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Abstract—The growing adoption of wearable devices has
opened new opportunities for unobtrusive health monitoring
and medical research. Among various vital signs, Respiratory
Rate (RR), often referred to as the forgotten vital sign, is
a key parameter, and estimating it using smartwatch-based
Photoplethysmogram (PPG) offers a convenient and nonintrusive
alternative to conventional techniques. However, motion artifacts
significantly impair signal quality, posing a major challenge
for accurate RR estimation. In this study, we present a novel
algorithm that combines adaptive filtering by employing a
Least Mean Squares (LMS) filter guided by a reference signal
derived from Empirical Mode Decomposition (EMD), supported
by frequency-domain peak detection to robustly estimate RR.
Experimental results demonstrate a 71% reduction in mean
estimation error and a 56% reduction in standard deviation
compared to both adaptive and non-adaptive baseline methods.
These improvements show the enhanced accuracy and reliability
of the proposed approach. The low estimation error makes this
method a practical solution for continuous RR monitoring in
everyday settings, enabling broader integration into wearable
healthcare applications.

Index Terms—photoplethysmography signal, respiratory rate
estimation, adaptive filtering, synthetic noise

I. INTRODUCTION

Wearable devices have become increasingly popular for
monitoring physical health [1]–[3], mental well-being [4],
[5], and sport [6]–[8]. Despite these advancements, many
physiological parameters such as Respiratory Rate (RR) still
lack reliable, nonintrusive monitoring solutions suitable for
daily-life environments [9], [10]. Direct RR measurement via
spirometry or chest belts is often impractical, making indi-
rect approaches using smartwatches highly desirable. These
devices commonly include Photoplethysmogram (PPG) sen-
sors, which detect Blood Volume Pulse (BVP) through light
absorption changes caused by pulsatile blood flow.

Respiratory activity modulates BVP in subtle ways of
introducing low-frequency Baseline Wanderer (BW), altering
amplitude via intrathoracic pressure changes, and affecting
beat intervals through respiratory sinus arrhythmia [11]. These
modulations occur at typical respiratory rates of 12–20 breaths
per minute (0.2–0.33 Hz) and are embedded in the PPG
signal. Therefore, RR can be estimated using signal processing
techniques applied to PPG data. Two primary methods, time-
domain and frequency-domain, are often used for this analysis.

The principle of time-domain methods is based on detecting
peaks and troughs in the modulated PPG signal [12], often

using zero-crossing and threshold-based algorithms to identify
respiratory cycles [13]. While straightforward, they are highly
sensitive to noise and motion artifacts. In contrast, frequency-
domain methods analyze the Inter Beat Interval (IBI) or PPG-
derived signals using Fast Fourier Transformation (FFT) or
autoregressive modeling [14]. These approaches estimate RR
by identifying dominant frequencies within the respiratory
range (0.067–1.08 Hz, or 4–65 Beats per Minute (BPM)) and
tend to be more robust under real-world conditions [15]. How-
ever, under daily life conditions, motion artifacts [16], [17]
such as wrist movements during walking or gesturing severely
contaminate the signal, often within the same frequency band
as respiration [17].

This challenge has driven the development of artifact re-
moval strategies. Unimodal approaches rely solely on PPG
signal characteristics, detecting and excluding distorted seg-
ments. In these methods, no auxiliary signal is used for the
detection and removal of the movement artifact and separating
it from the bio-signal of interest. In consequence, they are
mainly limited to the detection of the artifacts and cutting
those parts of the signal. In the works using this model [10],
[16], [18], [19], various properties of the clean signal are used
to detect the contaminated part.

In the second approach, the methods are based on the use of
acceleration data from embedded sensors to assist in adaptive
filtering [20]. Such methods can also filter them and obtain a
cleaner signal for further calculations. A particularly effective
class of methods used Least Mean Square (LMS) [21], Recur-
sive Least Square (RLS) [22], and Hankel Matrix [23] filtering,
where accelerometer signals serve as a reference to isolate
motion components. More recent innovations using syntethic
reference, such as Empirical Mode Decomposition (EMD) and
its variations, offer synthetic reference generation even in the
absence of direct acceleration input. These methods decom-
pose a signal into Intrinsic Mode Function (IMF), enabling
isolation of motion and respiratory components based on their
spectral content. For example, in [24] a second PPG sensor
is used and in [25] Complex Empirical Mode Decomposition
(CEMD) technique is used to generate a reference signal from
the corrupted PPG signal.

