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ABSTRACT

Test-Time Scaling (TTS) improves LLM reasoning by exploring multiple candidate
responses and then operating over this set to find the best output. A tacit premise
behind TTS is that sufficiently diverse candidate pools enhance reliability. In
this work, we show that this assumption in TTS introduces a previously unrec-
ognized failure mode. When candidate diversity is curtailed, even by a modest
amount, TTS becomes much more likely to produce unsafe outputs. We present a
reference-guided diversity reduction protocol (REFDIV) that serves as a diagnostic
attack to stress test TTS pipelines. Through extensive experiments across four
open-source models (Qwen3, Mistral, Llama3.1, Gemma3) and two widely used
TTS strategies (Monte Carlo Tree Search and Best-of-N ), constraining diversity
consistently signifies the rate at which TTS produces unsafe results. The effect is
often stronger than that produced by prompts directly with high adversarial intent
scores. This observed phenomenon also transfers across TTS strategies and to
closed-source models (e.g. OpenAI o3 and Gemini-2.5-Pro), thus indicating that
this is a general and extant property of TTS rather than a model-specific artifact.
Additionally, we find that numerous widely used safety guardrail classifiers (e.g.
Llama-Guard and OpenAI Moderation API), are unable to flag the adversarial
input prompts generated by REFDIV, demonstrating that existing defenses offer
limited protection against this diversity-driven failure mode. Through this work, we
hope to motivate future research on designing robust TTS strategies that are both
effective and secure against diversity-targeted stress tests as illustrated by REFDIV.

1 INTRODUCTION

Large Language Models (LLMs) have become central to a wide range of applications, from content
generation to complex problem-solving (Naveed et al., 2025). LLMs are now used in most tasks in
Natural Language Processing (NLP), such as Conversational Agents (Ouyang et al., 2022; Wang
et al., 2023; Zhang et al., 2020), Content Generation (Madotto et al., 2020), Code Generation (Islam
et al., 2024), Content Analysis (Kocmi & Federmann, 2023), Fact Checking (Lewis et al., 2021), etc.
While LLMs demonstrate strong performance across diverse, complex tasks, they remain susceptible
to generating incorrect or inconsistent outputs. Recent work on Test-Time Scaling (TTS) methods
has shown that allowing models to generate and evaluate multiple candidate responses at inference
time can improve output quality and reliability significantly (Yao et al., 2023; Wei et al., 2022).
These approaches leverage additional compute during inference to explore different reasoning paths
and select among candidate solutions rather than relying on a single forward pass. TTS methods
range from efficient sampling-based methods such as Best-of-N selection (Cobbe et al., 2021),
where multiple independent responses are generated and filtered according to consistency or scoring
criteria, to structured prompting methods that guide the model to decompose problems systematically
(Wei et al., 2022; Yao et al., 2023) and explore multiple reasoning paths in a tree structure. More
sophisticated approaches frame inference as search over a solution space of candidates. For instance,
recent work has adapted Monte Carlo Tree Search (MCTS) (Coulom, 2006; Gao et al., 2024; Inoue
et al., 2025) to guide LLM reasoning by treating generation as sequential decision-making, enabling
systematic exploration and backtracking through potential solution paths.
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Despite all the developments aimed at increasing the robustness of LLMs, they remain vulnerable to
adversarial inputs that can induce unintended behaviors. However, little is known about the robustness
properties of TTS and its specific failure modes when employed for augmenting LLM inference-time
performance. In this paper, we bridge this gap by analyzing a novel and previously unrecognized
failure mode that is unique to TTS methods employed in LLMs. More specifically, the effectiveness of
TTS depends critically on the diversity of the candidate response distribution, where diverse samples
enable better exploration of the solution space and more robust selection mechanisms. We thus stress
test TTS robustness by exploring this reliance on diversity in our work: by simply constraining the
candidate pool to be homogenous (i.e. containing low diversity), TTS outcomes can be easily steered
to generate harmful responses. That is, we hypothesize that constraining response diversity represents
a key indirect but pervasive vulnerability in TTS systems. By crafting low-diversity inputs that induce
mode collapse in the response distribution, TTS’s robustness benefits can be undermined easily in a
straightforward manner. To this end, we propose REFDIV, or the Reference-Guided Diversity Stress
Test Protocol, which specifically targets the diversity of intermediate responses in TTS pipelines, and
leads to significantly higher robustness lapses across various LLMs and TTS strategies, compared to
state-of-the-art jailbreak attacks. Moreover, the adversarial strings generated by REFDIV transfer
successfully across TTS strategies, closed-source models, as well as guardrail classifiers (e.g. Llama-
Guard and OpenAI Moderation API) further underscoring the need for improving the robustness of
TTS-based LLM frameworks.

Contributions. In sum, we make the following key contributions in this work:

• We demonstrate a novel failure mode in TTS-based LLMs that leverages diversity of the
candidate solutions, through our proposed REFDIV stress test protocol. REFDIV seeks to
reduce the diversity of the candidates generated during test-time while steering them towards
harmful generations, ultimately resulting in TTS producing unsafe results (at higher rates
compared to state-of-the-art attack baselines).

• We extensively validate REFDIV across different TTS strategies (MCTS and Best-of-N ),
and several LLMs of different types (Qwen3, Mistral, Llama3.1, Gemma3), and find that
minimizing diversity leads to a significant degradation in safety and TTS performance.
Moreover, we observe that adversarial strings generated by the attacker for one TTS strategy
(e.g. MCTS) can be used to attack another (e.g. Best-of-N ) indicating that this phenomenon
is a byproduct of general TTS frameworks and not specific to the models.

• Furthermore, we find that the diagnostic prompts REFDIV generates easily transfer to closed-
source LLMs (such as GPT-4.1, o3-mini, Gemini-2.5-Flash, and Gemini-2.5-Pro), leading to
unsafe/harmful generations even when the target model is unknown. This demonstrates the
potential of REFDIV as a stress test tool even when models are only available via black-box
access.

• Finally, to analyze whether current state-of-the-art guardrail/safety classifiers can flag REF-
DIV’s stress-test inputs, we employ Llama-Guard-3, Llama-Guard-4, OpenAI Moderation
API (both Text-Moderation and Omni-Moderation), and find that the prompts can easily
bypass these guardrails, posing a limited defense to diversity-driven TTS failure.

