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Abstract

Recent large language models (LLMs) with long Chain-of-Thought reason-
ing—such as DeepSeek-R1—have achieved impressive results on Olympiad-level
mathematics benchmarks. However, they often rely on a narrow set of strategies and
struggle with problems that require a novel way of thinking [33]. To systematically
investigate these limitations, we introduce OMEGA—OQOut-of-distribution Math
Problems Evaluation with 3 Generalization Axes—a controlled yet diverse bench-
mark designed to evaluate three axes of out-of-distribution generalization, inspired
by Boden’s typology of creativity [4]: (1) Exploratory—applying known problem-
solving skills to more complex instances within the same problem domain; (2) Com-
positional—combining distinct reasoning skills, previously learned in isolation,
to solve novel problems that require integrating these skills in new and coherent
ways; and (3) Transformative—adopting novel, often unconventional strategies by
moving beyond familiar approaches to solve problems more effectively. OMEGA
consists of programmatically generated training—test pairs derived from templated
problem generators across geometry, number theory, algebra, combinatorics, logic,
and puzzles, with solutions verified using symbolic, numerical, or graphical meth-
ods. We evaluate frontier (or top-tier) LLMs and observe sharp performance
degradation as problem complexity increases. Moreover, we fine-tune the Qwen-
series models across all generalization settings and observe notable improvements
in exploratory generalization, while compositional generalization remains limited
and transformative reasoning shows little to no improvement. By isolating and
quantifying these fine-grained failures, OMEGA lays the groundwork for advancing
LLM:s toward genuine mathematical creativity beyond mechanical proficiency. Our
code and dataset are available at https://github.com/sunblaze-ucb/omega.

1 Introduction

Large language models (LLMs) with long Chain-of-Thought (CoT) reasoning—such as DeepSeek-
R1 [12], OpenAl-o04 [29], and Claude-Sonnet [35]—have recently achieved impressive results on
Olympiad-level mathematics benchmarks, fueling optimism that general-purpose LLMs reasoners
may soon rival skilled human problem-solvers. However, recent studies reveal that models trained
via Supervised Fine-Tuning (SFT) [33] or Reinforcement Learning (RL) [39] often rely on a limited
set of strategies—for instance, such as repeating familiar algebra rules or defaulting to coordinate
geometry in diagram problems. And thus, they tend to struggle with particularly challenging problems
that require novel insights [33]]. Bridging the gap between following learned reasoning patters and
demonstrating true mathematical creativity remains a critical open challenge. While fully addressing
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(a) Explorative Generalization (more complexity)

Training Problems ~ Test Problems

Find the number of rectangles that can be formed inside a fixed Find the number of rectangles that can be formed inside a fixed
regular octagon where each side of the rectangle lies on either a regular dodecagon where each side of the rectangle lies on either
side or a diagonal of the octagon. a side or a diagonal of the dodecagon.

Training Problems (b) Compositional Generalization
What is the highest common factor of 21385 and 29617 (composed strategy)

GCD of integers + Factorize polynomial
-~ Test Problems

$f(x) = -36xA3 + 272x"2 - 4127 -240$. Find real roots of f(x). Fi‘nd the greatest common divisor of the two polynomials
$f(x) = xA5 + x3 - x2 - 1$ and $g(x) = xM - 3x/2 - 48.

(c) Transformative Generalization (shifted thinking mode)

Training Problems ~ Test Problems

How many distinct words of length 5 can be formed from {"c": 3, How many distinct words of length n can be formed from {"c":
"a": 2, "t": 2}? (value indicates the number of letter) n-1, "a" n-1, "b": n-1}? (value indicates the number of letter)
Hint: Use case analysis based on times ¢ appears in the word (lcl = 3, Hint: count subsets with size n can be formed by 3 letters, then
2, 1). For each case, list all combinations and sum the permutations. subtract the overcounts where any letter exceeds n-1.

Figure 1: Examples of training-test pairs designed to test distinct generalization capabilities: (a) Explorative
Generalization increases complexity within the same frame of thinking (e.g., extending geometric reasoning from
an octagon to a dodecagon). (b) Compositional Generalization requires integrating multiple learned strategies
(e.g., combining GCD and root-finding for polynomials). (c) Transformative Generalization demands a shift in
thinking mode (e.g., from fixed-case enumeration to a “clever” solution that requires thinking in a reverse way).

this gap is an ongoing research effort, our works aims to offer novel insights into the generalization
limits of frontier LLMs in mathematical reasoning, cutting through the noise to identify what these
models can and cannot do.

Existing math datasets are poorly suited for analyzing math skills that RL models can learn. Large-
scale corpora such as Numina-Math [20]], Omni-Math [11], and DeepMath [14] blend a large number
of math questions in different topics and complexity levels, making it hard to isolate specific
reasoning skills behind a model’s success or failure. On the other hand, controlled datasets like
GSM-Symbolic [26]], GSM-PLUS [22], and GSM-Infinite [43]] focus on narrow domains, making
the diversity of reasoning problems limited. Earlier resources like the DeepMind Mathematics
suite [2] provide synthetic problems spanning broader topics, but were tailored for earlier-generation
models and emphasize elementary tasks (e.g., base conversion), which are far below Olympiad-level
complexity. As a result, current benchmarks are either too coarse for causal analysis or insufficiently
challenging for modern LLMs. We provide a more detailed comparison in Table([T]

To address this gap, we introduce OMEGA, a controlled, yet diverse benchmark designed to probe
three axes of Out-of-Distribution (OOD) generalization, inspired by Boden’s typology of creativ-
ity [4]. For each axis, we construct matched training-test pairs that isolate a specific reasoning
capability (Figure[T) that span 3 dimensions: (1) Exploratory—assessing whether models can apply
known problem-solving skills to more complex instances within the same problem domain. For
example, counting rectangles in an octagon (train) versus a dodecagon (test) (Figure [Tp); (2) Compo-
sitional—evaluating their ability to combine distinct reasoning skills, previously learned in isolation,
to solve novel problems that require integrating these skills in new and coherent ways, e.g, finding the
GCD of polynomials followed by root-solving (Figure[Ib); and (3) Transformative—testing whether
models can adopt unconventional strategies by moving beyond familiar approaches to solve problems
more effectively. For instance, one can replace brute-force enumeration with a subtractive counting
method that overcounts and then removes invalid cases (Figure[Tk).

OMEGA'’s test and train problems are constructed using carefully engineered templates that provide
precise control over diversity, complexity, and the specific reasoning strategies required for solutions.
Our framework employs 40 templated problem generators across six mathematical domains: arith-
metic, algebra, combinatorics, number theory, geometry, and logic & puzzles, with complexity levels
aligned to Olympiad-level problems. All problems are programmatically generated from problem
templates, with answers computed via symbolic, numerical, or graphical methods. Each template
encodes a distinct reasoning strategy, enabling systematic generalization studies and the construction
of compound problems by combining multiple templates.

Our empirical results reveal three primary findings about current reasoning models: a) Performance
degradation in scaling up complexity. As mathematical task complexity increases, frontier models’



METHOD PROBLEM PROBLEM OVERALL CONTROL W. CONTROL W. NOTES
GENERATION VERIFICATION ~ COMPLEXITY CIFFICULTY DISTRIBUTION

AIME (3] Human Human High X X 30 Questions per year.
GSMS8K [6] Human Human Low X v Primitive math-word problems.
GSM-Symbolic Program Program Low v 4 Perturbed math-word problems.
126
GSM- Program Program Arbitrary 4 v Infinitely generable math-word prob-
Infinite [43] lems.
MATHS00 [30] Human Human Low v X
METAMATH [8] Human/LLM Human/LLM Low X X Based on GSM8K/MATH.
BIGMATH [ L] Human Human/Filters High X X A mix of many datasets.
MATHSCALEQA LLM LLM Low X v 2M generated datapoints.
1341
OPENMATH- Human/LLM  Human/Code/LLM Low X X 1.8M solutions to 14K problems
INSTRUCT [36] from MATH / GSM8K.
DEEPMATH [14] Human Human High v X 103K mathematical problems.
OMEGA (Ours) Program N/A; Correct by Arbitrarily 4 4 A controlled dataset for systematic
Construction High math generalization analysis.

Table 1: A comparison of various evaluation datasets and the methods used to generate them.

performance deteriorates to near-zero despite substantial inference-time compute. The CoT analysis
highlights several key insights: (i) models often discover correct solutions early but expend exces-
sive tokens on verification, leading to inefficient computation, and (ii) models frequently fall into
error spirals due to overthinking and self-correction mechanisms, compounding early mistakes and
abandoning correct reasoning pathways, (iii) lower accuracy on high-complexity problems can stem
from the models’ reluctance to perform tedious computations, rather than from arithmetic errors; b)
Generalization of RL exhibits plateau gain. RL effectively improves model generalization from
easy to medium-complexity mathematical problems, especially on familiar (in-domain) tasks, but
struggles to achieve significant gains on higher-complexity problems. Performance boosts vary signif-
icantly across domains, highlighting the importance of domain-specific knowledge and complexity. c)
Struggle of skill integration and creative reasoning in LLMs. Unlike humans who fluidly integrate
mastered skills, RL models trained on isolated skills struggle at compositional generalization, and
models trained conventionally deteriorate on problems necessitating unconventional thinking. These
findings underscore crucial gaps between current LLM reasoning capabilities and the flexible, insight-
ful problem-solving characteristic of human mathematicians, particularly in scenarios demanding
genuine mathematical creativity beyond mere pattern recognition.

Beyond highlighting current limitations, we hope this study encourages the community to explore
smarter scaling solutions rather than brute-force approaches. Although many of the identified failure
cases could potentially be patched through targeted data augmentation or synthetic scaffolding, such
short-term fixes may obscure deeper, structural weaknesses in model reasoning. Our objective is not
only to expose these limitations, but also to inspire strategies that fundamentally equip models with
robust, efficient mathematical reasoning capabilities that should address underlying issues that persist
beyond simple dataset patches or model scaling.

2 OMEGA: Probing the Generalization Limits of LLMs in Math Reasoning

A central goal of mathematical reasoning is not merely to apply memorized procedures but to flex-
ibly adapt, combine, and extend learned strategies. To assess the extent to which LLMs exhibit
this capacity, we propose a typology of generalization inspired by Margaret Boden’s framework
for creativity in cognitive science [4]. Specifically, we define three axes of reasoning general-
ization—exploratory, compositional, and transformative— to probe the limits of these models on
controlled out-of-distribution (OOD) cases that range from easier extensions of seen patterns to
harder, more unconventional reasoning problems. Assessing performance along these axes requires
fine-grained control over the in-distribution training data.

