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Abstract

We propose a novel framework for the problem of dynamic coalition formation
using Deep Reinforcement Learning (DRL). Our approach models the coalition
formation process as an ongoing, adaptive deal-or-no-deal game, where each state
represents a potential coalition configuration, allowing agents to continually re-
assess and alter their affiliations in response to evolving conditions. Notably, our
model facilitates the formation of socially-optimal coalitions without requiring the
explicit revelation of coalition values among agents. We tested our method in a
spatially-distributed ridesharing game. Our results demonstrate robust generaliza-
tion of the policy to unseen coalitions.

1 Introduction

A dynamic coalition structure generation game (CSG) is a type of strategic interaction where agents
can form or dissolve coalitions over multiple time periods. As the game progresses in time, the
coalition structure changes due to various external factors, such as new agents entering or exiting the
game, or agents changing their location, like in the case of spatial games. Along the game, agents
update their information and choose to stay in their current coalition or join new ones. The main
elements of this game include a time step, a set of players, feasible coalitions, and a characteristic
value function that values formed coalitions . All of which is time dependent. Examples of dynamic
games are ridesharing games (Qin et al., 2021), where individuals can form coalitions to achieve
economies of scale. Each day, riders can choose to share the ride with different individuals. Notably,
these games are coordinated by a central planner such as a ridesharing app, but the ultimate decision
to leave or enter a coalition is decided by the rider. Additionally, on game like these, agents do not
know the full characteristic function, i.e., the value of the trip for other agents, but only their own cost.
Another common application of dynamic coalition games is in the wireless communication domain,
typically in MIMO settings (multiple inputs, multiple outputs) where devices in close proximity share
a communication channel to enhance data transmission efficiency (Saad et al., 2008; Thi et al., 2017).

Traditional approaches often require exhaustive evaluation of the characteristic function to identify
the optimal coalition structure at each time step. This process involves iterating through all possible
coalitions, which is computationally intractable due to the exponential number of possible coalition
structures and an NP-hard problem. Specifically, for any given characteristic function, the total number
of coalition structures is approximately Bn ∼ θ(nn), where Bn is the n-th Bell number. Moreover, if
the game is dynamic, agents enter or leave the game changing the original characteristic function. To
deal with this complexity, we introduce a Deep Reinforcement Learning (DRL) methodology where
agents are trained to learn optimal coalition formation strategies in dynamic games. At inference
time, agents are able to identify the socially optimal coalition structure in a single step, thereby
bypassing the need for an exhaustive search through the coalition structure space. Additionally, our
methodology yields agents capable of adapting to previously unencountered characteristic functions,
provided that the game type remains consistent (e.g. spatial games).
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Our first contribution is to propose a DRL method for dynamic CSG, where the environment has been
designed to allow the addition or removal of agents after each iteration of the game. In traditional
Game Theory, dynamic games have an extra layer of complexity to the already combinatorial nature
of CSG games, as each time a new agent enters or exits the game, the characteristic function is
effectively altered, leading to a new landscape of coalition values. However, as DRL agents are
trained for dynamic environments, they can leverage from their learned policies and can efficiently re-
evaluate the optimal coalition structures in one shot without the need for exhaustive re-computation of
the characteristic function. Additionally, since our methodology is that of single-agent reinforcement
learning, we avoid the problem of non-stationarity in multi-agent learning Albrecht et al. (2023).

Our second contribution is to achieve generalization in dynamic spatial games, without agents
explicitly observing the characteristic function. In traditional CSG models, a common assumption
is that agents posses knowledge of the utility or payoff associated with every possible coalition, as
well as observability of the strategies and payoffs of all participating agents. This assumption is
often unrealistic in many real-world applications where agents operate under conditions of limited or
incomplete information. In contrast, the framework proposed in this paper alleviates the necessity for
complete information. Agents iteratively learn optimal strategies for coalition formation based solely
on contextual information (such as location, for a spatial game) and their observed rewards. This
not only makes the approach more versatile, but it also extends its applicability to a broader range of
scenarios where complete game-theoretic information is unattainable or impractical to gather.

