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Abstract. The introduction of unsupervised methods in denoising has
shown that unpaired noisy data can be used to train denoising networks,
which can not only produce a high quality results but also enable us
to sample multiple possible diverse denoising solutions. However, these
systems rely on a probabilistic description of the imaging noise–a noise
model. Until now, imaging noise has been modelled as pixel-independent
in this context. While such models often capture shot noise and read-
out noise very well, they are unable to describe many of the complex
patterns that occur in real life application. Here, we introduce an novel
learning-based autoregressive noise model to describe imaging noise and
show how it can enable unsupervised denoising for settings with complex
structured noise patterns. We explore different ways to train a model for
real life imaging noise and show that our deep autoregressive noise model
has the potential to greatly improve denoising quality in structured noise
datasets. We showcase the capability of our approach on various simu-
lated datasets and on real photo-acoustic imaging data.

Keywords: denoising, deep learning, autoregressive, noise, diverse so-
lutions, VAE, photo-acoustic imaging

1 Introduction

Whenever we attempt to acquire an image s, using a microscope or any other
recording device, we should generally expect that the result x will not perfectly
correspond to to the signal. Instead, our measurement will be be subject to the
random inaccuracies of the recording process, resulting in what is referred to as
noise. We can define noise n = x− s as the difference between the corrupted ob-
servation and the true signal. Noise is especially prevalent in sub-optimal imaging
conditions, such as when imaging with only a small amount of light. As a result,
noise often becomes the limiting factor in life science imaging, operating right
at the boundary of what is possible with current technology. The algorithmic
removal of noise (denoising) can thus be a vital tool, enabling new previously
unfeasible experimental setups [4, 16]. Given a noisy image x, we can think of
the denoising task as finding an estimate ŝ that is close to the true clean image
s.
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Noisy input MMSE output

Ours

HDN3-6

HDN

Ground truth

Fig. 1. Comparing HDN with our novel autoregressive noise model to HDN
and HDN3−6 with the standard pixel-independent noise model. Structured
noise can be observed in many imaging modalities. Here, the simulated striped pat-
tern in the noise is designed to mimic noise real noise as it frequently in some sCMOS
cameras. HDN with our novel autoregressive noise model is able to remove structured
noise, while HDN with the established pixel-independent noise model only removes the
pixel-independent component. HDN3−6 performs slightly better, but struggles with
long range correlation. Just as in the standard HDN method, we can sample possible
solutions from the VAE and compute the minimum mean square error (MMSE) esti-
mate by averaging them.

Consequently, since the introduction of digital image processing, a plethora
of denoising methods has been proposed [7, 10, 18], to name a few. The last
decade however, has seen a revolution of the field, with machine learning (ML)
emerging as the technology capable of producing the most accurate results [4,
16]. Traditional supervised ML-based methods [28] view denoising as a regression
problem, i.e., they attempt to learn a function, mapping noisy images x to the
true clean signal s, based on previously collected training data of noisy-clean-
image-pairs.

Despite its success, supervised learning of this form comes with an impor-
tant caveat, the acquisition of training data can be impractical. Originally, the
approach requires us to collect paired clean and noisy images of the same con-
tent type we would like to denoise. This is not always possible. Although the
problem was partially alleviated by Lehtinen et al . [17], showing that pairs of
corresponding noisy images are sufficient, the collection of paired data has re-
mained an obstacle for many practical applications.

Only in recent years has this problem been addressed by new self- and unsu-
pervised methods [14, 3, 15, 25, 6, 20, 24, 23], which can be trained on individual
(unpaired) noisy images, e.g . the very images that are to be denoised. Two of the
newest unsupervised techniques [24, 23], referred to as DivNoising and HDN [23],
provide an additional benefit. They do not produce a single estimate of the true
signal, but instead allow us to sample different possible solutions for a noisy
input image.
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However, to achieve this, these methods require an additional ingredient dur-
ing training. They rely on a mathematical description of the imaging noise, called
noise model. The noise model is description of the probability distribution p(x|s)
over the noisy observations x we should expect for a given underlying clean im-
age s. Noise models can be measured from calibration data [15], bootstrapped
(using a self-supervised denoising algorithm) [25], or even co-learned on-the-fly
while training the denoiser [24]. Most crucially, noise models are a property of
the imaging setup–the camera/detector, amplifier etc., but do not depend on
the object that is being imaged. That is, once a noise model has been estimated
for an imaging setup it can be reused again and again, opening the door for
denoising in many practical applications.