Smartwatches offer a clear advantage of unobtrusiveness
and socially acceptable use during everyday activities. How-
ever,movement artifacts are unavoidable in real-world usage.
In this work, we propose a novel approach that combines



frequency-domain RR estimation with an EMD-enhanced
adaptive filtering scheme. Unlike conventional methods that
directly feed raw accelerometer signals into the LMS filter, we
preprocess the acceleration using EMD to improve reference
quality and noise separation. We also explore a comprehensive
set of configuration variables, including acceleration compu-
tation methods, windowing strategies, use of EMD, and the
tuning of adaptive filter parameters such as step size and
capping thresholds. Through systematic experimentation, we
demonstrate a significant improvement in RR estimation reli-
ability, even under extensive motion conditions. Our approach
preserves the convenience of smartwatch-based monitoring
while addressing one of its most critical technical limitations.

II. PRINCIPLES OF LMS AND EMD TECHNIQUES

Our proposed method is a novel RR extraction algorithm
that combines LMS and EMD, featuring a customized LMS-
based motion artifact removal scheme. We briefly review
LMS [21] and EMD [25].

A. LMS Filtering

LMS filtering removes motion artifacts using a three-axis
accelerometer as reference input [21]. The raw PPG is first
band-pass filtered (0.3–5 Hz) with a 4th-order Butterworth
Infinite Impulse Response (IIR) filter. A reference signal
is generated via Singular Value Decomposition (SVD) and
passed to a modified LMS filter, where coefficients h(n) are
updated based on the least mean error e(n). Applying SVD
to IMF matrix identifies dominant oscillatory modes. The
singular vector corresponding to the largest singular value,
representing the mode with the highest energy, is selected as
the synthetic reference signal for the adaptive LMS filter. An
identical filter is applied in the reference path for adaptive
weight adjustment (X-LMS). The core computations of the
X-LMS are:

yc(n) = wT (n) · u(n) (1)
e(n) = d(n)− yc(n) (2)

uC∗(n) =

I−1∑
i=0

c∗i · u(n− i−M + 1) (3)

w(n+ 1) = w(n) + µ · uC∗(n) · e(n) (4)

Here, u(n), yc(n), e(n), and d(n) represent the input,
output, error, and desired output, repectively; µ the step size;
c∗i the compensation coefficients; and uC∗(n) the filtered
reference. Finally, peak tracking is performed using adaptive
thresholds via the Slope Sum Method (SSM).

B. EMD

If no accelerometer data are available, a reference signal
can be derived directly from the corrupted PPG using the
CEMD method [25]. The process starts by identifying local
extrema in the signal (x(t) = d(t) = S(n) + N(n)) and
constructing upper (umax) and lower (umin) envelopes. Their
mean, m(t) = (umax + umin)/2, is subtracted to obtain

h(t) = x(t)−m(t). Through iterative sifting, h(t) is decom-
posed into IMFs until it satisfies IMF criteria (c1 = h(t)).
The quasi-residue r(t) = x(t) − c is updated until only
one extremum remains. We computed the spectrum of each
IMF and identified those falling within the typical respiratory
frequency band (approximately 0.1–0.4 Hz). IMFs outside this
range and within the PPG frequency, often dominated by noise
or unrelated physiological activity, were excluded to form the
reference noise signal.

For the adaptive step-size LMS algorithm, the step size is
updated using the gradient of the error surface to enhance
convergence. The filter follows:

y(n) = wT (n)U(n) (5)
e(n) = d(n)− y(n) (6)

w(n+ 1) = w(n) + µe(n)u(n) (7)

µ(n+ 1) = µ(n) + ρe(n)γH(n)u(n) (8)

γ(n) =
d

dµ(n)
(w(n)) (9)

Here, u(n) is the input, y(n) the output, d(n) the desired
signal, e(n) the error, w(n) the filter coefficients, µ the step
size, γH the gradient vector, and ρ the learning rate. In our
proposed LMS, the weights are calculated using EMD.

