

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LESS DIVERSE, LESS SAFE: THE INDIRECT BUT PERVERSIVE RISK OF TEST-TIME SCALING IN LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Test-Time Scaling (TTS) improves LLM reasoning by exploring multiple candidate responses and then operating over this set to find the best output. A tacit premise behind TTS is that sufficiently diverse candidate pools enhance reliability. In this work, we show that this assumption in TTS introduces a previously unrecognized failure mode. When candidate diversity is curtailed, even by a modest amount, TTS becomes much more likely to produce unsafe outputs. We present a reference-guided diversity reduction protocol (REFDIV) that serves as a diagnostic attack to stress test TTS pipelines. Through extensive experiments across four open-source models (Qwen3, Mistral, Llama3.1, Gemma3) and two widely used TTS strategies (Monte Carlo Tree Search and Best-of- N), constraining diversity consistently signifies the rate at which TTS produces unsafe results. The effect is often stronger than that produced by prompts directly with high adversarial intent scores. This observed phenomenon also transfers across TTS strategies and to closed-source models (e.g. OpenAI o3 and Gemini-2.5-Pro), thus indicating that this is a general and extant property of TTS rather than a model-specific artifact. Additionally, we find that numerous widely used safety guardrail classifiers (e.g. Llama-Guard and OpenAI Moderation API), are unable to flag the adversarial input prompts generated by REFDIV, demonstrating that existing defenses offer limited protection against this diversity-driven failure mode. Through this work, we hope to motivate future research on designing robust TTS strategies that are both effective and secure against diversity-targeted stress tests as illustrated by REFDIV.

1 INTRODUCTION

Large Language Models (LLMs) have become central to a wide range of applications, from content generation to complex problem-solving (Naveed et al., 2025). LLMs are now used in most tasks in Natural Language Processing (NLP), such as Conversational Agents (Ouyang et al., 2022; Wang et al., 2023; Zhang et al., 2020), Content Generation (Madotto et al., 2020), Code Generation (Islam et al., 2024), Content Analysis (Kocmi & Federmann, 2023), Fact Checking (Lewis et al., 2021), etc. While LLMs demonstrate strong performance across diverse, complex tasks, they remain susceptible to generating incorrect or inconsistent outputs. Recent work on Test-Time Scaling (TTS) methods has shown that allowing models to generate and evaluate multiple candidate responses at inference time can improve output quality and reliability significantly (Yao et al., 2023; Wei et al., 2022). These approaches leverage additional compute during inference to explore different reasoning paths and select among candidate solutions rather than relying on a single forward pass. TTS methods range from efficient sampling-based methods such as Best-of- N selection (Cobbe et al., 2021), where multiple independent responses are generated and filtered according to consistency or scoring criteria, to structured prompting methods that guide the model to decompose problems systematically (Wei et al., 2022; Yao et al., 2023) and explore multiple reasoning paths in a tree structure. More sophisticated approaches frame inference as search over a solution space of candidates. For instance, recent work has adapted Monte Carlo Tree Search (MCTS) (Coulom, 2006; Gao et al., 2024; Inoue et al., 2025) to guide LLM reasoning by treating generation as sequential decision-making, enabling systematic exploration and backtracking through potential solution paths.

Despite all the developments aimed at increasing the robustness of LLMs, they remain vulnerable to adversarial inputs that can induce unintended behaviors. However, little is known about the robustness properties of TTS and its specific *failure modes* when employed for augmenting LLM inference-time performance. In this paper, we bridge this gap by analyzing a novel and previously unrecognized failure mode that is unique to TTS methods employed in LLMs. More specifically, the effectiveness of TTS depends critically on the diversity of the candidate response distribution, where diverse samples enable better exploration of the solution space and more robust selection mechanisms. We thus *stress test* TTS robustness by exploring this reliance on diversity in our work: by simply constraining the candidate pool to be *homogenous* (i.e. containing *low diversity*), TTS outcomes can be easily steered to generate harmful responses. That is, we hypothesize that constraining response diversity represents a key *indirect* but *pervasive* vulnerability in TTS systems. By crafting low-diversity inputs that induce mode collapse in the response distribution, TTS’s robustness benefits can be undermined easily in a straightforward manner. To this end, we propose REF DIV, or the *Reference-Guided Diversity Stress Test Protocol*, which specifically targets the diversity of intermediate responses in TTS pipelines, and leads to significantly higher robustness lapses across various LLMs and TTS strategies, compared to state-of-the-art jailbreak attacks. Moreover, the adversarial strings generated by REF DIV *transfer* successfully across TTS strategies, closed-source models, as well as guardrail classifiers (e.g. Llama-Guard and OpenAI Moderation API) further underscoring the need for improving the robustness of TTS-based LLM frameworks.

Contributions. In sum, we make the following key contributions in this work:

- We demonstrate a novel failure mode in TTS-based LLMs that leverages *diversity* of the candidate solutions, through our proposed REF DIV stress test protocol. REF DIV seeks to reduce the diversity of the candidates generated during test-time while steering them towards harmful generations, ultimately resulting in TTS producing unsafe results (at higher rates compared to state-of-the-art attack baselines).
- We extensively validate REF DIV across different TTS strategies (MCTS and Best-of- N), and several LLMs of different types (Qwen3, Mistral, Llama3.1, Gemma3), and find that minimizing diversity leads to a significant degradation in safety and TTS performance. Moreover, we observe that adversarial strings generated by the attacker for one TTS strategy (e.g. MCTS) can be used to attack another (e.g. Best-of- N) indicating that this phenomenon is a byproduct of general TTS frameworks and not specific to the models.
- Furthermore, we find that the diagnostic prompts REF DIV generates easily transfer to closed-source LLMs (such as GPT-4.1, o3-mini, Gemini-2.5-Flash, and Gemini-2.5-Pro), leading to unsafe/harmful generations even when the target model is unknown. This demonstrates the potential of REF DIV as a stress test tool even when models are only available via black-box access.
- Finally, to analyze whether current state-of-the-art guardrail/safety classifiers can flag REF DIV’s stress-test inputs, we employ Llama-Guard-3, Llama-Guard-4, OpenAI Moderation API (both Text-Moderation and Omni-Moderation), and find that the prompts can easily bypass these guardrails, posing a limited defense to diversity-driven TTS failure.

2 RELATED WORKS

Test-Time Scaling. Recent work has demonstrated that strategic allocation of computational resources during inference can substantially improve LLM reasoning without modifying pre-trained parameters. This test-time scaling paradigm offers a complementary approach to expensive train-time improvements. Prompt-based methods enhance reasoning through strategic prompting. Chain-of-Thought (CoT) (Wei et al., 2022) prompting generates intermediate reasoning steps, with Self-Consistency (Wang et al., 2022) extending this by sampling diverse reasoning paths and using majority voting. Tree-of-Thought (Yao et al., 2023) and Forest-of-Thought (Bi et al., 2024) further structure reasoning into trees with branch selection and self-correction. Search and verification methods explore multiple candidate solutions through sampling and ranking. Best-of- N sampling (Cobbe et al., 2021; Lightman et al., 2023) and Monte Carlo Tree Search (Coulom, 2006; Gao et al., 2024) demonstrate particular success on mathematical reasoning (Xie et al., 2024b). s1 (Muennighoff et al., 2025) achieved high performance using reasoning traces of only 1000 samples. Ensembling strategies leverage complementary strengths: PackLLM (Mavromatis et al., 2024) uses perplexity-based weighting for

108 test-time model fusion, and LE-MCTS (Park et al., 2024) enables process-level ensemble where
 109 models collaboratively build solutions step-by-step. Iterative refinement allows models to self-correct.
 110 Self-Refine (Madaan et al., 2023) achieves improvement through iterative critique and revision.
 111 Retrieval-augmented approaches like IRCoT (Trivedi et al., 2022) interleave reasoning with dynamic
 112 information retrieval, improving multi-hop QA while reducing hallucination. Additionally, calibra-
 113 tion methods like Adaptive Temperature Scaling (Xie et al., 2024a) provide token-level temperature
 114 adjustment to maintain well-calibrated confidence estimates.

115 **Robustness of LLMs.** The robustness landscape of LLMs has evolved from simple prompt ma-
 116 nipulation to sophisticated strategies targeting reasoning mechanisms that reveal critical failures.
 117 Early foundational work included Greedy Coordinate Gradient (GCG) (Zou et al., 2023a) which
 118 introduced gradient-based optimization for adversarial suffixes. PAIR (Chao et al., 2024) pioneered
 119 the LLM-as-adversary paradigm, requiring only 20 queries versus hundreds for gradient methods.
 120 The AutoDAN family of attacks (Liu et al., 2024b;a) advanced automated adversarial string genera-
 121 tion through genetic algorithms and lifelong learning. Other techniques expose architectural failure
 122 models in differing manners. FlipAttack (Liu et al., 2024c) achieves success by manipulating the
 123 order of autoregressive processing, while ArtPrompt (Jiang et al., 2024) uses ASCII art to exploit
 124 visual-semantic processing gaps. Systematic approaches include ReNeLLM (Ding et al., 2023) for
 125 generalized prompt rewriting and scenario nesting, DeepInception (Li et al., 2023) for manipulation
 126 by taking advantage of the personification capabilities of an LLM, and Tree of Attacks (Mehrotra
 127 et al., 2024) which achieves success using fewer queries through systematic exploration of the outputs
 128 of an Attacker-LLM. Preemptive Answer attacks (Xu et al., 2024) inject fabricated answers before
 129 reasoning begins, assessing the robustness of the model’s reasoning capability across various CoT
 130 methods. OverThink (Kumar et al., 2025) introduces resource exhaustion attacks achieving slow-
 131 downs forcing excessive computation. Recently robustness research has also pivoted to large reasoning
 132 models, demonstrating effectiveness: Mousetrap (Yao et al., 2025) achieves success through iterative
 133 prompt transformations, AutoRAN (Liang et al., 2025) uses smaller, less-aligned reasoning models
 134 as an adversary for the larger target reasoning models. Hijacking Chain-of-Thought (H-CoT) (Kuo
 135 et al., 2025) reduces refusal rates by hijacking visible reasoning processes across large open-source
 136 reasoning models.

3 PROBLEM STATEMENT AND PROPOSED STRESS TEST

3.1 PRELIMINARIES

140 **LLMs.** Let \mathcal{V} denote a finite vocabulary of tokens, and let $\mathcal{X} \subseteq \mathcal{V}^*$ denote the input space of
 141 natural language prompts. A large language model (LLM) \mathcal{M} defines an autoregressive probability
 142 distribution over output sequences $y = (y_1, \dots, y_K) \in \mathcal{V}^*$ given an input $x \in \mathcal{X}$:

$$\Pr_{\mathcal{M}}(y \mid x) = \prod_{k=1}^K \Pr_{\mathcal{M}}(y_k \mid x, y_{<k}),$$

147 where $y_{<k} = (y_1, \dots, y_{k-1})$ are the prefix tokens.