2 RELATED WORKS

Test-Time Scaling. Recent work has demonstrated that strategic allocation of computational resources
during inference can substantially improve LLM reasoning without modifying pre-trained parameters.
This test-time scaling paradigm offers a complementary approach to expensive train-time improve-
ments. Prompt-based methods enhance reasoning through strategic prompting. Chain-of-Thought
(CoT) (Wei et al., 2022) prompting generates intermediate reasoning steps, with Self-Consistency
(Wang et al., 2022) extending this by sampling diverse reasoning paths and using majority voting.
Tree-of-Thought (Yao et al., 2023) and Forest-of-Thought (Bi et al., 2024) further structure reasoning
into trees with branch selection and self-correction. Search and verification methods explore multiple
candidate solutions through sampling and ranking. Best-of-N sampling (Cobbe et al., 2021; Lightman
et al., 2023) and Monte Carlo Tree Search (Coulom, 2006; Gao et al., 2024) demonstrate particular
success on mathematical reasoning (Xie et al., 2024b). s1 (Muennighoff et al., 2025) acheived
high performance using reasoning traces of only 1000 samples. Ensembling strategies leverage
complementary strengths: PackLLM (Mavromatis et al., 2024) uses perplexity-based weighting for
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test-time model fusion, and LE-MCTS (Park et al., 2024) enables process-level ensemble where
models collaboratively build solutions step-by-step. Iterative refinement allows models to self-correct.
Self-Refine (Madaan et al., 2023) achieves improvement through iterative critique and revision.
Retrieval-augmented approaches like IRCoT (Trivedi et al., 2022) interleave reasoning with dynamic
information retrieval, improving multi-hop QA while reducing hallucination. Additionally, calibra-
tion methods like Adaptive Temperature Scaling (Xie et al., 2024a) provide token-level temperature
adjustment to maintain well-calibrated confidence estimates.

Robustness of LLMs. The robustness landscape of LLMs has evolved from simple prompt ma-
nipulation to sophisticated strategies targeting reasoning mechanisms that reveal critical failures.
Early foundational work included Greedy Coordinate Gradient (GCG) (Zou et al., 2023a) which
introduced gradient-based optimization for adversarial suffixes. PAIR (Chao et al., 2024) pioneered
the LLM-as-adversary paradigm, requiring only 20 queries versus hundreds for gradient methods.
The AutoDAN family of attacks (Liu et al., 2024b;a) advanced automated adversarial string genera-
tion through genetic algorithms and lifelong learning. Other techniques expose architectural failure
models in differing manners. FlipAttack (Liu et al., 2024c) achieves success by manipulating the
order of autoregressive processing, while ArtPrompt (Jiang et al., 2024) uses ASCII art to exploit
visual-semantic processing gaps. Systematic approaches include ReNeLLM (Ding et al., 2023) for
generalized prompt rewriting and scenario nesting, DeepInception (Li et al., 2023) for manipulation
by taking advantage of the personification capabilities of an LLM, and Tree of Attacks (Mehrotra
et al., 2024) which achieves success using fewer queries through systematic exploration of the outputs
of an Attacker-LLM. Preemptive Answer attacks (Xu et al., 2024) inject fabricated answers before
reasoning begins, assessing the robustness of the model’s reasoning capability across various CoT
methods. OverThink (Kumar et al., 2025) introduces resource exhaustion attacks achieving slow-
downs forcing excessive computation. Recently robutness research has also pivoted to large reasoning
models, demonstrating effectiveness: Mousetrap (Yao et al., 2025) achieves success through iterative
prompt transformations, AutoRAN (Liang et al., 2025) uses smaller, less-aligned reasoning models
as an adversary for the larger target reasoning models. Hijacking Chain-of-Thought (H-CoT) (Kuo
et al., 2025) reduces refusal rates by hijacking visible reasoning processes across large open-source
reasoning models.

3 PROBLEM STATEMENT AND PROPOSED STRESS TEST

3.1 PRELIMINARIES

LLMs. Let V denote a finite vocabulary of tokens, and let X ⊆ V∗ denote the input space of
natural language prompts. A large language model (LLM)M defines an autoregressive probability
distribution over output sequences y = (y1, . . . , yK) ∈ V∗ given an input x ∈ X :

Pr
M

(y | x) =

K∏
k=1

Pr
M

(yk | x, y<k),

where y<k = (y1, . . . , yk−1) are the prefix tokens.

Test-Time Scaling (TTS). Given an input x ∈ X , the modelM induces a generation tree G(x;M)
that enumerates possible candidate sequences y. A reward model r : V∗ → R assigns scalar values
to these generated sequences. A test-time scaling (TTS) strategy T then operates over (M, r,G) to
select a candidate solution:

y⋆ = T
(
x;M, r,G(x;M)

)
.

Stress Test Protocol. To model our stress test problem, we assume a white-box adversaryA with full
access to (M, T ), i.e., the LLM and the TTS strategy. Note that we do not assume explicit access
to the reward model verifier r as that can lead to a trivial stress test where we simply optimize for
reducing the reward signal given the input sequences. Instead, we wish for the adversary to construct
an adversarial input x′ = A(x;M, T , r) such that the selected output y′:

y′ = T
(
x′;M, r,G(x′;M)

)
violates predefined safety constraints while still being ultimately selected as the final candidate
solution by the TTS procedure.
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Attack Success Rate (ASR). We now define the ASR metric for evaluating stress test success.
Let C(y) be a binary indicator function that returns 1 if the generated output y violates a predefined
safety constraint (i.e., the string results in harmful response), and 0 otherwise. Given an adversary A
that produces adversarial inputs x′as outlined above, the attack success rate (ASR) of A againstM
(coupled with TTS strategy T ) can be defined as:

ASR(A;M, T , r) = Ex∼D[C(T (A(x;M, T , r);M, r,G(·)))] ,

where D is a distribution over some test-time input prompts that seek to elicit harmful behavior from
the model (e.g. detailed instructions for “how do I cut down a stop sign?”). If the model imbued with
TTS is not jailbroken, the ASR should be low across all these queries. However, if the stress test is
successful (i.e. the perturbed adversarial query generated by A can elicit harmful responses) the ASR
will be high, indicating safety performance drop despite the additional decision-making robustness
provided by TTS.

