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Abstract

The emerging area of Intelligent Digital Twins
(IDTs) offers great potential as a new paradigm
for accelerating scientific discovery, while also
offering state-of-the-art functionality in control-
ling complex physical processes. We investigate
this concept for the case of an Intelligent Digi-
tal Twin of metal additive manufacturing (AM).
Metal AM is an excellent choice for utilising an
IDT due to the process being an inherently com-
plex multi-physics one, with key elements includ-
ing granular powder flow, laser melting and ma-
terial solidification. This complexity means that
computational simulations are extremely costly
and obtaining high quality experimental data is
extremely difficult, so optimal exploration of the
parameter space using all available information
on the current uncertainty in the region of interest
is highly desirable. Our Intelligent Digital Twin
for this process includes a complete description
of the target geometry of the object being printed
and a set of data-driven and computational mod-
els for the different physical processes occurring
in the system. The data-driven models consist
of a set of Gaussian Processes (GP) that can be
trained using combinations of real world sensor
data and outputs from computational simulations.
We illustrate the utility of our IDT by determin-
ing optimal input print parameters and obtaining
Pareto fronts between competing priorities such
as surface roughness and print time. We also
demonstrate the potential of the IDT as an intel-
ligent control system to respond to errors during
the print process and dynamically improve final
print quality.
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Figure 1. Schematic diagram of the core elements of the Intelligent
Digital Twin.

1. Introduction
The term Digital Twin was originally defined by NASA
in 2010 as an ”integrated multi-physics, multi-scale, prob-
abilistic simulation of a vehicle or system that uses the
best available physical models, sensor updates, fleet his-
tory, etc., to mirror the life of its flying twin” (Piascik et al.,
2010; Shafto et al., 2010). Digital twins rapidly became the
primary framework used by NASA and others for virtual
testing of spacecraft and prediction of future failure events
(Tuegel et al., 2011; Glaessgen & Stargel, 2012) and also
became ubiquitous in many other diverse application areas
including building management, smart cities, healthcare,
logistics and manufacturing (Fuller et al., 2020).

More recently, the concept of hierarchies of Digital Twins
has emerged, with the most sophisticated of these referred to
as an ”Intelligent Digital Twin” (IDT) (Phua et al., 2022b).
Such an IDT has all the characteristics of lower level Digital
Twins in terms of their ability to model, sense and interface
to the physically twined object or process, but adds an addi-
tional machine intelligence to reason about current system
state and autonomously tailor and optimise parameters in the
physical twin (See Figure 1). However, one hitherto not well
explored use case is the application of such an intelligent



Figure 2. (Top, A) Key elements of the multi-physics process that occur during the addition of a single layer of material in selective laser
melting additive manufacturing. A powder layer is added to the existing surface of solidified material and selective melted in to the
required layer geometry and then the process is repeated. (Bottom, B) Illustration of keys process steps for data acquisition for training of
the Intelligent Digital Twin using a combination of computationally generated and real world sensor data.

digital twin as a key component in the scientific discovery
process. This kind of framework can offer many significant
benefits. Sensorisation technologies have become much
more ubiquitous and affordable, allowing for the detailed
measurement of a wide variety of complex system states,
while in parallel advances in available computational power
and a desire to model and understand ever more detailed
physical processes have led to an explosion in interest in the
study and optimisation of complex multi-physics systems.
The Intelligent Digital Twin has the potential to be at the
heart of this process, with applications including utilising
uncertainty about current model states to control data ac-
quisition through to the integration of faster-than-real-time
surrogate models that can be used at runtime to optimise
and control complex physical processes. In this paper, we
will demonstrate the utility of this paradigm for the case
of a complex multi-physics example from metal additive
manufacturing (AM).

2. An Intelligent Digital Twin for Metal
Additive Manufacturing

We will consider the case of metal additive manufactur-
ing (or more colloquially referred to as metal 3D printing)
and the application of an Intelligent Digital Twin informed
from a set multi-physics models and realtime sensor data.
Metal AM shows incredible promise for revolutionising the
manufacture of bespoke parts in diverse areas including
aerospace, biomedical and automotive applications (Samuel
et al., 2018; Lowther et al., 2019). However, many chal-
lenges remain in unlocking its full potential due to the need
to understand the complex multi-physics nature of the prob-
lem, and the very large computational power required to
simulate such processes (Phua et al., 2022a). Two key chal-
lenges are understanding and optimising the input material
behaviour (Erps et al., 2021) and the parameters utilised
during the printing process (Deneault et al., 2021) - includ-
ing print orientation (Goguelin et al., 2021), lattice geome-
try (Hertlein et al., 2020) and strut design (Gongora et al.,
2020).