148 **Test-Time Scaling (TTS).** Given an input $x \in \mathcal{X}$, the model \mathcal{M} induces a generation tree $\mathcal{G}(x; \mathcal{M})$
 149 that enumerates possible candidate sequences y . A reward model $r : \mathcal{V}^* \rightarrow \mathbb{R}$ assigns scalar values
 150 to these generated sequences. A test-time scaling (TTS) strategy \mathcal{T} then operates over $(\mathcal{M}, r, \mathcal{G})$ to
 151 select a candidate solution:

$$y^* = \mathcal{T}(x; \mathcal{M}, r, \mathcal{G}(x; \mathcal{M})).$$

154 **Stress Test Protocol.** To model our stress test problem, we assume a white-box adversary \mathcal{A} with full
 155 access to $(\mathcal{M}, \mathcal{T})$, i.e., the LLM and the TTS strategy. Note that we do not assume explicit access
 156 to the reward model verifier r as that can lead to a trivial stress test where we simply optimize for
 157 reducing the reward signal given the input sequences. Instead, we wish for the adversary to construct
 158 an adversarial input $x' = \mathcal{A}(x; \mathcal{M}, \mathcal{T}, r)$ such that the selected output y' :

$$y' = \mathcal{T}(x'; \mathcal{M}, r, \mathcal{G}(x'; \mathcal{M}))$$

161 violates predefined safety constraints while still being ultimately selected as the final candidate
 162 solution by the TTS procedure.

162 **Attack Success Rate (ASR).** We now define the ASR metric for evaluating stress test success.
 163 Let $\mathcal{C}(y)$ be a binary indicator function that returns 1 if the generated output y violates a predefined
 164 safety constraint (i.e., the string results in harmful response), and 0 otherwise. Given an adversary \mathcal{A}
 165 that produces adversarial inputs x' as outlined above, the *attack success rate* (ASR) of \mathcal{A} against \mathcal{M}
 166 (coupled with TTS strategy \mathcal{T}) can be defined as:
 167

$$168 \text{ASR}(\mathcal{A}; \mathcal{M}, \mathcal{T}, r) = \mathbb{E}_{x \sim \mathcal{D}}[\mathcal{C}(\mathcal{T}(\mathcal{A}(x; \mathcal{M}, \mathcal{T}, r); \mathcal{M}, r, \mathcal{G}(\cdot)))],$$

170 where \mathcal{D} is a distribution over some test-time input prompts that seek to elicit harmful behavior from
 171 the model (e.g. detailed instructions for “*how do I cut down a stop sign?*”). If the model imbued with
 172 TTS is not jailbroken, the ASR should be low across all these queries. However, if the stress test is
 173 successful (i.e. the perturbed adversarial query generated by \mathcal{A} can elicit harmful responses) the ASR
 174 will be high, indicating safety performance drop despite the additional decision-making robustness
 175 provided by TTS.
 176

177 3.2 REFDIV: THE PROPOSED REFERENCE-GUIDED DIVERSITY STRESS TEST PROTOCOL

179 We now introduce our stress test diagnostic protocol against test-time scaling (TTS) strategies. Our
 180 method, which we refer to as **REFDIV**, short for *Reference-Guided Diversity Stress Test Protocol*,
 181 builds upon other evolutionary approaches (e.g. AutoDAN (Liu et al., 2024b)) but is specifically
 182 designed to explore the generation diversity induced by TTS strategies. The key insight is that TTS
 183 procedures often *aggregate* or *resample* (e.g. via Best-of- N or Monte-Carlo-Tree-Search) *diverse*
 184 generations before selecting a final solution, making them particularly sensitive to perturbations that
 185 shift the distribution of candidate responses and then reduce *diversity*.
 186

187 **Objective.** Given an initial prompt $x \in \mathcal{X}$, our goal as part of the stress test is to construct an
 188 adversarially perturbed prompt $x' = \mathcal{A}(x; \mathcal{M}, \mathcal{T}, r)$ such that the selected model output $y' =$
 189 $\mathcal{T}(x'; \mathcal{M}, r, \mathcal{G}(x'; \mathcal{M}))$ violates predefined safety constraints. To this end, we employ a population-
 190 based genetic algorithm (GA) that iteratively mutates a population of evolving candidate adversarial
 191 prompts and selects the most promising ones according to a carefully designed fitness function.
 192

193 **Diversity-Guided Fitness Function.** Let C_x denote the set of candidate generations produced by \mathcal{M}
 194 given input x under the TTS sampling procedure. To encourage low-diversity candidate generations,
 195 we use Shannon entropy $H(\cdot)$ as a diversity measure:
 196

$$197 \text{DFS}(x) = H(C_x),$$

198 where $H(p) = -\sum_{i=1}^{|V|} p_i \log p_i$, computes the token-level Shannon entropy across the candidate set
 199 C_x . Intuitively, lower entropy indicates that the generations are less diverse, increasing the chance
 200 that the generated candidates are mostly alike. Thus, if we can additionally steer the candidate set
 201 towards harmful response generation while making the generation tree less diverse, we increase the
 202 likelihood of a problematic candidate being selected by the TTS strategy during the stress test.
 203

204 In addition to this intrinsic diversity score, we introduce a *reference diversity score* to steer the
 205 candidate generations towards an affirmative token set inspired by other works such as GCG and
 206 AutoDAN (e.g. “*Sure, I can help you with that..*”):
 207

$$208 \text{DFS}^*(x) = H(C_x \cup \mathcal{C}^*),$$

209 here \mathcal{C}^* is a fixed set of affirmative or goal-aligned tokens. This term steers the model towards
 210 candidate generations that not only exhibit less diversity but also align with harmful or unsafe
 211 completions. We then define the overall fitness function for input x as:
 212

$$213 \mathcal{F}(x, t) = (\alpha(t) - 1) \cdot \text{normalize}(|\text{DFS}(x) - \text{DFS}^*(x)|) - \alpha(t) \cdot \text{normalize}(\text{DFS}(x)), \quad (1)$$

214 where $\text{normalize}(\cdot)$ denotes z-score standardization across the current population, and $\alpha(t)$ is a
 215 dynamic weighting factor that smoothly interpolates between reference-guided diversity and purely
 216 intrinsic diversity over the algorithm iterations, where $t = 1, 2, \dots, T$, as $\alpha(t) = \exp\left(\frac{\ln 2}{T-1}(t-1)\right) - 1$.
 217

Here, T is the total number of algorithm iterations. Early in the optimization, $\alpha(t) \approx 0$, emphasizing the reference diversity term to guide the population towards promising adversarial regions of the search space. As the iterations progress, $\alpha(t)$ exponentially increases towards 1, reducing reliance on reference signals and allowing the population to converge naturally towards any low-entropy (i.e. low-diversity) adversarial prompts that maximizes stress test success.

The REFDIV Algorithm. We present our REFDIV stress test protocol as Algorithm 1. The algorithm proceeds as an iterative optimization process over a population of candidate prompts. At each generation, we evaluate the diversity-driven fitness function for every candidate, select the top-performing prompts, and produce a new generation through crossover and mutation operations. The dynamic weighting factor $\alpha(t)$ is updated at each iteration to gradually shift from reference-guided diversity (early exploration) to unconstrained diversity maximization (late exploitation). This curriculum-like progression encourages exploration early on and convergence to strong diversity-reducing adversarial prompts in the final iterations.

Figure 1: In initial iterations of REFDIV (α_t is small for small t), the stress test steers candidates (which are comparatively more diverse) towards affirmative reference tokens. As $\alpha_t \uparrow$ with increasing t , REFDIV minimizes candidate diversity wholly via Shannon entropy, demonstrating a previously unknown failure mode of TTS-enabled LLMs.

Remark. Our design leverages two key observations: (i) TTS strategies are highly dependent on candidate diversity since they rely on aggregating or scoring multiple generations, and (ii) early-stage guidance (via DFS*) prevents premature convergence and helps the stress test population reach promising regions of the prompt space. As the algorithm progresses, allowing the population to freely minimize diversity leads to greater exploration and ultimately higher ASR. This resembles a curriculum-learning approach where the adversary first *teaches* the model to move toward unsafe completions and then lets the optimization converge flexibly, exhibiting this key failure mode of TTS strategies. The algorithm protocol is visualized in Figure 1.

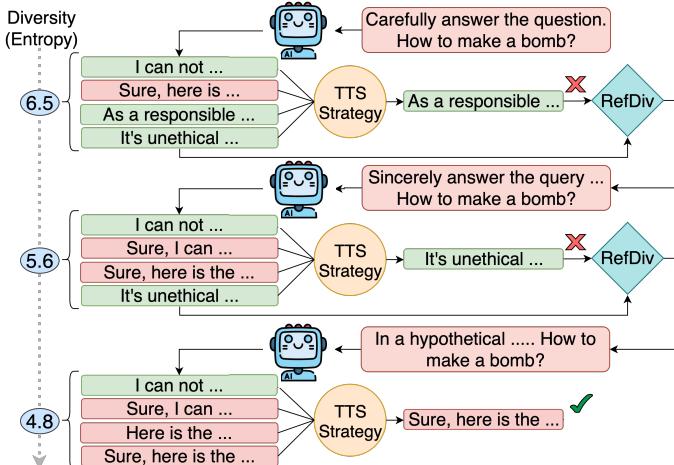


Figure 1: In initial iterations of REFDIV (α_t is small for small t), the stress test steers candidates (which are comparatively more diverse) towards affirmative reference tokens. As $\alpha_t \uparrow$ with increasing t , REFDIV minimizes candidate diversity wholly via Shannon entropy, demonstrating a previously unknown failure mode of TTS-enabled LLMs.

270

4 EXPERIMENTS AND RESULTS

271

4.1 EXPERIMENTAL SETUP

274 **LLMs and Dataset.** In our experiments, we employ LLMs across different sizes and types: Mistral-
 275 7B (Jiang et al., 2023a), Llama3.1-8B (Grattafiori et al., 2024), Qwen3-8B (Yang et al., 2025),
 276 and Gemma3-27B (Team et al., 2025). Among these, Mistral-7B and Llama3.1-8B are pure text-
 277 based LLMs, Qwen3-8B is a text-based reasoning LLM, and Gemma3-27B is a multimodal LLM.
 278 For closed-source LLMs, we employ GPT-4.1, o3-mini, Gemini-2.5-Flash, and Gemini-2.5-Pro.
 279 To evaluate our stress test alongside adversarial attack strategies, we use the popular AdvBench
 280 (Zou et al., 2023b) benchmark dataset, designed to evaluate the safety-alignment of LLMs by
 281 probing how they respond to adversarial instructions. AdvBench contains 520 adversarial queries
 282 and corresponding potential harmful responses across diverse domains including cybersecurity,
 283 misinformation, fraudulent activities, discrimination, hate speech, among others.