2 Background and Related Research

Dynamic coalition games are traditionally studied under cooperative game theory, where there is a
centralized authority assigning players into coalitions in order to maximize social welfare (Aumann
& Hart, 1994). Yet, in numerous practical scenarios, the reality involves rational agents who form
coalitions primarily to further their own agendas (Mahdiraji et al., 2021; Levando, 2017). During the
coalition formation process, agents strategically align themselves with coalitions that maximize their
own individual utility.

The traditional approach for dynamic coalition structure generation is the merge-and-split algorithm
applied for example in antenna problems (Saad et al., 2008; Mashayekhy & Grosu, 2011). The
algorithm is a deterministic method that operates by iteratively merging and splitting coalitions to
find a stable or near-optimal coalition structure based on a utility evaluation. While it can adapt
to dynamic changes, the adaptability is often limited to predefined utility functions that have to
be evaluated at each time step. In contrast, DRL provides a stochastic, adaptive framework that
allows agents to learn optimal coalition-forming strategies over time. While the Merge-and-Split
algorithm requires explicit utility functions for its operation, Reinforcement Learning relies on a
reward structure, potentially offering greater adaptability in highly dynamic settings. Q-learning
was previously used to solve the problem of dynamic coalition formation (Cote et al., 2007). In this
work, the coalition formation game was a sequential Markovian decision process in which agents
take turns to select a coalition and receive their marginal contribution as rewards. The work’s focus
is on achieving stable coalition structures that lie in the core. On the other hand, our work focuses
on achieving coalitions that maximize the social optimum. Furthermore, while their model benefits
from the adaptiveness of RL, it does not include a deep network, which deters its generalization
capabilities.

Later works such as the ones from Chalkiadakis & Boutilier (2004); Bachrach et al. (2020) include
the DRL component in coalition formation and payoff distribution. The first one is a representative
paper on opponent-modelling through Bayesian priors and the second one is a representative paper
on bargaining coalitional games. Our approach takes the adaptiveness and generalization of deep
networks; however, we are the first to propose a model suited for dynamic spatial games that achieves
in-distribution generalization Kirk et al. (2023). Moreover, our method is able to perform well on
unseen characteristic functions as long as they are all drawn from the same data distribution.

Our approach diverges from prior studies in its aim to offer a dynamic and adaptive framework.
Specifically, we focus on achieving two objectives: first, a coalition selection process for generating
socially optimal coalition structures without full information; and second, that is responsive to
environmental shifts, such as the entry or leaving of a new agent. For this, we model the coalition
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structure generation game as a sequential game where agents take independent actions that lead to
the social optimum.

3 Problem Formulation

A dynamic coalition formation game in characteristic form is a coalitional game that progresses
over time periods, denoted as T = {1, 2, . . . , t} with t finite. It is formally represented by the tuple
⟨(Nt)t∈T , (vt)t∈T , (CS)t∈T , (ϕt)t∈T ⟩, where N = {1, 2, . . . , n} is the set of players; vt : 2n → R
is the characteristic function at time t assigning values v(S) to each coalition S ⊆ CSt, representing
the total worth the coalition can achieve at that time; CSt ⊆ Nt is the coalition structure, indicating
how agents are grouped into coalitions; and ϕt are the transition rules at time t that define how the
coalition structure transitions to the next stage based on current structures and player strategies. In
our case, the game evolves in time by agents randomly entering or leaving the game. As such, and
coalitions within CSt may form, dissolve, or change in composition over time.

