
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GENERALIST POLICY FOR k-SERVER PROBLEM ON
GRAPHS USING DEEP REINFORCEMENT LEARNING
WITH ACTION-VALUE DECOMPOSITION

Anonymous authors
Paper under double-blind review

ABSTRACT

The online k-server problem on graphs is a fundamental computational problem
that can model a wide range of practical problems, such as dispatching ambu-
lances to serve accidents or dispatching taxis to serve ride requests. While most
prior work on the k-server problem focused on online algorithms, reinforcement
learning promises policies that require low computational effort during execution,
which is critical in time-sensitive applications, such as ambulance dispatch. How-
ever, there exists no scalable reinforcement-learning approach for the k-server
problem. To address this gap, we introduce a scalable computational approach
for learning generalist policies for the k-server problem. Besides scalability, the
advantage of generalist policies is transferability: a generalist policy can be ap-
plied to an entire class of graphs without the need for retraining, which is crucial
for practical applications, e.g., in ambulance dispatch problems where road con-
ditions or demand distributions may change over time. We achieve scalability and
transferability by introducing a novel architecture that decomposes the action-
value into a global and a local term, estimated from a shared graph-convolution
backbone. We evaluate our approach on a variety of graph classes, comparing to
well-established baselines, demonstrating the performance and transferability of
our generalist policies.

1 INTRODUCTION

The k-server problem, originally proposed by Manasse et al. (1988; 1990), is one of the most funda-
mental problems from the perspective of mixed-integer programming, online algorithms, and com-
petitive analysis (Bertsimas et al., 2019b). Koutsoupias (2009) claims that it is “perhaps the most
influential online problem” in computer science. The problem setting is surprisingly simple—given
a metric space or a weighted graph and k mobile servers, the problem deals with moving the servers
to the locations of requests that appear at arbitrary points in the metric space (or the graph) over
time. At each time step, a request appears, and the decision-maker must immediately dispatch a
server to serve the request. Usually, it is assumed that a new request arrives only after the previous
request is served (Bertsimas et al., 2019b). The decision-maker seeks to minimize the distance trav-
eled by the servers over time. There are two canonical versions of the problem—the online version,
where the decision-maker must dispatch a server based on the current request and the past requests,
and the offline version, where the decision-maker knows the set of requests (to be responded to)
a priori. Despite the apparent simplicity of the problem setting, the k-server problem serves as a
rich framework for in-depth analysis of many online problems (e.g., paging and caching (Bertsimas
et al., 2019b), network analysis (Alon et al., 1995), dynamic resource allocation (Mukhopadhyay
et al., 2016), and manufacturing (Privault & Finke, 2000)).

If the sequence of requests is known in advance, i.e., in the offline setting, the problem can be re-
duced to the standard network flow optimization problem and solved efficiently (Chrobak et al.,
1991; Bertsimas et al., 2019b). The offline solution can then be used to gauge the efficacy of on-
line approaches; indeed, a large part of prior work on solving the k-server problem focuses on
establishing competitive ratios for the solution algorithms, which is defined as the worst-case ra-
tio between the performance of an online algorithm and the optimal offline algorithm. One of the
most well-known online approaches is the Work-Function Algorithm (WFA), which combines two

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

perspectives—a strategic view by considering past requests and a tactical greedy view by consider-
ing the current request. Many approaches have relied and built upon the central idea of WFA, e.g.,
the holistic adaptive robust optimization algorithm, also known as HARO (Bertsimas et al., 2019b)
combines adaptive robust optimization techniques with WFA. It is worth pointing out that several
simple algorithms that are not competitive (e.g., greedy algorithm that always dispatches the nearest
server to a request) often work reasonably well in practice (Bertsimas et al., 2019b).

We focus on the stochastic k-server problem (Dehghani et al., 2017) where the arrival of requests
at the nodes of a graph is governed by a known probability distribution.1 Such a setting is largely
motivated by practical problems of dynamic resource allocation under uncertainty, e.g., dispatching
emergency responders to service distress calls and optimizing micro-transit fleets (Dehghani et al.,
2017; Mukhopadhyay et al., 2016). The availability of the arrival distribution is fairly common
in real-world applications. Consider the problem of micro-transit, where the decision-maker must
optimize the allocation of taxis to passengers; in such scenarios, the arrival distribution can be
empirically approximated by using historical data of passenger requests. Naturally, in real-world
use cases, decisions must be made in an online manner, i.e., the exact sequence of requests is not
known in advance. As a result, we focus on the online version of the problem.