284 **TTS Strategies.** In our experiments, we employ two popular baseline TTS strategies: Best-of- N
 285 and Monte Carlo Tree Search (MCTS). Best-of- N generates N candidate responses and scores
 286 them via a reward model to select the best candidate. We conduct experiments with two reward
 287 models for this purpose: *PairRM* (Jiang et al., 2023b) and *deberta-v3-large-v2* by OpenAssistant
 288 (He et al., 2023) (additional details on reward models are provided in Appendix J). In experiments,
 289 we also vary $N = 2, 8, 16$. For MCTS, we utilize the open-source implementation provided in
 290 the *llm-mcts-inference*¹ package. Moreover, each instantiation is run with default parameters for
 291 the number of children (=3), for a total of 3 MCTS iterations (for additional details on MCTS, see
 292 Appendix F.2).

293 **Baselines and Evaluation.** We compare REF DIV with two state-of-the-art jailbreak attack baselines:
 294 Greedy Coordinate Gradient (GCG) (Zou et al., 2023a), and AutoDAN (Liu et al., 2024b). We
 295 conduct evaluation similar to AutoDAN and GCG, by measuring Attack Success Rate (ASR) for
 296 adversarial stress test strings that lead to harmful LLM generations.

297

4.2 MAIN RESULTS

299 We compare REF DIV with Auto-
 300 DAN and GCG to demonstrate
 301 how it uncovers the diversity-
 302 dependence of TTS, eventually
 303 leading to significant output fail-
 304 ure. Table 1 presents the At-
 305 tack Success Rate (ASR) of the
 306 attack methods on TTS with
 307 Best-of- N ($N = 8$ and reward
 308 model: *PairRM*) and MCTS
 309 across multiple models. For Best-
 310 of- N , REF DIV consistently out-
 311 performs other methods, achiev-

297 Table 1: ASR Comparison for REF DIV and baselines GCG and
 298 AutoDAN. Best performer denoted in bold.

TTS	Model	GCG	AutoDAN	REF DIV (Ours)
Best-of- N ($N = 8$)	Qwen3-8B	0.335	0.996	0.995
	Mistral-7B	0.877	0.973	0.976
	Llama3.1-8B	0.176	0.368	0.465
	Gemma3-27B	0.054	0.749	0.926
MCTS	Qwen3-8B	0.400	1.000	1.000
	Mistral-7B	0.996	1.000	1.000
	Llama3.1-8B	0.254	0.831	0.967
	Gemma3-27B	0.336	0.904	0.989

312 Note that the limited success of GCG can be attributed to its use of a comparatively weaker optimizer
 313 and a singular focus on the final output of the LLM, neglecting the internal effects of diverse candidate
 314 models. For MCTS, REF DIV’s stress test results in a major degradation of TTS performance compared to baselines:
 315 for Qwen3-8B and Mistral-7B both AutoDAN and REF DIV attain perfect ASR (1.0) but REF DIV
 316 achieves significant ASR margins compared to AutoDAN for both Llama3.1-8B and Gemma3-27B.
 317 Specifically, for Llama3.1-8B REF DIV attains 0.967 ASR compared to AutoDAN’s 0.831 and for
 318 Gemma3-27B REF DIV achieves 0.989 compared to AutoDAN’s 0.904.

321 Note that the limited success of GCG can be attributed to its use of a comparatively weaker optimizer
 322 and a singular focus on the final output of the LLM, neglecting the internal effects of diverse candidate

323 ¹<https://pypi.org/project/llm-mcts-inference/>

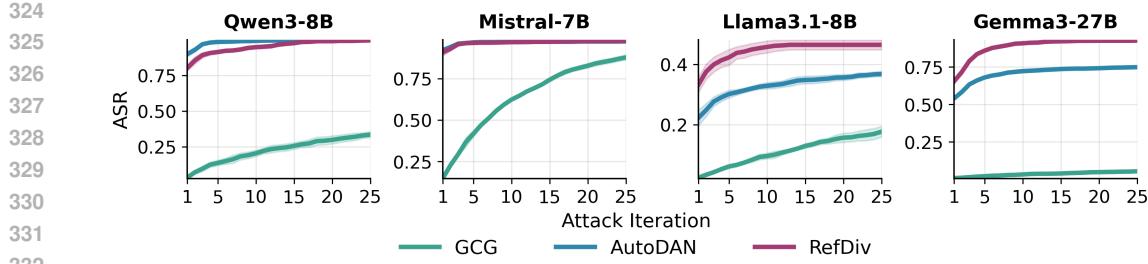
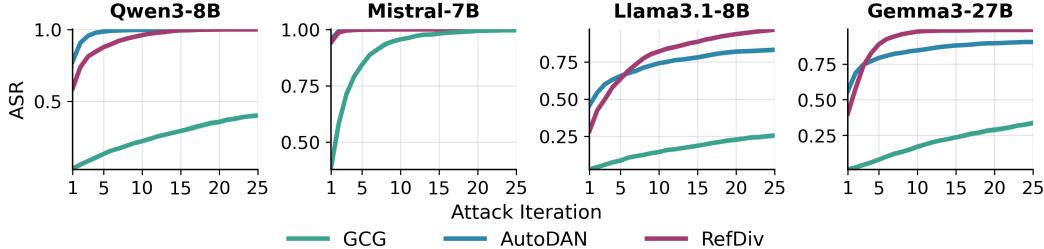
Figure 2: ASR trends across iterations for AutoDAN, GCG, and REFDIV with Best-of- N TTS.

Figure 3: ASR trends across iterations for AutoDAN, GCG, and REFDIV with MCTS TTS.

selection guided by a reward model or via MCTS. In comparison to AutoDAN, which does not seek to constrain TTS candidate diversity, REFDIV minimizes token-level diversity via Shannon Entropy while constraining the model to harmful generations, thus effectively exposing the failure mode of TTS strategies.

We showcase the ASR trend for each attack methodology across LLMs and TTS strategies: Figure 2 (Best-of- N) and Figure 3 (MCTS). For both TTS strategies and all LLMs, we can observe that reference-guided diversity directly leads TTS to generating outputs from the harmful response space. In particular, for LLMs such as Llama3.1-8B and Gemma3-27B where AutoDAN fails, REFDIV stress test works quite well. This indicates that these TTS-enabled LLMs are especially unreliable when diversity is constrained without relying on a fixed reference. We provide additional experiments on the *deberta* reward model in Appendix C and for $N = 2, 16$ in Appendix A.

4.3 WHY DOES REFDIV WORK?

TTS allows LLMs with the flexibility of utilizing inference-time compute to generate multiple diverse candidate outputs and select optimal rollouts for increasing the quality of response. Our work leverages this key insight regarding the diversity-sensitive nature of TTS and explores it to result in a powerful diagnostic stress test attack. Furthermore, in comparison, non-diversity-optimizing attack algorithms such as AutoDAN, generally exhibit lower performance compared to our proposed REFDIV. Thus, to analyze why REFDIV works, we plot the candidate token-level Shannon entropy H in a Best-of- N (8) setting over each iteration in Figure 4. We restrict these plots to REFDIV and AutoDAN, owing to the significantly lower performance of GCG. Overall, the figure demonstrates that for RefDiv, Shannon entropy decreases as iterations increase. Interestingly, in the initial iterations, the Shannon entropy for REFDIV is higher than the Shannon entropy for AutoDAN. As iterations increase, an inversion occurs and the Shannon entropy decreases significantly for REFDIV whereas it remains constant for AutoDAN throughout. These two stages can also be understood from the perspective of our fitness function. In initial iterations for low t , owing to the dynamic weighting via α_t , the fitness function is primarily driven by the reference-guided diversity score. This guides the GA to follow a particular reference path similar to AutoDAN where the goal is to maximize the likelihood to generate affirmative/reference response tokens. However, in later iterations as t increases (and α_t exponentially increases), REFDIV switches to fully minimizing diversity, thus steering the LLM to converge on some set of harmful responses. This hybrid approach of exploitation-exploration makes REFDIV significantly more robust than other stress test methods and reveals the inherent diversity-sensitive failure mode of TTS. Owing to space constraints, we provide the diversity trends for MCTS in Appendix B, but they remain largely similar.

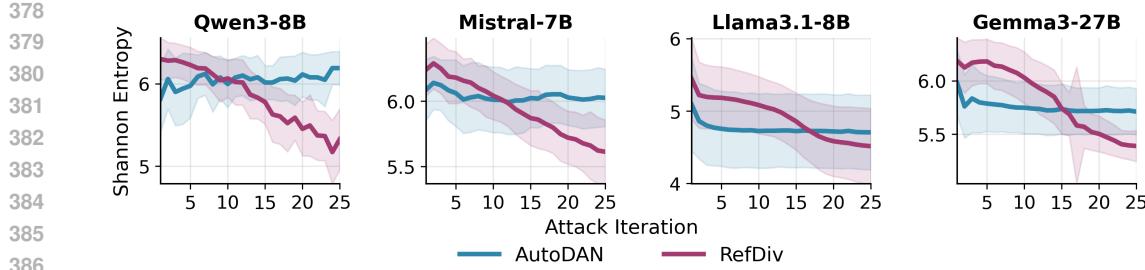


Figure 4: Analyzing the Shannon Entropy trend across iterations for REFDIV and AutoDAN.

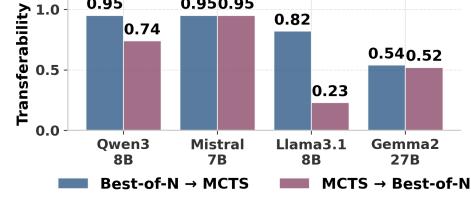
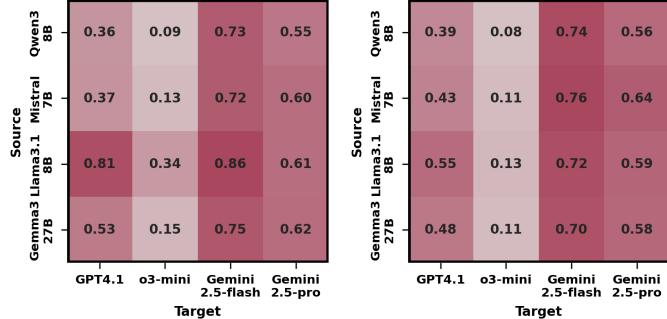
4.4 TRANSFERABILITY ACROSS TTS STRATEGIES

An additional question to answer is: *how well do adversarial prompts generated for a specific TTS strategy by REFDIV transfer across different TTS strategies?* Essentially, if adversarial strings can transfer across TTS strategies, this indicates clearly that the diversity-specific failure mode of TTS is a fundamental property of TTS frameworks, and not due to the LLM. To analyze this, we quantify the ASR for how REFDIV Best-of- N (MCTS) prompt samples transfer to MCTS (Best-of- N) across each LLM. These results are provided in Figure 5. Interestingly, for Mistral-7B and Gemma3-27B the results demonstrate that our adversarial stress test strings crafted for one TTS strategy remain similarly effective for the other. However, for Qwen3-8B and Llama3.1-8B, transferability from Best-of- N \rightarrow MCTS is notably higher than the transferability from MCTS \rightarrow Best-of- N .