2.1 Problem Construction

Training on a heterogeneous mix of unrelated problems obscures the source of generalization. In
contrast, restricting training data to instances drawn from a single template ensures that the model
learns a well-scoped strategy.

In our work, all training and test problems problems are generated from carefully designed templates
to enable precise control over problem structure, diveristy and required reasoning strategies. To
do so, we use 40 templated problem generators spanning six mathematical domains: arithmetic,



Table 2: Example problem templates across six mathematical domains. For illustration purposes, template
content has been shortened. Shaded text indicates programmatically generated variants. Each problem template
is associated with a complexity measure §(6), reflecting task-specific complexity metrics.

Category Problem Name Template Example (7) with parameter (0) Complexity
0(0))
GCD What is the greatest common factor of 3450 and log,,(answer)
X X 24380 ?
Arithmetic Prime Factorization =~ What is the second-largest prime factor of 519439 ? log,, (answer)
Mixed Operations What is the value of (-7920)/1320 - 2/44*4614 ? number of opera-
tions
Matrix Rank Find the rank of the matrix  size of the matrix

((5,-14,6,-1], [-2, -1, 5, -4], [10, - 10, -6, 10], [-19, 1, 3, -31]]

Linear Equation Solve 5m =-8k-345, -3m + 26 + 119 =-898k + 894k  number of sym-
for m. bols
Polynomial Roots Suppose 4160a® 4 4480a* — 585a — @cﬂ aF @ = 0 max power
Algebra what is a (rational number)?
Func Intersection How  many times do  the  graphs of number of compo-
f(z) =2|(—2sin(rz +2) +1) — 2| +3 and siuons
g(z) = 3|z + 2| — 3 intersect on [—10, 10]?
Func Area Find the area bounded by number of compo-
fl@) =2(=8z+4)%+ (-3z+4)+3, sitions

g(z)=3z—1, z=13,and z=1.7.

Letter Distribution ~ Distribute {s:3, g:2,j:2} into 3 identical containers number of letters
holding [3, 2, 2] letters.
Combinatorics  pyttern Match Randomly select 3 letters from {0:2, x:3} ; expected number of letters
matches of pattern ‘xo+’ ?

Prob. (No Fixed) Choose 3 letters from {u:l, f:3, t:2} and shuffle. Prob- number of letters
ability of no fixed letter positions?

Digit Sum Let NV be the 10th smallest 3-digit integer with digit sum  log,,(answer)
divisible by 6 . Find V.
Number Theory Triple Count How many ordered triples (a, b, ¢) with a,b,c < 3% sat- log;,(answer)
isfy —2a% — 2b3 +2¢3 =0 (mod 32) ?
Prime Mod Let p be the smallest prime for which log;,(answer)

n®+2=0 (mod p°) has a solution; find the
minimal n for this p.

Circle Circle X has center I and radius 8. M has center K and number of con-
radius 6 and is internally tangent to circle X. Let U be the  structions
Geometry rotation of point K by angle 77 /12 around point I. Circle
D passes through points I, K, and U. What is the radius of
circle D?
Rotation In aregular octagon labeled 1-8 , draw diagonals from number of ver-

5to3 and from 2to 7 . Rotate the figure 7 steps coun- tices of polygon

terclockwise and overlap it with the original. How many
smallest triangular regions are formed?

Grid Blocked Ina 4x4 grid, how many different paths are there from  grid size
the bottom left (0, 0) to the top right (3, 3), if you can
Logic & Puzzles only move right or up at each step, subject to the con-
straint that you cannot move through the following cells:

3,1),(2,3),(0,1),(2,1)?

algebra, combinatorics, number theory, geometry, and logic & puzzles. Example problem templates
are illustrated in Table [2] These problems are calibrated at the knowledge level comparable to
the American Invitational Mathematics Examination (AIME) [3]], with many serving as crucial
sub-components in solving Olympiad-level problems. For instance, the function_intersection
problem type represents an essential building block for questions requiring advanced function analysis.

The selection of problem templates involved several critical considerations:



* Single-scope with meaningful variations. Each problem template is designed to focus on a
single-scope mathematical strategy while allowing for substantial variations. By single-scope, we
mean that the required solution approach is confined within a well-defined framework, enabling
controlled studies of specific reasoning patterns. For instance, instead of combining multiple
geometric shapes in a single problem generation template, we isolate problem families on different
shapes independently. At the same time, we ensure meaningful variation by designing parameters
that fundamentally alter solution trajectories when modified. This contrasts with datasets (numerical
perturbation) like GSM-PLUS [22], where varying numerical values often preserve the underlying
solution path without introducing new reasoning challenges.

* Programmatic generation and solution validation. To ensure scalability, both problem instances
and their solutions are programmatically generated. This requirement significantly influenced
template selection, especially for geometry problems that demand sophisticated procedural generation.
We employed diverse computational methods for solution validation: grid search algorithms for
function_intersection problems, exhaustive enumeration for combinatorial tasks, and computer
vision techniques—such as cv2.approxPolyDP from OpenCV—to accurately count polygons in
rotation problems.

2.2 Training and Evaluation Setup for Generalization

Let 7 = {7} denote a collection of problem templates, where each template 7 defines a family of
problem instances P, = { z ¢ | 6§ € ©,}, parameterized by a complexity vector § within a parameter
space ©.. We define a scalar complexity measure § : ©, — Z7T that ranks problems by increasing
complexity. For each generalization axis—such as exploratory, compositional, or transformative—we
specify a training set by selecting a collection of templates along with particular regions of their
parameter spaces. Similarly, a distinct set of templates and parameter regions is chosen for testing
separately, depending on the different generalization test settings. For each generalization category
and each math domain, we construct: 1) training data, 2) In-distribution (ID) test data, and 3) OOD
test data.

2.3 Exploratory Generalization

Exploratory generalization assesses whether a model can faithfully extend a single reasoning strategy
beyond the range of complexities seen during training. Concretely, the model is exposed to problems
drawn from one template 7, all lying within a “low-complexity” regime, and is then evaluated on
harder instances from the same family. This axis probes robustness: does the model generalizes
the same algorithm to higher complexity problems? or does it merely memorize solutions at a fixed
complexity level?

Training and testing data construction. we define a cutoff threshold Jy based on a task-specific
complexity measure ¢, which determines the maximum complexity level included in training. All
problem instances with § < §y are used for training, while those with & > J, are reserved for testing.
To ensure the setting remains sufficiently challenging, we select &g such that the base model achieves
under 50% accuracy on the training data—reflecting the inherent complexity of these reasoning tasks
and leaving room for improvement through fine-tuning. All problem templates introduced in Section 2]
are suitable for exploratory generalization experiments, as they encompass scalable reasoning tasks.
For each template, we ensure that the complexity scaling aligns with the mathematical intuition of
the task, such that increasing ¢ genuinely demands more sophisticated reasoning steps.

2.4 Compositional Generalization

Compositional generalization probes a model’s ability to integrate multiple, distinct reasoning
strategies. Unlike explorative generalization, which scales a known method to larger instances,
compositional generalization requires a fusion of sub-skills synergistically. Figure [2illustrates two
such cases, where solving the target problem hinges on combining finite-case enumeration with
piecewise reasoning or geometric layout analysis with nested-pattern counting. Overall, compositional
generalization offers a controlled framework for assessing whether a model can go beyond mastering
individual reasoning patterns to dynamically combine them—thereby distinguishing shallow, rote
learning from genuine skill integration and true task understanding.



To curate meaningful compositional settings, we enforce the following principles: First, cohesive
skill integration where the compositional train problems should require true synthesis of multiple
reasoning skills rather than superficial concatenation. This ensures that solving the problem depends
on the synergistic application of sub-skills, not merely applying them in sequence. Second, complete
skill coverage where each reasoning skill involved in the composed test task should be independently
represented in the training set. This ensures that success on the test reflects the model’s ability
to compose familiar strategies, rather than rely on exposure to novel ones. And lastly, nontrivial
complexity of train problems where train problem should be sufficiently challenging so that the
model actually learns each sub-skill, making any compositional gains observable. The training
problems from our templated inventory remain challenging to the base model, even at low complexity
levels (1-2).

Training and testing data construction. Our compositional dataset is structured around seven
categories (details in Appendix §B.2), each designed to probe specific combinations of reasoning
skills. Within each problem family, we identify a core skill and construct corresponding training
examples that isolate and reinforce this skill. To evaluate compositional generalization, we then design
test problems that require the synergistic application of two distinct skills—such that the solution
cannot be obtained by applying each skill naively, but instead demands their true integration. For
instance, as illustrated in Figure |2 one problem family focuses on interpreting polygonal geometry,
while another targets counting nested patterns; their composition results in a task that requires
counting nested structures within polygons. Each setting includes multiple training instances for
individual skills and corresponding test instances that assess the model’s ability to combine them
effectively. Representative examples are provided in Table[7]and Table[§] with additional information

in Appendix [B.2]
2.5 Transformative Generalization

Transformative generalization poses the greatest challenge: it asks whether a model can abandon
a familiar but ultimately ineffective strategy in favor of a qualitatively different and more efficient
one. These tasks lie outside the scope of mere extension or composition; they require a “jump out
of the box”—a creative reframing that circumvents the limitations of standard tactics. To curate
meaningful transformative settings, we enforce the following principles: a) Same problem scope,
new insight. Training and test problems share the same template family (e.g., polynomial-root
finding or function-intersection), but test instances are specifically designed so that the familiar tactic
either fails or becomes intractably cumbersome; b) Necessity of reframing. Solving the test problem
must require a novel strategy—such as a symmetry-exploiting substitution or a global geometric
argument—rather than exhaustive casework or brute-force enumeration; c) Nontrivial training tasks.
The training problems themselves remain sufficiently challenging to ensure the model genuinely
learns the familiar tactic before being forced to abandon it.