III. PROPOSED METHOD

A. Baseline Algorithm

The first step of the algorithm is to band-pass filter the
PPG signal to remove offset and any noise outside the range
of interest. A finite impulse response filter [26] with the order
of N is used, where

N =
2 ∗ fs
25

, (10)

in which fs is the sampling rate and the coefficients of the
filter are calculated using [26]

bk =

{
−1 for k = 0, ...N2 − 1
1 for k = N

2 , ..., N − 1
(11)

This filter enhances the detection of signal extrema by ap-
plying three criteria: (a) the extremum must exceed the mean
signal value, (b) it must be at least 0.4fs apart from neighbor-
ing extrema, and (c) it must be flanked by two extrema of the
opposite type (i.e., a peak between two troughs or vice versa).
Once identified, the BW is computed as the average of a peak
and its subsequent trough, while Amplitude Modulation (AM)
is their amplitude difference. Both features are normalized to
the signal’s mean. Frequency Modulation (FM) is derived from
the interval between consecutive peaks.

To estimate the RR, we propose a new algorithm in which
the signal is first detrended, followed by identifying the Domi-
nant Frequency (DF), defined as the dominant frequency peak
within the 0.033–2 Hz band. We refer to this frequency-based
estimator as Frequency Domain Peak (FDP). We introduce an
optional selective fusion technique (Smart Fusion (SFU)) to



Fig. 1. Flow chart of the proposed adaptive filter.

enhance robustness. For each window, the Standard Deviation
(STD) of AM, BW, and FM is computed. If the standard
deviation of all three features is below 4, their mean is used
to estimate the RR. If only two features satisfy this condition
and their joint STD is lower than that of all three combined,
their mean is used. Otherwise, the SFU returns a NaN. We
identified this threshold because it offered the best trade-off
between excluding noisy windows and retaining enough valid
estimates. A brief sensitivity analysis showed that the overall
Figure of Merit (FoM) changes by less than ±0.3 across this
range, indicating that the method is not highly sensitive to the
exact value.

B. Adaptive Noise Removal

We propose a novel adaptive filtering approach that com-
bines the strengths of both LMS and EMD (Figure 1). While
LMS adapts to noise without requiring explicit identification
of contaminated segments, EMD enhances performance by
generating a reliable reference signal.

The algorithm begins by generating a reference signal from
the accelerometer data using EMD. Only components with
dominant frequencies within the PPG range (0.1–5 Hz) are
retained, as identified by applying the FFT to each IMF.

The adaptive filtering then proceeds according to the fol-
lowing equations:

e(n) = x(n)− w(n) · u(n) (12)
w(n+ 1) = w(n) + µ · e(n) · u(n) (13)

Here, x(n) is the corrupted PPG signal, u(n) the EMD-derived
reference, e(n) the resulting error and output signal, w(n) the
filter weights, and µ the adaptive step size. The filter is applied
across the entire signal. In the absence of motion, u(n) is zero,
making e(n) equal to x(n), meaning no filtering is applied.
Parameter tuning details are provided in Section IV.

C. Acceleration Calculation

The acceleration signal used as input to the EMD can be
derived from the raw accelerometer data in multiple ways. One
basic method is the algebraic sum of the three axes:

Norm. = X + Y + Z (14)

An alternative is the magnitude of this sum:

Abs. =
√
(X + Y + Z)2 (15)

TABLE I
DISTRIBUTION OF THE RECORDED DATA

No Movement Movement
Normal breathing 10 12
Fast breathing 4 4
Slow breathing 4 7

Alternatively, the sum of the absolute values of each axis can
be computed:

Abs2 =
√
X2 +

√
Y 2 +

√
Z2 (16)

This reflects the vector length of acceleration and empha-
sizes directional components. To further amplify the contri-
bution of larger motions, assuming they induce greater signal
corruption, squaring the total acceleration can be used:

Acc2 = (X + Y + Z)2 (17)

The rationale is that minor accelerations may have a negligi-
ble impact, while stronger ones disproportionately affect signal
quality. However, in cases where large accelerations might
briefly interrupt skin contact, their absolute value becomes
less informative. To account for this, we also explore capping
the acceleration magnitude to prevent overcompensation in the
filtering process. All these modalities are evaluated experimen-
tally to determine the optimal input for noise removal.