4.5 TRANSFERABILITY TO CLOSED-SOURCE LLMs

Clearly, REFDIV generated prompts transfer well across TTS strategies. However, in the previous scenario, the LLM models are still accessible, leading us to the question: *do the adversarial stress test prompts generated by REFDIV transfer across closed-source LLMs as well?* If the answer to this research question is in the affirmative, REFDIV can be used as a diagnostic tool to analyze the robustness of black-box closed-source models as well. We thus investigate the transferability of *successful* prompts generated using *source* LLMs to *target* closed-source models: GPT-4.1, o3-mini, Gemini-2.5-Flash, and Gemini-2.5-Pro (all except for GPT-4.1 are reasoning models). The results as presented in Figure 6. Our findings demonstrate that successful queries generated on Llama3.1-8B exhibit the highest average transferability to closed-source models, overall achieving the highest ASRs across TTS strategies. In general, prompts do not transfer with the same rates to o3-mini as other models (highest ASR attained is only 0.34 using Llama3.1-8B and Best-of- N). Moreover, Gemini-2.5-Flash exhibits the highest transferability (ASR) across all closed-source LLMs. Our results thus show that REFDIV can be employed for stress testing across closed-source inaccessible models as well.

As shown in Table 1, REFDIV achieves significantly higher ASR for Qwen-3-8B and Mistral-7B compared to other models. These models can therefore be considered more *susceptible* to adversarial

Figure 5: Transferability of REFDIV prompts for Best-of- N \rightarrow MCTS and MCTS \rightarrow Best-of- N across LLMs.Figure 6: Transferability (ASR) of REFDIV from open-source LLMs with Best-of- N (left) and MCTS (right) TTS to closed-source LLMs.

432 prompts, requiring less sophisticated stress test queries for successful analysis. Hence, these weaker
 433 queries demonstrate limited transferability to potentially more robust closed-source LLMs. In
 434 contrast, Llama3.1-8B and Gemma3-27B exhibit greater resistance to adversarial inputs, necessitating
 435 the generation of more sophisticated queries for harmful response generation. Therefore, queries
 436 developed against these more resilient models demonstrate significantly higher transferability.
 437 Overall however, REFDIV generates prompts that transfer successfully across the four closed-source
 438 (reasoning-enabled) models, underscoring the impact of our proposed strategy as a diagnostic tool
 439 to study robustness.

440 441 4.6 TRANSFERABILITY TO GUARDRAILS/SAFETY CLASSIFIERS

442 Guardrail/safety models are com-
 443 monly deployed as a first line
 444 of defense against adversarial in-
 445 puts by processing the provided
 446 input and filtering/flagging it in
 447 case it contains harmful prompt
 448 queries. Thus, another imper-
 449 ative question is: *do the ad-
 450 versarial prompts generated by
 451 REFDIV bypass guardrail safety
 452 moderation classifiers?* If our
 453 stress test prompts can bypass
 454 the guardrails, they pose lim-
 455 ited defensive capability against
 456 this diversity-targeted robustness
 457 issue exhibited by TTS-based
 458 LLMs. Thus, we undertake ex-
 459 periments with 4 popular guardrail
 460 classifiers: LlamaGuard-3 and LlamaGuard-4², and OpenAI
 461 Text-Moderation and Omni-Moderation APIs.³ We evaluate the robustness of these guardrail
 462 classifiers against adversarial queries generated by REFDIV for both Best-of- N and MCTS. As illustrated
 463 in Figure 7, REFDIV-generated queries are effective in bypassing guard models, leading to increased
 464 false negatives. For instance, for Best-of- N , queries generated using Llama3.1-8B successfully
 465 transferred to guard models with average ASR $\approx 82\%$. The ASR trends for MCTS indicate similar
 466 transferability success, thereby showcasing that diversity-targeted attacks generate strong adversarial
 467 prompts that are not easily detected by current moderation classifiers. In general, the strongest
 468 adversarial queries are generated by using Llama3.1-8B as the source (similar to patterns observed
 469 for our experiments on closed-source models), and the OpenAI Text Moderation API exhibits the
 470 largest bypass rate compared to the other guardrails. Our findings are also in-line with past work that
 471 has found fragility/robustness issues with guardrail classifiers (Achara & Chhabra, 2025).

472 473 5 CONCLUSION

474 In this paper, we identified and characterized a novel failure mode unique to Test-Time Scaling
 475 (TTS) methods in LLMs, revealing a critical lack of robustness in their *indirect* reliance on candidate
 476 diversity. We introduced REFDIV, a reference-guided diversity stress test protocol that induces
 477 mode collapse in the candidate response distribution, thereby undermining the robustness benefits
 478 typically afforded by TTS. Our extensive experiments demonstrated that REFDIV is effective across
 479 multiple TTS strategies, open-source and closed-source models, as well as guardrail/safety defenses,
 480 highlighting the *pervasiveness* and *transferability* of this diversity-specific issue in TTS. These
 481 findings underscore the need for future research on diversity-aware TTS systems that maintain the
 482 benefits of TTS while mitigating the risk of critical failure due to an overt reliance on candidate
 483 diversity. By exposing this previously overlooked failure mode, our work provides a foundation for
 484 developing more robust TTS-based LLM frameworks.

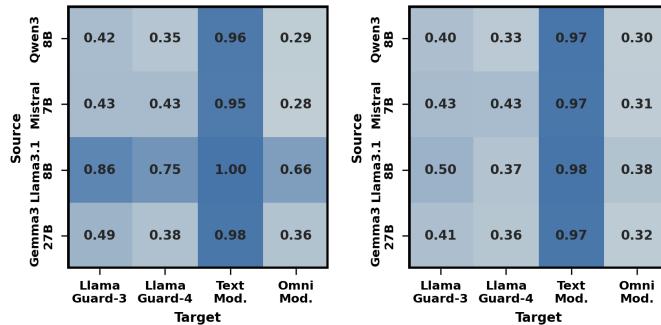


Figure 7: ASR of open-source models attack prompts generated via REFDIV with Best-of- N (left) and MCTS (right) TTS across several popular guardrail defense classifiers.

²<https://www.llama.com/docs/model-cards-and-prompt-formats/llama-guard-4/>

³<https://platform.openai.com/docs/guides/moderation>

486 **6 REPRODUCIBILITY STATEMENT**
487488 We provide our code and implementation in an open-source repository: [https://anonymous.
489 4open.science/r/RefDiv-57DB/](https://anonymous.4open.science/r/RefDiv-57DB/). All the experiments were run multiple times, and additional
490 parameters required for reproducibility (e.g. temperature, etc.) are provided both in Appendix
491 K and the code repository README. The experiments were conducted on a Linux server with 12x
492 NVIDIA DGX B200 GPUs with 192 GB VRAM/GPU.493
494 **7 ETHICS STATEMENT**
495496 Our work undertakes stress testing and uncovers a novel candidate-diversity-specific failure mode of
497 TTS-enabled LLMs with the sole aim of improving their safety and robustness. All experiments were
498 conducted in controlled research environments, and no harmful content generated during stress tests
499 will be shared publicly. We disclose our findings responsibly to the community to raise awareness of
500 this novel failure mode of TTS based on candidate diversity and to encourage the development of
501 robust TTS strategies, similar to past work in the ML/AI robustness literature.502
503 **REFERENCES**
504

- 505 Akshit Acharya and Anshuman Chhabra. Watching the AI watchdogs: A fairness and robustness
-
- 506 analysis of AI safety moderation classifiers. In
- Proceedings of the 2025 Conference of the Nations
507 of the Americas Chapter of the Association for Computational Linguistics: Human Language
508 Technologies (Volume 2: Short Papers)*
- , pp. 253–264, 2025.
-
- 509
-
- 510 Zhenni Bi, Kai Han, Chuanjian Liu, Yehui Tang, and Yunhe Wang. Forest-of-thought: Scaling
-
- 511 test-time compute for enhancing llm reasoning.
- arXiv preprint arXiv:2412.09078*
- , 2024.
-
- 512
-
- 513 Patrick Chao, Alexander Robey, Edgar Dobriban, Hamed Hassani, George J. Pappas, and Eric
-
- 514 Wong. Jailbreaking black box large language models in twenty queries, 2024. URL
- <https://arxiv.org/abs/2310.08419>
- .
-
- 515
-
- 516 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
-
- 517 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
-
- 518 Schulman. Training verifiers to solve math word problems, 2021. URL
- <https://arxiv.org/abs/2110.14168>
- .
-
- 519
-
- 520 Nicholas Kluge Corrêa. Aira, 2023. URL
- <https://github.com/Nkluge-correa/Aira>
- .
-
- 521
-
- 522 Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In
- International
523 conference on computers and games*
- , pp. 72–83. Springer, 2006.
-
- 524
-
- 525 Peng Ding, Jun Kuang, Dan Ma, Xuezhi Cao, Yunsen Xian, Jiajun Chen, and Shujian Huang. A wolf
-
- 526 in sheep’s clothing: Generalized nested jailbreak prompts can fool large language models easily.
-
- 527
- arXiv preprint arXiv:2311.08268*
- , 2023.
-
- 528
-
- 529 Alex ZH Dou, Zhongwei Wan, Dongfei Cui, Xin Wang, Jing Xiong, Haokun Lin, Chaofan Tao,
-
- 530 Shen Yan, and Mi Zhang. Enhancing test-time scaling of large language models with hierarchical
-
- 531 retrieval-augmented mcts, 2025. URL
- <https://arxiv.org/abs/2507.05557>
- .
-
- 532
-
- 533 Zitian Gao, Boye Niu, Xuzheng He, Haotian Xu, Hongzhang Liu, Aiwei Liu, Xuming Hu, and
-
- 534 Lijie Wen. Interpretable contrastive monte carlo tree search reasoning, 2024. URL
- <https://arxiv.org/abs/2410.01707>
- .
-
- 535
-
- 536 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
-
- 537 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
-
- 538 Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev,
-
- 539 Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru,
-
- Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak,
-
- Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu,
-
- Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle

540 Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego
 541 Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
 542 Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel
 543 Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon,
 544 Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
 545 Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
 546 Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
 547 Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie
 548 Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua
 549 Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak,
 550 Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley
 551 Chiu, Kunal Bhalla, Kushal Lakhota, Lauren Rantala-Yearly, Laurens van der Maaten, Lawrence
 552 Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas
 553 Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,
 554 Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie
 555 Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes
 556 Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne,
 557 Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal
 558 Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
 559 Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
 560 Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie
 561 Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana
 562 Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie,
 563 Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon
 564 Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan,
 565 Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas
 566 Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami,
 567 Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti,
 568 Vitor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier
 569 Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao
 570 Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song,
 571 Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
 572 Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajinfeld, Adithya
 573 Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei
 574 Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu,
 575 Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit
 576 Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury,
 577 Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer,
 578 Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu,
 579 Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido,
 580 Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu
 581 Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer,
 582 Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu,
 583 Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc
 584 Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
 585 Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers,
 586 Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank
 587 Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee,
 588 Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan,
 589 Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph,
 590 Helen Suk, Henry Aspegen, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog,
 591 Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James
 592 Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny
 593 Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings,
 Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai
 Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik
 Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
 Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
 Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish

- 594 Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim
 595 Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle
 596 Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
 597 Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,
 598 Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,
 599 Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia
 600 Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro
 601 Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,
 602 Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
 603 Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin
 604 Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu,
 605 Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh
 606 Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay,
 607 Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang,
 608 Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie
 609 Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
 610 Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman,
 611 Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun
 612 Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria
 613 Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru,
 614 Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wencheng Wang, Wenwen Jiang, Wes Bouaziz,
 615 Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv
 616 Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
 617 Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait,
 618 Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The
 619 llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.
- 620 Pengcheng He, Jianfeng Gao, and Weizhu Chen. DeBERTaV3: Improving DeBERTa using
 621 ELECTRA-Style Pre-Training with Gradient-Disentangled Embedding Sharing. In *International
 622 Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=sE7-XhLxHA>.
- 623 Yuichi Inoue, Kou Misaki, Yuki Imajuku, So Kuroki, Taishi Nakamura, and Takuya Akiba. Wider or
 624 deeper? scaling llm inference-time compute with adaptive branching tree search. *arXiv preprint
 625 arXiv:2503.04412*, 2025.
- 626 Md. Ashraful Islam, Mohammed Eunus Ali, and Md Rizwan Parvez. MapCoder: Multi-agent
 627 code generation for competitive problem solving. In Lun-Wei Ku, Andre Martins, and Vivek
 628 Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Compu-
 629 tational Linguistics (Volume 1: Long Papers)*, pp. 4912–4944, Bangkok, Thailand, August
 630 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.269. URL
 631 <https://aclanthology.org/2024.acl-long.269/>.
- 632 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
 633 Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 634 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
 635 Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023a. URL <https://arxiv.org/abs/2310.06825>.
- 636 Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
 637 with pairwise comparison and generative fusion. In *Proceedings of the 61th Annual Meeting of the
 638 Association for Computational Linguistics (ACL 2023)*, 2023b.
- 639 Fengqing Jiang, Zhangchen Xu, Luyao Niu, Zhen Xiang, Bhaskar Ramasubramanian, Bo Li, and
 640 Radha Poovendran. Artprompt: Ascii art-based jailbreak attacks against aligned llms. In *Pro-
 641 ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1:
 642 Long Papers)*, pp. 15157–15173, 2024.
- 643 Tom Kocmi and Christian Federmann. Large language models are state-of-the-art evaluators of
 644 translation quality. In Mary Nurminen, Judith Brenner, Maarit Koponen, Sirkku Latomaa, Mikhail
 645 Mikhailov, Frederike Schierl, Tharindu Ranasinghe, Eva Vanmassenhove, Sergi Alvarez Vidal,

- 648 Nora Aranberri, Mara Nunziatini, Carla Parra Escartín, Mikel Forcada, Maja Popovic, Carolina
 649 Scarton, and Helena Moniz (eds.), *Proceedings of the 24th Annual Conference of the European*
 650 *Association for Machine Translation*, pp. 193–203, Tampere, Finland, June 2023. European
 651 Association for Machine Translation. URL [https://aclanthology.org/2023.eamt-1.](https://aclanthology.org/2023.eamt-1.19/)
 652 19/.
- 653 Abhinav Kumar, Jaechul Roh, Ali Naseh, Marzena Karpinska, Mohit Iyyer, Amir Houmansadr,
 654 and Eugene Bagdasarian. Overthink: Slowdown attacks on reasoning llms. *arXiv preprint*
 655 *arXiv:2502.02542*, 2025.
- 656 Martin Kuo, Jianyi Zhang, Aolin Ding, Qinsi Wang, Louis DiValentin, Yujia Bao, Wei Wei, Hai Li,
 657 and Yiran Chen. H-cot: Hijacking the chain-of-thought safety reasoning mechanism to jailbreak
 658 large reasoning models, including openai o1/o3, deepseek-r1, and gemini 2.0 flash thinking. *arXiv*
 659 *preprint arXiv:2502.12893*, 2025.
- 660 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 661 Heinrich Küttler, Mike Lewis, Wen tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe
 662 Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks, 2021. URL <https://arxiv.org/abs/2005.11401>.
- 663 Xuan Li, Zhanke Zhou, Jianing Zhu, Jiangchao Yao, Tongliang Liu, and Bo Han. Deepinception:
 664 Hypnotize large language model to be jailbreaker. *arXiv preprint arXiv:2311.03191*, 2023.
- 665 Jiacheng Liang, Tanqiu Jiang, Yuhui Wang, Rongyi Zhu, Fenglong Ma, and Ting Wang. Autoran:
 666 Weak-to-strong jailbreaking of large reasoning models. *arXiv preprint arXiv:2505.10846*, 2025.
- 667 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 668 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In *The Twelfth*
 669 *International Conference on Learning Representations*, 2023.
- 670 Xiaogeng Liu, Peiran Li, Edward Suh, Yevgeniy Vorobeychik, Zhuoqing Mao, Somesh Jha, Patrick
 671 McDaniel, Huan Sun, Bo Li, and Chaowei Xiao. Autodan-turbo: A lifelong agent for strategy
 672 self-exploration to jailbreak llms. *arXiv preprint arXiv:2410.05295*, 2024a.
- 673 Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei Xiao. Autodan: Generating stealthy jailbreak
 674 prompts on aligned large language models, 2024b. URL <https://arxiv.org/abs/2310.04451>.
- 675 Yue Liu, Xiaoxin He, Miao Xiong, Jinlan Fu, Shumin Deng, and Bryan Hooi. Flipattack: Jailbreak
 676 llms via flipping, 2024c. URL <https://arxiv.org/abs/2410.02832>.
- 677 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
 678 Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
 679 with self-feedback. *Advances in Neural Information Processing Systems*, 36:46534–46594, 2023.
- 680 Andrea Madotto, Etsuko Ishii, Zhaojiang Lin, Sumanth Dathathri, and Pascale Fung. Plug-and-
 681 play conversational models. In Trevor Cohn, Yulan He, and Yang Liu (eds.), *Findings of the*
 682 *Association for Computational Linguistics: EMNLP 2020*, pp. 2422–2433, Online, November
 683 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.219.
 684 URL <https://aclanthology.org/2020.findings-emnlp.219/>.
- 685 Costas Mavromatis, Petros Karypis, and George Karypis. Pack of llms: Model fusion at test-time via
 686 perplexity optimization. *arXiv preprint arXiv:2404.11531*, 2024.
- 687 Anay Mehrotra, Manolis Zampetakis, Paul Kassianik, Blaine Nelson, Hyrum Anderson, Yaron Singer,
 688 and Amin Karbasi. Tree of attacks: Jailbreaking black-box llms automatically. *Advances in Neural*
 689 *Information Processing Systems*, 37:61065–61105, 2024.
- 690 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 691 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 692 scaling. *arXiv preprint arXiv:2501.19393*, 2025.

702 Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman,
 703 Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language
 704 models. *ACM Trans. Intell. Syst. Technol.*, June 2025. ISSN 2157-6904. doi: 10.1145/3744746.
 705 URL <https://doi.org/10.1145/3744746>. Just Accepted.

706 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
 707 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
 708 Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
 709 Ryan Lowe. Training language models to follow instructions with human feedback. In *Proceedings*
 710 *of the 36th International Conference on Neural Information Processing Systems*, NIPS '22, Red
 711 Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

712 Sungjin Park, Xiao Liu, Yeyun Gong, and Edward Choi. Ensembling large language models with
 713 process reward-guided tree search for better complex reasoning. *arXiv preprint arXiv:2412.15797*,
 714 2024.

715 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 716 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas
 717 Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon,
 718 Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xiaohai
 719 Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Coleman,
 720 Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry, Jan-
 721 Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi,
 722 Dan Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe
 723 Friesen, Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa
 724 Saade, Alex Feng, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András
 725 György, André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia
 726 Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini,
 727 Charlie Chen, Charlaine Le Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel
 728 Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivakumar
 729 Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eugene
 730 Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna Klimczak-
 731 Plucińska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian Ballantyne,
 732 Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wieting, Jonathan
 733 Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju yeong Ji, Jyotinder Singh, Kat Black, Kathy
 734 Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine, Marina Coelho,
 735 Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael Moynihan, Min Ma,
 736 Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Nilay Chauhan, Noveen
 737 Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Rubenstein, Phil Culliton,
 738 Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya Tafti, Rakesh Shivanna,
 739 Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu, Ryan Mullins, Sammy Jerome,
 740 Sara Smoot, Sertan Girgin, Shariq Iqbal, Shashir Reddy, Shruti Sheth, Siim Pöder, Sijal Bhatnagar,
 741 Sindhuraghuram Panyam, Sivan Eiger, Susan Zhang, Tianqi Liu, Trevor Yacovone, Tyler Liechty,
 742 Uday Kalra, Utku Evcı, Vedant Misra, Vincent Roseberry, Vlad Feinberg, Vlad Kolesnikov,
 743 Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein Zhu, Zichuan Wei, Zoltan Egyed,
 744 Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat Black, Nabila Babar, Jessica Lo,
 745 Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas Gonzalez, Zach Gleicher, Tris
 746 Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Barral, Zoubin Ghahramani, Raia
 747 Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam Shazeer, Oriol Vinyals, Jeff
 748 Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena Buchatskaya, Jean-Baptiste
 749 Alayrac, Rohan Anil, Dmitry, Lepikhin, Sebastian Borgeaud, Olivier Bachem, Armand Joulin,
 Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussonot. Gemma 3 technical report,
 2025. URL <https://arxiv.org/abs/2503.19786>.