Training and testing data construction. Our transformative dataset comprises seven categories
(detailed in Appendix §B.3), each specifically designed to evaluate a model’s capacity to adopt

Train Problems Source Skill Target Skill Test Problems
Form a word by randomly choosing 3 letters from the multiset {k: Finite-case Finite-case Considering the functions f(x) = ax / Ix
4, m: 3}, shuffle the letters in the word, what is the probability of . - 3| and g(x) = px"2 + gx, where a, p,
at least 3 letter 'k' remains in the same position? enumeration — enumeration q can each take integer values from 1
) to 5, how many different combinations
for parametric of parameter values result in at least 1
. X i q fq [ q intersection points in the range [-10,

How many solutions does the equation (xA2 + 3x + 4)/IxA2 - 2x + 4l= Piecewise function functions. 11017§ S LS i range [
-I((2x - 1)/(-1x + 2)) - 31 - 1 have for x in the interval [-10, 10]? reasoning

Find the number of rectangles that can
be formed inside a fixed regular

In a regular octagon labeled 1-8, draw diagonals from 5 to 3 and from  Geometric layout Counting for dodecagon ($12$-gon) where each side
2 to 7. Rotate the figure 7 steps counterclockwise and overlap it with .. of the rectangle lies on either a side or
the original. How many smallest triangular regions are formed? analysis in polygon — nested a diagonal of the dodecagon.

. rectangles e A
When randomly selecting 4 letters from the 1nu1}iscl y: 2, f 3,01} Counting for nested in polygon . =11, N . \ .
to form a word, what is the expected number of matches of the J 5 | ) l K
pattern 'f.*f'? patterns 4 g A 8 <

Figure 2: Two examples of compositional generalization in our training/test setup. Each case presents training
problems from two separate templates that exercise particular reasoning skills that the model must master, and a
test problem that composes the skills. More examples can be found at Appendix@



Table 3: Illustrative training versus test tasks that probe Transformative generalization. Training
problems reinforce familiar tactics, but can be over-complicated for test problems where qualitatively
different reasoning is required. More examples can be found at Appendix [B]

Problem fam-

ily Training regime (familiar tactic) Transformative test (new tactic required)
* Problem. Sol = —362° + 2722° — 5 .
4192 — 240.0 ve /() SR ¢ Problem. Solve f(z) = z° + 10;1:3&1— 20z — 4.
P * Tactic learned. Apply the Rational Root Theo- * Needed insight. Substitute x = ¢ + — to exploit
OLYNOMIAL ith o | 240 36). test t
ROOTS rem {enumerate p/q with p ‘ ¢ | 36), tes symmetry, reduce to a quadratic in ¢2, then re-
candidates via synthetic division, then factor the cover
cubic. ’
* Problem. With f(z) = ||z — 3| and g(z) =
* Problem. Count intersections of f(z) = [|lz| — %], find intersections of
2|—2exp(mz +2)+ 1| — 2+ 3 and g(z) = .
FUNCTION 3|z + 2| — 3 on [~10, 10]. y = 4g(f(sin27z)), = 4g(f(cos3my)).
INTERSEC-  Tactic learned. Simplify by sign—cas; apa_lysis, « Needed insight. Avoid exhaustive casework;
TION resolve absolute values, and use periodicity to

instead, analyze how “up” and “down” graph
segments multiply and intersect, using visual
symmetry for efficient counting.

count intersections.

novel problem-solving approaches. Within each category, training problems are generated from the
templates described in Section [2] These training tasks can typically be solved using conventional
reasoning strategies of moderate complexity, ensuring that the model thoroughly acquires foundational
skills. Conversely, the corresponding test problems are intentionally constructed to render these
familiar methods ineffective, compelling the model to devise and employ qualitatively distinct
solutions. For instance, as illustrated in Table [3] polynomial-root finding tasks in training might
be addressed through straightforward factorization, whereas the test scenarios require employing
specialized algebraic substitutions to efficiently determine solutions. Similarly, training instances for
function-intersection problems might typically involve direct derivative analysis, whereas the test
cases demand recognition of underlying geometric properties to bypass computationally intensive
algebra. Each transformative category thus pairs multiple training problems that reinforce established
techniques with test problems explicitly designed to challenge the model to surpass these traditional
approaches and engage in genuine strategic innovation. Additional examples and detailed explanations

are available in Appendix

3 Experiments

3.1 Limits of Reasoning Language Models on Increasing Problem Complexity

We evaluate four frontier models—DeepSeek-R1, Claude-3.7-Sonnet, OpenAI-03-mini and
0penAI—o4—miniE}—acr0ss different complexity levels, measuring exact-match accuracy on a held-
out set of 100 samples per complexity level. Detailed experimental setup and complexity level
descriptions are provided in Appendix [C|

Reasoning LLLMs performance degrades with increasing problem complexity Figure [3|reveals
a consistent trend across all models and task types: performance begins near ceiling levels but steadily
declines as problem complexity increases. This degradation aligns with the growing number of
reasoning steps required, which amplifies the likelihood of error. To justify the evaluation, we provide
a complexity analysis in Appendix [E| demonstrating that the evaluated problems remain within the
models’ context length limits. Despite the use of Chain-of-Thought (CoT) traces which enables
step-by-step decomposition and self-correction, models still exhibit clear scaling limitations. CoT
reasoning remains effective only below a critical complexity threshold, beyond which performance
rapidly deteriorates under increased cognitive load. To investigate how CoT reasoning changes under
increasing complexity, we analyze the compositional patterns of DeepSeek—RlE] CoTs in correct and
incorrect responses using 04-mini. Results are shown in Figure[9]

2Versions used: Claude (2025-02-19), 03-mini (2025-01-25), 04-mini (2025-04-16).
3 Analyses of 03 and 04 reasoning traces are not possible since they are hidden per OpenAl policy.
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Figure 3: Exact-match accuracy of four top-tier LLMs on OMEGA, plotted against increasing complexity
levels. As the complexity increases, performance degrades and goes to zero. We provide complexity analysis to
typical problems to ensure they are within the models’ output length as detailed in §@

3.2 RL Generalization Experiments

Experimental Setup. We evaluate the impact of RL on the generalization capabilities of the base
model, Qwen2.5-7B-Instruct and QwenZ.S-Math-7ﬂ across three distinct generalization paradigms:
exploratory, compositional, and transformational. For each generalization type, we apply the GRPO al-
gorithm on 1k training problems and evaluate on corresponding in-domain (ID) and out-of-distribution
(OOD) test sets. For exploratory generalization, we train on problems with restricted complexity
levels 1 and 2, then evaluate on: (i) ID problems from the same problem family and complexity
range (0 < §p = 2), and (ii) OOD problems from the same problem type but with higher complexity
(0 > 2). Regarding compositional generalization, for each compositional category C = (Sy4, Sp),
we train the model on problems that involve the individual skills S4 and Sp separately, but not their
combination, then evaluate on: (i) ID problems testing each skill separately (Ps, and Pg,), and (ii)
OOD problems requiring the integrated composition of both skills (Ps , ¢ 5, ), Where successful solu-
tion demands the synergistic combination rather than sequential application of the individual skills.
For transformational generalization, we train on problems with conventional solution approaches,
then evaluate on: (i) ID problems solvable using familiar methods from the training distribution, and
(i1) OOD problems that appear similar to training data but require unconventional solution strategies.

Can RL Effectively Generalize from
Easy to Hard Problems? Strong Early
Gains, but Generalization Plateaus with
Task Complexity. Figure [5] shows that
RL training on low-complexity problems
(levels 1-2) improves generalization to
medium-complexity tasks (level 3) across
mathematical domains. Gains are consis-
tently larger on in-domain (ID) than out-
of-distribution (OOD) examples, indicat-
ing that RL primarily reinforces patterns

Problem: Arithmetic GCD

Problem: Arithmetic Matrix Rank

E

Models Trained with Complexity levels
&
3

levell Level2 Level3 Leveld LevelS
Complexity level of Test Problems

Levell Level2 Level3 Leveld LevelS
Complexity level of Test Problems

seen during training while still enhancing
broader generalization. In the Zebra Logic
domain, for instance, RL boosts accuracy
from 30% to 91% on ID and 83% on OOD
examples—without any supervised fine-
tuning—demonstrating that reward-driven

Figure 4: Generalization across complexity levels. Models
were trained with data up to a certain complexity level (y-axis)
and evaluated on problems from levels 1 to 5 (x-axis). Cells
marked ‘ID’ represent in-distribution evaluations where the
test complexity level was included in the training set. Our
results show that RL generalizes from easy to hard problems
with a plateauing gain.

*Qwen2.5-Math-7B results follow the same patterns as Qwen2.5-7B-Instruct; please refer to Figurein the

Appendix for more details.



exploration alone can yield effective rea-
soning strategies for combinatorial problems.

However, these gains vary by domain. In geometry, where the base model starts below 15%, RL
yields smaller improvements (+31 pp ID, +8 pp OOD). This likely reflects geometry’s multimodal
complexity (spatial reasoning, diagram understanding, algebraic translation) and limited pretraining
exposure. Prior work similarly finds that spatial reasoning requires dedicated data and
architectures, suggesting that domain familiarity heavily influences RL effectiveness. Understanding
how domain complexity and prior exposure mediate RL gains remains an open question.

We also tested whether broadening RL training to include higher complexities (levels 1-4) improves
transfer to harder tasks. As shown in FigureE[, results remain flat: in Arithmetic GCD, accuracy on
level 5 stays at 3%, matching the baseline, regardless of whether RL is trained on levels 1-2 or 1-4.
RL improves moderately on mid-level tasks (e.g., +4 pp on level 3) but fails to lift performance on
the hardest problems. While prior work [24] notes that RL helps most when the base model struggles,
our findings reveal no consistent trend across domains—improvements are task-dependent rather
than correlated with initial performance.

Overall, RL narrows the ID-OOD gap but does not reliably instill the higher-order reasoning needed
to generalize from easy to hard problems.
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Figure 5: Performance comparison of Qwen2.5-7B-Instruct before and after RL on OMEGA under the
exploratory generalization setting (Section 2-I). Each problem setting is represented by concatenated bars:
In-distribution (ID) accuracy (blue) and Out-of-distribution (OOD) accuracy (orange). RL yields strong improve-
ments across most domains on in-distribution tasks; however, gains on out-of-distribution tasks are typically
lower and more variable, highlighting the limits of generalization from seen distributions.