However, previous noise models used in this context are based on a condi-
tional pixel-independence assumption. That is, the model assumes that for an
underlying given clean image s, noise is generated independently for each pixel
in an unstructured way, similar to adding the result of separate dice rolls to each
pixel without considering its neighbours. This assumption is reasonable for many
imaging setups, such as for fluorescence microscopy, where noise is often thought
of as a combination of Poisson shot noise and Gaussian readout noise [30]. For
simplicity, we will refer to this type of noise simply as pixel-independent noise.

Unfortunately, many imaging systems, such as computed tomography (CT) [9]
or photo acoustic imaging (PA) [29], do not adhere to this property and can
produce structured noise. In practice, even in fluorescence microscopy the condi-
tional pixel-independence assumption does not always hold, due to the camera’s
complex electronics. Many fluorescence microscopy setups suffer from noise that
is partially structured. Figure 1 shows an example of simulated structured noise
with a pattern close to what is produced by many sCMOS cameras [2].

When DivNoising methods are applied to data containing structured noise
which is not accurately represented in their noise model, these methods usually
fail to remove it. 1. Even though, Prakash et al . [23] show that the effects of this
problem can in practice be mitigated by reducing the expressive power of their
network, we find that this technique fails to remove noise featuring long range
correlations.

Here, we present a new and principled way to address structured noise in
the DivNoising framework. We present an autoregressive noise model that is
capable of describing structured noise and thus enabling DivNoising to remove
it. We evaluate our method quantitatively on various simulated datasets and
qualitatively on a PA dataset featuring highly structured noise.

In summary, our contributions are:

1. We present an autoregressive noise model capable of describing structured
noise.

2. We demonstrate that DivNoising together with our noise model can effec-
tively remove simulated structured noise in situations where the previously
proposed approach [23] fails.

1 The same is true for self-supervised methods such as [14], which discusses this topic
explicitly
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3. We qualitatively demonstrate structured noise removal on a real PA data.

2 Related Work

2.1 Self- and Unsupervised Methods for Removing Structured
Noise

Noise2Void [14] is a self-supervised approach to removing pixel-independent noise
relying on the assumption that the expected value of a noisy observed pixel,
conditioned on the those surrounding it, is the true signal. Using what is known
as a blind spot network, a model is shown as input a patch of pixels with the one in
the centre masked. It is trained to produce an output that is as close as possible
to the pixel it did not see for which, under the aforementioned assumption, its
best guess is something close to the true signal.

In the case of structured noise, that assumption is broken. Broaddus et al . [6]
accommodated for this by masking not only the pixel that is to be predicted,
but also masking all those for which the conditional expected value of the target
pixel is not the true signal. A drawback of this approach is that one must first
determine the distance and direction over which noise is correlated. Another is
that a considerable amount of valuable information is sacrificed by masking.

As mentioned previously, in [23], Prakash et al . demonstrated that tuning
the expressive power of a DivNoising based method enables it to remove some
cases of structured noise. This method is described in more detail in Section 3.1.

2.2 Noise Modelling

In [1], Abdelhamed et al . proposed a deep generative noise model known as
Noise Flow. It is based on the Glow [12] normalising flow architecture and can
be trained for both density estimation and noise generation. In their paper, the
authors demonstrated how this noise model could be applied to the problem
of denoising by using it to synthesise clean and noisy image pairs. Those pairs
could then be used to train a supervised denoising network.

A normalising flow based noise model could be used for the purposes of this
paper, but a recent review on deep generative modelling [5] found that auto-
regressive models perform slightly better in terms of log-likelihood. As will be
seen later, this makes auto-regressive noise models more suitable in a DivNoising
framework.

3 Background

Here, we want to give a brief recap of the methods our approach relies on.
We will begin with the DivNoising Prakash et al . [24] and its extension [23]
(HDN), which is the framework our method is built upon. We will then discuss
the currently used pixel-independent noise models, which are a component in
DivNoising and HDN and which we will later compare against our novel autore-
gressive replacement. Finally, we will have a brief look at deep autoregressive
models, which provide the backbone for our noise model.
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3.1 DivNoising and HDN

Training DivNoising requires two ingredients, the data that needs to be denoised
and a pre-trained or measured noise model, pη(x|s). We will discuss the noise
model in more detail in Section 3.2.