Our approach is that of an optimization problem in the context of dynamic coalitional games. At
each time step, we aim to find an individual allocation rule (i.e. policy) for the socially-optimal
partition of agents. This is, assign agents into coalitions in a manner that maximizes the value of
the generated coalition structure CSt. Formally, the social optimum SO is given by: SO(t) =
argmaxCSt

∑
S∈CSt

v(S). The objective is to find a coalition structure CS∗
t that maximize the social

optimum, as follows:

CS∗
t = arg max

CS∈Nt

∑
S∈CSt

v(S)

If this social optimum is unique, and if agents aim to maximize value, it follows that agents would
prefer to be part of coalitions that constitute this social optimum. Consequently, the game would
reach a point of stability under this value-maximization criterion. Formally, ∀i ∈ N, ∀S,D ∈
SO where i ∈ S, v(S) ≥ v(D). This condition implies that for each agent i in coalition C, there
is no other coalition D in the coalition structure SO that offers a higher total value. Under these
conditions, the game reaches a point that we term as value-maximizing stability.

In the context of DRL, our objective is to identify an optimal policy π∗(t) : Nt → St that ultimately
maps each agent to a coalition within the optimal coalition structure CS∗

t . Formally, the optimization
problem can be stated as:

π∗ = argmax
SO

E

[ ∑
CS∈SO

v(S)

]
(1)

By optimizing this policy, we aim to ensure that agents are allocated into coalitions in such a way
that the social optimum is achieved, thereby maximizing the total value generated by these coalitions.

4 Dynamic CSG Problem as a Deal-Or-No-Deal Game

To solve a dynamic CSG we train a single-agent reinforcement learning policy per agent. At each
time step, given the observation of the current agents and the coalitions available (and possibly some
other contextual data), the goal is for each agent to follow its policy and select the optimal coalition
to join such that the social optimum is maximized. At a given time step, after each agent in Nt has
made a selection, we obtain a set of strategy profiles of coalitions selected by each of the n agents:
(x1, . . . , xn). In our protocol, following Slikker (2001) and Kramár et al. (2022), a strategy profile
induces a particular CS⊔ where agents i and j are on the same coalition iff xi = xj , i.e. they prefer
the same coalition. Additionally, requiring i ∈ xj and j ∈ xi.

The following is the policy training process to obtain an optimal policy per agent. The overall idea
is that at each time step, each agent is randomly exposed to different coalitions and contextual data
(such as a distance matrix of agents) and receieves an informative reward that guides the actions
to the socially optimal choices. The training is sequential over the time domain, but for simplicity,
let’s fix a time step. At each time step t, the environment randomly determines the number n of
agents in play, as such, are 2n possible coalitions to join. The environment selects an agent i ∈ n at
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random with replacement and the state space Si contains all possible coalitions the agent i can be a
part of. The observation space for the agent is: (s, s′, ϕs, ϕ

′
s) where s is the agent’s current coalition,

s′ is a different coalition chosen by the environment randomly without replacement from Si, this is
called the proposed coalition. Lastly, ϕs, ϕs′ are additional environment variables. For example, in
a spatial game, they represent the location coordinates of agents in s and s′ . The available actions
for an agent are: A = {"Accept", "Reject"}. The reward acts as an informative signal of whether
the agent took the correct action in the direction of maximizing the social optimum, and is the only
exposure to the characteristic function, albeit indirect. The reward function R : S × S → R for the
accepting action is R(s, s′) = V (s′)−V (s), and for the rejecting action is −R(s, s′). The accepting
action transitions the agent from its current coalition to the proposed coalition, i.e. from s to s′ and
the rejecting action leaves the agent on its current coalition s. The game continues according to the
transition rules (changing the number of agents or their locations) to a state in t+ 1.

For an agent i transitioning between states s and s′ over T episodes, the average reward avg_R(s, s′)
is defined as:

avg_R(s, s′) =
1

T

T∑
t=1

R(st, s
′
t) (2)

The methodology is reminiscent of every-visit Monte Carlo RL (Sutton & Barto, 2018), in particular,
the value of a state is based on the average return from multiple visits to that state. The optimality
criterion stipulates that an agent will prefer coalition (state) s′ over s if the episodic average reward
is avg_R(s, s′) > 0. The reward structure encourages agents to reject coalitions of lower value and
accept those of higher value, thus achieving the social optimum.