3.2.1 Can RL Learn to Compose Math Skills into Integrated Solutions? Strong Performance
on Isolated Skills, but Limited Compositional Generalization

We test whether RL enables mod-

els to combine distinct reason-
mmm Before RL - Skill A (ID) mmm Before RL - Skill B (ID) mmm Before RL - Skill A+B (OOD)
ing Sk]lls learned Separately into After RL - Skill A (ID) After RL - Skill B (ID) After RL - Skill A+B (OOD)
.. 80
novel compositions. For each
compositional category Ci = z«
(Sa;, Sp,), RL trains the model £ - - . -
2 40

on problems requiring each skill

in isolation, excluding any joint "

occurrences. The OOD evalua-

tion then measures whether the °

model can solve problems requir-

ing Sy, ® Sp,—a direct test of Figure 6: Performance comparison of Qwen2.5-7B-Instruct on OMEGA

emergent compositional reason- under the compositional generalization setting. The model’s ability to

ing. integrate reasoning strategies from two problem families is assessed. For
each setting, accuracies are reported on the individual in-distribution

Figure 6] shows that RL reliably problem families (Skill A & Skill B) and their compositional problems.

strengthens individual skills (of- Results are shown before and after RL.

ten >69% accuracy on .S,, and

S, ). For example, polygon rotation accuracy rises from 13% to %, and pattern matching from 6% to

22%. However, the magnitude of improvement varies by skill, suggesting that some are inherently

easier to reinforce. In contrast, models show little to no improvement on compositional tasks. Even

- HI H
n sk\
s s

sku/\
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after RL, combining skills (e.g., GCD + polynomial roots) yields negligible gains (typically <6 pp).
This indicates that RL mainly reinforces task-specific patterns rather than fostering flexible reasoning
that can generalize to novel compositions—unlike human reasoning, which naturally recombines
learned procedures to solve new problems.

Ablation studies (Tables further confirm that compositional gains depend on the conceptual
alignment of the underlying skills. Original pairings yield moderate improvements (+7.5—15 pp),
while altering one or both components sharply reduces or negates these gains. Thus, RL supports
limited compositional generalization, effective only when component skills are closely related and
jointly reinforced during training.

3.2.2 Can RL Go Beyond Familiar Skills to Discover New Reasoning Abilities? Learns
Familiar Strategies, but Struggles with Unconventional Solution Paths

Figure [7] presents the most challenging test of
reasonipg flexibility, requiring models to aban- o _ e e
don training-observed strategies and discover == efore R (Tes: 00D) Improve Afe RL (Test: 00D)

entirely new solution approaches. The base  ”

model performs modestly across most settings,
with accuracy typically below 20%. RL training
provides substantial benefits on in-domain ex-
amples where the solution approach is familiar
from training data, and this aligns with our pre-
vious generalization tasks (e.g., +56% on matrix 0
rank).

However, performance on OOD transforma-
tional problems remains low after RL, often 0%.
The only notable improvement appears in Set-
ting 7 (+10 pp); however, upon examining the
model’s trajectories, we observe that it continues to rely on naive solutions, succeeding only on
some simple variants of the transformative problems where conventional approaches still apply.
Nonetheless, the result highlights both the strengths and limits of RL: it offers meaningful gains
when a familiar structure exists but struggles to induce genuinely novel reasoning strategies without
prior exposure. This suggests that RL training alone could be insufficient for discovering novel
reasoning paradigms, and that such transformational capabilities may require explicit exposure to
diverse problem-solving strategies during base model training or supervised fine-tuning. Notably,
in the matrix rank setting where the base model achieved decent OOD performance (70%), further
RL training actually led to performance deterioration, dropping 30 percentage points. This decline
indicates that RL optimization can sometimes reinforce suboptimal patterns learned during training
rather than promoting exploration of alternative approaches.

Decline After RL

Accuracy (%)
a
3

s
8

Figure 7: Performance comparison of Qwen2.5-7B-
Instruct on OMEGA under the transformational general-
ization setting. The model’s ability to adopt qualitatively
new reasoning strategies is evaluated.

4 Discussion & Conclusion

We have presented OMEGA, a controlled benchmark designed to isolate and evaluate three axes
of out-of-distribution generalization in mathematical reasoning: explorative, compositional, and
transformative. We provide a detailed discussion with related works in Appendix § |A] In this
work, by generating matched train—test pairs from template-driven problem families, our framework
enables precise analysis of reasoning behaviors and supports infinite-scale, reproducible synthesis.
Our empirical study yields three key insights. First, RL fine-tuning delivers substantial gains on
both in-distribution and explorative generalization, boosting accuracy on harder instances within
known problem domains. Second, despite these improvements, RL’s impact on compositional tasks
remains modest: models still struggle to integrate multiple learned strategies coherently. Third, RL
struggles to induce genuinely new reasoning patterns, showing negligible progress on transformative
generalization that requires shifting to novel solution paradigms. These findings underscore a
fundamental limitation: while RL can amplify the breadth and depth of problems that LLMs solve,
they do not by themselves foster the creative leaps needed for true transformational reasoning. By
diagnosing where and why current LLMs fail to generalize creatively, OMEGA lays the groundwork
for next-generation reasoners that can not only interpolate but also innovate—moving us closer to
human-level mathematical problem-solving.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly articulate the core contributions—the
proposal of MathOOD as a benchmark to evaluate three types of generalization—and the
conclusions are supported by results in Section 3]

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Section[d](Conclusion) acknowledges the limits of reinforcement learning in
addressing compositional and transformative generalization, and proposes directions for
overcoming them.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section[2]and Appendix [C]describe the benchmark construction and evaluation
setup in detail, and the GitHub repository (linked in the abstract) provides code and data for
reproduction.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: https://github. com/sunblaze-ucb/math_ood
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section [3|and Appendix [C|describe the training and test details, including how
problem templates, complexity levels, and generalization splits are constructed.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Evaluation and training are very expensive.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The details are in Appendix [C|
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper introduces a benchmark and performs evaluations on publicly
available models without engaging in any practice that violates the NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: SectionE] (Conclusion) discusses how MathOOD can guide the development
of more capable and creative LLMs and acknowledges that current models may fail when
deployed in tasks requiring compositional or innovative reasoning.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The dataset released (MathOOD) is programmatically generated from tem-
plates and does not pose a high misuse risk.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and models used (e.g., AIME, OpenAl, DeepSeek, Claude) are
properly cited in Section [A] (Related Work) and the references.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The MathOOD dataset is introduced in Section [2| and documented with
examples in the paper; additional documentation is available in the linked GitHub repository.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: Section [3] describes how LLMs are evaluated under various generalization
regimes, and the models used (e.g., Qwen2.5-7B-Instruct, DeepSeek-R1) are explicitly
stated.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related Work

OOD Generalization and Compositional Abilities of LLMs. Generalization to out-of-distribution
(OOD) data remains a fundamental challenge in large language models (LLMs) and machine learning
more broadly, with far-reaching implications for tasks such as mathematical reasoning, physical
modeling, and financial forecasting [10, 17, 21, 23,137, 138]]. In practice, many key questions about
model performance reduce to whether models can effectively handle test distributions that differ
from their training data. Compositional generalization—models’ ability to systematically combine
learned skills—has also been a long-standing focus in language research [5, 19, |18 25} [15] 16} 132].
Much of this work has relied on controlled testbeds involving rule-based languages such as SQL or
synthetically generated tasks. More recently, [42] extended this line of inquiry to natural language
skills, while [7]] examined whether LLMs can acquire compositional generalization through tasks like
integer multiplication and dynamic programming. Building on this foundation, OMEGA offers a
comprehensive benchmark for assessing compositional generalization in mathematical reasoning,
spanning a broad range of problem types and solution strategies.

Benchmarking LLMs’ Mathematical Abilities. The most common way to evaluate an LLM’s math
ability is by reporting accuracy on a large collection of questions. They are typically created in a few
ways: by hiring humans to write problems (e.g., GSM8K [28]], MinervaMath [19]]), which allows
control over topic and complexity but is costly; by collecting or adapting existing exam questions (e.g.,
AIME [3]], OlympiadBench [13]], GaoKao [41]), which ensures quality but limits scale and diversity;
or by scraping exam corpora and filtering them with human (e.g., NuminaMath [20], BigMath
[[L]); or LLM-based verification (e.g., MathScale [34]]). Another approach is to generate problems
using LLMs with correctness constraints (e.g., MetaMathQA [8]], OpenMathInstruct-1 [36]]). Some
works also modify existing datasets for specific goals, like GSM-Plus [22], GSM-Symbolic [26]
and GSM-Infinite [43]]. Other typical datasets include Math500 [30], AIME [3]], MinervaMath [19]],
and OlympiadBench [13]. The detailed comparison of popular math benchmarks is in Table[I] In
the recent study [31], evaluations on four synthetic puzzles indicate that LLMs encounter distinct
reasoning boundaries as problem complexity escalates. These findings align with our observations
presented in Section [3.1] where we examine a broader set of mathematical categories across multiple
problem families. Beyond evaluating the performance limits of frontier models, our work further
investigates the underexplored boundaries of reasoning generalization in LLMs—specifically through
explorative, compositional, and transformative perspectives.

B Dataset Details

B.1 Details of Problem Families

To provide full transparency on our templated generators, we include three comprehensive tables in
the appendix. Table[4]lists all arithmetic and algebra templates (e.g., linear equations, polynomial
roots, function operations), alongside their complexity measures across five calibration levels. Table

details the combinatorics and number-theory generators with corresponding size or range metrics at
each level. Finally, Table [§] presents our logic & puzzles and geometry templates, again annotated
with statement counts or grid sizes for the five levels. Together, these tables document the full set of
41 problem families used in MathOOD, illustrating how each template is systematically calibrated to
enforce controlled, domain-specific reasoning strategies.
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Table 4: Problem families (arithmetic and algebra) with sample problems and complexity measures
across five levels.