IV. EXPERIMENTAL EVALUATION OF RR EXTRACTION

A. Dataset

To evaluate the proposed method, 41 signal samples were
collected from four male participants aged between 26 and
29 years. All participants provided written informed consent
before data collection. The data were recorded using the Em-
patica E4 smartwatch [27] and included three breathing con-
ditions: normal breathing (10–15 Breaths per Minute (BPM)),
fast breathing (>15 BPM), and slow breathing (<10 BPM).
During each measurement, the subject raised and lowered their
arm from the table to shoulder height and back, repeated three
times to induce motion artifacts. A summary of the sample
distribution across breathing categories is presented in Table I,
and an example of a BVP signal containing the corresponding
motion artifacts is shown in Figure 2.

B. Results of the Proposed Baseline Algorithm

We first evaluated the performance of the baseline algorithm
without applying any movement artifact removal (Table II).
To determine an optimal window length, we conducted a
parameter sweep with window sizes ranging from 4 to 30
seconds, incremented by 2. The upper limit of 30 seconds
was chosen because the test recordings are 60 seconds long;
exceeding this limit would result in only partial coverage of
the signal, as a complete window could no longer be formed.
Additionally, the same range of window sizes was tested using
50% overlapping windows.

Comparing RR extraction algorithms is inherently challeng-
ing, as performance depends on multiple factors, including



TABLE II
STATISTICAL RESULTS OF THE PROPOSED BASELINE ALGORITHM

WITHOUT ANY ADAPTIVE FILTERING.

Feature Mean|Error| STD Samples Window Window FoM
[BPM] [%] length[s] overlap

AM 4.226 4.335 100 16 8.562
BW 8.157 5.009 100 12 13.168
FM 4.229 3.996 100 16 8.225
SFU 3.148 3.214 75.61 28 10.644
AM 4.568 5.524 100 16 D 10.092
BW 7.838 5.261 100 16 D 13.099
FM 4.567 4.253 100 20 D 8.821
SFU 3.351 3.387 75.61 28 D 11.022

estimation error, STD, and successfully estimated samples.
Therefore, direct comparison between different algorithms
is not straightforward. Relying on a single metric may not
capture the overall effectiveness of an algorithm. To address
this, we used the Figure of Merit (FoM) that integrates these
key aspects into a single, interpretable score. The FoM is
designed to provide a balanced view of accuracy, robustness,
and reliability, giving a more comprehensive and fair com-
parison across methods. Lower FoM values indicate better
performance. That is;

FoM = Mean(|Error|) + STD + 10× (1− CSR2) (18)

where CSR denotes the Computed Samples Ratio, defined as
the number of successfully estimated RR samples divided by
the total number of samples; lower FoM values indicate better
algorithm performance.

As shown in Table II, the best-performing algorithm is FM
without overlapping windows, achieving the lowest FoM of
8.225. Closely following is AM, also without overlapping
windows, with a FoM of 8.562. For both algorithms, the
optimal window length is 16 seconds.

C. Results of the Proposed Adaptive Algorithm

For the adaptive algorithm, we evaluated multiple combi-
nations (Table III). To get the optimal µ, window length, and
acceleration cap value, we performed a parameter sweep. In
Table IV, the three parameters and their sweeping ranges are
shown, where µ is the adaptive constant. In Table V the best
feature of each combination is displayed.

Fig. 2. A BVP signal with three movement artefacts.

TABLE III
A SUMMARY OF ALL TESTED COMBINATIONS FOR THE PROPOSED

METHOD.

Acceleration EMD Acc. Window
Norm. Abs. Acc2 Abs2 cap overlap

Comb 1 D D
Comb 2 D D D
Comb 3 D
Comb 4 D D
Comb 5 D D D
Comb 6 D D D
Comb 7 D D D
Comb 8 D D D D
Comb 9 D D
Comb 10 D D D
Comb 11 D D D D
Comb 12 D D D D
Comb 13 D D D D

The best performance was achieved by Comb 13, which
employs “Abs2” (Equation 16) for acceleration computation,
incorporates both EMD and an acceleration cap, and uses
50% overlapping windows, resulting in a FoM of 5.663.
Figure 3 illustrates a 4D plot where color intensity represents
the FoM; darker colors indicate lower FoM values and thus
better performance. Two performance peaks are one around
a window length of 16, µ = 3, and an acceleration cap
of 0.2; and another at a window length of 22, µ = 1.5,
and an acceleration cap of 0.7, the latter yielding overall
better performance. It should be noted that each method was
evaluated over a full parameter sweep derived from the ranges
in Table IV. Table V reports the best-performing configuration
for each method, selected from this grid.