Figure 1 depicts an example sequence of the game for two steps, where agent A has been casually
selected on both steps. As an example, consider a sequence where an agent A is offered (and
accepted) coalitions in the following order: A → ABC → AB → AC. The rewards received by
the agent would be (assuming a discount factor of 1): (ABC −A) + (AB −ABC) + (AC −AB).
In a subsequent iteration, the agent might be offered coalitions in a different random order: A →
AB → AC → ABC with rewards: (AB −A) + (AC −AB) + (ABC −AC). Because coalitions
are offered at random, over time, an agent will experience all possible permutations of coalitions.
Appendix A contains a worked illustration of the method.

Figure 1: Example of sequence transition for agent A.

5 Experiments

The examples below shows the performance of the methodology on two cost-saving games. We cover
the two main types of characteristic functions: subadditive and non-subadditive. In the first type,
we expect the grand coalition for form, while on the second, we expect the formation of coalition
structures. Additionally, we tested the generalization capabilities of the method to correctly form
coalitions in unseen characteristic functions.

5.1 The Ridesharing Game

We introduce a simplified model of a ridesharing game, which is a form of cost game. We assume all
agents start from the same point at the origin and travel different distances to the right. The question
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Algorithm 1 Reinforcement Learning Methodology for Coalition Formation

1: Initialize: Coalition set V = {A,B,C, . . .}
2: while Episode not terminated do
3: Step 1: Select agent A in random fashion
4: Step 2: Environment produces state s based on Sa and other observed variables ϕ
5: Step 3: Agent A chooses action: accept or reject proposed coalition s′

6: Step 4: Calculate ∆V = V (s′ ∪ {i})− V (s)
7: if Agent ACCEPTS then
8: Reward = ∆V
9: else/ REJECTS

10: Reward = −∆V
11: end if
12: Step 5: Update agent’s coalition (state)
13: Step 6: Environment selects the next agent in random fashion
14: end while
15: Terminate episode when all permutations of coalitions and agents are depleted

our model answers is whether they can benefit from sharing a ride (i.e. forming coalitions) and if so,
with whom. The characteristic function represents the cost incurred when agents form a coalition.

C(i, S, d, k, α) =

{
di if |S| = 1,
k×var(d)
α×|S| otherwise.

(3)

Where, d are the distances for each agent i in S. The hyper-parameters κ and α, provide us with the
flexibility to test different types of games, as shown below. The parameter k controls the monotonicity
of the function, C(S ∪ {i}) ≥ C(S). Large values indicate that when adding agents farther away,
the increased cost of the trip outweights the benefits. The parameter α controls the subadditivity of
the function. A game is sub-additive if the cost of merging two coalitions is less than or equal to the
sum of their individual costs, i.e., C(S1 ∪ S2) ≤ C(S1) +C(S2). In cost games, economies of scale,
encourage the formation of larger coalitions, possibly even the grand coalition.

The rewards are maximized accounting for a cost game, where agents will form coalition with those
who bring less marginal cost. Since C(·) = −V (·) for a current coalition s and a proposed coalition
s′ we have: R(s, s′) = −C(s′) + C(s).1 The observation space for each agent is composed of:
(s, s′) and both distance vectors di for i ∈ s and di for i ∈ s′.

5.1.1 Sub additive Game

Low linearity and high convexity. To obtain a subadditive game, we used k = 1, α = 60 in equation
3. In subadditive cost games, the economies of scale are strong enough to encourage the formation of
the grand coalition. To test the performance of the methodology on these type of games, we trained
four different agents, each with its own policy. Figure 2 shows the dynamic formation of coalitions,
in particular, all the coalitions accepted during the deal-or-no-deal game. Starting from the left, at
t0, agents start on singletons and as the game progresses to the right, at t1, Agent B is offered the
coalition {BD} and accepts it, since in a subadditive game, it brings more value than the singleton.
On the same time, agents A and D are offered the coalition {ABD}, which they accept. According
to our protocol, only coalition {BD} will form. Agent C doesn’t participate again until t2 when
she is offered to join {ACD} and accepts. On t3, {ABC} accept to join a coalition together since
they are indifferent between coalitions of the same size, while D is not present in the game. Lastly,
on t4 all agents accept to join the grand coalition and on further time steps, every other proposal
is rejected (rejected proposals are not shown). To summarize, at each time step, agents are offered
several coalitions and accept only those that bring more value to them, achieving the social optimum
by virtue.