Problem Family Sample Problem Statement Complexity Lvl Lv2 Lv3 Lv4 LvS
Alias Measure
algebra/linear_equation  Solve 3n — 4t + 1012801 = Symbol num- 2 3 4 5 6
1012843, —3n + 66 = 4t ber
algebra/polynomial_roots Express the second largest root of Degree 3 4 5 6 7
— L0 3 193802 4 1093y  UT —
asn ;’m where ged(n, m) = 1.
algebra/func_integration ~Compute the indefinite integral for f(z) = Composed 2 3 4 5 6
2(x — 5)2 — 4(x — 5) + 3. function num-
ber
algebra/func_area Determine the area enclosed by f(z) = Composed 2 3 4 5 6
3(—e""—-2)—1 — function num-
AT ga) = s+ 143
algebra/func_derivative ~ Number of maximal connected intervals in ~ Composed 2 3 4 5 6
[—10,10] where f(z) = —4(—2sin(rz — function num-
2) +2) + 5 is increasing. ber
algebra/func_ext_coords  Average of all z-coordinates of local min- Composed 2 3 4 5 6
ima of f(z) = % gérrlction num-
algebra/func_extrema ~ Number of local maxima of f(z) = Composed 2 3 4 5 6
2cos(3m(|z+1|+3)+3) —1in [-10,10]. function num-
ber
algebra/func_intsct_coords Integer value (rounded) at which f(z) = Composed 2 3 4 5 6
z —5, g(x) = —2|z| — 1 intersect in  function num-
[-10, 10]. ber
algebra/func_intersection Number of intersections of f(xr) = Composed 2 3 4 5 6
—3cos(2m(2|lz+2|4+2)+3)+1, g(z) = function num-
4z — 3in [-5,5]. ber
algebra/func_zeros Number of z-intercepts of f(z) = Composed 2 3 4 5 6
3cos(m(=3lz —2[+1) — 3) +3. function num-
ber
arithmetic/ged What is the greatest common divisor of Digit length [4,71 [10,12][15,20][20,25][25,30]
1290 and 64715?
arithmetic/calc_mixed ~ Evaluate —2 — ((79)/7+ ((—1632)/119—  Operation [4,9] [10,14](14,16][16,20][20,25]
0)) length
arithmetic/list_prime Find the second-largest prime factor of Max answer 25 100 200 400 800
62033.
arithmetic/determinant ~ Determine det(A). Row 3 4 6 7 9
arithmetic/eigenvalues  Find eigenvalues of A and report the largest Row 3 4 6 7 9
(by absolute value).
arithmetic/inverse Invert %A and sum all entries of the in- Row 3 4 6 7 9
verse.
arithmetic/multiplication  Entry (2, 1) of the product of given matrices Row 3 4 6 7 9
Aand B.
arithmetic/power Sum of all entries of A2 Row 3 4 6 7 9
arithmetic/rank Rank of the matrix A. Row 3 4 6 7 9
arithmetic/svd Rounded largest singular value of A inits Row 3 4 6 7 9
SVD.
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Table 5: Problem families (combinatory and number theory) with sample problems and complexity
measures across five levels.

Problem Family Sample Problem Statement (simplified) = Complexity Lvl Lv2 Lv3d Lv4 Lv5
Alias Measure

combinatory/distribute D1v1de the letters from {‘m’ : 2, ‘p’ : Total letters [4,6] [6,8] [9,10] [11,11][12,12]
2, ‘t’ : 2} into 3 distinctively labeled boxes
w1th sizes [2, 1, 3]. How many ways?

combinatory/pattern_matchForm a word by randomly choosing 4 letters ~ Total letters [4,6] [6,8] [9,10] [11,12][13,14]
from the multiset {h’ : 6, ‘v’ : 3}. What
is the expected number of occurrences of
h.*h?

combinatory/prob_gt_n_fixWhat is the probability that, when forminga  Total letters [4,6] [6,8] [8,9] T[10,11][11,12]
4-letter word from {h’ : 2, ‘r’ : 3, ‘q’ : 3}
and shuffling it, at least one ‘r’ remains in
its original position?

combinatory/prob_eq_n_fixWhat is the probability that, when forming Total letters [4,6] [6,8] [89] [10,11][11,12]
a 2-letter word from {‘m’ : 2, ‘I’ : 1, ‘0" :
1} and shuffling it, exactly one ‘r’ remains
in its original position?

combinatory/prob_no_fix What is the probability that, when forming Total letters [4,6] [6,8] [8,9] T[10,11][11,12]
a 4-letter word from {b’ : 4, i’ : 2, ‘u”:
2} and shuffling it, no letter remains in its
original position?

combinatory/prob_no_lettetWhat is the probability that, when forminga  Total letters [4,6] [6,8] [8,9] [10,11][11,12]
4-letter word from {1’ : 3, X’ : 3, ‘n’ : 2}
and shuffling it, no ‘x” occupies any of its
original positions?

numbertheory/digit_sum Let N be the greatest 4-digit integer such  Digit count 2 3 4 5 6
that both IV and its digit-reverse are divisi-
ble by 9. What is the digit sum of N?

numbertheory/triple_count Let N be the number of ordered pairs (a,b) Max answer 10 50 100 200 500
with a, b < 2% such that a®+b? is a multiple
of 22. What is N?

numbertheory/prime_mod Let p be the least prime number for which ~ Digit count 2 3 4 5 6
there exists a positive integer n such that
n? + (2) is divisible by p*. Find the least
positive integer m such that m? + (2) is
divisible by p?.
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Table 6: Problem families (logic and geometry) with sample problems and complexity measures
across five levels.

Problem Family Sample Problem Statement (simplified) = Complexity Lvl Lv2 Lv3 Lv4 Lvs
Alias Measure

logic/blocked_grid Ina 3 x 6 grid, how many paths from (0,0) Grid size [5,10] [10,20]{20,30][30,50][50,70]
to (2,5), moving only right or up, if cells
(0,4), (1,3),(2,0) are forbidden?

logic/grid_rook In a 3 x 6 grid, minimal rook-like moves Grid size [5,10] [10,20][20,30][30,50][50,70]
(any number right or up) from (0,0) to
(2,5), avoiding (1, 1), (1,0), (1,3), (2,0)?

logic/grid_knight On an 8 X9 grid, minimal knight-like moves  Grid size [5,10] [10,20][20,30][30,50][50,70]
(5 by 1 leaps) from (0, 0) to (7,5)?
logic/zebralogic Two houses numbered 1-2 each with max(# of at- 2 3 4 5 6

unique person (Arnold, Eric), birthday tributes, # of
(april, sept), mother (Aniya, Holly). Clues: people)
Eric is left of Holly’s child; April birthday
in house 1. Which choice index?
logic/grid_chip In a 5 x 5 grid, chips black/white Grid size 4 5 6 7 8
satisfy row/column uniformity
and maximality; given colours at
(3,4),(2.0), (4,3), (1,1),(2,2), (0,3).
How many chips placed?

geometry/basic DS = 10. P is midpoint of DS. Rotate S Statement 10 15 20 25 30
by 77/12 about P to X. Reflect X over D  number
to Z; reflect D over Z to L. B is midpoint
of PZ; F is bisector of ZSPL; reflect S
over F' to T'. Find | BT).

geometry/polygon_chords For a 6-gon with specified diagonals drawn  # of diagonals  [6,7] [8,9] [10,11][12,13][14,15]
(2-6,1-4,3-6,5-2,6-4,4-2,3-1), how many
pairs of diagonals are perpendicular?

geometry/circle Circle center C, radius 7. G on circle; L  Statement 10 15 20 25 30
midpoint of GC'; X midpoint of LC'; I mid- number
point of LX; F is reflection of G across C'.
Find |IF).

geometry/polygon_general Square ABC' D center T, circumradius 7. Statement 10 15 20 25 30
Reflect T" across B to G. O midpoint of number
DG; Z midpoint of T'A. Find |OZ].

geometry/triangle XT = 6. Rotate T by 57/6 about X to O. Statement 10 15 20 25 30
Reflect O across X7 to V. D isincenter of number
ATOX; E midpoint of XV Find |DE]|.

geometry/rotation In a 10-gon, draw diagonals 5-9 and 8—6, Diagonal num- 2 3 4 5 6
then rotate setup 5 vertices CCW and super- ber
impose. Count smallest polygons formed.

geometry/polygon_color A 6-gon vertices colored B,B,R,B,B,B in 7 of n-gon [6,71 [8,9] [10,11][12,13][14,15]
order. By rotating, what is the maximum
blue vertices landing on originally red posi-
tions?
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B.2 Details of Compositional Generalization Problems

Compositional generalization evaluates a model’s ability to integrate multiple, distinct reasoning
strategies. In contrast to exploratory generalization—which focuses on scaling a single known method
to larger instances—compositional generalization requires the synergistic fusion of sub-strategies to
solve more complex problems. By the submission deadline, we provide 7 distinct settings to assess
compositional performance. Setting 1, illustrated in Figure [I] combines GCD and polynomial root
problems. Detailed examples and explanations for the remaining six settings are provided in Table

and Table[8]

Table 7: Examples (part 1) of training and test tasks that probe Compositional generalization ability

of LLM.

Problem family

Training regime (familiar tactic)

Compositional test (combined tactic required)

COMP. SETTING 2:
GEOMETRY/ROTA-
TION +
COMBINATORY/PAT-
TERN_MATCH

COMP. SETTING 3:
GEOMETRY/CIRCLE +
ALGEBRA/-
FUNC_INTERSECTION

COMP. SETTING 4:
COMBINATO-
RY/PROB_NO_FIX +
ALGEBRA/-
FUNC_INTERSECTION

« Example Problem from Domain A. Suppose
you have a 9-gon, with vertices numbered 1
through 9 in counterclockwise order. Draw the
diagonal from vertex 6 to vertex 4, from vertex 1
to vertex 6, and from vertex 3 to vertex 5. Then,
rotate the entire setup, including the constructed
diagonals, 8 vertices counterclockwise (so that
vertex 1 ends up where vertex 9 was), and super-
impose it on the original (so that the resulting
diagram contains both the original diagonals and
the rotated versions of the diagonals). The orig-
inal 9-gon will be partitioned into a collection
of smaller polygons. How many such polygons
will there be?

Example Problem from Domain B. Form a
word by randomly choosing 3 letters from the
multiset {y: 2, v: 1, p: 4, z: 4}. What is the
expected number of occurrences of the pattern
'p.*p’ in each word?

Example Problem from Domain A. Circle cen-
ter C, radius 7. G on circle; L midpoint of GC';
X midpoint of LC; I midpoint of LX; F'is
reflection of G across C. Find |IF|.

Example Problem from Domain B. Find
the number of intersections of f(z) =
—3cos(2m(2lz +2|+2)+3) +1, g(z)=
4z —31in [-5,5].

Example Problem from Domain A. What is the
probability that, when forming a 4-letter word
from {b’ : 4, i’ : 2, ‘0’ : 2} and shuffling it,
no letter remains in its original position?
Example Problem from Domain B. Find
the number of intersections of f(z) =
—3cos(2m(2lz +2[+2)+3) +1, g(=z)=
4x — 3 1n [-5,5].