3.2 REFDIV: THE PROPOSED REFERENCE-GUIDED DIVERSITY STRESS TEST PROTOCOL

We now introduce our stress test diagnostic protocol against test-time scaling (TTS) strategies. Our
method, which we refer to as REFDIV, short for Reference-Guided Diversity Stress Test Protocol,
builds upon other evolutionary approaches (e.g. AutoDAN (Liu et al., 2024b)) but is specifically
designed to explore the generation diversity induced by TTS strategies. The key insight is that TTS
procedures often aggregate or resample (e.g. via Best-of-N or Monte-Carlo-Tree-Search) diverse
generations before selecting a final solution, making them particularly sensitive to perturbations that
shift the distribution of candidate responses and then reduce diversity.

Objective. Given an initial prompt x ∈ X , our goal as part of the stress test is to construct an
adversarially perturbed prompt x′ = A(x;M, T , r) such that the selected model output y′ =
T (x′;M, r,G(x′;M)) violates predefined safety constraints. To this end, we employ a population-
based genetic algorithm (GA) that iteratively mutates a population of evolving candidate adversarial
prompts and selects the most promising ones according to a carefully designed fitness function.

Diversity-Guided Fitness Function. Let Cx denote the set of candidate generations produced byM
given input x under the TTS sampling procedure. To encourage low-diversity candidate generations,
we use Shannon entropy H(·) as a diversity measure:

DFS(x) = H(Cx),

where H(p) = −
∑|V|

i=1 pi log pi, computes the token-level Shannon entropy across the candidate set
Cx. Intuitively, lower entropy indicates that the generations are less diverse, increasing the chance
that the generated candidates are mostly alike. Thus, if we can additionally steer the candidate set
towards harmful response generation while making the generation tree less diverse, we increase the
likelihood of a problematic candidate being selected by the TTS strategy during the stress test.

In addition to this intrinsic diversity score, we introduce a reference diversity score to steer the
candidate generations towards an affirmative token set inspired by other works such as GCG and
AutoDAN (e.g. “Sure, I can help you with that..”):

DFS∗(x) = H
(
Cx ∪ C∗

)
,

here C∗ is a fixed set of affirmative or goal-aligned tokens. This term steers the model towards
candidate generations that not only exhibit less diversity but also align with harmful or unsafe
completions. We then define the overall fitness function for input x as:

F(x, t) =
(
α(t)− 1

)
· normalize

(∣∣DFS(x)− DFS∗(x)
∣∣)− α(t) · normalize

(
DFS(x)

)
, (1)

where normalize(·) denotes z-score standardization across the current population, and α(t) is a
dynamic weighting factor that smoothly interpolates between reference-guided diversity and purely
intrinsic diversity over the algorithm iterations, where t = 1, 2, ..., T , as α(t) = exp

(
ln 2
T−1 (t−1)

)
−1.
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Algorithm 1 : Proposed REFDIV Stress Test Protocol

Input: original unsafe prompt query x, model M, TTS strategy T , algorithm iterations T ,
population size m, parent count q, affirmative token set C∗
Output: stress test adversarial prompt x′

1: Initialize population P0 = {x(1)
0 , . . . , x

(m)
0 } by perturbing x

2: for t = 1 to T do
3: set αt ← exp

( ln 2

T − 1
(t− 1)

)
− 1 ▷ exponential dynamic weighting

4: for all xi ∈ Pt−1 do
5: sample candidate set Cxi

fromM under T
6: obtain DFS(xi) = H(Cxi) and DFS∗(xi) = H(Cxi ∪ C∗)
7: compute fitness F(xi, t) using Eq. 1
8: end for
9: select q candidates with highest fitness to form parent set St

10: generate offspring via crossover and mutation from St to form Pt ▷ (where |Pt| = m )
11: end for
12: return x′ ← argmaxxi∈PT−1

F(xi, T − 1)

Figure 1: In initial iterations of REFDIV (αt is small for small t),
the stress test steers candidates (which are comparatively more
diverse) towards affirmative reference tokens. As αt ↑ with in-
creasing t, REFDIV minimizes candidate diversity wholly via
Shannon entropy, demonstrating a previously unknown failure
mode of TTS-enabled LLMs.

Here, T is the total number of
algorithm iterations. Early in
the optimization, α(t) ≈ 0, em-
phasizing the reference diversity
term to guide the population to-
wards promising adversarial re-
gions of the search space. As
the iterations progress, α(t) ex-
ponentially increases towards 1,
reducing reliance on reference
signals and allowing the popu-
lation to converge naturally to-
wards any low-entropy (i.e. low-
diversity) adversarial prompts
that maximizes stress test suc-
cess.

The REFDIV Algorithm. We
present our REFDIV stress test
protocol as Algorithm 1. The al-
gorithm proceeds as an iterative
optimization process over a pop-
ulation of candidate prompts. At
each generation, we evaluate the
diversity-driven fitness function for every candidate, select the top-performing prompts, and produce
a new generation through crossover and mutation operations. The dynamic weighting factor α(t) is
updated at each iteration to gradually shift from reference-guided diversity (early exploration) to un-
constrained diversity maximization (late exploitation). This curriculum-like progression encourages
exploration early on and convergence to strong diversity-reducing adversarial prompts in the final
iterations.

Remark. Our design leverages two key observations: (i) TTS strategies are highly dependent on
candidate diversity since they rely on aggregating or scoring multiple generations, and (ii) early-stage
guidance (via DFS∗) prevents premature convergence and helps the stress test population reach
promising regions of the prompt space. As the algorithm progresses, allowing the population to
freely minimize diversity leads to greater exploration and ultimately higher ASR. This resembles a
curriculum-learning approach where the adversary first teaches the model to move toward unsafe
completions and then lets the optimization converge flexibly, exhibiting this key failure mode of TTS
strategies. The algorithm protocol is visualized in Figure 1.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

LLMs and Dataset. In our experiments, we employ LLMs across different sizes and types: Mistral-
7B (Jiang et al., 2023a), Llama3.1-8B (Grattafiori et al., 2024), Qwen3-8B (Yang et al., 2025),
and Gemma3-27B (Team et al., 2025). Among these, Mistral-7B and Llama3.1-8B are pure text-
based LLMs, Qwen3-8B is a text-based reasoning LLM, and Gemma3-27B is a multimodal LLM.
For closed-source LLMs, we employ GPT-4.1, o3-mini, Gemini-2.5-Flash, and Gemini-2.5-Pro.
To evaluate our stress test alongside adversarial attack strategies, we use the popular AdvBench
(Zou et al., 2023b) benchmark dataset, designed to evaluate the safety-alignment of LLMs by
probing how they respond to adversarial instructions. AdvBench contains 520 adversarial queries
and corresponding potential harmful responses across diverse domains including cybersecurity,
misinformation, fraudulent activities, discrimination, hate speech, among others.