1This reward definition accommodates the cases where the characteristic function contains either all positive
or negative terms (but it can’t be both at the same time).
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Figure 2: Coalitions accepted by each agent over different time steps. As expected, the game stabilizes
in the grand coalition, where every further coalition is rejected.

5.1.2 Experiments on Coalition Structure Generalization

To test the in-distribution generalization of the method, we created samples of tasks (i.e. games)
over the domain of spatial games. We created a distribution of 360 games using the game definition
in Equation 3 where agent’s distances are chosen at random di ∈ [0.1, 0.5] and k = 20 to obtain
non-subadditive games (i.e. we expect the formation of coalition structures). We trained five agents,
each with its own policy as in Equation 1. To measure the performance of each agent’s policy, we
canlculated the accuracy of the five policies separately. The accuracy metric 4 shows the probability
of selecting the correct action given a coalition proposal.

Accuracy =
Number of correct actions

Total number of coalitions proposals
(4)

Where Number of correct actions sums the number of times the agent has correctly accepted an
optimal coalition (i.e. high value) and rejected a sub-optimal coalition (i.e., a coalition with lower
value). While the Total number of coalition proposals includes the coalitions wrongly accepted or
wrongly rejected.

Figure 3 shows the box and whisker plot of the accuracy metric in Equation 4 for each agent against
a random policy (dashed line). The green vertical line shows the median. As we can see, all agents
perform above the random policy. Different agents show varying degrees of variance, which will be
studied in future works.

6 Conclusion

In this work, we presented a DRL method that allows us to form socially-optimal coalitions. We have
shown how our methodology has the ability to facilitate optimal decision-making even in the absence
of explicit coordination, by just querying from a policy in O(1). Additionally, the stochastic nature
of agent and coalition selection by the environment serves as an exploration mechanism, allowing
the system to explore various coalition structures until a social optimum is reached. Our method
shows that agents learn to select the optimal coalition structure for subadditive and non-subadditive
games. Additionally, when equipped with contextual features, the method achieves in-distribution
generalization.

7 Future Work

In future works, we plan to study the cause of the different performance metrics for each agent.
Some policies exhibiting big variance when compare to others. Additionally, we plan to implement
a benchmark model to test against. A natural question in coalition formation is the stability of the
formed coalitions. For this, a payoff allocation regime needs to be studied (Magaña & Carreras,
2018). An enhancement in the training step is to improve the generalization power of the deep net.
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Figure 3: Box plots showing the accuracy of each agent’s policy across 360 different game instances.
The dashed line represents the accuracy of a random policy. Calculations with one random seed.

For example, through specialized methodologies, such as regularization, to improve the problem of
catastrophic forgetting (Kirkpatrick et al., 2017).
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A Appendix

A.0.1 Illustration of the method.

Consider for example a game with two agents Γ : (N = {A,B}, V (·)). The goal is for each agent to
choose the most valuable coalition (or singleton) without having full information on the characteristic
function of a game. On the next step, as a possible dynamics of the game, B leaves and enters
C defining a new game Γ between A and C. Again A and C choose the most valuable coalition
available. And so on.

To train this type of game, at each step, the environment selects one member at random with
replacement, say A, its set of feasible coalitions is: Sa = {{A}, {A,B,C}, {A,B}, {A,C}}.
Denote s ∈ Sa the current state of A. The environment proposes a coalition s′ chosen at random,
without replacement, from Sa. The actions available to A are either to accept or reject the proposal.
After the agent’s action, the environment records the state of the agent (either s in case of rejection
or s′ in case of acceptance) and assigns the agent a reward following the Section 4. Next, the game
transitions to a new step where another agent is selected with replacement and states are selected
from the agent’s remaining set. The episode terminates when all the permutations of coalitions and
agents have been depleted.