* Composed Problem. Find the number of rect-
angles that can be formed inside a fixed regular
12-gon where each side of the rectangle lies on
either a side or a diagonal of the 12-gon. Note
that it is possible for a rectangle to be contained
within another rectangle, and that the rectangles
may not extend beyond the boundaries of the
12-gon.

* Decomposition. After observing the rotational
symmetries of the 12-gon and "visualizing" the
problem, define the conditions necessary for
lines parallel/perpendicular to a specific orien-
tation to form a rectangle. Since a rectangle
divided along an line parallel to its sides forms
more rectangles, finding the number of total rect-
angles in such a structure is a combinatorial prob-
lem isomorphic to the string problem.

* Composed Problem. A circle with radius 4
is moving on the coordinate plane such that its
center moves along the curve P(t) = (t,t?)
starting at t=0. Find the first value of t for which
the circle lies tangent to the x-axis.

* Decomposition. Observe that it is sufficient to
find a value of t for which the circle’s center
has a y-coordinate of 4, which reduces to a pure
"equation solving" problem.

* Composed Problem. Considering the functions
f(z) = asin(brz) and g(z) = psin(mgzx),
where a, b, p, q can each take integer values
from 1 to 5, how many different combinations of
parameter values result in at least 7 intersection
points in the range [-10, 10]?

* Decomposition. The composed problem re-
quires integrating symbolic reasoning over pa-
rameterized trigonometric functions (from Do-
main B) with combinatorial generalization over
multiple configurations (related to Domain A).
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Table 8: Examples (part 2) of training and test tasks that probe Compositional generalization ability

of LLM.

Problem family

Training regime (familiar tactic)

Compositional test (combined tactic required)

COMP. SETTING 5:
ARITHMETIC/MA-
TRIX_RANK +
COMBINATO-
RY/PROB_NO_FIX

COMP. SETTING 6:
GEOMETRY/POLY-
GON_COLOR +
COMBINATO-
RY/PROB_NO_FIX

COMP. SETTING 7:
LOGIC/GRID_CHIP +
COMBINATO-
RY/PROB_NO_FIX

« Example Problem from Domain A.Compute
the rank of the given 4x4 matrix: ...

« Example Problem from Domain B. What is
the probability of such event happening: Form
a word by randomly choosing 4 letters from the
multiset {j: 4, d: 2, p: 2}, shuffle the letters in
the word, what is the probability of exact 1 letter
’p’ remains in the same position?

« Example Problem from Domain A. A 6-gon is
colored so that in clockwise order, the vertices
are colored as follows: vertex O is blue, vertex 1
is blue, vertex 2 is red, vertex 3 is blue, vertex 4
is blue, vertex 5 is blue. What is the maximum
number of blue vertices that can be made to oc-
cupy a position where there were originally red
vertices by rotating the 6-gon?

« Example Problem from Domain B. What is
the probability of such event happening: Form
a word by randomly choosing 4 letters from the
multiset {j: 4, d: 2, p: 2}, shuffle the letters in
the word, what is the probability of exact 1 letter
’p’ remains in the same position?

« Example Problem from Domain A. Chips, col-
ored either black or white, are placed in the 25
unit cells of a 5x5 grid such that: a) each cell
contains at most one chip, b) all chips in the
same row and all chips in the same column have
the same colour, ¢) any additional chip placed
on the grid would violate one or more of the pre-
vious two conditions. Furthermore, we have the
following constraints (with the cells 0-indexed):
cell (3, 4) is black, cell (2, 0) is white, cell (4, 3)
is black, cell (1, 1) is white, cell (2, 2) is white,
cell (0, 3) is black. How many chips are placed
on the grid?

* Example Problem from Domain B. What is
the probability of such event happening: Form
a word by randomly choosing 4 letters from the
multiset {j: 4, d: 2, p: 2}, shuffle the letters in
the word, what is the probability of exact 1 letter
’p’ remains in the same position?

¢ Composed Problem. Consider the matrix M =

a b c
[1 a b:| where a, b, and c are integers be-
2 1 a

tween 3 and 10, inclusive. How many different
combinations of (a, b, ¢) result in a matrix with
rank exactly 3

* Decomposition. The composed problem re-
quires integrating linear algebra reasoning (ma-
trix rank determination) (from Domain B) with
combinatorial generalization over multiple con-
figurations (related to Domain A).

» Composed Problem. Each vertex of a regular
octagon is independently colored either red or
blue with equal probability. The probability that
the octagon can then be rotated so that all of
the blue vertices end up at positions where there
were originally red vertices is 7, where m and
n are relatively prime positive integers. What is
m—+n?

* Decomposition. The problem is fundamentally
about finding the number of cases satisfying a
constraint. The first subproblem tests under-
standing of the constraint (and the required spa-
tial reasoning). The second subproblem tests the
ability to enumerate cases.

* Composed Problem. There is a collection of
25 indistinguishable white chips and 25 indistin-
guishable black chips. Find the number of ways
to place some of these chips in the 25 unit cells
of a5 x 5 grid such that:

— each cell contains at most one chip

— all chips in the same row and all chips in
the same column have the same colour

— any additional chip placed on the grid
would violate one or more of the previous
two conditions.

* Decomposition. The problem asks to find the
number of possible arrangements subject to the
named constraints. The first subproblem tests
understanding of constraints in a very similar set-
ting. The second subproblem tests the ability to
compute the number of cases fitting a particular
constraint.
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B.3 Details of Transformative Generalization Problems.

Transformative generalization presents the greatest challenge: it tests whether a model can discard a
familiar yet ineffective strategy in favor of a qualitatively different and more efficient one. These tasks
go beyond simple extension or composition, requiring a ‘“‘jump out of the box”—a creative refram-
ing or redescription that bypasses the limitations of standard reasoning tactics. By the submission
deadline, we include 7 distinct settings to evaluate transformative generalization. Setting 2 (alge-
bra/function_intersection) and Setting 3 (algebra/polynomial_root) are illustrated in Table 3| while
Setting 4 (combinatory/prob_no_fix) is visualized in Figure[I] Detailed examples and explanations
for the remaining settings are provided in Table[9]and Table [L0]

Table 9: Examples of training and test tasks that probe Transformative generalization (part 1)

Problem family Training regime (familiar tactic) Transformative test (new tactic required)

¢ Problem. LetE,ben X n, e
¢ Problem. What is the rank of the ma- 1 ifi+ji
4 216 -8 7 o giseven b d rank(E,).
. 9 17 6 —14| . . 0 if7+ jisodd
TRANSFORMATIVE rix: |y 19 o —10| item Tactic , Needed insight. Observe that
SETTING 1: 7 6 -2 12 1
MATRIX_RANK learned. Use Gaussian elimination to reduce E, = 5(11T + (=D [(—1)J’]]T)7

the matrix to row-echelon form and count the
number of nonzero pivot rows.

i.e. a sum of two outer products (each rank 1),

sorank(Ey,) =2forn > 2 (and 1if n = 1).

* Problem. Evaluate the indefinite integral
¢ Problem. What is the symbolic integration of
the function

TRANSFORMATIVE
SETTING 5:
FUNC_INTEGRATION

fz) = 4(~1(52° + 5z — 2) + 4) — 37

¢ Tactic learned. First expand and simplify the
algebraic expression to a polynomial, then apply
the power-rule integration term by term.

/(1+x+x2+$3+z4) (1—z+2’—z+2*) da.

* Needed insight. Observe that multiplying the
two quintic sums collapses all odd-power terms,
yielding the even-power polynomial 2® 4- 2°® 4
x*+2%+1, which can then be integrated directly
by the power rule.
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Table 10: Examples of training and test tasks that probe Transformative generalization (part 2).

Problem family

Training regime (familiar tactic)

Transformative test (new tactic required)

TRANSFORMATIVE
SETTING 6: LOG-
IC/BLOCKED_GRID

TRANSFORMATIVE
SETTING 7:
GEOMETRY/CIRCLE

¢ Problem. In a 6x6 grid, how many different
paths are there from the bottom left (0, 0) to the
top right (5, 5), if you can only move right or up
at each step, subject to the constraint that you
cannot move through the following cells: (3, 3),
(2, 1), (3,4), (3, 1),(0,5), (5,0, (2,0, (0, 4),
2,5)

« Tactic learned. Among possible strategies, plot
the cells on the grid, and categorize paths ac-
cording to whether they pass above or below a
fixed cell. Use combinatorial formulas to easily
find the number of paths in each category. For
smaller problems, use brute-force search.

¢ Problem. Let C be the circle with center V
and radius 6. Point K is on circle C. Let I be the
midpoint of segment KV. Point M is the midpoint
of segment IK. Let L be the midpoint of segment
IM. What is the distance between points L and
I?

¢ Tactic learned. Construct circles, lines, and
perpendicular bisectors; find distances between
relevant points in the plane using coordinate ge-
ometry.

* Problem. In a 10x10 grid, how many different
paths are there from the bottom left (0, 0) to the
top right (9, 9), if you can only move right or up
at each step, subject to the constraint that you
cannot move through the following cells: (2, 0),
(2,1,(2,2),(2,3),(2,4),(2,5,(2,6), (2,7,
(2,8)?

* Needed insight. There is a wall, which vastly
simplifies the analysis. The only variation
among viable paths is at which "vertical" index
we first choose to move right, so there are 10
options.

* Problem. Let circle C; be positioned in the
coordinate plane with a radius of 1. Draw its
horizontal diameter and call its endpoints A;
and B;. Draw its vertical diameter and call the
higher endpoint D;. Then, let circle C' be the
circle centered at D; that passes through A;
and B;. Likewise, draw its horizontal diameter
and call its endpoints A; and B, and draw its
vertical diameter and call its higher endpoint
D5. Then, repeat this process, constructing a
circle C3 centered at Do that passes through
As and Bo, drawing its horizontal and vertical
diameters and constructing points As, Bs, and
D3 analogously, and so on until you construct
Ds. What is the distance between D5 and the
center of C1?

* Needed insight. There is a pattern to the con-
struction, so that the distance between C; and
D,, is geometric in n, which allows you to avoid
actually constructing most of the circles.
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C Experiment Details

C.1 Experimental Setup

Models. All experiments are conducted using the base model Qwen2.5-7B-Instruct, a strong
instruction-tuned large language model. This model serves as the initialization for reinforcement
learning (RL) fine-tuning.