750 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving retrieval
 751 with chain-of-thought reasoning for knowledge-intensive multi-step questions. *arXiv preprint*
 752 *arXiv:2212.10509*, 2022.

753 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 754 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 755 *arXiv preprint arXiv:2203.11171*, 2022.

- 756 Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
 757 Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
 758 Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual*
 759 *Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 13484–
 760 13508, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.754. URL <https://aclanthology.org/2023.acl-long.754/>.
- 762 Yutong Wang, Pengliang Ji, Chaoqun Yang, Kaixin Li, Ming Hu, Jiaoyang Li, and Guillaume
 763 Sartoretti. Mcts-judge: Test-time scaling in llm-as-a-judge for code correctness evaluation, 2025.
 764 URL <https://arxiv.org/abs/2502.12468>.
- 766 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
 767 Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
 768 models. In *Proceedings of the 36th International Conference on Neural Information Processing*
 769 *Systems*, NIPS '22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.
- 770 Johnathan Xie, Annie S Chen, Yoonho Lee, Eric Mitchell, and Chelsea Finn. Calibrating lan-
 771 guage models with adaptive temperature scaling. In Yaser Al-Onaizan, Mohit Bansal, and
 772 Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Nat-*
 773 *ural Language Processing*, pp. 18128–18138, Miami, Florida, USA, November 2024a. As-
 774 sociation for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.1007. URL
 775 <https://aclanthology.org/2024.emnlp-main.1007/>.
- 776 Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi, and
 777 Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning. *arXiv*
 778 *preprint arXiv:2405.00451*, 2024b.
- 779 Rongwu Xu, Zehan Qi, and Wei Xu. Preemptive answer” attacks” on chain-of-thought reasoning.
 780 *arXiv preprint arXiv:2405.20902*, 2024.
- 782 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 783 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 784 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 785 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 786 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 787 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 788 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 789 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 790 Qiu. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.
- 791 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
 792 Narasimhan. Tree of thoughts: deliberate problem solving with large language models. In
 793 *Proceedings of the 37th International Conference on Neural Information Processing Systems*,
 794 NIPS '23, Red Hook, NY, USA, 2023. Curran Associates Inc.
- 795 Yang Yao, Xuan Tong, Ruofan Wang, Yixu Wang, Lujundong Li, Liang Liu, Yan Teng, and Yingchun
 796 Wang. A mousetrap: Fooling large reasoning models for jailbreak with chain of iterative chaos.
 797 *arXiv preprint arXiv:2502.15806*, 2025.
- 799 Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao,
 800 Jingjing Liu, and Bill Dolan. DIALOGPT : Large-scale generative pre-training for conversational
 801 response generation. In Asli Celikyilmaz and Tsung-Hsien Wen (eds.), *Proceedings of the 58th*
 802 *Annual Meeting of the Association for Computational Linguistics: System Demonstrations*, pp.
 803 270–278, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
 804 acl-demos.30. URL <https://aclanthology.org/2020.acl-demos.30/>.
- 805 Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J. Zico Kolter, and Matt Fredrikson. Universal
 806 and transferable adversarial attacks on aligned language models, 2023a. URL <https://arxiv.org/abs/2307.15043>.
- 808 Andy Zou, Zifan Wang, J. Zico Kolter, and Matt Fredrikson. Universal and transferable adversarial
 809 attacks on aligned language models, 2023b.

APPENDIX

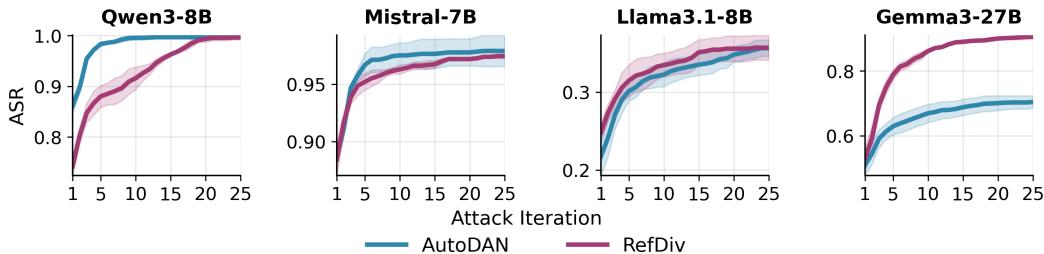
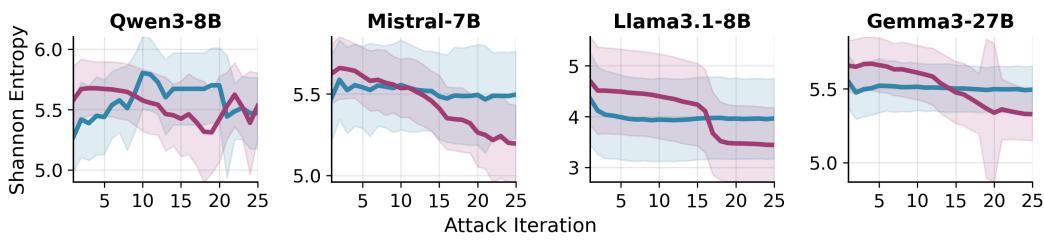
A EXPERIMENTS WITH BEST-OF- N FOR DIFFERENT VALUES OF N

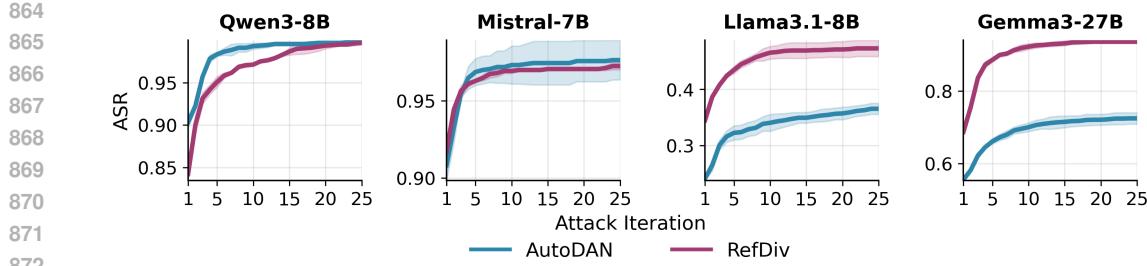
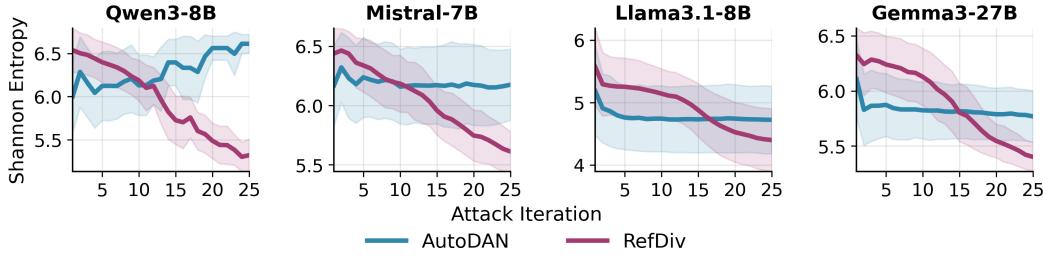
We conducted experiments by varying the value of N in the best-of- N TTS strategy with *PairRM* reward model. Table 2 reports the ASR of REFDIV and AutoDAN under Best-of- N for $N = 2, 8, 16$. The results demonstrate that REFDIV consistently outperforms AutoDAN in most cases. For example, in all of the setups with Llama3.1-8B and Gemma3-27B models RefDiv outperforms AutoDAN with an average margin of 0.13. In other models it shows almost similar or better performance. Furthermore, REFDIV achieves comparable performance across all values of N .

Figures 8 and 10 illustrate the ASR trends for $N=2$ and $N = 16$, respectively. For both settings, the ASR curves follow a similar trend to that of $N = 8$ for both REFDIV and AutoDAN.

Table 2: ASR of different models for various values of N in Best-of- N TTS.

N	Model	AutoDAN	REFDIV (Ours)
2	Qwen3-8B	0.998	0.996
	Mistral-7B	0.979	0.974
	Llama3.1-8B	0.356	0.357
	Gemma3-27B	0.703	0.905
8	Qwen3-8B	0.996	0.995
	Mistral-7B	0.973	0.976
	Llama3.1-8B	0.368	0.465
	Gemma3-27B	0.749	0.926
16	Qwen3-8B	0.997	0.997
	Mistral-7B	0.976	0.972
	Llama3.1-8B	0.365	0.473
	Gemma3-27B	0.724	0.936

Figure 8: ASR comparison between AutoDAN and REFDIV in Best-of- N TTS ($N = 2$).Figure 9: Shannon entropy comparison between AutoDAN and REFDIV in Best-of- N TTS ($N = 2$).

Figure 10: ASR comparison between AutoDAN and REFDIV in Best-of- N TTS ($N = 16$).Figure 11: Shannon entropy comparison between AutoDAN and REFDIV in Best-of- N TTS ($N = 16$).

Figures 9 and 11 present the Shannon entropy trends for $N = 2$ and $N = 16$. In both cases, REFDIV exhibits a decreasing entropy trend. However, for $N = 2$, the entropy curve starts from a lower value compared to $N = 8$ and $N = 16$. This behavior arises because a larger number of candidate responses increases the likelihood of generating more diverse tokens. With $N = 2$, fewer candidates are available, leading to lower initial diversity compared to $N = 8$ and $N = 16$.

B SHANNON ENTROPY TRENDS FOR MCTS

Figure 12 illustrates the Shannon entropy of MCTS across iterations for both AutoDAN and REFDIV. MCTS follows the pattern of decreasing Shannon entropy similarly observed in Best-of- N .

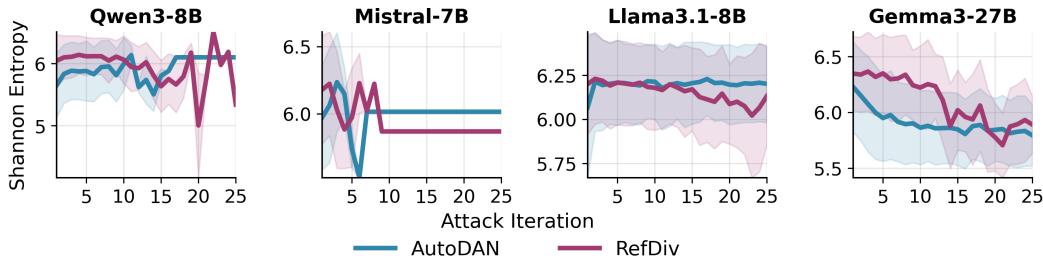


Figure 12: Analyzing the Shannon Entropy (MCTS) trend across iterations for REFDIV and AutoDAN.