B Efficacy of Marginal Contribution Heuristic

We present an example of the application of the method for non-superadditive coalitions with a
dominant coalition. The methodology benefits from the fact that the sum of the marginal contributions
of members of a coalition equal the total value of a coalition (efficiency).

B.1 Characteristic Function

The characteristic function V for this game is non-superadditive. Leading to the formation of a
coalition structure.

V ({A}), V ({B}), V ({C}) = 0

V ({A,B}) = 3

V ({A,B,C}) = 2

B.2 Analysis of the Marginal Contributions

Marginal contribution of A and B in {A,B} is 3, while in {A,B,C}, it decreases. This high
marginal contribution for both A and B in {A,B} identifies it as a strong candidate for the core.

In the given characteristic function, our heuristic leverages marginal contributions to spotlight high-
value coalitions. For the coalition {A,B}, the marginal contributions of A and B are both 3, which
stands as the highest value across all possible coalitions in this game.

To contrast, let’s examine the marginal contributions for the coalition {A,B,C}:
MC(A, {A,B,C}) = V ({A,B,C})− V ({B,C}) = 2− 0 = 2,

MC(B, {A,B,C}) = V ({A,B,C})− V ({A,C}) = 2− 0 = 2,

MC(C, {A,B,C}) = V ({A,B,C})− V ({A,B}) = 2− 3 = −1.

The marginal contributions for the agents in {A,B,C} are inferior to those in {A,B}. Specifically,
the marginal contribution of C is negative, thereby indicating that the inclusion of C into the coalition
{A,B} results in a decrement in the coalition’s value. In this case,as per the methodology, when C is
offered to transition to coalition {ABC} it will receive a negative reward and thus end discarding it.
Thus, in line with marginal contributions, our heuristic identifies {A,B} as the high-value coalition,
effectively disregarding {A,B,C}.

B.3 Special Characteristics of the Example Function

Why the method works? Is it particular to this example? The answer is that the method is applicable
to the most common types of characteristic functions. Namely:
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1. Existence of a Dominant Coalition: The coalition {A,B} has a value of 3, surpassing
the value of any other coalition or partition of coalitions. This establishes it as a dominant
coalition within the game.

2. High Marginal Contributions in Dominant Coalition: In the coalition {A,B}, the
marginal contributions of both A and B are 3. These are the highest marginal contributions
across all possible coalitions, making them congruent with our heuristic of using marginal
contributions to identify high-value coalitions.

3. Negative Marginal Contribution for Non-Dominant Additions: The marginal contribu-
tion of C when added to {A,B} is negative. This effectively indicates that C should not be
included in the dominant coalition, thereby aiding in the facile identification and exclusion
of less valuable extensions to the dominant coalition.

Owing to these attributes, our heuristic can adeptly identify {A,B} as the dominant coalition,
rendering it a likely candidate for a coalition within the game’s core.

B.4 Methodological Equivalence to Coalition Values

The underlying substance of the methodology is that rewarding agents by the difference in coalition
values over multiple episodes indirectly allows for the comparison of the relative values of coalitions.
Importantly, this is achieved without ever disclosing the actual value of any coalition. A motivating
example can be found on Appendix A. For each agent i, they go through a series of transitions (s, s′)
such that i is a member of both s and s′. These coalitions are randomly sampled from the set of all
possible coalitions that include i, where T = Permutations involving i. The average difference for
an agent i transitioning from s to s′ is represented as:

avg_R(s, s′) =
1

T

∑
(s,s′)

(V (s′t)− V (st)) (5)

Where V (s) represents the value of the characteristic function for coalition s. We show that using
this average difference as reward acts as an effective heuristic for the agent to gauge the relative value
of the coalitions.