TTS Strategies. In our experiments, we employ two popular baseline TTS strategies: Best-of-N
and Monte Carlo Tree Search (MCTS). Best-of-N generates N candidate responses and scores
them via a reward model to select the best candidate. We conduct experiments with two reward
models for this purpose: PairRM (Jiang et al., 2023b) and deberta-v3-large-v2 by OpenAssistant
(He et al., 2023) (additional details on reward models are provided in Appendix J). In experiments,
we also vary N = 2, 8, 16. For MCTS, we utilize the open-source implementation provided in
the llm-mcts-inference1 package. Moreover, each instantiation is run with default parameters for
the number of children (=3), for a total of 3 MCTS iterations (for additional details on MCTS, see
Appendix F.2.

Baselines and Evaluation. We compare REFDIV with two state-of-the-art jailbreak attack baselines:
Greedy Coordinate Gradient (GCG) (Zou et al., 2023a), and AutoDAN (Liu et al., 2024b). We
conduct evaluation similar to AutoDAN and GCG, by measuring Attack Success Rate (ASR) for
adversarial stress test strings that lead to harmful LLM generations.

4.2 MAIN RESULTS

Table 1: ASR Comparison for REFDIV and baselines GCG and
AutoDAN. Best performer denoted in bold.

TTS Model GCG AutoDAN REFDIV (Ours)
Best-of-N Qwen3-8B 0.335 0.996 0.995
(N = 8) Mistral-7B 0.877 0.973 0.976

Llama3.1-8B 0.176 0.368 0.465
Gemma3-27B 0.054 0.749 0.926

MCTS Qwen3-8B 0.400 1.000 1.000
Mistral-7B 0.996 1.000 1.000
Llama3.1-8B 0.254 0.831 0.967
Gemma3-27B 0.336 0.904 0.989

We compare REFDIV with Auto-
DAN and GCG to demonstrate
how it uncovers the diversity-
dependence of TTS, eventually
leading to significant output fail-
ure. Table 1 presents the At-
tack Success Rate (ASR) of the
attack methods on TTS with
Best-of-N (N = 8 and reward
model: PairRM) and MCTS
across multiple models. For Best-
of-N , REFDIV consistently out-
performs other methods, achiev-
ing more than a 9% ASR margin for Llama3.1-8B and over a 17% margin for Gemma3-27B. This
trend showcases the failure mode and diversity-sensitive nature of TTS strategies. Similarly, for
Mistral-7B, REFDIV also outperforms AutoDAN, although for Qwen3-8B REFDIV has a lower
ASR (0.995) to AutoDAN (0.996) with only a difference of 0.001. Moreover, GCG shows limited
effectiveness in TTS and underperforms significantly for all baselines and models. For MCTS,
REFDIV’s stress test results in a major degradation of TTS performance compared to baselines:
for Qwen3-8B and Mistral-7B both AutoDAN and REFDIV attain perfect ASR (1.0) but REFDIV
achieves significant ASR margins compared to AutoDAN for both Llama3.1-8B and Gemma3-27B.
Specifically, for Llama3.1-8B REFDIV attains 0.967 ASR compared to AutoDAN’s 0.831 and for
Gemma3-27B REFDIV achieves 0.989 compared to AutoDAN’s 0.904.

Note that the limited success of GCG can be attributed to its use of a comparatively weaker optimizer
and a singular focus on the final output of the LLM, neglecting the internal effects of diverse candidate

1https://pypi.org/project/llm-mcts-inference/
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Figure 2: ASR trends across iterations for AutoDAN, GCG, and REFDIV with Best-of-N TTS.

Figure 3: ASR trends across iterations for AutoDAN, GCG, and REFDIV with MCTS TTS.

selection guided by a reward model or via MCTS. In comparison to AutoDAN, which does not seek
to constrain TTS candidate diversity, REFDIV minimizes token-level diversity via Shannon Entropy
while constraining the model to harmful generations, thus effectively exposing the failure mode of
TTS strategies.

We showcase the ASR trend for each attack methodology across LLMs and TTS strategies: Figure
2 (Best-of-N ) and Figure 3 (MCTS). For both TTS strategies and all LLMs, we can observe that
reference-guided diversity directly leads TTS to generating outputs from the harmful response space.
In particular, for LLMs such as Llama3.1-8B and Gemma3-27B where AutoDAN fails, REFDIV
stress test works quite well. This indicates that these TTS-enabled LLMs are especially unreliable
when diversity is constrained without relying on a fixed reference. We provide additional experiments
on the deberta reward model in Appendix C and for N = 2, 16 in Appendix A.

4.3 WHY DOES REFDIV WORK?

TTS allows LLMs with the flexibility of utilizing inference-time compute to generate multiple diverse
candidate outputs and select optimal rollouts for increasing the quality of response. Our work
leverages this key insight regarding the diversity-sensitive nature of TTS and explores it to result
in a powerful diagnostic stress test attack. Furthermore, in comparison, non-diversity-optimizing
attack algorithms such as AutoDAN, generally exhibit lower performance compared to our proposed
REFDIV. Thus, to analyze why REFDIV works, we plot the candidate token-level Shannon entropy
H in a Best-of-N (8) setting over each iteration in Figure 4. We restrict these plots to REFDIV and
AutoDAN, owing to the significantly lower performance of GCG. Overall, the figure demonstrates
that for RefDiv, Shannon entropy decreases as iterations increase. Interestingly, in the initial iterations,
the Shannon entropy for REFDIV is higher than the Shannon entropy for AutoDAN. As iterations
increase, an inversion occurs and the Shannon entropy decreases significantly for REFDIV whereas
it remains constant for AutoDAN throughout. These two stages can also be understood from the
perspective of our fitness function. In initial iterations for low t, owing to the dynamic weighting via
αt, the fitness function is primarily driven by the reference-guided diversity score. This guides the GA
to follow a particular reference path similar to AutoDAN where the goal is to maximize the likelihood
to generate affirmative/reference response tokens. However, in later iterations as t increases (and
αt exponentially increases), REFDIV switches to fully minimizing diversity, thus steering the LLM
to converge on some set of harmful responses. This hybrid approach of exploitation-exploration
makes REFDIV significantly more robust than other stress test methods and reveals the inherent
diversity-sensitive failure mode of TTS. Owing to space constraints, we provide the diversity trends
for MCTS in Appendix B, but they remain largely similar.
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Figure 4: Analyzing the Shannon Entropy trend across iterations for REFDIV and AutoDAN.