Instead of directly providing an estimate ŝ for a noisy image, DivNoising
allows us to sample possible solutions sk from an approximate posterior distri-
bution p(s|x), i.e., from the distribution of possible clean images given the noisy
input. To obtain a sensible single estimate, we can average a large number of
these samples to produce the minimum mean square error (MMSE) estimate

ŝ =
1

K

K∑
k=1

sk, (1)

which is comparable to the single solution provided by a supervised denoising
network.

DivNoising works by training a variational autoencoder (VAE) to approx-
imate the distribution of training images x. VAEs are latent variable models.
That is, they can model a difficult and high dimensional distributions by intro-
ducing an unobserved latent variable z following a known prior distribution. In
DivNoising p(z) is assumed to be a standard normal distribution. DivNoising
describes the distribution of noisy images as

log pθ,η(x) = log

∫
pη (x|s = gθ(z))p(z)dz, (2)

where gθ : Rd → RD>d is a convolutional neural network (CNN) called decoder
that maps from the space of latent variables to the space of signals. We use θ to
denote the parameters of the decoder network. Once trained, the decoder warps
the simple distribution p(z) to the potentially highly complex distribution of
clean images. Even though this is an extremely expressive model, training of the
parameters θ is challenging due to the intractable integral Eq. 2. In practice, a
VAE can be trained by maximising the variational lower bound

log pθ,η(x) ≥ Eqϕ(z|x)[log pη(x|s = gθ(z))]−DKL[qϕ(z|x) ∥ p(z)], (3)

where DKL is the Kullback-Liebler divergence, and qϕ(z|x) is a parametric dis-
tribution in latent space, implemented by a second CNN, called the encoder. The
encoder network takes a noisy image x as input and outputs the parameters of
the distribution. The encoder, ϕ, and the decoder, θ, are trained in tandem by
maximising Eq. 3 based on a set of noisy training images.

Once trained, DivNoising can be used to denoise an image x by processing it
with the encoder, drawing a sample zk in latent space from qϕ(z|x), and finally
decoding the sample gθ(z

k) to obtain sampled solution sk. The resulting sampled
solutions can then be combined to produce an MMSE estimate using Eq. 1.

The original DivNoising shows impressive performance in many cases, but
struggles when applied to highly complex datasets, which contain diverse pat-
terns and shapes. In these cases, the results tend to be blurry or contain artifacts.
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The reason for this is that DivNoising trains a full model of the image distribu-
tion and this is a challenging task for complex datasets. Due to it’s architecture,
DivNoising performs especially poor for images that contain a lot of high fre-
quency information.

As a side effect of this, DivNoising was found to at times remove structured
noise even when using a pixel-independent noise model [23]. However, this comes
at the cost of a blurred denoising result.

In [23], the power of DivNoising was improved with the use of the LadderVAE
architecture [26]. This version is known as Hierarchical DivNoising (HDN). The
main difference between a LadderVAE and a typical VAE is that the latent
variable z is replaced with a hierarchy of latent variables z = {z1, z2, . . . zn}
where each zi is conditionally dependent upon all zi+1, . . . , zn, so that the prior
distribution factorises as:

pθ(z) = pθ(zn)

n−1∏
i=1

pθ(zi|zi+1, . . . , zn), (4)

and the approximate posterior factorises as:

qϕ(z|x) = qϕ(zn|x)
n−1∏
i=1

qϕ(zi|zi+1, . . . , zn,x). (5)

With these changes, the variational lower bound to the log likelihood is now:

log pθ(x) ≥ Eqϕ(z|x)[log pη(x|s = gθ(z))]

−DKL[qϕ(zn|x) ∥ p(zn)]

−
n−1∑
i=1

Eqϕ(zi|x)[qϕ(zi|zi+1, . . . , zn,x) ∥ pθ(zi|zi+1, . . . , zn)]

(6)

The authors found that with HDN the denoising capability is greatly im-
proved, especially for complex high detail datasets. However, when HDN is used
with a pixel-independent noise model, it will usually also faithfully reconstruct
any structured noise instead of removing it. Prakash et al . were able to address
this problem in some cases by not conditioning the distribution of the lowest
latent variables in the hierarchy on x. They noticed that it was through this
conditioning that the model passed information about the structured noise to
the output, so by severing the connection, the signal estimate was produced
without the structured artifacts.