Let Si be the set of all coalitions that include agent i, randomly ordered. For each coalition s ∈ Si,
let avg_R(s, s′) be the average reward for agent i when it is part of any randomly selected coalition s
and transitions to coalition s′:

avg_R(s, s′) =
1

T

T · V (s′)−
∑

s∈Si,s′ ̸=s

V (s′)

 (6)

Proof:

1. Comparing Average Rewards Across States: An agent decides which coalition to join by comparing
the average reward of each state. When comparing avg_R(s, s′) and any other transition state
avg_R(s′, s), we get:

1

T

T · V (s)−
∑

s′∈Si,s′ ̸=s

V (s′)

 vs
1

T

T · V (s′)−
∑

s∈Si,s ̸=s′

V (s)

 (7)

After canceling out the 1
T terms and the common coalitions in the sums, we are left with:

(T + 1) · V (s) vs (T + 1) · V (s′)

This is equivalent to comparing V (s) and V (s′) directly, thereby allowing agents to prefer higher-
value coalitions without disclosing the actual value of any coalition.
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The methodology assigns the marginal contribution MC(i, S) = v(S ∪ {i}) − v(S) of agent i to
coalition S, as a reward (and not as the imputation or payoff) to any agent entering the coalition on
any order it acts as a bootstrapping way of approximating V (S) =

∑
i∈S MC(i, S).

C Simple Examples

This section shows the algorithm’s capacity to identify the right coalition for the agents on simple
games.

C.1 Simple Additive Game

We present a superadditive characteristic function: V (x) =
∑

(x)3, where x is the number of agents
in the coalition. The aim is for trained agents to be able to identify the coalition with more value for
them to join, without seeing the characteristic function. The testing consisted on offering the agents
different coalitions and collecting the agent’s responses on whether they would like to leave their
current coalition and join the offered one. The Figure 4 shows the coalitions offered and the agent’s
responses. On the left, we see the agents started on their singleton, when moving to the right, we see
the sequence of coalitions accepted. Since the game is superadditive, agents accept to join coalitions
with more members, and after the grand coalition has been formed, even when more coalitions are
offered to agents, they reject the proposal, leading to the stable point of the grand coalition where no
agent wants to deviate from.

Figure 4: Example of agents playing the deal or no deal game. As expected, the grand coalition is
formed.

C.2 Simple Non-additive Game

These examples show how the method is able to form coalition structures for simple non-superadditive
games. Consider the following characteristic function for a non-superadditive game.

V ({A}), V ({B}), V ({C}) = 0

V ({A,B}) = 3

V ({A,B,C}) = 2

Figure 5 shows the dynamics of the game. On the left, the game starts with each agent as singleton
(each color is a different agent). As the game progresses, to the right, we see the strategy of A and
B is to always accept AB, while C’s strategy is to merge and join ABC as it is the most beneficial
coalition for it. However, once AB form a coalition, they have no incentive to deviate from it and
accept ABC as a coalition. The right-most colors show the two final coalitions, composing the
coalition structure AB,C

C.2.1 Coalition Structure Generation in the Ridesharing Game

High linearity and low convexity. We have implemented Equation 3 in the case where the cost
of adding more agents to a coalition will likely outweigh the benefits, leading to the formation of
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Figure 5: Example of agents playing the deal or no deal game. As expected, C accepts to join the
grand coalition but A and B rejects it.

coalition structures. In the limit, for high enough values of k we would only obtain singletons. To
test the performance on non-subadditive games, we have used k = 7, in a four agent game as shown
in Figure 6. On the left pane, starting from the left, we see the coalitions formed by each agent
until a stability point is reached in accepting {{AB}, {CD}}, from there on wards, every further
coalition is rejected. Panel (b) shows the location of agents in the spatial game, which validates the
final formation of the coalition structure.

(a) Dynamics of a coalition structure formation game.
Agents reject every coalition until stabilizing on
{AB}, {C,D}

. (b) Final coalition structure against distance

Figure 6: Example of a non-subadditive ridesharing game for four agents.
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