𝜆𝜇

(
𝒉𝑇 (𝒛 − 𝑯𝒒 (𝑯 ) − 𝒉𝑔(𝒉))

)
(8)

If 𝒉 ∉ 𝚽, then

[
𝒄𝑇 (𝑯 ) , 0

]𝑇
is an optimal solution because it

meets Eq. (7) and (8). Since the optimal solution to problem (5) is

unique, condition (a) is thus satisfied. Since the optimal solution

to problem (5) is unique, term (a) stipulated in the definition of 𝚽

holds.

In the case where 𝒉 ∈ 𝚽, we show that 𝑔(𝒉) is not equal to 0. If

𝑔(𝒉) = 0, due to the uniqueness of the optimal solution in problem

(2), Eq. (7) deduces 𝒒 (𝑯 ) = 𝒄̃ (𝑯 ). However, the obtained solution[
𝒄𝑇 (𝑯 ) , 0

]𝑇
does not satisfy Eq. (8). Therefore 𝑔(𝒉) ≠ 0 holds.

Combining the above discussion, 𝚽 is the adaptive hard negatives

set by Definition 2, which completes the proof. □

Proposition 2. If GRAPE captures hard negatives {Φ𝑖 }𝑛𝑖=1 within
each individual subspace, both L𝑚𝑎𝑠𝑘 and L𝑝𝑜𝑠 contribute to the
inter-subspace separation and intra-subspace cohesion.

Proof. Compared to GRACE, GRAPE𝑝𝑜𝑠 explicitly brings hard

negative samples within the same subspace closer while repelling

negatives outside the subspace. Our focus then turns to GRAPE𝑚𝑎𝑠𝑘 .

From gradient analysis, the ratio of the gradients of negatives to

that of positives can be defined following [68]:

𝑟 (𝒖𝑖 , 𝒗 𝑗 ) =
���� 𝜕ℓ (𝒖𝑖 )
𝜕𝜃 (𝒖𝑖 , 𝒗 𝑗 )

���� /���� 𝜕ℓ (𝒖𝑖 )
𝜕𝜃 (𝒖𝑖 , 𝒗𝑖 )

���� , (9)

representing the relative penalty on negatives. The ratio in GRACE

and GRAPE can be derived as follows:

GRACE: 𝑟1 (𝒖𝑖 , 𝒗 𝑗 ) =
𝑒𝜃 (𝒖𝑖 ,𝒗𝑗 )/𝜏∑

𝑘≠𝑖

(
𝑒𝜃 (𝒖𝑖 ,𝒗𝑗 )/𝜏 + 𝑒𝜃 (𝒖𝑖 ,𝒖 𝑗 )/𝜏

) , (10)

GRAPE: 𝑟2 (𝒖𝑖 , 𝒗 𝑗 ) =
𝑒𝜃 (𝒖𝑖 ,𝒗𝑗 )/𝜏∑

𝑘∈N𝑖

(
𝑒𝜃 (𝒖𝑖 ,𝒗𝑗 )/𝜏 + 𝑒𝜃 (𝒖𝑖 ,𝒖 𝑗 )/𝜏

) . (11)

Clearly there is 𝑟2 (𝒖𝑖 , 𝒗 𝑗 ) ⩾ 𝑟1 (𝒖𝑖 , 𝒗 𝑗 ), which implies that GRAPE

imposes a greater penalty on negative pairs that are not within the

same subspace. Moreover, posit that 𝑺𝑖 𝑗 = 𝑺 𝑗𝑖 = 1, i.e., 𝒗𝑖 is not in
the denominator of ℓ

(
𝒖 𝑗

)
and vice versa. In this case, 𝜃

(
𝒖𝑖 , 𝒗 𝑗

)
is

not penalized explicitly. Apart from self-alignment, the subproblem

involving 𝒖𝑖 in the process of minimizing L𝑚𝑎𝑠𝑘 is equivalent to:

min

𝒖𝑖

∑
𝑖∉N𝑘∨𝑘∉N𝑖

(
𝑒𝜃 (𝒖𝑖 ,𝒖𝑘 ) + 𝑒𝜃 (𝒖𝑖 ,𝒗𝑘 )

)
(12)

If we consider the first-order Taylor expansion of the problem and

omit the second or higher-order infinitesimal terms, problem (12)

simplifies to

min

𝒖𝑖

∑
𝑖∉N𝑘∨𝑘∉N𝑖

(𝜃 (𝒖𝑖 , 𝒖𝑘 ) + 𝜃 (𝒖𝑖 , 𝒗𝑘 )) . (13)

It is clear that there is a unique solution to the above problem.

If 𝑖 and 𝑗 belong to the same subspace, the overlap between set

{𝑘 | 𝑖 ∉ N𝑘 ∨ 𝑘 ∉ N𝑖 } and set {𝑘 | 𝑗 ∉ N𝑘 ∨ 𝑘 ∉ N𝑗 } appears to be

high. Hence, the optimal solutions of the subproblems for 𝒖𝑖 and 𝒗 𝑗
tends to exhibit high similarity. As a result, 𝒖𝑖 and 𝒗 𝑗 are implicitly

drawn closer by updating the network parameters. Thereby we

prove the Proposition 2 qualitatively. □

Theorem 2. The contrastive loss in Eq. (14) gives a stricter lower
bound of MI between input features 𝑿 and embeddings in two views
𝑼 and 𝑽 , compared with the contrastive loss L in Eq. (3) proposed by
GRACE. This can be written formally as

− L < −L𝑚𝑎𝑠𝑘/𝑝𝑜𝑠 ⩽ I (𝑿 ;𝑼 , 𝑽 ) (14)

Proof. The proof can be analogized to [58]. □

Table 4: Node clustering results in percentage on three graph
datasets.