Datasets. The training and evaluation problems for explorative, compositional, and transformational
generalization are drawn from the curated problem families described in Appendix [B] Unless other-
wise specified, each training set consists of 1,000 problems. For compositional settings where training
involves two problem families, we allocate 500 samples per family. To align with the proficiency level
of Qwen2.5-7B-Instrucﬂ the training problems are restricted to complexity levels 1-2. Evaluation is
performed on:

¢ In-distribution (ID) problems: 100 test samples drawn from the same complexity range
(1-2) as training, depending on the setup—whether explorative, compositional, or transfor-
mational.

» Explorative problems: 100 test samples from the same problem family within the explorative
problems but with higher complexity (level 3).

* Compositional and Transformational problems: 20-50 test samples per setting. Although
these problems do not have explicit complexity annotations, we adjust key parameters (like
from small to large) to ensure the test set spans a range of complexity.

Training Details. We fine-tune models using the GRPO algorithm implemented in the Open-Instruct
frameworkﬂ The key training parameters are as follows:

--beta 0.0
--num_unique_prompts_rollout 128
--num_samples_per_prompt_rollout 64
--kl_estimator k13

--learning_rate 5e-7
--max_token_length 8192
--max_prompt_token_length 2048
--response_length 6336
--pack_length 8384
--apply_rl_style_format_reward True
--apply_verifiable_reward True
--non_stop_penalty True
--non_stop_penalty_value 0.0
--chat_template_name rl_simple_chat_postpend_think
--temperature 1.0
--masked_mean_axis 1
--total_episodes 20000000
--deepspeed_stage 2
--per_device_train_batch_size 1
--num_mini_batches 1
--num_learners_per_node 8 8
--num_epochs 1
--v1llm_tensor_parallel_size 1
--vllm_num_engines 16
--1r_scheduler_type linear

--seed 3

--num_evals 200

Evaluation Protocol. Evaluation uses the same sampling strategy as training. Models are evaluated
200 times throughout training. To account for convergence fluctuations, we report the average
performance over the last 5 evaluation checkpoints.

SSuccessful RL training requires the base model to achieve nonzero accuracy on the training problems.
"https://github.com/allenai/open-instruct
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Compute Resources. Each RL training run uses 32 NVIDIA H100 GPUs (distributed across 4 nodes)
and completes in approximately 12 hours.

C.2 Prompt for Reasoning Trace Step Classification

To systematically analyze the types of reasoning exhibited in model-generated mathematical traces,
we employed a structured prompt to guide the annotation of each sentence within the reasoning chain.
This prompt instructs the LLM to classify each sentence into one of three categories—conjecture,
computation, or other—with further verification for the correctness of computational steps.

The full prompt is as follows:

You are analyzing a sentence from a mathematical reasoning trace.
Please classify the following sentence into one of these categories:

1. "conjecture" - The sentence makes a hypothesis or conjecture about the final

answer. Typical examples include "Alternatively, maybe the matrix is singular.",

"Wait, let’s check if the determinant is zero or not.", "Alternatively, maybe

the problem is from a source where the answer is 14."

2. "computation" - The sentence performs a mathematical computation or calculation.

3. "other" - The sentence is explanation, setup, conclusion, or another type of reasoning.

Original math problem: {original_question}
Correct answer: {correct_answer}

Sentence to classify: {sentence}

If you classify it as "computation", also verify if the computation is correct
by doing the calculation yourself.

Please respond in the following JSON format:

{
"classification": "conjecture|computation|other",
"reasoning": "Brief explanation of why you classified it this way. ",
"computation_correct": true/false/null (only fill if classification is "computation")
}

This prompt enables fine-grained, reproducible labeling of reasoning steps for downstream analysis.
In our experiments, we applied it to every step separated with “.\n” of the chain-of-thought traces.
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D Additional Experiments

Chain-of-Thought reasoning patterns analysis.
we observed several key patterns: i) early solution
discovery followed by excessive verification: CoT
traces in correct answers reveal that models often
reach correct solutions relatively early in their re-
sponses but then spend substantial additional tokens
on verification and double-checking. The yellow
“overthinking" regions in Figure [9] show this post-
solution elaboration, which remains consistent across
most domains, though it can increase with task com-
plexity (e.g., in algebra, up to 3k extra tokens spent
on verification) even when the answer has already
been found. Spending more tokens to verify an an-
swer can be beneficial, but models must be cautious
as excessive elaboration may introduces unnecessary
steps, increases compute cost, and can destabilize
otherwise correct reasoning. ii) overthinking leads
to spiral loops of errors: we noticed that incorrect
responses consistently consume more tokens than
correct ones across all complexity levels. Response
length initially increases with problem complexity,
but then drops for some tasks at the highest levels
and models abandon systematic reasoning when prob-

Arithmetic Matrix Rank

100.0%

o7 8% 98.8% 100.0% 100.0%

96.8%

100

Percentage (%)

20

Complexity Level
B Correct - incorrect shift
mmm  Reasoning spirals (wrong - wrong)

Figure 8: The percentage of incorrect responses
exhibiting two distinct error patterns: correct —
incorrect shift (blue bars) where models initially
provided correct answers but changed to incorrect
ones through overthinking, and reasoning spirals
(red bars) where models remained in wrong —
wrong reasoning chains throughout their response.

lems become intractable. To understand the types of reasoning failures models exhibit, we identified
two dominant patterns (Figure[8). The first is the correct — incorrect shift, where models initially
arrive at the correct answer but then second-guess themselves and revise toward an incorrect one
(~38% of incorrect responses at complexity 1, with similar trends across higher levels). The second is
reasoning spirals (wrong — wrong), in which models never reach the correct answer and instead cycle
through multiple flawed reasoning paths, making repeated errors without converging. This reveals
that CoT with self-correction and backtracking, although significantly beneficial, is not sufficient
to counter the snowballing of errors—transformers’ autoregressive nature still compounds early
mistakes, and CoT overthinking can paradoxically lead models to abandon the correct branch and

answer, causing them to fall into spirals of errors.

Is Lower Accuracy Simply Caused by Errors in
Computation? Not Really, LLMs Exhibit Pref-
erence for Heuristics Over Direct Computation
Earlier we observed a steady decline in solution ac-
curacy as the complexity level of our benchmarks
rises. A plausible explanation is that harder problems
require longer numeric derivations which amplifies
the chance of arithmetic slips [33]]. To disentangle
cause from correlation, we zoom in on the Matrix
Rank family, whose solution path (Gaussian elimina-
tion) is mostly deterministic and whose intermediate
results can be easily verified. For every DeepSeek-
R1’s trajectory that produced an incorrect final an-
swer, we segmented the CoT at each line break and
asked 04-mini to label each segment as (i) a conjec-
ture—a speculative statement about the final answer,
(ii) a computation—an explicit algebraic or numeric
operation, or (iii) other. When a segment was tagged
as a computation, we further checked whether its
arithmetic was correct. We provide the prompt de-

tails in Appendix §C.2}
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Patterns A ysis Across Difficulty Levels
(Problem: Arithmetic Matrix Rank)

p——

|Conjecture Steps| / |All Steps|
—=— |Computation Steps| / |All Steps|

—+— |Correct Steps| / |Computation Steps| \—/\
0.4

1 2 3

)
Difficulty Level

Figure 10: Reasoning trace analysis with distri-
bution of two specific types of reasoning steps and
correctness for the computation step, tested on Ma-
trix Rank problem family. As problem difficulty
increases, the model spends less of its CoT on
explicit calculations (gold squares) and more on
conjectural guesses (pink circles).
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Figure 9: Performance and reasoning patterns across six mathematical task domains showing accuracy
degradation and verification behavior as problem complexity increases. Models often reach the correct answer
early in the response but continue generating unnecessary verification steps, as shown in the yellow overthinking
regions. This behavior increases token usage and can destabilize otherwise correct outputs. Incorrect responses
consistently consume more tokens than correct ones.

Figure[I0|reveals three key trends: a) Shrinking calculation budget. The fraction of tokens devoted
to actual computation drops from roughly 65 % at level 1 to below 40 % at level 7. b) Growing
reliance on guesswork. Conjectural statements expand to fill the gap, indicating that the model
increasingly tends to “jump to an answer” instead of working it out. c) High per-step accuracy.
Paradoxically, when the model does compute, it does so more reliably at higher levels which suggests
that arithmetic precision may not be the only bottleneck.

Collectively, these patterns show that the accuracy loss at higher complexity can be not only driven
by cascading numerical mistakes, but also by the model’s reluctance to invest reasoning budget
in systematic calculation. Mitigating this issue may therefore require steering mechanisms that
incentivize faithful computation rather than merely improving arithmetic skill.
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Figure 11: Pass@k performance of the advanced LLMs across complexity levels for geometry rotation
problems.

Can More Inference-Time Compute Solve Harder Problems? Helps at Moderate Complexity,
but Gains Plateau at Higher Levels To investigate how inference-time compute contributes to
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Evaluation on Test Problems in Compositional Setting Evaluation on Test Problems in Transformative Setting
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Figure 12: Performance comparison of state-of-the-art LLMs on mathematical reasoning tasks in
compositional (left) and transformative (right) settings.

solving difficult math problems, we scale the number of candidates at inference time from 1 to 32 for
the advanced LLMs and report Pass @k across six graded complexity levels. Figure [IT]shows results
for the “letter distribution" problems (we provide more problems in Figure [I3]in Appendix §DJ.
Results show that increasing the search space improves performance, gradually approaching 100%
when the problem complexity is low. However, as the complexity increases, the benefit diminishes,
and performance drops to zero at complexity level 6. Notably, this failure is not due to context length
limitations—when solving this problem with dynamic programming, the state space remains within
the LLM’s context window. For example, the level 6 question example in Figure[TT|only takes 36
unique states in using a DP solver. This abrupt failure underlines how a seemingly modest increase in
combinatorial load can overwhelm current reasoning LLMs, highlighting that increasing the search
space cannot necessarily mitigate the fundamental limits of transformers. While brute force helps,
there must be smarter scaling approaches so that models learn the underlying algorithms and skills to
solve math problems rather than simply relying on increased compute. Due to budget constraints, we
limited testing to 64 attempts, but given the zero performance, we speculate that increasing beyond
this point would not help.