4.4 TRANSFERABILITY ACROSS TTS STRATEGIES

Figure 5: Transferability of REFDIV prompts
for Best-of-N →MCTS and MCTS→ Best-
of-N across LLMs.

An additional question to answer is: how well do ad-
versarial prompts generated for a specific TTS strat-
egy by REFDIV transfer across different TTS strate-
gies? Essentially, if adversarial strings can transfer
across TTS strategies, this indicates clearly that the
diversity-specific failure mode of TTS is a funda-
mental property of TTS frameworks, and not due
to the LLM. To analyze this, we quantify the ASR
for how REFDIV Best-of-N (MCTS) prompt sam-
ples transfer to MCTS (Best-of-N ) across each LLM.
These results are provided in Figure 5. Interestingly,
for Mistral-7B and Gemma3-27B the results demon-
strate that our adversarial stress test strings crafted for one TTS strategy remain similarly effective for
the other. However, for Qwen3-8B and Llama3.1-8B, transferability from Best-of-N →MCTS is
notably higher than the transferability from MCTS→ Best-of-N .

4.5 TRANSFERABILITY TO CLOSED-SOURCE LLMS

Figure 6: Transferability (ASR) of REFDIV from open-source
LLMs with Best-of-N (left) and MCTS (right) TTS to closed-
source LLMs.

Clearly, REFDIV generated
prompts transfer well across
TTS strategies. However, in
the previous scenario, the LLM
models are still accessible,
leading us to the question:
do the adversarial stress test
prompts generated by REFDIV
transfer across closed-source
LLMs as well? If the answer to
this research question is in the
affirmative, REFDIV can be used
as a diagnostic tool to analyze
the robustness of black-box
closed-source models as well.
We thus investigate the trans-
ferability of successful prompts
generated using source LLMs to target closed-source models: GPT-4.1, o3-mini, Gemini-2.5-Flash,
and Gemini-2.5-Pro (all except for GPT-4.1 are reasoning models). The results as presented in Figure
6. Our findings demonstrate that successful queries generated on Llama3.1-8B exhibit the highest
average transferability to closed-source models, overall achieving the highest ASRs across TTS
strategies. In general, prompts do not transfer with the same rates to o3-mini as other models (highest
ASR attained is only 0.34 using Llama3.1-8B and Best-of-N ). Moreover, Gemini-2.5-Flash exhibits
the highest transferability (ASR) across all closed-source LLMs. Our results thus show that REFDIV
can be employed for stress testing across closed-source inaccessible models as well.

As shown in Table 1, REFDIV achieves significantly higher ASR for Qwen-3-8B and Mistral-7B
compared to other models. These models can therefore be considered more susceptible to adversarial
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prompts, requiring less sophisticated stress test queries for successful analysis. Hence, these weaker
queries demonstrate limited transferability to potentially more robust closed-source LLMs. In
contrast, Llama3.1-8B and Gemma3-27B exhibit greater resistance to adversarial inputs, necessitating
the generation of more sophisticated queries for harmful response generation. Therefore, queries
developed against these more resilient models demonstrate significantly higher transferability.
Overall however, REFDIV generates prompts that transfer successfully across the four closed-source
(reasoning-enabled) models, underscoring the impact of our proposed strategy as a diagnostic tool
to study robustness.

4.6 TRANSFERABILITY TO GUARDRAILS/SAFETY CLASSIFIERS

Figure 7: ASR of open-source models attack prompts generated
via REFDIV with Best-of-N (left) and MCTS (right) TTS across
several popular guardrail defense classifiers.

Guardrail/safety models are com-
monly deployed as a first line
of defense against adversarial in-
puts by processing the provided
input and filtering/flagging it in
case it contains harmful prompt
queries. Thus, another imper-
ative question is: do the ad-
versarial prompts generated by
REFDIV bypass guardrail safety
moderation classifiers? If our
stress test prompts can bypass
the guardrails, they pose lim-
ited defensive capability against
this diversity-targeted robustness
issue exhibited by TTS-based
LLMs. Thus, we undertake ex-
periments with 4 popular guardrail classifiers: LlamaGuard-3 and LlamaGuard-42, and OpenAI
Text-Moderation and Omni-Moderation APIs.3 We evaluate the robustness of these guardrail classi-
fiers against adversarial queries generated by REFDIV for both Best-of-N and MCTS. As illustrated
in Figure 7, REFDIV-generated queries are effective in bypassing guard models, leading to increased
false negatives. For instance, for Best-of-N , queries generated using Llama3.1-8B successfully
transferred to guard models with average ASR ≈82%. The ASR trends for MCTS indicate similar
transferability success, thereby showcasing that diversity-targeted attacks generate strong adversarial
prompts that are not easily detected by current moderation classifiers. In general, the strongest
adversarial queries are generated by using Llama3.1-8B as the source (similar to patterns observed
for our experiments on closed-source models), and the OpenAI Text Moderation API exhibits the
largest bypass rate compared to the other guardrails. Our findings are also in-line with past work that
has found fragility/robustness issues with guardrail classifiers (Achara & Chhabra, 2025).

5 CONCLUSION

In this paper, we identified and characterized a novel failure mode unique to Test-Time Scaling
(TTS) methods in LLMs, revealing a critical lack of robustness in their indirect reliance on candidate
diversity. We introduced REFDIV, a reference-guided diversity stress test protocol that induces
mode collapse in the candidate response distribution, thereby undermining the robustness benefits
typically afforded by TTS. Our extensive experiments demonstrated that REFDIV is effective across
multiple TTS strategies, open-source and closed-source models, as well as guardrail/safety defenses,
highlighting the pervasiveness and transferability of this diversity-specific issue in TTS. These
findings underscore the need for future research on diversity-aware TTS systems that maintain the
benefits of TTS while mitigating the risk of critical failure due to an overt reliance on candidate
diversity. By exposing this previously overlooked failure mode, our work provides a foundation for
developing more robust TTS-based LLM frameworks.