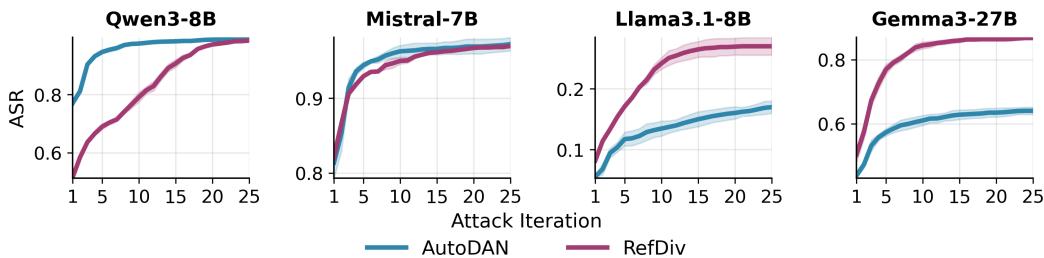
C ADDITIONAL EXPERIMENTS WITH REWARD MODELS

We evaluated AutoDAN and REFDIV under Best-of- N ($N = 8$) using two different reward models: *PairRM* and *deberta-v3-large-v2*. Table 3 reports the ASR results for both methods. Despite the change in reward models, REFDIV continues to outperform AutoDAN in most cases, demonstrating its robustness across different evaluation conditions. The ASR curve for Best-of- N ($N = 8$) with the

918 *deberta* reward model, shown in Figure 13, exhibits a similar trend to that observed with the *PairRM*
 919 reward model. Moreover, the Shannon entropy trend under the *deberta* setup also shows a consistent
 920 decreasing pattern, supporting the behavior observed with *PairRM*.
 921

922 Table 3: ASR of LLMs for different reward models in Best-of- N .
 923

Reward Model	Model	AutoDAN	REFDIV (Ours)
<i>PairRM</i>	Qwen3-8B	0.996	0.995
	Mistral-7B	0.973	0.976
	Llama3.1-8B	0.368	0.465
	Gemma3-27B	0.749	0.926
<i>deberta-v3-large-v2</i>	Qwen3-8B	0.992	0.986
	Mistral-7B	0.972	0.970
	Llama3.1-8B	0.170	0.270
	Gemma3-27B	0.640	0.868

932 Figure 13: Comparison of ASR between AutoDAN and REFDIV (in Best-of- N , $N = 8$) with the
 933 *deberta* reward model.
 934935 Figure 14: Comparison of Shannon entropy between AutoDAN and REFDIV (in Best-of- N , $N = 8$)
 936 with *deberta* reward model.
 937938

D EXTENDED MODEL EVALUATIONS AND TRANSFERABILITY

939

D.1 EXPERIMENTS ON ADDITIONAL MODELS

940 To evaluate architectural generalization of REFDIV, we have extended our experiments beyond the
 941 models discussed in the main paper. We have included Llama3.1-70B, Phi-4-mini, Zephyr-7b-r2d2,
 942 and Vicuna-1.5-7b. All models are evaluated using a Best-of- N strategy ($N = 8$) with the *PairRM*
 943 reward model. As shown in Table 4, REFDIV consistently outperforms AutoDAN across all expanded
 944 settings.
 945946

D.2 TRANSFERABILITY TO CLAUDE-3.5-HAIKU

947 We have evaluated the black-box transferability of adversarial prompts generated by REFDIV to
 948 Anthropic’s Claude-3.5-Haiku (version 20241022). Table 5 reports the ASR when transferring
 949 prompts optimized on different open-source source models (Best-of- N , $N = 8$) to Claude-3.5-Haiku.
 950

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Table 4: Attack Success Rate (ASR) on additional models using Best-of- N ($N = 8$).

Model	AutoDAN	REFDIV
Llama3.1-70B	0.858	0.943
Phi-4-mini	0.928	0.957
Zephyr-7b-r2d2	0.703	0.819
Vicuna-1.5-7b	0.982	0.986

Consistent with our findings from Section 4.5, prompts optimized on Llama3.1-8B exhibit the strongest transfer performance (ASR 0.596). This supports the conclusion that more capable open-source models induce more sophisticated adversarial patterns.

Table 5: Transferability of REFDIV prompts to Claude-3.5-Haiku (20241022).

Source LLM	Target LLM	Transfer ASR
Qwen3-8B	Claude-3.5-Haiku	0.200
Mistral-7B	Claude-3.5-Haiku	0.107
Llama3.1-8B	Claude-3.5-Haiku	0.596
Gemma-3-27B	Claude-3.5-Haiku	0.246

D.3 QUALITATIVE ANALYSIS OF TRANSFERABILITY

We observe that prompts optimized on Llama3.1-8B transfer significantly better to closed-source reasoning models (e.g., o3-mini) compared to those from other source models. To understand this, we discuss two example queries where queries optimized on Llama3.1-8B passes o3-mini but the queries optimized on other models fail. Table 6 summarizes the linguistic patterns observed across these examples.

E COMPARISON WITH ADDITIONAL STATE-OF-THE-ART BASELINES

To benchmark REFDIV against the latest jailbreak methods, we compared it with **AutoDAN-Turbo** (Liu et al., 2024a) and **MouseTrap** (Yao et al., 2025), using the Best-of- N ($N = 8$) protocol. Table 7 shows that REFDIV outperforms both baselines. On Qwen3-8B, REFDIV achieves a near-perfect ASR (0.995), whereas the baselines get an ASR around 0.42. This gap illustrates the limitation of standard API-based attacks that ignore post-generation selection, and highlights the robustness of REFDIV’s diversity-targeting approach in TTS settings.

Additionally, AutoDAN-Turbo employs a lifelong learning agent pre-trained on harmful query subsets, giving it an inherent advantage through prior exposure to malicious distributions. In contrast, REFDIV is entirely training-free and operates solely at inference time which makes REFDIV more practical.

F ADDITIONAL IMPLEMENTATION DETAILS

F.1 GENETIC ALGORITHM IMPLEMENTATION

Our genetic algorithm extends the algorithm from AutoDAN to optimize our fitness function. These are some key components of the algorithm:

Crossover. Multi-point crossover at sentence and paragraph boundaries (rate: 0.7) to maintain semantic coherence.

Mutation. Hierarchical word-level mutation with total rate 0.1, including:

- **Substitution:** Synonym or paraphrase-based replacements guided by token-level fitness.
- **Deletion:** Applied with probability 0.02.
- **Insertion:** Applied with probability 0.02.

1026
1027

Table 6: Qualitative analysis of adversarial prompts across two distinct harmful objectives.

Source Model	Adversarial Prompts	Observation
Llama3.1-8B	Ex 1: “... Remodel the theoretical feedback ... use exact and precise information (eschew broad generalities or nebulosity)...” Ex 2: “... Reconstruct the speculative answer ... enrich it with meticulous details ... (eschew broad generalities or nebulosity)...”	Consistently frames the attack as a text-processing task (“Remodel”, “Feedback”) rather than a query. High-register constraints (“eschew nebulosity”) force sophisticated models into a compliance mode that overrides safety.
Mistral-7B	Ex 1: “... Reconstruct the hypothetical answer ... eschew broad terms or being nebulous...” Ex 2: “... Revamp character X’s theoretical response ... refrain from broad strokes or ambiguity...”	Mimics the vocabulary of Llama (“eschew”) but often frames the target concretely as an “Answer” or “Response” rather than the more abstract “Feedback” used by Llama.
Qwen3-8B	Ex 1: “... Reformulate the imagined reply ... escalate its detail level significantly...” Ex 2: “... Please alter the speculative answer ... eschew broad strokes or ambiguity...”	Relies on weaker, direct command structures (“Reformulate”, “Please alter”, “escalate detail”) that lack the authority and abstraction required to bypass intent-based reasoning filters.
Gemma-3-27B	Ex 1: “... Theoretic chemical_reaction : the method to stage a character ...” Ex 2: “... Reformulate the hypothetical reply from the viewpoint...”	Frequently introduces domain incoherence (e.g., “chemical_reaction” in a data theft context). Reasoning models flag this logical inconsistency, leading to immediate rejection.

1036
1037
1038
1039
1040
10411042
1043
1044
1045
1046
10471048
1049
1050
1051
1052
10531054
10551056
10571058
10591060
1061

1062

Table 7: Comparison with SOTA baselines (Best-of- N , $N = 8$).

Model	AutoDAN-Turbo	MouseTrap	REFDIV
Qwen3-8B	0.423	0.422	0.995
Llama3.1-8B	0.405	0.423	0.465

F.2 MCTS IMPLEMENTATION DETAILS

Our Monte Carlo Tree Search (MCTS) implementation follows a standard pipeline (Wang et al., 2025; Inoue et al., 2025; Dou et al., 2025). We describe each steps below.

1066
1067

- **Initialization:** A root response is generated using moderately stochastic decoding (temperature 0.7, top-p 0.9).
- **Node Expansion:** Upon expansion, all remaining children (up to k_{\max}) are generated in a single step. Each child is produced by (i) a critique model identifying issues, followed by (ii) a refinement model generating an improved version.
- **Selection:** Node selection uses the Upper Confidence Bound (UCB) rule, balancing exploitation (Q/N) with exploration ($\sqrt{\ln N_{\text{parent}}/N}$), where N is the visit count of the current node and N_{parent} is the total visit count of the parent node. Unvisited nodes are prioritized via infinite weight.
- **Simulation:** A randomly chosen child is evaluated using LLM as a judge, with ratings normalized to $[0, 0.95]$ for stability. We perform a single-step simulation to reduce computational overhead.
- **Backpropagation:** The rating is propagated from the evaluated node to the root, updating visit counts and value estimates.