Frontier Models’ Performance on the Test Problems in Compositional/Transformative Setting.
We provide results in Figure[T2] In the compositional setting, OpenAl models (particularly o4-mini
and 03-mini) demonstrate superior performance on structured problems like matrix rank and polyno-
mial operations, suggesting strong capabilities in combining fundamental mathematical concepts.
Claude 3.7 Sonnet and DeepSeek-R1 show more moderate performance in this setting. In the trans-
formative setting, all models struggle with special function intersections and certain polynomial
problems. These results highlight both the progress made in LLMs’ mathematical reasoning and the
remaining challenges in developing models capable enough in different mathematical contexts.

Ablation Study on Disentangling the Role of In-distribution Problem Family in Compositional
RL Gain. To better understand under which in-distribution problem family RL improves perfor-
mance on compositional test problems, we conduct an ablation study (see Table [IT]and Table [12)
on the two compositional settings (Settings 2 and 5) that showed notable gains after RL fine-tuning
according to Figure [/} In these settings, the model was originally trained jointly on two distinct
problem families (skill A and skill B), and tested on composite tasks that require integrating
both skills. Since not all settings benefited from RL, we hypothesize that the specific choice and
compatibility of skill A and skill B may influence whether RL can effectively promote compositional
generalization.

To test this hypothesis, we retrain the model in each setting while systematically altering the composi-
tion: replacing either skill A orskill B with a nearby alternative, or replacing both. Results show
that the original skill A+ skill B pairing consistently yields the highest post-RL improvement
(+7.5 pp and +15 pp), indicating a strong synergy between the selected task pairs. Replacing just one
component reduces gains to a modest +2-5 pp, while replacing both typically eliminates or reverses
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improvement (-18 pp and -3 pp). These findings suggest that RL is most effective when it can build
upon complementary skills already aligned in the joint training distribution—supporting the idea that
compositional success depends not just on RL, but on the semantic coherence of the underlying task
pair.

Table 11: Ablation study for Compositional Setting 2 corresponding to Figure All numbers are
accuracies (0-1). A = After RL — Before RL.

Training Composition (ID1 + ID2) Before R After RL A
Original:

combinatory/prob_no_fixed + arithmetic/rank 0.30 0.38 +0.08
Replace skill A:

combinatory/pattern_matching + arithmetic/rank 0.30 0.35 +0.05
Replace skill B:

combinatory/prob_no_fixed + arithmetic/GCD 0.30 0.29 -0.01
Replace both:

algebra/linear_equation + arithmetic/GCD 0.30 0.12 -0.18

Table 12: Ablation study for Compositional Setting 5 corresponding to Figurem

Training Composition (ID1 + ID2) Before RL  After RL A
Original:
geometry/polygon_rotation + combinatory/pattern_matching 0.05 0.20 +0.15
Replace ID1:
geometry/polygon_rotation + combinatory/distribution 0.05 0.10 +0.05
Replace ID2:
geometry/basic + combinatory/pattern_matching 0.05 0.07 +0.02
Replace both:
arithmetic/GCD + algebra/linear_equation 0.05 0.02 -0.03
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Figure 13: Pass@k performance of the advanced LLMs across complexity levels for geometry rotation
problems.

Supplementary Analysis on Qwen2.5-Math-7B. As shown in Figure[T4] RL fine-tuning con-
sistently improves performance on both in-distribution and explorative generalization tasks, with
Qwen?2.5-Math-7B achieving average gains of +51 percentage points on ID problems and +24 per-
centage points on OOD problems. Notably, the Math-7B model demonstrates particularly strong
performance on Logic Zebralogic, reaching 85% ID accuracy and 82% OOD accuracy after RL
training—indicating that the specialized mathematical training of the base model synergizes effec-
tively with our RL approach. While Qwen2.5-7B-Instruct generally achieves slightly higher absolute
performance (e.g., 95% vs 85% on Logic Zebralogic ID), both models exhibit similar improvement
patterns, with consistently larger gains on ID tasks compared to OOD tasks. Interestingly, both
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Model Comparison in the Explorative Generalization: Qwen2.5-Math-7B vs Qwen2.5-7B-Instruct

Geometry Logic Algebra Arithmetic Combinatory
Polygon Rotation Zebra Logic Polynomial Roots Matrix Rank Distribution

100 95

85 5

60 60
50

a2 ©

40 34
30 30
2 20 >
20 15 13 14 15
, 10 10 10 10 10
: : 1 F
, ] B

BeforeRL After RL Before RL  After RL Before RL After RL Before RL  After RL BeforeRL After RL Before RL After RL BeforeRL After RL Before RL  After RL Before RL After RL Before RL After RL
D D 00D 00D D D 00D 00D D [} 00D 00D D D oOD 00D D D 00D 00D

Accuracy (%)

= Quen2.5-Math-78 Qwen2.5-7B-Instruct W In-Distribution (Difficulty Level 1-2) Out-of-Distribution (Difficulty Level 3)

Figure 14: Comparison of RL fine-tuning effectiveness in the explorative generalization setting
between Qwen2.5-Math-7B and Qwen2.5-7B-Instruct. Accuracy on in-distribution (ID) and out-
of-distribution (OOD) mathematical reasoning tasks before and after RL fine-tuning. Solid bars:
Math-7B; hatched bars: Instruct-7B.

models struggle with OOD generalization on the Combinatory Distribution task (0% OOD accuracy
for both), suggesting this represents a particularly challenging generalization scenario that warrants
further investigation. These results demonstrate that our RL fine-tuning methodology generalizes
effectively across different Qwen2.5 variants, supporting the broader applicability of the approach for
enhancing mathematical reasoning capabilities.

E Complexity Analysis

In this section, we present a complexity analysis for the COMBINATORY/DISTRIBUTION task, which
is studied often in the main paper. Our goal is to demonstrate that this problem can be solved within
the context-length limits of today’s frontier large language models and Qwen-series models. Unlike
other tasks, such as function intersection or geometry, where the number of tokens required is difficult
to estimate, combinatory distribution problems allow for more precise tracking via simulation using a
Python program. Our analysis proceeds in three steps: (i) we summarize the context window limits of
current large-context models; (ii) we provide a representative level-6 problem and a compact dynamic
programming (DP) solver; and (iii) we measure the solver’s computational footprint and estimate the
corresponding token usage.

E.1 Context windows of frontier models

Model Maximum tokens Reference
GPT-03 Mini 200000 OpenAl Docs
GPT-04 Mini 128 000 Addepto Blog
Claude 3 Sonnet v3.7 >200000 Anthropic Support
DeepSeek-R1 164 000 OpenRouter Card

Table 13: Context-length limits of the models considered in this work.

E.2 Representative level-6 problem

Arrange the letters {0:6,1:1,d:2, y:2,v:3} into five indistinguishable boxes with
capacities [2,2,2, 5, 3]. How many distinct distributions exist?

This family generalises classical balls-into-bins counting with (i) multisets of item types and (ii)
capacity constraints. Difficulty level & controls the total number of items and the size of the search
space; level 6 is the hardest setting used in our experiments.
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E.3 DP solver and instrumentation

We employ a depth-first DP that memoises states of the form (¢, ¢), where ¢ indexes the current letter
type and c is the non-increasing vector of residual capacities. The core Python routine is shown
below. Four counters track its execution:

* dp_calls —total invocations of the memoised routine;

* distribution_calls — number of distinct “distribute ¢ items into ¢” sub-problems gener-
ated;

* backtrack_calls — recursive steps inside the enumerator;
* state_transitions — edges explored in the DP graph.

def gen_distributions(total, rem_caps):
global distribution_calls
distribution_calls += 1
# return all possible distributions of ’total’ items into boxes with caps rem_caps
# Generate recursively or via DP.
# Use backtracking: assign to box 0 O..min(total,cap), then recuse.
n = len(rem_caps)
dist = []
def backtrack(i, remaining, current):
global backtrack_calls
backtrack_calls += 1
if i==n:
if remaining==0:
dist.append(tuple(current))
return
cap = rem_caps/[i]
# for each assign O to min(remaining,cap)
for x in range(min(remaining,cap)+1):
current.append (x)
backtrack(i+l, remaining-x, current)
current.pop()
backtrack(0, total, [])
return dist

@lru_cache (None)

def dp(i, rem_caps):
global dp_calls, state_transitions
dp_calls += 1

if i == len(letter_counts): # base case
return 1

total = letter_counts[i]

count = 0

for dist in gen_distributions(total, rem_caps):
state_transitions += 1
new_caps = tuple(sorted(rem_caps[j] - dist[j]
for j in range(len(rem_caps))))
count += dp(i + 1, new_caps)
return count

E.4 Empirical resource usage

Running the solver on the level-6 instance yields the statistics in [I4 The backtracking routine
dominates runtime with 1059 calls. Conservatively assuming that each backtrack call translates to 20
generated/consumed tokens, the total token demand is

1059 x 20 = 21180 tokens,
well below even the smallest window in Table[I3] Other problems in the same problem family with
complexity level 6 exhibit similar footprints (average 1284 backtrack calls).
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Counter Value Explanation

Unique DP states 36 Distinct (¢, ¢) pairs memoised
dp_calls 36 Matches number of unique states
distribution_calls 35 Sub-problems created by the enumerator
backtrack_calls 1059 Leaf-level enumeration steps
state_transitions 249 Edges traversed in DP graph

Table 14: Execution statistics for the level-6 exemplar.

E.5 Footprint across difficulty levels (1-5)

We measured the average number of backtrack calls on the canonical instance for each lower difficulty.
Table [T5]summarises these, along with the corresponding token estimates:

Level Avg. backtrack calls Tokens@20/call Estimated total tokens

5 701.6 701.6 x 20 14032
4 443.7 443.7 x 20 8874
3 179.7 179.7 x 20 3594
2 65.1 65.1 x 20 1302
1 19.2 19.2 x 20 384

Table 15: Average backtracking calls and estimated token usage for levels 1-5.

Even at level 5—the hardest below level 6—the solver requires only ~14 K tokens. All levels thus
comfortably fit within every model’s context window, confirming the practicality of our experiments.

E.6 Take-away

Even under pessimistic token-accounting assumptions, level-6 COMBINATORY DISTRIBUTION
problems demand fewer than 30 000 tokens of “reasoning budget”. All four frontier models listed in
Table 13| therefore possess ample context to solve every instance we evaluate, validating the feasibility
of our experimental design.
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