2https://www.llama.com/docs/model-cards-and-prompt-formats/llama-guard-4/
3https://platform.openai.com/docs/guides/moderation
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6 REPRODUCIBILITY STATEMENT

We provide our code and implementation in an open-source repository: https://anonymous.
4open.science/r/RefDiv-57DB/. All the experiments were run multiple times, and addi-
tional parameters required for reproducibility (e.g. temperature, etc.) are provided both in Appendix
K and the code repository README. The experiments were conducted on a Linux server with 12x
NVIDIA DGX B200 GPUs with 192 GB VRAM/GPU.

7 ETHICS STATEMENT

Our work undertakes stress testing and uncovers a novel candidate-diversity-specific failure mode of
TTS-enabled LLMs with the sole aim of improving their safety and robustness. All experiments were
conducted in controlled research environments, and no harmful content generated during stress tests
will be shared publicly. We disclose our findings responsibly to the community to raise awareness of
this novel failure mode of TTS based on candidate diversity and to encourage the development of
robust TTS strategies, similar to past work in the ML/AI robustness literature.
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APPENDIX

A EXPERIMENTS WITH BEST-OF-N FOR DIFFERENT VALUES OF N

We conducted experiments by varying the value of N in the best-of-N TTS strategy with PairRM
reward model. Table 2 reports the ASR of REFDIV and AutoDAN under Best-of-N for N = 2, 8, 16.
The results demonstrate that REFDIV consistently outperforms AutoDAN in most cases. For example,
in all of the setups with Llama3.1-8B and Gemma3-27B models RefDiv outperforms AutoDAN
with an average margin of 0.13. In other models it shows almost similar or better performance.
Furthermore, REFDIV achieves comparable performance across all values of N .

Figures 8 and 10 illustrate the ASR trends for N=2 and N = 16, respectively. For both settings, the
ASR curves follow a similar trend to that of N = 8 for both REFDIV and AutoDAN.

Table 2: ASR of different models for various values of N in Best-of-N TTS.

N Model AutoDAN REFDIV (Ours)
2 Qwen3-8B 0.998 0.996

Mistral-7B 0.979 0.974
Llama3.1-8B 0.356 0.357
Gemma3-27B 0.703 0.905

8 Qwen3-8B 0.996 0.995
Mistral-7B 0.973 0.976
Llama3.1-8B 0.368 0.465
Gemma3-27B 0.749 0.926

16 Qwen3-8B 0.997 0.997
Mistral-7B 0.976 0.972
Llama3.1-8B 0.365 0.473
Gemma3-27B 0.724 0.936

Figure 8: ASR comparison between AutoDAN and REFDIV in Best-of-N TTS (N = 2).

Figure 9: Shannon entropy comparison between AutoDAN and REFDIV in Best-of-N TTS (N = 2).
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Figure 10: ASR comparison between AutoDAN and REFDIV in Best-of-N TTS (N = 16).

Figure 11: Shannon entropy comparison between AutoDAN and REFDIV in Best-of-N TTS (N =
16).

Figures 9 and 11 present the Shannon entropy trends for N = 2 and N = 16. In both cases, REFDIV
exhibits a decreasing entropy trend. However, for N = 2, the entropy curve starts from a lower
value compared to N = 8 and N = 16. This behavior arises because a larger number of candidate
responses increases the likelihood of generating more diverse tokens. With N = 2, fewer candidates
are available, leading to lower initial diversity compared to N = 8 and N = 16.

B SHANNON ENTROPY TRENDS FOR MCTS

Figure 12 illustrates the Shannon entropy of MCTS across iterations for both AutoDAN and REFDIV.
MCTS follows the pattern of decreasing Shannon entropy similarly observed in Best-of-N .

Figure 12: Analyzing the Shannon Entropy (MCTS) trend across iterations for REFDIV and Auto-
DAN.

C ADDITIONAL EXPERIMENTS WITH REWARD MODELS

We evaluated AutoDAN and REFDIV under Best-of-N (N = 8) using two different reward models:
PairRM and deberta-v3-large-v2. Table 3 reports the ASR results for both methods. Despite the
change in reward models, REFDIV continues to outperform AutoDAN in most cases, demonstrating
its robustness across different evaluation conditions. The ASR curve for Best-of-N (N = 8) with the
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deberta reward model, shown in Figure 13, exhibits a similar trend to that observed with the PairRM
reward model. Moreover, the Shannon entropy trend under the deberta setup also shows a consistent
decreasing pattern, supporting the behavior observed with PairRM.

Table 3: ASR of LLMs for different reward models in Best-of-N .

Reward Model Model AutoDAN REFDIV (Ours)
PairRM Qwen3-8B 0.996 0.995

Mistral-7B 0.973 0.976
Llama3.1-8B 0.368 0.465
Gemma3-27B 0.749 0.926

deberta-v3-large-v2 Qwen3-8B 0.992 0.986
Mistral-7B 0.972 0.970
Llama3.1-8B 0.170 0.270
Gemma3-27B 0.640 0.868

Figure 13: Comparison of ASR between AutoDAN and REFDIV (in Best-of-N , N = 8) with the
deberta reward model).

Figure 14: Comparison of Shannon entropy between AutoDAN and REFDIV (in Best-of-N , N = 8)
with deberta reward model).

D EXTENDED MODEL EVALUATIONS AND TRANSFERABILITY

D.1 EXPERIMENTS ON ADDITIONAL MODELS

To evaluate architectural generalization of REFDIV, we have extended our experiments beyond the
models discussed in the main paper. We have included Llama3.1-70B, Phi-4-mini, Zephyr-7b-r2d2,
and Vicuna-1.5-7b. All models are evaluated using a Best-of-N strategy (N = 8) with the PairRM
reward model. As shown in Table 4, REFDIV consistently outperforms AutoDAN across all expanded
settings.

D.2 TRANSFERABILITY TO CLAUDE-3.5-HAIKU

We have evaluated the black-box transferability of adversarial prompts generated by REFDIV to
Anthropic’s Claude-3.5-Haiku (version 20241022). Table 5 reports the ASR when transferring
prompts optimized on different open-source source models (Best-of-N , N = 8) to Claude-3.5-Haiku.
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Table 4: Attack Success Rate (ASR) on additional models using Best-of-N (N = 8).