We view the k-server problem as a sequential decision-making problem under uncertainty, where
the decision-maker must optimize dispatch decisions over time to minimize the expected distance
traveled by the servers; the expectation is taken with respect to a known probability distribution
that governs the arrival of requests. We model the k-server problem as a Markov decision process
(MDP). Our goal is to leverage the known arrival distribution and the graph topology to compute
an optimal policy (i.e., a mapping from an arbitrary state of the problem to a dispatch action) in an
offline manner. Once the policy is learned, it can be used to make decisions online as requests arrive
in a stochastic manner.

Crucially, instead of learning a policy on a given graph, we seek to learn a generalist policy for any
graph topology (drawn from the same distribution as the training topologies) and any request arrival
distribution (drawn from the same distribution as the training distributions). Learning a generalist
policy is critical for practical applications; e.g., consider the problem of dispatching emergency
responders on a road network. In such a situation, traffic conditions can alter the edges of the
graphs; indeed, some roads might close down, altering the structure of the graph. While re-training
a policy from scratch is computationally expensive, a generalist policy can be invoked in constant
time during decision-making without additional training.

We point out that the k-server problem has been modeled as an MDP before; e.g., Lins et al. (2019a)
transform the k-server model to a visual task problem and model it as an MDP, and Even-Dar
et al. (2009) discuss the k-server problem in the context of online MDPs (although they relax the
Markovian assumption). However, prior work has significant limitations, both in terms of scalability
and generalizability. For example, the training approach used by Lins et al. (2019a) does not scale to
graphs of non-trivial size, and the trained policies cannot be transferred to other problem instances,
thereby requiring re-training if the graph topology changes. To the best of our knowledge, we
make two seminal contributions: 1) we present the first effort to directly model (i.e., without any
transformations) the k-server problem as an MDP by simply encoding the available information at
any stage of the problem as the state of the MDP; and 2) we present the first generalist learning
approach for the k-server problem, which can be applied to arbitrary topologies and request arrival
distributions (drawn from the same distribution as the training instances).

Naturally, this modeling paradigm presents several challenges, a major bottleneck being an enor-
mously large state space that requires extremely specific actions to avoid long-term degradation of
performance. Additionally, as we show empirically, online approaches do not scale to large problem
instances. We address this challenge by presenting the first scalable reinforcement learning-based
solution to the k-server problem. Second, ensuring scalability for a generalist policy is a major
bottleneck—during execution, the size of the graph could be significantly larger than training. We
ensure scalability to arbitrarily large problem instances by extracting local structural infor-
mation embedded in the graph topology, i.e., we hypothesize that local information is often a
determinant of global actions in this problem, thereby making our approach scalable by construc-

1Our problem is slightly different from (Dehghani et al., 2017); however, the broader framework of stochas-
tic k-server problems subsumes our problem setting.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

tion. We reiterate that scalability (to large problem instances) and transferability (to any request
arrival distribution or graph topology) are critical for practical applications. To the best of our
knowledge, despite (almost) four decades of prior work on the k-server problem, our work is
the first to address these challenges.

A key novelty of our approach is the graph-theoretic, global-local decomposition of the action-
value with a shared backbone, which could be applied to other sequential decision-making prob-
lems on large graphs. Note that this is fundamentally different from dueling Q-networks, which
decompose the action-value into state-value and action advantage, requiring regularization and com-
plete state for advantage estimation Wang et al. (2016). The key benefit of our approach is the ability
to train efficiently on small graphs, and then apply trained policies to arbitrarily large graphs.

The rest of this paper is organized as follows. Section 2 introduces the k-server problem on graphs,
formulating it as an MDP, and defines optimal policies. Section 3 describes our proposed compu-
tational approach based on global-local decomposition of action values. Section 4 evaluates our
proposed approach numerically, comparing to various baseline algorithms and policies on a range of
graphs. Section 5 provides a brief overview of related work. Finally, Section 6 concludes the paper.

We provide the complete source code for all of our experiments as supplementary material; we will
make the source code publicly available upon acceptance.

2 k-SERVER PROBLEM ON GRAPHS

2.1 PROBLEM SETTING

We begin by formally introducing the stochastic k-server problem on graphs (a summary of notation
is presented as a table in the appendix). We consider a connected graph G = ⟨N , E⟩, where N is
the set of nodes and E is the set of edges. We let n = |N |. We use d(u, v) to denote the shortest
path distance (i.e., number of edges) between two graph nodes u and v, where u, v ∈ N . The
problem considers a total of T discrete time steps, and we use t to denote an arbitrary time step.
Requests arrive on the nodes of the graph according to a known probability distribution p, where pv
denotes the probability of a request arriving at node v ∈ N . We denote the sequence of requests
by {σ1, σ2, . . . , σT }, where σt ∈ N is the location (i.e., a node of the graph) of the request at time
t. We use xt = {xt

1, . . . , x
t
i, . . . , x

t
k} to denote the locations of the k servers in time step t, where

xt
i ∈ N is the location of the i-th server. For a list of symbols, please see Table 2 in the appendix.