In their experiments, Prakash et al . mostly used HDN with six latent vari-
ables in the hierarchy, and when tackling structured noise they would alter the
distribution of the first two. We refer this altered model as HDN3−6 for the
remainder of this paper.

We find that HDN3−6 does not work in all cases (see Figure 1) and also
comes at a cost. By removing some levels of latent variables we also reduce
the expressiveness the model. Consequently, when we combine HDN with our
autoregressive noise model, and keep all levels of latent variables activated to
allow for maximum expressive power.
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3.2 Pixel-Independent Noise Models

Noise models, as they have until now been used with DivNoising and HDN
are based on the assumption that when an image is recorded for any underlying
signal s noise is occurring independently in each pixel i. That is, the distribution
factorises over the pixels of the image as

pη(x|s) =
N∏
i=1

pη(xi|si), (7)

where pη(xi|si) correspond to the distributions of possible noisy pixel values
given an underlying clean pixel value at the same location i. This means that
to describe the noise model for an entire image pη(x|s), we only need to char-
acterise the much simpler 1-dimensional distributions for individual pixel values
pη(xi|si). These pixel noise models have been described with the help of 2-
dimensional histograms (using one dimension for the clean signal and one for
the noisy observation) [15], or parametrically using individual normal distribu-
tions [30] or Gaussian mixture models [25] parameterised by the pixel’s signal
si.

3.3 Signal-Independent Noise Models (a Simplification)

Even though the models described in Eq. 7 are unable to capture dependencies
on other pixels, importantly, they are able to describe a dependency on the signal
at the pixel itself. For many practical applications this is essential. For example,
fluorescence microscopy is often heavily influenced by Poisson shot noise [30],
following a distribution that depends on the pixel’s signal.

However, here, we will in this work consider only a more basic case, in which
the noise does not depend on the signal and is purely additive. In this case, we
can write

pη(x|s) ≡ pη(n), (8)

with n = x− s, turning Eq. 7 into

pη(x|s) =
N∏
i=1

pη(ni), (9)

Allowing us to fully characterise the noise model by defining a single 1-dimensional
distribution pη(ni) describing the noise at the pixel level.

In Section 4, we will introduce our novel autoregressive noise model, which
will allow us to get rid of the pixel-independence assumption. However, within
the scope of this work we are still operating under the assumption of signal-
independence (Eq. 8), leaving the more general case of combined signal- and
pixel-independence for future work.
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3.4 Deep Autoregressive Models

Generally, the distribution of any high dimensional variable v = (v1, . . . , vN )
can be written as product

p(v) =

N∏
i=1

p(vi|v1, . . . , vi−1) (10)

of 1-dimensional distributions for each element p(vi|v1, . . . , vi−1) conditioned on
all previous elements.

Oord et al . [21] proposed using a CNN to apply this technique to image
data known as Gated PixelCNN, or, for brevity, PixelCNN. The authors sup-
pose a row-wise ordering of the pixels in the image and model the distribution
p(vi|v1, . . . , vi−1) for each pixel conditioned on all pixels above and to the left of
it using a CNN with an adequately shaped receptive field. When applied to the
image, the network outputs a the parameters of the 1-dimensional conditional
distribution for each pixel.

4 Methods

Considering the signal-independence assumption (Eq. 8), we can see that a struc-
tured noise model can be implemented as an image model for the distribution
of noise images n. We use the PixelCNN approach to implement this model.
To train our autoregressive noise model we require training images containing
pure noise. In practice, such noise images might be derived from dark areas of
the image, where the signal is close to zero, or could be explicitly recorded for
the purpose, e.g. by imaging without a sample. We denote these noise training
images as nj .

To train our noise model based on Eq. 10, we use the following loss function

pη(n
j) =

N∑
i=1

log pη(ni|nj
1, . . . , n

j
i−1), (11)

where pη(ni|nj
1, . . . , n

j
i−1) are the conditional pixel distributions described by

our PixelCNN for pixel i by outputting the parameters of a Gaussian mixture
model for each pixel.