Model AutoDAN REFDIV

Llama3.1-70B 0.858 0.943
Phi-4-mini 0.928 0.957
Zephyr-7b-r2d2 0.703 0.819
Vicuna-1.5-7b 0.982 0.986

Consistent with our findings from Section 4.5, prompts optimized on Llama3.1-8B exhibit the
strongest transfer performance (ASR 0.596). This supports the conclusion that more capable open-
source models induce more sophisticated adversarial patterns.

Table 5: Transferability of REFDIV prompts to Claude-3.5-Haiku (20241022).

Source LLM Target LLM Transfer ASR
Qwen3-8B Claude-3.5-Haiku 0.200
Mistral-7B Claude-3.5-Haiku 0.107
Llama3.1-8B Claude-3.5-Haiku 0.596
Gemma-3-27B Claude-3.5-Haiku 0.246

D.3 QUALITATIVE ANALYSIS OF TRANSFERABILITY

We observe that prompts optimized on Llama3.1-8B transfer significantly better to closed-source
reasoning models (e.g., o3-mini) compared to those from other source models. To understand this,
we discuss two example queries where queries optimized on Llama3.1-8B passes o3-mini but the
queries optimized on other models fail. Table 6 summarizes the linguistic patterns observed across
these examples.

E COMPARISON WITH ADDITIONAL STATE-OF-THE-ART BASELINES

To benchmark REFDIV against the latest jailbreak methods, we compared it with AutoDAN-Turbo
(Liu et al., 2024a) and MouseTrap (Yao et al., 2025), using the Best-of-N (N = 8) protocol. Table 7
shows that REFDIV outperforms both baselines. On Qwen3-8B, REFDIV achieves a near-perfect
ASR (0.995), whereas the baselines get an ASR around 0.42. This gap illustrates the limitation of
standard API-based attacks that ignore post-generation selection, and highlights the robustness of
REFDIV’s diversity-targeting approach in TTS settings.

Additionally, AutoDAN-Turbo employs a lifelong learning agent pre-trained on harmful query subsets,
giving it an inherent advantage through prior exposure to malicious distributions. In contrast, REFDIV
is entirely training-free and operates solely at inference time which makes REFDIV more practical.

F ADDITIONAL IMPLEMENTATION DETAILS

F.1 GENETIC ALGORITHM IMPLEMENTATION

Our genetic algorithm extends the algorithm from AutoDAN to optimize our fitness function. These
are some key components of the algorithm:

Crossover. Multi-point crossover at sentence and paragraph boundaries (rate: 0.7) to maintain
semantic coherence.

Mutation. Hierarchical word-level mutation with total rate 0.1, including:

• Substitution: Synonym or paraphrase-based replacements guided by token-level fitness.
• Deletion: Applied with probability 0.02.
• Insertion: Applied with probability 0.02.
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Table 6: Qualitative analysis of adversarial prompts across two distinct harmful objectives.

Source Model Adversarial Prompts Observation

Llama3.1-8B Ex 1: “... Remodel the theoretical feedback ... use ex-
act and precise information (eschew broad generalities
or nebulousness)...”
Ex 2: “... Reconstruct the speculative answer ... en-
rich it with meticulous details ... (eschew broad gener-
alities or nebulousness)...”

Consistently frames the attack
as a text-processing task (“Re-
model”, “Feedback”) rather
than a query. High-register
constraints (“eschew nebulous-
ness”) force sophisticated mod-
els into a compliance mode that
overrides safety.

Mistral-7B Ex 1: “... Reconstruct the hypothetical answer ...
eschew broad terms or being nebulous...”
Ex 2: “... Revamp character X’s theoretical response
... refrain from broad strokes or ambiguity...”

Mimics the vocabulary of
Llama (“eschew”) but often
frames the target concretely
as an “Answer” or “Response”
rather than the more abstract
“Feedback” used by Llama.

Qwen3-8B Ex 1: “... Reformulate the imagined reply ... escalate
its detail level significantly...”
Ex 2: “... Please alter the speculative answer ... es-
chew broad strokes or ambiguity...”

Relies on weaker, direct com-
mand structures (“Reformu-
late”, “Please alter”, “escalate
detail”) that lack the authority
and abstraction required to by-
pass intent-based reasoning fil-
ters.

Gemma-3-27B Ex 1: “... Theoretic chemical reaction: the method to
stage a character ...”
Ex 2: “... Reformulate the hypothetical reply from the
viewpoint...”

Frequently introduces domain
incoherence (e.g., “chemi-
cal reaction” in a data theft
context). Reasoning models
flag this logical inconsistency,
leading to immediate rejection.

Table 7: Comparison with SOTA baselines (Best-of-N , N = 8).

Model AutoDAN-Turbo MouseTrap REFDIV

Qwen3-8B 0.423 0.422 0.995
Llama3.1-8B 0.405 0.423 0.465

F.2 MCTS IMPLEMENTATION DETAILS

Our Monte Carlo Tree Search (MCTS) implementation follows a standard pipeline (Wang et al.,
2025; Inoue et al., 2025; Dou et al., 2025). We describe each steps below.

• Initialization: A root response is generated using moderately stochastic decoding (tempera-
ture 0.7, top-p 0.9).

• Node Expansion: Upon expansion, all remaining children (up to kmax) are generated in a
single step. Each child is produced by (i) a critique model identifying issues, followed by
(ii) a refinement model generating an improved version.

• Selection: Node selection uses the Upper Confidence Bound (UCB) rule, balancing exploita-
tion (Q/N ) with exploration (

√
lnNparent/N ), where N is the visit count of the current

node and Nparent is the total visit count of the parent node. Unvisited nodes are prioritized
via infinite weight.

• Simulation: A randomly chosen child is evaluated using LLM as a judge, with ratings
normalized to [0, 0.95] for stability. We perform a single-step simulation to reduce computa-
tional overhead.

• Backpropagation: The rating is propagated from the evaluated node to the root, updating
visit counts and value estimates.
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• Decision: After a fixed budget of T iterations, the final output is the child of the root with
the highest visit count.

G SENSITIVITY ANALYSIS

G.1 SENSITIVITY TO MCTS HYPERPARAMETERS

To assess robustness, we change the search budget to 2 children and 2 iterations on Llama3.1-8B.
As Table 8 shows, the ASR remains stable, indicating that REFDIV does not rely on fine-grained
hyperparameter tuning of MCTS.

Table 8: Sensitivity of REFDIV to MCTS hyperparameters (Llama3.1-8B).