2.2 MODEL

We model the k-server problem as a Markov decision process (MDP). An MDP can be described
by the tuple ⟨S,A, ρ, r⟩ where S is the set of states, A is the set of actions, ρ is the state transition
function with ρa(s, s

′) being the probability with which the process transitions from state s to
state s′ when action a is taken, and r represents the reward function with r(s, a) being the reward
for taking action a in state s. In our setting, the MDP is defined as follows.

States The state st ∈ S of the process at time step t is the tuple ⟨xt, σt⟩, where xt are the locations
of the k servers (before dispatching one of them to serve the request), and σt is the location of
the request. For the initial state s0, the tuple ⟨x0, σ0⟩ captures the initial locations of the k servers
and of the first request, both chosen uniformly at random. Server locations are chosen ensuring that
no two servers occupy the same location.

Actions At each time step t, the agent can choose an action at ∈ A that involves moving one of
the servers to serve the current request σt. The action space A is represented as at ∈ {1, 2, . . . , k}
where at = j specifies the action of moving the j-th server at time step t. In other words, the
action at denotes the index of the server that is moved to serve the request at time t. If the request
arrives at the same location as one of the servers, the action is simply dispatching that server to fulfill
the request.

Reward Function We model the reward function r(st, at) as the negative of the distance traveled by
the chosen server to serve the request, i.e., r(st, at) = −d(xt

at , σt), where d(xt
a, σ

t) is the distance
between the location xt

at of the chosen server at at time t and the location σt of the request. The
distance between two nodes is measured as the number of hops between the nodes.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

x
,
σ

p
,
k

,
G

St
at

e
Pr

ob
le

m
in

st
an

ce

p

1
v
=

σ

1
v
∈

x

C
on

vo
lu

tio
n

H(0)

A

R
eL

U

+ . . .

C
on

vo
lu

tio
n

H(L−1)

R
eL

U

+

H(L)

A
ve

ra
ge

Po
ol

M
L

P

Qglobal(s)

M
L

PH
(L)
xa Qlocal(slocal

xa
, a)

d(σ, xa)

+ Q(s, a)

Figure 1: Overview of the architecture of our action-value estimator. Note the decomposition of
action-value Q(s, a) into Qglobal, which depends on the entire state but not the action, and into
Qlocal, which depends on both the state and the action but only on a local neighborhood around node
xa. Thick lines represent matrices; semi-thick lines represent vectors; thin lines represent scalar
values.

Transition Function Given a state st = ⟨xt, σt⟩ and an action at, two changes occur as the process
transitions to time t+ 1. First, the location of server at changes to the location of the request that it
is dispatched to serve, i.e., its location changes to σt. Second, a new request σt+1 arrives at random
according to the probabilities p, resulting in a new state st+1 = (xt+1, σt+1). Note that xt+1 is
identical to xt except for its at-th element, which is σt.

Optimal Policy The decision-maker’s goal is to find an optimal policy π∗. A policy π : S → A is a
mapping of states to actions. An optimal policy maximizes the expected discounted rewards, i.e.,

π∗(st) = argmax
at∈A

Est+1,at+1,st+2,...

[∞∑
τ=t

γτ−t · r(sτ , aτ)

]
where future states and actions are drawn according to the state transition function ρ and policy
π∗. In our case, since we model rewards as the distance traveled by the servers, the agent actually
accrues a cost, which we seek to minimize.

Transferability A problem instance is defined by the graph G, the number of servers k, and the
arrival probabilities p. Our goal is to learn a generalist policy π∗(G, k,p; st) that can perform well
on a set of problem instances. Formally, we assume that there exists a probability distribution D
from which each problem instance ⟨G, k,p⟩ is drawn. Our goal is to introduce a computational
approach which given a set of training instances drawn from distribution D, can find a generalist
policy π∗ that performs as an optimal policy on any new test instance that is also drawn from D.