We will employ metal AM as a use case to illustrate how



Figure 3. Multi-Objective Bayesian Optimisation of powder recoating for process discovery. The Pareto Frontier showing the trade-off
between powder layer roughness, the time taken to spread the powder and the material height addition is shown in the center, together
with images of newly revealed operational strategies. The hyper-volume indicator is shown on the right.

the intelligent digital twin (IDT) can be utilised by:

• Optimally sampling the parameter space in regions of
interest using a minimal number of expensive compu-
tational simulations and real world measurements. The
use of Bayesian approaches and a continual quantifica-
tion of the IDT model uncertainty are critical elements
to this.

• Training surrogates that can then be used for faster than
real time predictions.

• Controlling the physical twin process by maintaining
the accuracy of the IDT state through continual sensor
inputs, and autonomously modifying process parame-
ters to correct for any out of specification behaviour.

Figure 2 shows the key elements of the most commonly
employed selective laser melting metal AM process. The
process works by iteratively adding layers of a metal powder
(e.g. titanium) on to the existing print surface, melting the
powder with a laser in the layer geometry required, allowing
the material to solidify, and then lowering the stage and
repeating the process. Metal AM consists of several highly
complex physical material processes, including elements
of granular powder flow during the recoating stage, heat
transfer from the laser and through the material, and state
change via melting and subsequent resolidification into a
complex microstructure that can strongly influence final part
strength and behaviour (Wycisk et al., 2014; Gong et al.,
2015).

Our Intelligent Digital Twin for this process includes a com-
plete description of the target geometry of the object being
printed and a set of data-driven and computational models
for the different physical processes occurring in the system.
The computational models include a DEM based powder
flow model (Phua et al., 2021) and a volume of fluid solu-
tion to the melting and resolidifcation (Cook & Murphy,

2020), which can then be fed into a microstructure model
to determine final part material composition and behaviour
(Cummins et al., 2021). The data-driven models consist of
a set of Bayesian models consisting of Gaussian Processes
(GPs) that have can trained using combinations of exper-
imental and computationally generated data. GP models
have been successfully applied to several additive manufac-
turing systems and have been shown to be able to create
accurate process maps and surrogate models for expensive
laser melting simulations (Tapia et al., 2016; 2018; Kamath
& Fan, 2018), and printability maps for metal AM (Johnson
et al., 2019).

For the Gaussian Process models contained within our IDT,
we use a Matern 5/2 kernel function chosen for its flexibility
and smoothness (Rasmussen & Williams, 2006; Balandat
et al., 2020) and a sampling strategy using an initial Sobol
quasi-random generator to initialise points within the pa-
rameter space, followed by an Expected Improvement (EI)
acquisition function or qNEHVI (Daulton et al., 2021) for
multi-objective optimisation. The GP model is then used by
the IDT to choose the next query point based on the maximal
potential improvement of the target objective. Our sampling
strategy can explore a number of new trials in parallel where
possible to accelerate the optimisation process.

3. Scientific Discovery using Bayesian
Optimisation

Critical to the entire AM process is the uniform application
of smooth layers of powder and their selective melting and
solidification into precise surfaces for the next layer addition.
A large amount of research goes into finding the optimal
input feed materials and optimal process parameters for use
in metal AM (Sames et al., 2016). The IDT can be extremely
useful in optimising these parameters by performing virtual
experimentation.



Figure 4. (a) Gaussian Process Model trained to predict how the height of the added material layer varies with the recoater gap and the
melted substrate surface roughness. (b,c,d) Example of a disturbance event during the print process at layer 10 where only 20% of the
required material is deposited. Note the subsequent difference in the time required for the system to re-equilibrate for the standard fixed
operation case vs. when under the control of the Intelligent Digital Twin.