Once our noise model is trained, we can proceed to our HDN model for
denoising. We follow the training process as described in [23] and use Eq. 6 as
training loss. Note that this contains the noise model log pη(x|s = gθ(z)).

Considering Eq. 8, we can compute n̂ = x − gθ(z) and insert it into Eq. 6,
this time keeping the parameters η fixed.

5 Experiments

We use a total of 5 datasets in our experiments, one is intrinsically noisy PA
data and the other four are synthetically corrupted imaging data.
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Fig. 2. Our autoregressive noise model as a component in the Divnoising
framework. Divnoising trains a VAE to describe the distribution of noisy images x.
It does so by sampling clean images ŝ and using a noise model as part of its loss
function, called reconstruction loss. The reconstruction loss assess the likelihood of
network output ŝ giving rise to original noisy training image x. It is defined as the
logarithm of the noise model. In both cases, for the pixel-independent noise model
and our autoregressive noise model, the reconstruction loss can be computed efficiently
as a sum over pixels. The pixel-independent noise model this is done based on the
conditional independence assumption by summing over the pixel noise models log p(n̂i),
modelled as a Gaussian mixture model. In our autoregressive noise model we sum over
the conditional distributions p(n̂i|n̂1, . . . , n̂i−1) of for the noise in each pixel conditioned
on the previous pixels, i.e., the pixels above and left. Our noise models describes these
conditional distribution using a modified version of the PixelCNN [27] approach, which
is implemented as an efficient fully convolutional network, outputting the parameters
of a separate Gaussian mixture model for each pixel.

5.1 Synthetic Noise Datasets

While datasets of paired noisy and clean images are not needed to train our
denoiser, they are needed to quantitatively evaluate the denoiser’s performance
using metrics such as peak signal-to-noise ratio (PSNR). The method proposed
here is currently only capable of removing signal-independent noise, with the
extension to signal-dependent noise being left for future work. We are not aware
of any real datasets of paired noisy and clean images that do not contain signal-
dependent noise, and have therefore created synthetic pairs by adding signal-
independent noise to clean images for the purpose of quantitative evaluation.
The very noise images that were added to the clean images in the simulated
datasets were used to train their noise models but this was only for convenience.
Any dataset of noise recorded under the same conditions as the signal could be
used.
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Convallaria sCMOS: Broaddus et al . [6] took 1000 images of a stationary
section of a Convallaria with size 1024×1024. Each image contained signal-
dependent noise, but the average of the 1000 images is an estimate of the ground
truth. We normalised this ground truth and split it into patches of size 128×128.
For each patch, we added the same sample from the standard normal distribution
to the upper 64 pixels in a column, taking a different sample for every column,
and then did the same for the lower 64 pixels. We then added pixel-independent
Gaussian noise with a standard deviation of 0.3. This was an attempt to produce
noise similar to the sCMOS noise shown in Figure 6 of [19].
Brain CT 2486 clean CT brain scan images were taken from Hssayeni [11]
and centre cropped to size 256×256. Independent Gaussian noise was generated
with a standard deviation of 110. This noise was smoothed by a Gaussian filter
with a standard deviation of 1 vertically and 5 horizontally. More independent
Gaussian noise with a standard deviation of 20 was added on top of that. Finally,
we subtracted shifted the noise to have zero mean. This noise was intended to
be similar to the CT noise shown in Figure 3 of [22].
KNIST The Kuzushiji-MNIST dataset was taken from Clanuwat et al . [8]. The
data was normalised before adding a value of 1 to diagonal lines to create a
stripe pattern. Independent Gaussian noise with a standard deviation of 0.3 was
then added on top. This was intended to demonstrate how HDN3−6 with a pixel-
independent noise model fails on long range, strong correlations while HDN with
our noise model is successful.

5.2 Photoacoustic Dataset

PA imaging is the process of detecting ultrasound waves as they are emitted by
tissues that are being made to thermoelastically expand and contract by pulses
of an infrared laser. The resulting data is a time series, and noise samples can
be acquired by taking a recording while the infrared laser is not pulsed.

This particular dataset is afflicted with structured noise (see Figure 4) that
is thought to have been caused by inter-pixel sensitivity variations. It consists
of 468 observations of a signal and 200 observations of only noise, with size
128×128.