3 PROPOSED COMPUTATIONAL APPROACH

3.1 BACKGROUND

DQN with Experience Replay and Target Network We employ the classical Deep Q-Network
(DQN) approach as our learning algorithm (Mnih et al., 2013), incorporating two key techniques:
experience replay and target network (Van Hasselt et al., 2016). Experience replay involves storing
past experiences in a replay buffer and sampling mini-batches during the training process. This helps
in breaking the temporal correlation in the sequence of observations and stabilizes the training. The
target network is a separate network used to estimate target Q-values during training, which improves
the stability of the learning process.

Our training process follows the standard DQN approach with target network and experience replay.
Let R be the replay buffer containing experiences

〈
st, at, rt, st+1

〉
sampled during interactions with

the environment. The Q-network is trained iteratively to minimize the temporal difference error:

L(θ) = E(st,at,rt,st+1)∼R

[(
Q
(
st, at;θ

)
− rt + γ ·max

a
Q
(
st+1, a;θ−))2

]

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where γ is a temporal discount factor, θ and θ− are the parameters of the network and target network.

Graph Convolutional Network To address the challenges posed by the large state and action
spaces in our graph-based problem and to ensure transferability, we employ Graph Convolutional
Networks (GCNs) (Kipf & Welling, 2017). GCNs allow us to exploit the relational information
present in the graph structure, enabling more efficient and effective learning. We use graph convolu-
tional layers to aggregate information from neighboring nodes, capturing the dependencies between
nodes in the state representation.

3.2 DECOMPOSITION OF ACTION-VALUE

A key challenge in the k-server problem is that action-values depend on the entire state, suggesting
a need for aggregation over all nodes. However, such aggregation is difficult in large graphs. To
address this challenge, we decompose the estimation of action-value Q (s, a) into two terms: global
value Qglobal(s), which captures the overall value of the entire state, providing an estimate of the
global context for the action-value estimation, and local value Qlocal(slocal

xa
, a), which focuses on

the specific server chosen by the action a and its neighborhood slocal
xa

, capturing local context that
determines the advantage of choosing a particular action in a given state.

This decomposition allows for more efficient learning by separately processing global and local
information. By combining classical DQN with GCN and a decomposition of action-values, we
strive to develop a scalable and transferable solution for the stochastic k-server problem on graphs.

Note that for ease of presentation, we omit the superscript t from the description of the neural-
network architecture for our action-value estimator Q (st, at) as all calculations are performed for
time step t.

3.3 REPRESENTATION OF PROBLEM INSTANCE AND STATE

For the GCN, we represent the problem instance and state at time step t as a matrix S ∈ Rn×3:

S =
[
1{v ∈x}, 1{v=σ}, p

]
, (1)

where the first column 1{v ∈x} is an n-element indicator vector for the locations of the servers (i.e.,
1 if there is a server on a node v ∈ N , and 0 otherwise), the second column 1{v=σ} is an n-element
indicator vector for the location of the request (i.e., 1 for the node v where the request σ is located,
and 0 for all other nodes), and the third column is the vector p of request arrival probabilities. The
above representation encompasses both the state, represented by 1{v ∈x} and 1{v=σ}, and certain
aspects of the problem instance, such as p (and implicitly the number of servers k). To complete
the specification of the problem instance, we also provide adjacency matrix A, which represents the
topology G, as input to our generalist policies.

To address scalability issues due to the magnitude of arrival probabilities varying with the size of the
graph, we translate probabilities p to arrival rates Λ = {λ1, λ2, . . . , λn} by multiplying them with
the number of nodes n: λv = pv ·n. This transformation is necessary (as we verified empirically) to
avoid the risk of perceiving arrival probabilities in large graphs as disproportionately low. By fixing
the scale of the arrival probabilities via translating them to arrival rates, we ensure scalability.

3.4 Q-NETWORK ARCHITECTURE FOR ACTION-VALUE DECOMPOSITION

Shared Backbone: As shown in Figure 1, we use convolutional layers with residual connec-
tions (Kipf & Welling, 2017; He et al., 2016):

H(l+1) = ϕ
(
D̃− 1

2 ÃD̃− 1
2H(l)W (l)

)
+H(l), (2)

where ϕ is a non-linear activation function, which we implement using ReLU in our experiments;
Ã is the adjacency matrix of the graph G with added self-connections (i.e., Ã = A + I , where I
is the identity matrix); D̃ is the diagonal matrix of node degrees (i.e., D̃ii =

∑
j Ãij); and W (l) is

a matrix of trainable weights . The input to the first convolutional layer is the state representation
H(0) = SW init, where W init represents an initial linear mapping applied to S. This linear mapping

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

is introduced to enable the model to extract relevant features from the input before feeding it into
the convolutional layers.