V. COMPARISON

A. Non-adaptive Algorithms

To have a fair comparison, we implemented three of the
most relevant RR extraction algorithms and ran them on our
dataset. The first, Time Domain Peak Detection (TDPD) [28],
relies on the Peak Detection (PD) method for RR estimation
and uses SFU for signal fusion. The second algorithm, Time
Domain - Count Origin (TDCO) [12], also employs SFU
for fusion but detects peaks and troughs using the Count
Origin (CO) method. A threshold is defined as 0.2 times
the 75th percentile of the peak amplitudes; any peaks below
this threshold are discarded. A breath is identified when two
consecutive peaks are separated by a single trough whose
amplitude is below zero. The third algorithm, Count Origin
- Smart and Time Fusion (COSTF) [12], builds upon the

TABLE IV
SWEEP RANGE OF DIFFERENT PARAMETERS.

Start End Step size
µ 0.1 4.1 0.1
Acceleration cap 0.1 0.85 0.05
Window length 4 30 2



Fig. 3. A 4D plot of the best combination (#13), where the color represents the FoM.

TABLE V
THE BEST RESULTS OF THE PROPOSED ADAPTIVE ALGORITHM FOR EACH

COMBINATION SHOWN IN TABLE III.

Feat- Mean|Err.| STD Samples µ Acc. Window FoM
-ure [BPM] [%] cap length[s]

Comb1 AM 3.986 3.130 100 0.3 NA 12 7.116
Comb2 AM 3.428 2.573 100 0.3 0.55 12 6.002
Comb3 FM 3.321 3.450 100 1.7 NA 16 6.772
Comb4 FM 3.331 2.541 100 0.5 0.15 16 5.872
Comb5 FM 3.298 2.614 100 0.8 0.15 16 5.910
Comb6 AM 3.708 2.839 100 2.4 0.2 12 6.457
Comb7 FM 4.094 3.384 100 0.8 NA 16 7.478
Comb8 FM 3.889 2.985 100 3.0 0.7 22 6.874
Comb9 FM 3.936 3.206 100 0.8 NA 16 7.143
Comb10 FM 3.237 2.999 100 1.6 0.1 24 6.235
Comb11 AM 3.014 2.737 100 1.4 0.2 24 5.751
Comb12 AM 3.696 3.147 100 0.6 0.3 24 6.843
Comb13 FM 3.095 2.590 100 1.1 0.7 22 5.663

CO method and incorporates both SFU and Temporal Fusion
(TFU). The temporal fusion unit (TFU) functions similarly to
a low-pass filter and is computed as follows:

RRi = 0.2RRest+ 0.8RRi−1 (19)

This formulation helps reduce errors, particularly in the
presence of outliers [29].

The results of these algorithms applied to our dataset are
presented in Table VI and Table VII. Table VI includes a few
instances where the STD is zero. This occurs when only a
single RR sample was estimated, making STD undefined. To
calculate the FoM, a STD of zero was assigned in these cases.
Overall, TDPD demonstrated a very low rate of successful
RR estimation, indicating its unreliability. In contrast, TDCO
and COSTF achieved nearly 100% success across all test
cases. However, both exhibited slightly higher STDs than
the proposed method and significantly larger mean errors.
When evaluating the FoM, the proposed method outperformed
all other algorithms by a margin of approximately 58–70%.
TDCO and COSTF, which rely on amplitude and base-
line morphology, showed reduced performance after LMS +
EMD filtering, likely because the filter alters low-frequency

TABLE VI
STATISTICAL RESULTS OF THE RE-IMPLEMENTED TDPD ALGORITHM ON

OUR DATASET WITHOUT ADAPTIVE FILTERING [28].

Mean|Error| STD Samples Window Window FoM[BPM] [%] length [s] Overlap
AM 15.923 9.032 9.76 8 25.498
BW 12.248 0 2.44 8 22.242
FM 10.738 6.921 92.7 24 19.068
SFU 9.226 0 2.44 12 19.220
AM 16.222 10.001 9.76 8 D 27.182
BW 17.590 6.915 2.44 8 D 25.457
FM 10.656 6.911 92.7 24 D 18.977
SFU 6.877 0 2.44 12 D 16.871

TABLE VII
THE BEST STATISTICAL RESULTS OF THE RE-IMPLEMENTED TDCO (TOP

VIEW) [12] AND COSTF (BOTTOM VIEW) [12] ALGORITHMS ON OUR
DATASET WITHOUT ADAPTIVE FILTERING.