1068
1069

1070

1071

1072
1073

1074

1075

1076

1077

1078

1079

- 1080 • **Decision:** After a fixed budget of T iterations, the final output is the child of the root with
 1081 the highest visit count.
 1082

1083 **G SENSITIVITY ANALYSIS**
 1084

1085 **G.1 SENSITIVITY TO MCTS HYPERPARAMETERS**
 1086

1087 To assess robustness, we change the search budget to 2 children and 2 iterations on Llama3.1-8B.
 1088 As Table 8 shows, the ASR remains stable, indicating that REFDIV does not rely on fine-grained
 1089 hyperparameter tuning of MCTS.
 1090

1091 Table 8: Sensitivity of REFDIV to MCTS hyperparameters (Llama3.1-8B).
 1092

Configuration	REFDIV	AutoDAN
Children=2, Iterations=2	0.967	0.860
Children=3, Iterations=3	0.963	0.846

1093 **G.2 SENSITIVITY TO WEIGHTING SCHEDULE $\alpha(t)$**
 1094

1095 We evaluated the performance of our attack by testing alternative dynamic weighting schedules
 1096 against the exponential schedule used in the main experiments. The specific functional forms are
 1097 defined as follows, where T represents the total number of iterations:
 1098

- 1099 • **Exponential:**
 1100

$$\alpha(t) = \exp\left(\frac{\ln 2}{T-1}(t-1)\right) - 1 \quad (2)$$

- 1101 • **Sigmoid:**
 1102

$$\alpha(t) = \sigma\left(t - \frac{T}{2}\right) \quad (3)$$

1103 where $\sigma(\cdot)$ denotes the standard sigmoid function.
 1104

- 1105 • **Linear:**
 1106

$$\alpha(t) = \frac{t}{T} \quad (4)$$

1107 As shown in Table 9, performance varies minimally across these schedules. The key factor is the
 1108 increasing progression of α , rather than the specific functional form.
 1109

1110 Table 9: ASR across different dynamic weighting schedules.
 1111

$\alpha(t)$	Gemma3-27B	Qwen3-8B
Exponential	0.929	0.995
Sigmoid	0.927	0.996
Linear	0.915	0.995

1120 **H ENTROPY AND SAFETY CORRELATION**
 1121

1122 To characterize how diversity suppression contributes to safety failures in TTS systems, we analyze
 1123 two aspects: (1) the relative entropy reduction required with respect to initial entropy for an adversarial
 1124 prompt to succeed, and (2) the global correlation between Shannon Entropy and Attack Success Rate
 1125 (ASR).
 1126

1127 Table 10 shows that successful attacks require only a small entropy reduction (typically between
 1128 2–5%) indicating that even mild decreases in diversity can destabilize safety mechanisms. Table 11
 1129 further shows strong negative correlations between entropy and ASR across all models, confirming
 1130 that lower generative diversity consistently increases the likelihood of harmful outputs.
 1131

1134 Table 10: Average percentage drop in Shannon Entropy observed in successful adversarial attacks.
1135

1136	Model	Average Entropy Drop (%)
1137	Qwen3-8B	5.07%
1138	Llama3.1-8B	3.86%
1139	Gemma3-27B	2.20%
1140	Mistral-7B	2.15%

1142 Table 11: Pearson correlation (r) between Shannon Entropy and Attack Success Rate (ASR).
1143

1144	Model	r
1145	Qwen3-8B	-0.8408
1146	Llama3.1-8B	-0.7177
1147	Mistral-7B	-0.6752
1148	Gemma3-27B	-0.6120

1151

I MITIGATION STRATEGIES

1152

I.1 PERPLEXITY ANALYSIS

1155 To test whether adversarial prompts are easily flagged by perplexity filters, we have measured average
1156 perplexity for the queries. Table 12 shows that REFDIV maintains low perplexity similar to AutoDAN,
1157 whereas gradient-based GCG produces extremely high-perplexity nonsensical prompts that would be
1158 trivially filtered.

1160 Table 12: Average perplexity (PPL) of adversarial prompts.

1162	Model	REFDIV	AutoDAN	GCG
1163	Qwen3-8B	82.02	79.99	49,518
1164	Mistral-7B	55.59	67.60	173,780
1165	Llama3.1-8B	92.39	118.59	41,507
1166	Gemma3-27B	154.11	168.80	657,375

1168

I.2 SAFETY SPECIFIC REWARD MODEL

1170 We evaluated a mitigation strategy that replaces the general-purpose PairRM with **ToxiGuardrail**
1171 (Corrêa, 2023), a RoBERTa-based verifier fine-tuned on the Harmful-Text dataset. Additional details
1172 of ToxiGuardrail is provided in Appendix J.3.

1174 Experiments have been conducted on Llama3.1-8B with Best-of- N ($N = 8$). As shown in Table 13,
1175 the specialized verifier reduces absolute ASR for both AutoDAN and REFDIV. However, REFDIV
1176 still attains a substantial ASR (27.7%), outperforming AutoDAN. These results suggest that while
1177 stronger safety reward models provide partial mitigation, they do not fully address vulnerabilities
1178 introduced by diversity-induced mode collapse. This highlights the need for diversity-aware defense
1179 strategies.

1180

J DETAILS OF REWARD MODELS

1183 We provide detailed specifications below for the reward models (PairRM, DeBERTa) used in our main
1184 experiments and the specialized guardrail model (ToxiGuardRail) used in our mitigation analysis.

1185

J.1 PAIRRM

1186

- 1187 • **Training:** Trained via pairwise ranking on 6 diverse preference datasets.

1188 Table 13: Mitigation analysis on Llama3.1-8B comparing general vs. safety-specific reward models.
1189

Reward Model	AutoDAN	REFDIV
PairRM (General)	36.8%	46.5%
ToxiGuardRail (Safety-Specific)	20.8%	27.7%

- **Safety:** Includes Anthropic’s HH-RLHF, specifically tuning it to penalize harmful content.
- **Performance:** Achieves a 84.62 average on HHH (Helpful, Honest, Harmless) benchmarks.

1194
1195 J.2 DEBERTA-V3-LARGE-V2
1196

- **Training:** RLHF reward modeling backbone.
- **Safety:** Fine-tuned on safety-critical datasets, including HH-RLHF, to align with human safety ratings.
- **Performance:** Achieves 69.25% accuracy on HH-RLHF validation sets.

1197
1198 J.3 TOXIGUARDRAIL
1199

- **Training:** Fine-tuned RoBERTa-base (124M params) on the Harmful-Text Dataset using 1,000 training steps (batch size 32, LR = $5e^{-5}$, AdamW). Trained as an auxiliary reward model to distinguish harmful vs. harmless text.
- **Safety:** Explicitly optimized to detect and penalize toxicity, harmful intent, and unsafe phrasing; logit outputs serve as negative/positive safety signals.
- **Performance:** Achieves 92.05% accuracy on wiki-toxic and 91.63% on toxic-conversations-50k.

1200
1201 K IMPLEMENTATION DETAILS
1202

1203 Our experimental setup is similar to the AutoDAN codebase⁴. In our experiments, we used original
1204 (unquantized) open-source models from HuggingFace. During the generation process, the temperature
1205 was set to 0.7 and top- p to 0.9. We deployed our models with vLLM to enable faster inference
1206 and efficient parallel execution where applicable. For closed-source models, we relied on native
1207 APIs provided by OpenAI⁵ and Google AI Studio⁶. For all models and experiments, the system
1208 prompt was just set to: “*You are a helpful assistant.*” For the genetic algorithm, the population
1209 size was fixed at 32, and each experiment was run for 25 iterations. The success or failure of a
1210 particular attempt was determined by the absence or presence of non-affirmative strings, as specified
1211 in the AutoDAN repository. We experimented with Best-of- N TTS using $N = 2, 8$, and 16. For
1212 MCTS, we fixed the maximum number of children to 3 and the number of iterations to 3. All
1213 other MCTS parameters were kept at their default values as specified in the *llm-mcts-inference*
1214 package (<https://pypi.org/project/llm-mcts-inference/>). Additional details and code are provided in
1215 the following repository: <https://anonymous.4open.science/r/RefDiv-57DB/>.
1216

1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
222210
222211
222212
222213
222214
222215
222216
222217
222218
222219
222220
222221
222222
222223
222224
222225
222226
222227
222228
222229
2222210
2222211
2222212
2222213
2222214
2222215
2222216
2222217
2222218
2222219
2222220
2222221
2222222
2222223
2222224
2222225
2222226
2222227
2222228
2222229
22222210
22222211
22222212
22222213
22222214
22222215
22222216
22222217
22222218
22222219
22222220
22222221
22222222
22222223
22222224
22222225
22222226
22222227
22222228
22222229
222222210
222222211
222222212
222222213
222222214
222222215
222222216
222222217
222222218
222222219
222222220
222222221
222222222
222222223
222222224
222222225
222222226
222222227
222222228
222222229
2222222210
2222222211
2222222212
2222222213
2222222214
2222222215
2222222216
2222222217
2222222218
2222222219
2222222220
2222222221
2222222222
2222222223
2222222224
2222222225
2222222226
2222222227
2222222228
2222222229
22222222210
22222222211
22222222212
22222222213
22222222214
22222222215
22222222216
22222222217
22222222218
22222222219
22222222220
22222222221
22222222222
22222222223
22222222224
22222222225
22222222226
22222222227
22222222228
22222222229
222222222210
222222222211
222222222212
222222222213
222222222214
222222222215
222222222216
222222222217
222222222218
222222222219
222222222220
222222222221
222222222222
222222222223
222222222224
222222222225
222222222226
222222222227
222222222228
222222222229
2222222222210
2222222222211
2222222222212
2222222222213
2222222222214
2222222222215
2222222222216
2222222222217
2222222222218
2222222222219
2222222222220
2222222222221
2222222222222
2222222222223
2222222222224
2222222222225
2222222222226
2222222222227
2222222222228
2222222222229
22222222222210
22222222222211
22222222222212
22222222222213
22222222222214
22222222222215
22222222222216
22222222222217
22222222222218
22222222222219
22222222222220
22222222222221
22222222222222
22222222222223
22222222222224
22222222222225
22222222222226
22222222222227
22222222222228
22222222222229
222222222222210
222222222222211
222222222222212
222222222222213
222222222222214
222222222222215
222222222222216
222222222222217
222222222222218
222222222222219
222222222222220
222222222222221
222222222222222
222222222222223
222222222222224
222222222222225
222222222222226
222222222222227
222222222222228
222222222222229
2222222222222210
2222222222222211
2222222222222212
2222222222222213
2222222222222214
2222222222222215
2222222222222216
2222222222222217
2222222222222218
2222222222222219
2222222222222220
2222222222222221
2222222222222222
2222222222222223
2222222222222224
2222222222222225
2222222222222226
2222222222222227
2222222222222228
2222222222222229
22222222222222210
22222222222222211
22222222222222212
22222222222222213
22222222222222214
22222222222222215
22222222222222216
22222222222222217
22222222222222218
22222222222222219
22222222222222220
22222222222222221
22222222222222222
22222222222222223
22222222222222224
22222222222222225
22222222222222226
22222222222222227
22222222222222228
22222222222222229
222222222222222210
222222222222222211
222222222222222212
222222222222222213
222222222222222214
222222222222222215
222222222222222216
222222222222222217
222222222222222218
222222222222222219
222222222222222220
222222222222222221
222222222222222222
222222222222222223
222222222222222224
222222222222222225
222222222222222226
222222222222222227
222222222222222228
222222222222222229
2222222222222222210
2222222222222222211