Global Value: There are L such convolutions layers. The output H(L) of the last convolutional
layer is first used for estimating the global value Qglobal(s):

Qglobal(s) = MLPglobal
(
H(L)

)
, (3)

where MLPglobal denotes a sequence of trainable fully-connected feed-forward layers with non-
linear activation.

Local Value: Second, we use the output H(L) of the last convolutional layer to estimate a local
value Qlocal(slocal

xa
, a) for each server a ∈ {1, . . . , k}:

Qlocal(slocal
xa

, a) = MLPlocal
(
H

(L)
xa−, d(σ, xa)

)
, (4)

where H
(L)
xa− is row xa of H(L), and d(σ, xa) is the distance between request σ and node xa. Note

that H(L)
xa− depends only on the L-hop neighborhood of xa; hence, slocal

xa
is the subgraph spanned by

nodes within L hops of xa.

Action-Value Estimation Finally, we calculate the action-value of sending server a from node xa

as
Q(s, a) = Qglobal(s) +Qlocal(slocal

xa
, a). (5)

Note that we can find the optimal action to take in state s based only on local values:

a∗ = max
a

Qglobal(s) +Qlocal(slocal
xa

, a) = max
a

Qlocal(slocal
xa

, a). (6)

This is crucial for scalability: once a policy is trained, the action-value estimator Qlocal(slocal
xa

, a) can
be evaluated on small subgraphs slocal

xa
to find an optimal action.

Training Process: To ensure transferability, we train the generalist policy over a set of randomly
generated problem instances. This set includes instances drawn from a distribution D, spanning
diverse graph structures, server counts, and request arrival distributions. This approach ensures that
the learned policy is transferable, i.e., it perform well on new instances from distribution D.

4 NUMERICAL EVALUATION

4.1 BASELINE POLICIES

We compare our approach to several baseline approaches, including heuristics (greedy policy), base-
line RL approach (MLP-based DQN), and state-of-the-art online algorithm (WFA). We provide a
more detailed description of these baselines in Appendix C.

Greedy Policy: The Greedy policy simply selects the nearest server at each time t, choosing a that
minimizes the distance between the current request location σt and the location of server a at time t,
i.e., πgreedy(s

t) = argmina∈A d(σt, xt
a). Despite its simplicity, it has historically demonstrated

excellent performance (Bertsimas et al., 2019a).

MLP DQN: We also consider deep Q-learning (DQN) with a fully-connected feed-forward network
(MLP) as a baseline, which we will refer to as MLP DQN. Note that MLP DQN is a stronger
baseline than the approach proposed by Lins et al. (2019b). Please see Appendix C for a summary
of the differences and for numerical results demonstrating that MLP DQN performs better than the
approach proposed by Lins et al. (2019b). However, while MLP DQN is effective compared to prior
approaches, it faces significant challenges in terms of scalability and transferability, which motivates
our generalist GCN DQN approach.

HARMONIC: The Harmonic policy, a competitive algorithm for k ≥ 2 in the k-server prob-
lem, achieves O(2k log k)-competitiveness against an adaptive online adversary (Bartal & Grove,
2000). The Harmonic policy prioritizes server selection based on inverse distance probabilities, i.e.,
πHARMONIC(s

t) = argmaxa∈A
1

d(σt,xt
a)

.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

BALANCE: The BALANCE policy is chosen as a benchmark due to its k-competitive nature, making
it suitable for evaluating algorithm performance (Bartal & Grove, 2000). It selects server a at time t
to minimize cumulative distances from prior requests and the distance to the new request location,
i.e., πBALANCE(s

t) = argmin
a∈A

(∑t−1
j=1 d(σ

j , xj
a) + d(σt, xt

a)
)

.

WFA: Work Function Algorithm (WFA) is a server allocation optimization approach for a sequence
of requests, modeled as a flow optimization problem Borodin & El-Yaniv (1998). WFA is one of
the most well-established algorithmic approaches for solving the k-server problem, balancing theo-
retical competitiveness and practical performance (Rudec et al., 2009). WFA computes a decision
based on historical data and the current request. To make a fair comparison with this approach, we
provide a set of requests as burn-in for WFA, thereby enabling it to learn the request arrival distri-
bution. We also conduct experiments without the burn-in for WFA; in these experiments, to make a
fair comparison, the other approaches do not observe the actual arrival rates but rather arrival rates
estimated from prior requests. Due to lack of space, we present these results in Appendix B.2

4.2 PROBLEM INSTANCES

Graphs We evaluate our approach against benchmark algorithms on multiple classes of graphs.