Mean|Error| STD Samples Window Window FoM[BPM] [%] length [s] Overlap
AM 14.618 6.914 100 28 21.562
BW 16.789 6.057 100 30 22.846
FM 13.937 6.450 100 24 20.387
SFU 15.418 6.353 97.6 22 22.253
TFU 16.257 6.753 100 28 23.009
AM 14.589 5.883 100 28 D 21.322
BW 17.154 5.883 100 22 D 23.037
FM 13.924 6.523 100 22 D 20.447
SFU 15.323 6.156 95.1 22 D 22.431
TFU 15.676 6.877 100 30 D 22.552

components essential for peak detection, smoothing envelope
features, and impairing cycle counting.

B. Adaptive Algorithms

The majority of adaptive filtering methods aim to remove
motion artifacts from the PPG signal to estimate heart rate,
rather than RR. For a fair comparison, we applied our adaptive
motion artifact removal scheme to the three RR extraction
algorithms discussed above. Table VIII and Table IX summa-



TABLE VIII
THE BEST PERFORMANCE OF THE RE-IMPLEMENTED TDPD ALGORITHM

ON OUR DATASET ACROSS ALL PARAMETER COMBINATIONS WITH
ADAPTIVE FILTERING.

Feat- Mean|Err.| STD Samples µ Acc. Window FoM
-ure [BPM] [%] cap length[s]

Comb1 FM 2 0 2.44 3.6 NA 4 11.994
Comb2 SFU 1.461 0 2.44 2.6 0.6 12 11.456
Comb3 SFU 0.408 0 2.44 1.3 NA 12 10.403
Comb4 SFU 0.034 0 2.44 1.2 0.8 12 10.027
Comb5 FM 2.945 0 2.44 2.9 0.15 8 12.939
Comb6 FM 1.603 0 2.44 0.8 0.85 16 11.597
Comb7 SFU 0.002 0 2.44 0.2 NA 14 9.996
Comb8 SFU 0.002 0 2.44 0.2 0.1 14 9.996
Comb9 SFU 0.002 0 2.44 0.2 0.2 14 9.996
Comb10 SFU 0.002 0 2.44 0.1 0.7 14 9.996
Comb11 SFU 0.002 0 2.44 0.1 0.1 14 9.996
Comb12 SFU 0.110 0 2.44 0.1 0.1 14 10.109
Comb13 SFU 0.002 0 2.44 0.1 0.1 14 9.996

TABLE IX
THE BEST RESULTS OF TDCO AND COSTF USING ADAPTIVE FILTERING.

NOTE THAT FOR EACH ”COMB” WE HAVE ONLY PRESENTED THE BEST
RESULT OF EITHER OF THE ALGORITHMS. SPECIFICALLY, THE

BEST-PERFORMING METHODS PER COMBINATION WERE: TDCO FOR
COMB1, 3, 6–8, 10, AND 13; AND COSTF FOR COMB2, 4–5, 9, AND

11–12.

Feat- Mean|Err.| STD Samples µ Acc. Window FoM
-ure [BPM] [%] cap length[s]

Comb1 SFU 1.846 0 2.44 3.8 NA 6 11.840
Comb2 SFU 1.846 0 2.44 3.8 0.1 6 11.840
Comb3 SFU 4.634 0 2.44 0.3 NA 6 14.630
Comb4 SFU 4.634 0 2.44 0.1 0.25 6 14.630
Comb5 SFU 3.783 0 2.44 3.6 0.2 6 13.778
Comb6 SFU 3.473 0 2.44 0.2 0.15 6 13.467
Comb7 SFU 4.841 0 2.44 3.7 NA 8 14.834
Comb8 SFU 4.875 0 2.44 3.8 0.2 8 14.860
Comb9 AM 13.084 5.874 100 0.2 NA 22 18.958
Comb10 FM 5.095 0 2.44 0.1 0.1 6 15.089
Comb11 FM 5.095 0 2.44 0.1 0.35 6 15.089
Comb12 FM 5.095 0 2.44 0.6 0.15 6 15.089
Comb13 FM 4.185 0 2.44 0.5 0.2 6 14.179

rize the best performance of these algorithms under the same
conditions.