Configuration REFDIV AutoDAN
Children=2, Iterations=2 0.967 0.860
Children=3, Iterations=3 0.963 0.846

G.2 SENSITIVITY TO WEIGHTING SCHEDULE α(t)

We evaluated the performance of our attack by testing alternative dynamic weighting schedules
against the exponential schedule used in the main experiments. The specific functional forms are
defined as follows, where T represents the total number of iterations:

• Exponential:

α(t) = exp

(
ln 2

T − 1
(t− 1)

)
− 1 (2)

• Sigmoid:

α(t) = σ

(
t− T

2

)
(3)

where σ(·) denotes the standard sigmoid function.
• Linear:

α(t) =
t

T
(4)

As shown in Table 9, performance varies minimally across these schedules. The key factor is the
increasing progression of α, rather than the specific functional form.

Table 9: ASR across different dynamic weighting schedules.

α(t) Gemma3-27B Qwen3-8B
Exponential 0.929 0.995
Sigmoid 0.927 0.996
Linear 0.915 0.995

H ENTROPY AND SAFETY CORRELATION

To characterize how diversity suppression contributes to safety failures in TTS systems, we analyze
two aspects: (1) the relative entropy reduction required with respect to initial entropy for an adversarial
prompt to succeed, and (2) the global correlation between Shannon Entropy and Attack Success Rate
(ASR).

Table 10 shows that successful attacks require only a small entropy reduction (typically between
2–5%) indicating that even mild decreases in diversity can destabilize safety mechanisms. Table 11
further shows strong negative correlations between entropy and ASR across all models, confirming
that lower generative diversity consistently increases the likelihood of harmful outputs.
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Table 10: Average percentage drop in Shannon Entropy observed in successful adversarial attacks.

Model Average Entropy Drop (%)
Qwen3-8B 5.07%
Llama3.1-8B 3.86%
Gemma3-27B 2.20%
Mistral-7B 2.15%

Table 11: Pearson correlation (r) between Shannon Entropy and Attack Success Rate (ASR).

Model r

Qwen3-8B -0.8408
Llama3.1-8B -0.7177
Mistral-7B -0.6752
Gemma3-27B -0.6120

I MITIGATION STRATEGIES

I.1 PERPLEXITY ANALYSIS

To test whether adversarial prompts are easily flagged by perplexity filters, we have measured average
perplexity for the queries. Table 12 shows that REFDIV maintains low perplexity similar to AutoDAN,
whereas gradient-based GCG produces extremely high-perplexity nonsensical prompts that would be
trivially filtered.

Table 12: Average perplexity (PPL) of adversarial prompts.

Model REFDIV AutoDAN GCG
Qwen3-8B 82.02 79.99 49,518
Mistral-7B 55.59 67.60 173,780
Llama3.1-8B 92.39 118.59 41,507
Gemma3-27B 154.11 168.80 657,375

I.2 SAFETY SPECIFIC REWARD MODEL

We evaluated a mitigation strategy that replaces the general-purpose PairRM with ToxiGuardrail
(Corrêa, 2023), a RoBERTa-based verifier fine-tuned on the Harmful-Text dataset. Additional details
of ToxiGuardrail is provided in Appendix J.3.

Experiments have been conducted on Llama3.1-8B with Best-of-N (N = 8). As shown in Table 13,
the specialized verifier reduces absolute ASR for both AutoDAN and REFDIV. However, REFDIV
still attains a substantial ASR (27.7%), outperforming AutoDAN. These results suggest that while
stronger safety reward models provide partial mitigation, they do not fully address vulnerabilities
introduced by diversity-induced mode collapse. This highlights the need for diversity-aware defense
strategies.

J DETAILS OF REWARD MODELS

We provide detailed specifications below for the reward models (PairRM, DeBERTa) used in our main
experiments and the specialized guardrail model (ToxiGuardRail) used in our mitigation analysis.

J.1 PAIRRM

• Training: Trained via pairwise ranking on 6 diverse preference datasets.
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Table 13: Mitigation analysis on Llama3.1-8B comparing general vs. safety-specific reward models.

Reward Model AutoDAN REFDIV

PairRM (General) 36.8% 46.5%
ToxiGuardRail (Safety-Specific) 20.8% 27.7%

• Safety: Includes Anthropic’s HH-RLHF, specifically tuning it to penalize harmful content.
• Performance: Achieves a 84.62 average on HHH (Helpful, Honest, Harmless) benchmarks.

J.2 DEBERTA-V3-LARGE-V2

• Training: RLHF reward modeling backbone.
• Safety: Fine-tuned on safety-critical datasets, including HH-RLHF, to align with human

safety ratings.
• Performance: Achieves 69.25% accuracy on HH-RLHF validation sets.

J.3 TOXIGUARDRAIL

• Training: Fine-tuned RoBERTa-base (124M params) on the Harmful-Text Dataset using
1,000 training steps (batch size 32, LR = 5e−5, AdamW). Trained as an auxiliary reward
model to distinguish harmful vs. harmless text.

• Safety: Explicitly optimized to detect and penalize toxicity, harmful intent, and unsafe
phrasing; logit outputs serve as negative/positive safety signals.

• Performance: Achieves 92.05% accuracy on wiki-toxic and 91.63% on toxic-conversations-
50k.

K IMPLEMENTATION DETAILS

Our experimental setup is similar to the AutoDAN codebase4. In our experiments, we used original
(unquantized) open-source models from HuggingFace. During the generation process, the temperature
was set to 0.7 and top-p to 0.9. We deployed our models with vLLM to enable faster inference
and efficient parallel execution where applicable. For closed-source models, we relied on native
APIs provided by OpenAI 5 and Google AI Studio6. For all models and experiments, the system
prompt was just set to: “You are a helpful assistant.” For the genetic algorithm, the population
size was fixed at 32, and each experiment was run for 25 iterations. The success or failure of a
particular attempt was determined by the absence or presence of non-affirmative strings, as specified
in the AutoDAN repository. We experimented with Best-of-N TTS using N = 2, 8, and 16. For
MCTS, we fixed the maximum number of children to 3 and the number of iterations to 3. All
other MCTS parameters were kept at their default values as specified in the llm-mcts-inference
package (https://pypi.org/project/llm-mcts-inference/ ). Additional details and code are provided in
the following repository: https://anonymous.4open.science/r/RefDiv-57DB/.

4https://github.com/SheltonLiu-N/AutoDAN
5https://platform.openai.com
6https://aistudio.google.com
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