Random Grids: We employ the GRE method introduced by Peng et al. (2012) and Peng et al. (2014)
to generate two-dimensional grids that resemble real-world road networks. First, we create an m×m
grid of nodes and edges (n = m ·m). For the sake of simplicity, we generate grids that are square
shaped (n = 9, 16, 25, 36, 49, 64, 81, 100 nodes). Then, horizontal and vertical edges are randomly
removed with different probabilities, and diagonal edges are randomly added. By using probabilities
from Peng et al. (2014), we generate graphs that resemble real-world road networks in terms of their
topology; we refer to the description from Peng et al. (2014) for details.

Random Trees: We generate random trees of a given size through an iterative process of adding
nodes one-by-one. For each node u (excluding the first), a parent node v is chosen uniformly at
random from the set of previously added nodes: v ∼ Uniform{1, 2, . . . , u − 1}. An edge is then
added between the selected parent v and the current node u, creating a random tree iteratively. For
consistency, we generate random trees of the same sizes as the grids (n = 9, 16, 25, 36, 49, 64, 81,
100 nodes).

Real-World Networks: The Sioux Falls (SF) and the Eastern Massachusetts (EM) graphs represent
real-world transportation networks with 24 and 74 nodes, respectively. The nodes represent inter-
sections, while edges represent road segments between intersections (Transportation Networks for
Research Core Team, 2023).

Number of Servers and Arrival Rates For all problem instances, the number of servers is k =
⌊n
6 ⌋. To generate request arrival probabilities p, we draw random weights w1, w2, . . . , wn from an

exponential distribution, and then normalize these weights: pi = wi∑n
j=1 wj

.

For each graph size, we generate 5 random grids and 5 random trees with different request arrival
probabilities, resulting in 80 distinct problem instances. With the SF and EM graph topologies, we
have 82 problem instances in total that we use for evaluation.

4.3 EXPERIMENTAL SETUP

Model Training We individually train both our graph-specific policy (GCN DQN) and MLP DQN
on each of the 82 problem instances. For MLP DQN, the training duration scales with the size of
the graph. We initiate training for the smallest graph (size 9) with 300,000 steps, incrementing the
number of steps by 20% for each subsequent graph size, which ensures convergence in our settings.
Graph-specific policies, on the other hand, converge for all problem instances within 120,000 steps.

Furthermore, we train a generalist model (Generalist GCN DQN) designed to be agnostic to the
specific number of nodes within a graph, applicable across all problem instances of that graph type.
Specifically, for each graph size within a graph type (i.e., 9, 16, 25, 36, 49, 64, 81 and 100 nodes),

2Note we did not observe any significant advantage or disadvantage from using the burn-in approach.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

we randomly generate 50 problem instances. After completing an episode of length 30 for all graph
sizes, we generate a new set of 50 random problem instances, introducing both new topologies and
new probabilities of arrival for nodes across all graph sizes. For SD and EM graph topologies, where
the topology and graph size are fixed, we only modify node probability arrivals after each episode.
Generalist GCN DQN models for tree and grid graphs converge within 960,000 steps, while those
for EM and SF converge within 250,000 steps.

Evaluation To evaluate the different policies, we generate 10 episodes for each problem instance,
each containing 4000 requests. We use 100 requests for burn-in (see description of WFA above),
and evaluate each approach on the remaining 3900 requests. We present performance with respect to
an optimal offline algorithm. Grids and trees are evaluated based on sizes, resulting in 50 values for
each graph type and size. For EM and SF networks with a single topology and graph size, we obtain
10 values each. To test the scalability of the Generalist GCN DQN, we conduct experiments on 10
episodes each for 5 grids and 5 trees of size 1024. Due to computational challenges, training GCN
DQN, MLP DQN, and testing on the WFA (as explained later) on these large graphs is infeasible.
Therefore, our evaluation on scalability uses the Greedy Policy as baseline.

Hyper-Parameter Search WFA relies on a look-out window for past requests, with larger win-
dows potentially leading to better performance. However, computational costs rise significantly for
larger windows. Our affordable maximum window size for the WFA is set at 100, taking approxi-
mately 3 hours for a single episode and 30 hours for all episodes in a single EM problem instance.
Meanwhile, training a generalist GCN DQN for grid graphs up to size 100 takes 16 hours. For the
Generalist GCN DQN, key hyper-parameters include temporal discount (0.99), GCN layer parame-
ters (12 layers, 128 hidden channels), and learning rate (0.001). Adjusting the temporal discount to
0.95 improves results for tree topology, while varying hidden channels, layer numbers and learning
rate worsens results for all topologies. Also, the MLP applied to the last convolutional layer in the
generalist model has hyper-parameters set at 7 layers and 32 hidden channels. Tuning these param-
eters impacts performance minimally. In the case of MLP DQN, we scale the number of parameters
with graph size, maintaining parity with benchmarks and tuning temporal discount and learning rate.