Datasets PubMed Am-Photo Am-Computer

Metrics NMI ARI NMI ARI NMI ARI

GAE 24.41 24.35 57.30 49.45 42.80 24.68

VGAE 21.44 18.54 54.18 40.25 42.88 23.74

DGI 27.96 29.50 44.77 35.11 37.35 20.25

GMI 24.96 25.04 50.47 42.22 45.88 30.50

MVGRL 31.96 30.79 56.48 44.06 29.18 19.57

GRACE 26.01 28.44 61.93 50.41 48.76 33.85

CCA-SSG 25.04 28.22 62.30 53.87 49.62 36.64

ProGCL𝑊 27.26 29.50 60.54 48.32 43.29 28.44

COSTA𝑀𝑉 27.91 28.59 58.69 48.87 45.54 36.90

GRAPE𝑚𝑎𝑠𝑘 32.13 31.80 65.33 57.72 53.06 38.49

GRAPE𝑝𝑜𝑠 33.98 32.91 66.32 59.65 55.74 41.82

C EXPERIMENTAL SETUP
C.1 Hyperparameter Setting
Table 3 lists the hyperparameters for our main performance exper-

iments. The two-layer GCN maintains its dimensions at 512 and

256 consistently. Notably, the parameters do not require meticu-

lous tuning, implying that GRAPE obviates the need for parameter

search. This indicates the sound scalability of our method.
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Figure 9: Similarity histograms of negatives
Table 3: Statistics of datasets and corresponding hyperparameter settings.

Datasets Domain Nodes Edges Features Classes 𝜆 𝜇 𝜏 𝐾 𝜌 𝐼𝑛𝑡𝑣𝑙 𝐸𝑝𝑜

Cora Citation Network 2708 10556 1433 7 1 0.5 0.5 5 1 5 100

CiteSeer Citation Network 3327 9228 3703 6 1 0.5 1.0 5 1 5 100

PubMed Citation Network 19717 88651 500 3 1 0.5 1.0 4 1 5 100

Wiki CS Knowledge Base 11701 216213 300 10 1 0.1 0.2 2 1 5 100

Am-Photo Social Network 7650 119081 745 8 1 0.1 0.5 2 1 5 100

Am-Computer Social Network 13752 245861 767 10 1 0.5 0.5 3 1 5 100

Co-CS Citation Network 18333 81894 6805 15 1 0.5 0.5 3 1 5 100

Co-Physics Citation Network 34493 247962 8415 5 100 0.5 0.5 2 1 5 100

C.2 Node Clustering
The evaluation of node clustering is similar to classification, except

that k-means is employed for clustering. Clustering performance is

assessed using NMI and ARI, where higher values of these metrics

indicate superior clustering results. The average results of the 5

runs are presented in Table 4.

C.3 On Scalable Parameterization
Taking GRAPE𝑚𝑎𝑠𝑘 as the example, the test accuracy and training

time are exhibited in Table 5.

Table 5: Test accuracy (%) and training time (s) on different
parameterization.

Methods PubMed Am-Photo Am-Computer

Full 81.50% (116.59) 93.32% (22.57) 88.42% (66.32)

MLP 79.26% (93.08) 92.10% (18.61) 87.59% (51.19)

Attentive 79.43% (87.49) 91.92% (18.03) 87.50% (50.80)

C.4 Supplementary Parameter Analysis
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Figure 10: Sensitivity of trade-off parameters.

The sensitivity analysis of the two trade-off parameters in Eq. (8) is

depicted in Figure 10. The test accuracy of GRAPE remains stable

across a wide range of 𝜇 and 𝜆, indicating its independence from

meticulous parameter settings. Simultaneously, both parameters

indeed exert an influence on the model. Besides, GRAPE framework

is applicable to any family of GNN and the performance gap is not

remarkably pronounced.

C.5 Illustrative Experiment
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Figure 11: The number of average false negatives at each
hops on eight graph datasets.

We plot the average distributions of false negatives on eight most

commonly used network datasets in Figure 11. Cora and Citeseer

correspond to the left coordinate axis, while the rest correspond to

the right coordinate axis. It can be observed that false negatives are

prevalent over an expansive range. This gives rise to the following

concern: on the one hand, capturing more expansive false negatives

approximates the performance under "all-hop∗" setting; on the other
hand, it is essential to prevent the capture of true negatives and

thus avert the occurrence of ’x-hop’ scenario.
An intuitive comparison, as depicted in Figure 9, showcases the

average distribution of negatives on Cora. Obviously, solely ad-

justing the temperature parameter 𝜏 does not suffice to achieve

local tolerance. The setting with high uniformity (small 𝜏) pushes

false negatives further away, whereas the setting with high toler-

ance (large 𝜏) makes it challenging to discriminate true negatives.

Compared to temperature-based methods, GRAPE alleviates class

collisions effectively.
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