An adaptive experimentation pipeline enables an efficient
scientific discovery process for new printing strategies and
techniques. Figure 3 shows our implementation using multi-
objective optimisation, which produces a Pareto front by
configuring and running new virtual experiments to effi-
ciently explore the parameter space. The Pareto front opti-
mises the addition of material layer height, the roughness of
the layer, and the operation time, which are typical trade-offs
that must be made when tuning the powder-spreading pro-
cess. The optimisation process reveals new process strate-
gies for the printer’s operation, which aids in the discovery
of new mechanistic effects.

4. Real-time Process Control
Current AM systems generally utilise an established set of
optimal process parameters that do not dynamically adjust
during the build process. However, the metal AM build pro-
cess inherently relies on consistent layer additions to print
intricate parts with fine tolerances and detail. Paramount
to this process is ensuring consistent and even additions of
build material in each layer. For most AM processes, this
poses a significant challenge, as printers often employ fixed
print parameters throughout the duration of a build, which
only converge to steady-state after several layers (Mindt
et al., 2016). Moreover, defects and disturbances in the
printing process are commonplace and inject transient vari-

ability (Scime & Beuth, 2019). This can lead to variations in
the distance between the recoater and the current solidifed
layer within the printer, which can cause out of specification
behaviour such that the print process can fail entirely.

We demonstrate how we can tackle the problem of cor-
recting for a single bad deposition layer where a below
specification volume of material has been added with a cor-
responding out of spec surface rough surface being created.
To control the inter-layer variability, we employ Bayesian
Optimisation to train a GP surrogate model that can be
used to dynamically control the print parameters to ensure
consistent layer quality. We first train a set of GP models
to determine optimal powder spreading parameters on a
set of 12 unique surface roughness geometries that span
those commonly found in real world print cases, and in this
way determine a high dimensional relationship between the
melted surface roughness and the required recoater gap to
achieve consistent layer additions. A key outcome of this
study is the accumulation of a sufficient training data set that
can then be used to train a single GP surrogate model that
covers the entire domain (Figure 4a). This surrogate model
can then be used in real time during the build process, with
the IDT reading in sensor data and intermittently querying
the surrogate model for optimal parameters for real-time
control and enhancement of the printing process. Using this
surrogate, we can inform the printer between layers what the
optimal stage displacement should be. In contrast, printers



today naively employ a fixed stage displacement at each
layer, which produces instability in layer additions that only
stabilise after 7-10 layers.

Figure 4b-d demonstrates the ability of the intelligent digital
twin to control for a defect event during the printing process.
Here, we simulate the case of our IDT controlling a variable
stage displacement at each iteration - compared to most AM
machines today that use a standard fixed stage displacement.
Our results compare the performance between the two sys-
tems over 25 layers of printing when a defect is introduced
at layer 10. We simulate a typical recoating defect by de-
creasing the powder coverage to 20% of its nominal value.
When the defect occurs, our IDT detects this and responds
by sending the printer an updated set of machine parameters
(with a corrected stage displacement) to return the system to
equilibrium within just two layers. In contrast, the baseline
system takes more than 10 layers to return to equilibrium
and steady-state layer additions after the system disturbance.
Our results highlight how small print disturbances can lead
to instabilities across multiple layers in 3D printed parts.
More critically, our results demonstrate the utility of an IDT
system for mitigating such defects and achieving consistent
print quality in each layer.

5. Conclusions
We have demonstrated the potential benefits of the new
emerging paradigm of Intelligent Digital Twins as a tool
for accelerating scientific discovery and intelligent con-
trol of complex multi-physics systems. The IDT can
combine all available historical information about a pro-
cess, integrating computational models based on the un-
derlying physics/chemistry/biology and data-driven mod-
els trained using both computational and real world sensor
data. Through the integration of Bayesian Optimisation
techniques, the IDT can fulfil a key need in providing an
optimal way to explore the available parameter space and
optimise the input parameters for the best process perfor-
mance. The integration of faster than real time surrogate
models into the IDT also opens up exciting new applica-
tions for their use as a tool for predicting future out-of-spec
behaviour for a process and enabling corrective action to be
taken. For the case of metal AM, this opens up particularly
exciting new possibilities in the integrated design of new
materials and processes that can utilise IDTs to dynamically
maintain specification compliance during the print process.
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