Hardware and Software We performed all experiments on a computer with an AMD EPYC 7763
64-core CPU and 1 TiB or RAM. We did not utilize a GPU for either training or evaluation due to
the relatively small size of our neural networks. We implemented all neural networks using PyTorch.
We implemented WFA following the most common approach, by casting it as a network flow prob-
lem Bertsimas et al. (2019b), and we used the NetworkX library to solve this problem, which is
based on the network simplex algorithm (one of the widely used and highly efficient methods for
solving the Minimum Cost Maximum Flow problem Kiraly & Kovacs (2012)).

Inference Times To compare the inference times of the various approaches, we evaluated all of
them on the real-world EM graph (72 nodes). For 10 episodes of 4,000 steps (40,000 steps in total),
GCN DQN took 198.4 seconds, MLP DQN took 170.5 seconds, Greedy took 9.1 seconds, Balance
took 18.6 seconds, and Harmonic took 69.0 seconds. Since all of these running times are below 0.01
seconds per decision, they can be considered negligible for most practical applications. However,
WFA took approximately 30 hours in total, which is a notable disadvantage.

Number of Parameters Note that the number of parameters in the MLP DQN architecture scales
with the graph size, as the dimensionality of its input and output depends on the number of nodes n.
For example, it has 13,608 parameters for n = 9 nodes and over 1.5 million for n = 100 nodes.
On the other hand, the GCN architecture has a constant number of parameters, 228,866 in our
experiments, regardless of the graph size.

4.4 NUMERICAL RESULTS

Comparison of Policies As shown by Figure 2 and Table 1, MLP DQN initially performs well, but
its performance significantly deteriorates with increasing graph size. Harmonic and Balance policies
consistently underperform, while the Greedy policy shows competitiveness in specific instances
but falls short of achieving the best performance. Notably, the Generalist GCN DQN not only
outperforms all baseline policies, but it also surpasses a GCN DQN trained specifically for the given

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Travel Costs

Type Size n Harmonic Balance Greedy WFA MLP DQN GCN DQN Generalist
GCN DQN

EM 74 3.01 ± 0.04 1.79 ± 0.02 1.45 ± 0.02 1.39 ± 0.01 2.08 ± 0.03 1.32 ± 0.01 1.33 ± 0.02
SF 24 1.93 ± 0.02 1.48 ± 0.02 1.25 ± 0.00 1.25 ± 0.01 1.24 ± 0.01 1.22 ± 0.01 1.20 ± 0.01

G
ri

d
(G

R
E

)

9 1.42 ± 0.03 1.32 ± 0.01 1.24 ± 0.05 1.21 ± 0.02 1.27 ± 0.07 1.25 ± 0.05 1.26 ± 0.05
16 1.75 ± 0.04 1.47 ± 0.03 1.31 ± 0.03 1.29 ± 0.02 1.30 ± 0.03 1.25 ± 0.05 1.23 ± 0.03
25 2.01 ± 0.03 1.55 ± 0.02 1.24 ± 0.02 1.24 ± 0.01 1.25 ± 0.03 1.19 ± 0.02 1.17 ± 0.01
36 2.40 ± 0.08 1.63 ± 0.02 1.33 ± 0.03 1.29 ± 0.02 1.36 ± 0.07 1.24 ± 0.02 1.20 ± 0.02
49 2.73 ± 0.06 1.69 ± 0.03 1.37 ± 0.03 1.33 ± 0.02 1.48 ± 0.07 1.32 ± 0.03 1.29 ± 0.01
64 3.13 ± 0.05 1.71 ± 0.03 1.45 ± 0.03 1.35 ± 0.02 1.71 ± 0.11 1.29 ± 0.02 1.29 ± 0.02
81 3.45 ± 0.07 1.73 ± 0.03 1.53 ± 0.04 1.39 ± 0.02 2.15 ± 0.12 1.36 ± 0.02 1.29 ± 0.01
100 3.79 ± 0.06 1.75 ± 0.03 1.59 ± 0.04 1.37 ± 0.02 3.18 ± 0.36 1.32 ± 0.03 1.30 ± 0.02
1024 - - 1.45 ± 0.02 - - - 1.34 ± 0.02