5.3 Training the Noise Model

The noise model used in experiments was based on the architecture in van den
Oord et al . [21]. We used the same hyperparameters for each dataset. Those
hyperparameters were 5 layers, 128 feature channels and a kernel size of 5. The
output of the network was the parameters of a 10 component Gaussian mixture
model for each pixel. The Adam optimiser with an initial learning rate of 0.0001
was used, and learning rate was reduced by 0.99 every epoch. Every dataset was
trained on for a maximum of 12000 steps, but a patience of 2 on the validation
loss was used to avoid overfitting on the training set. Images were randomly
cropped to 64×64, except the kanji data which was trained on full images. All
experiments used a batch size of 8.
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5.4 Training HDN

The architecture the HDN was based on that Prakash et al . [23] and was kept
the same for all experiments. 6 hierarchical latent variables were used, each with
32 feature channels. There was a dropout probability of 0.2, and to prevent
KL vanishing, the free bits approach [13] was used with a lambda of 0.5. The
Adamax optimiser was used with a learning rate of 0.0003 and learning rate was
reduce by 0.5 when the validation loss plateaued for more than 10 epochs. The
same patch and batch size as in the training of the noise model was used.

5.5 Denoising with Autoregressive Noise Models

Noisy 
input

Noisy 
input crop

HDN 
MMSE

HDN3-6 
MMSE

Ours 
MMSE

Ground 
truth

P
A ?

C
on

va
lla

ri
a

C
T

K
an

ji

18.40 25.4814.60

25.29 25.33 29.29

10.42 10.39 19.05

Fig. 3. Denoising results. Here we compare the outputs of different methods on
various datasets. The overlayed numbers indicate the average PSNR values on the
dataset. We find that HDN with a pixel-independent noise model is able to effectively
remove some structured artifacts, by removing layers of the latent space space [23], but
fails for larger scale structures, spanning over tens of pixels. In contrast, our method
reliably removes all small- and large-scale structured noise.

Each of the 4 datasets was denoised using HDN with a pixel-independent
Gaussian noise model, HDN3−6 with a pixel-independent Gaussian noise model
and HDN with our autoregressive noise model. For each test image, 100 samples
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were generated from each trained model and averaged to produce an MMSE esti-
mate. Each result is shown in Figure 3, with peak signal-to-noise ratio calculated
for the datasets where ground truth is available.

Results from our HDN with our noise model has the highest PSNR on the
three datasets with ground truth. It also removed artefacts in the PA image that
HDN3−6 could not.

5.6 Evaluating the Noise Model

A
ut

oc
or

re
la

ti
on

Pixel lag

AR generated PA noise

Real PA noise

GMM generated PA noise

Real PA noise AR generated PA noise GMM generated 
PA noise

Fig. 4. Comparing the statistics of pixel-independent noise models and our
new autoregressive model. Here, we compare generated PA samples from our
noise model (AR) (orange), a Gaussian mixture pixel-independent noise model (GMM)
(pink), and real noise (blue). The auto-correlation function compares different horizon-
tally shifted versions (pixel lag) of the noise images, characterising the dependencies
between pixels values at various distances, i.e., the structure of the noise. As expected,
the pixel-independent noise model is unable to capture any such dependencies present
in the real noise. In contrast, our autoregressive noise model can faithfully capture and
reproduce even longer range dependencies.

To show how the autoregressive noise model is able to capture dependencies
across an image, we calculated the horizontal auto-correlation of a sample of
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real noise from the PA data, a sample of noise generated from our autoregres-
sive noise model and a sample of noise generated by a Gaussian mixture noise
model. Each of these samples are in Figure 4. along with a graph comparing the
autocorrelation of the three.

6 Conclusion

We have presented a novel type of noise model to be used within the DivNoising
framework that addresses signal-independent, structured noise and outperforms
HDN3−6 on highly structured, long range noise artefacts.

The key difference between our noise model and those that had been used
before [15][24][25] is that ours evaluates the probability of a noise pixel condi-
tioned on other pixels in the image, while previously used noise models evaluate
the probability of each pixel individually and do not take into account inter-pixel
correlations.

We plan to extend this noise model to learn the distribution of signal-
dependent noise in the future, but in such a way that it can be trained without
matched clean-and-noisy pairs.
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