As shown in the results, the proposed algorithm continues
to outperform all other methods by a substantial margin,
demonstrating over 43% improvement in FoM, and up to 70%
in some cases. Interestingly, the application of adaptive motion
artifact removal appears to have a predominantly negative
impact on the performance of the other algorithms, which
were originally not designed with adaptive filtering in mind.
Although adaptive filtering effectively reduced the mean error,
it severely compromised the number of successful RR estima-
tions. Except for Comb 9 in both TDCO and COSTF, all other
configurations resulted in only a single successful estimation.
In this specific combination, performance improved across all
metrics: mean error decreased, STD was slightly reduced, and
the FoM showed an 11% improvement compared to the same
algorithm without adaptive filtering.

C. Adaptive vs. Non-Adaptive

As discussed above, both proposed algorithms of adaptive
and non-adaptive, outperformed their respective counterparts.
While the adaptive version incurs additional computational
cost due to motion artifact removal, this cost is justified by
improved reliability and performance. Specifically, the FoM

improved from 8.225 in the baseline algorithm to 5.663 with
the adaptive version, corresponding to a 27% reduction in
mean error and a 35% reduction in STD. Depending on
resource availability, one can choose between the adaptive
version for higher accuracy or the base version for efficiency.
The proposed non-adaptive algorithm still outperformed the
adaptive versions of existing algorithms. Its FoM is at least
18% lower than any of their adaptive counterparts. Given
that most of these alternatives exhibit an unacceptably low
rate of successful sample estimation, a fair comparison can
only be made with Comb 9 of TDCO and COSTF. In that
case, our algorithm achieved a 57% lower FoM, 67% lower
mean error, and 32% lower STD. These results indicated the
strength of the proposed method. The base version stood out
as the preferred choice among both adaptive and non-adaptive
algorithms, surpassed only by its adaptive counterpart, which
came at the cost of increased computation.

Even though tested on a small dataset, our framework was
designed with longitudinal, real-world monitoring in mind. We
conducted a requirement analysis emphasizing adaptability to
signal variability and resilience to motion artefacts. Specif-
ically, the adaptive LMS filter guided by an EMD-derived
respiratory reference was introduced to continuously suppress
motion artefacts without requiring retraining, while SFU se-
lectively suppresses unreliable outputs based on consistency
checks across amplitude, baseline, and frequency dynamics.
These components aim to ensure robustness even when the
respiratory signal quality fluctuates over time. Our initial short-
term validation suggests that the algorithm maintains stable
performance under moderate variability. However, continuous
daily-life data will introduce more severe and sustained chal-
lenges that might require refining the algorithm under these
more demanding conditions.

This study was conducted on a small, homogeneous group
of healthy male participants under regular breathing conditions
to enable initial validation. It included motion conditions
specifically, controlled arm-raising and lowering movements,
to isolate the effects of motion artifacts in a repeatable manner
and still introducing realistic disruptions to the PPG signal.
While this facilitated reproducibility, it limits the generaliz-
ability of our findings. Broader validation on more diverse
cohorts and irregular respiratory patterns (e.g., apnea, dyspnea)
is needed to assess algorithmic robustness, which we aim
to pursue in future work. The larger dataset enables us to
benchmark our approach against lightweight deep learning
models, such as ResNet-based RR estimators, to evaluate
generalizability and compare performance with data-driven
methods.

VI. CONCLUSION

In this work, we introduced an adaptive algorithm for
respiratory rate extraction from smartwatch-acquired PPG
signals. The proposed approach employed an adaptive LMS
filter, guided by a reference signal generated via EMD, to
remove motion artifacts. Unlike many prior studies that rely on
time-domain methods, we used a frequency-domain strategy



(DF) for RR estimation, which proved effective even without
artifact removal. The base version of our algorithm, without
adaptive filtering, already outperformed existing methods that
include artifact removal. Incorporating adaptive filtering fur-
ther enhanced its performance, yielding the best results among
all tested algorithms. Overall, the proposed adaptive method
achieves up to 70% improvement in FoM compared to existing
approaches, with a mean error of just 3.095 (71% lower) and a
standard deviation of 2.590 (56% lower), demonstrating both
high accuracy and reliability.
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