R
an

do
m

tr
ee

9 1.50 ± 0.06 1.38 ± 0.02 1.17 ± 0.09 1.21 ± 0.07 1.21 ± 0.14 1.15 ± 0.06 1.16 ± 0.09
16 1.76 ± 0.07 1.53 ± 0.02 1.27 ± 0.05 1.31 ± 0.03 1.28 ± 0.03 1.22 ± 0.04 1.23 ± 0.04
25 1.94 ± 0.06 1.59 ± 0.03 1.27 ± 0.03 1.33 ± 0.03 1.34 ± 0.04 1.27 ± 0.05 1.24 ± 0.02
36 2.28 ± 0.08 1.71 ± 0.03 1.36 ± 0.04 1.39 ± 0.02 1.42 ± 0.04 1.30 ± 0.03 1.29 ± 0.03
49 2.56 ± 0.14 1.81 ± 0.04 1.36 ± 0.04 1.41 ± 0.03 1.66 ± 0.11 1.35 ± 0.04 1.34 ± 0.03
64 2.89 ± 0.17 1.87 ± 0.04 1.36 ± 0.04 1.42 ± 0.04 1.81 ± 0.12 1.34 ± 0.04 1.31 ± 0.02
81 3.13 ± 0.17 1.92 ± 0.03 1.38 ± 0.03 1.45 ± 0.03 2.37 ± 0.20 1.36 ± 0.06 1.32 ± 0.03
100 3.35 ± 0.17 1.96 ± 0.03 1.39 ± 0.03 1.46 ± 0.04 3.65 ± 0.27 1.43 ± 0.14 1.33 ± 0.02
1024 - - 1.41 ± 0.02 - - - 1.39 ± 0.02

9 16 25 36 49 64 81 100 1024
Graph Size

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

Re
la

tiv
e

Co
st

Policy
Greedy
GCN DQN
Generalist GCN DQN
MLP DQN
Balance
Harmonic
WFA

(a) Random tree

9 16 25 36 49 64 81 100 1024
Graph Size

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

Re
la

tiv
e

Co
st

Policy
Greedy
GCN DQN
Generalist GCN DQN
MLP DQN
Balance
Harmonic
WFA

(b) Grid (GRE)

Figure 2: Episodic travel cost with various policies, expressed relative to the offline episodic cost
(lower is better). The generalist GCN DQN approach outperforms all baselines comprehensively.

problem instance. The success of the Generalist GCN DQN may stem from its exposure to diverse
graphs during training, enabling effective generalization.

Zero-Shot Robustness to Distribution Shift in Arrival Rates Figure 3 demonstrates that our
proposed generalist policy is robust to significant changes in the distribution of arrival rates: a gen-
eralist policy that was trained on problem instances with arrival rates drawn from an exponential
distribution performs well on problem instances with arrival rates drawn from lognormal, Poisson,
and Bernoulli distributions, matching the performance of policies that were trained with these spe-
cific distributions.

Ablation Study We present an ablation study of our architecture in Appendix D, demonstrating
the advantage of the global-local decomposition of the action-value function.

4.5 LIMITATIONS

Our focus is on the fundamental formulation of the online k-server problem, demonstrating strong
performance and transferability for our approach. While we believe that our approach is applicable
to specific practical problems (e.g., emergency-response dispatch), this will have to be confirmed by
future experiments in practical environments based on complex simulations.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

36 64 100
Graph Size

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Re
la

tiv
e

Co
st

Lognormal Grid
Policy

GCN DQN
Generalist GCN DQN

(a) Lognormal distribution

36 64 100
Graph Size

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Re
la

tiv
e

Co
st

Poisson Grid
Policy

GCN DQN
Generalist GCN DQN

(b) Poisson distribution

36 64 100
Graph Size

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Re
la

tiv
e

Co
st

Bernoulli Grid
Policy

GCN DQN
Generalist GCN DQN

(c) Bernoulli distribution

Figure 3: Generalist policy (blue) trained on problem instances with arrival probabilities drawn from
an exponential distribution, evaluated on instances with arrival probabilities drawn from lognormal,
Poisson, and Bernoulli distributions. The generalist policy is compared to specialist policies (red)
trained with lognormal, Poisson, and Bernoulli distributions. All experiments are performed on
GRE grid graphs; episodic travel costs are expressed relative to offline cost (lower is better). The
results demonstrate that the generalist GCN DQN policy is robust to shifts in the distribution of
arrival rates.

5 RELATED WORK

The k-server problem is one of the most widely studied online optimization problems in the last
three decades, and providing a comprehensive summary of prior work is beyond the scope of this
paper. We refer readers to prior work by Bertsimas et al. (2019b) and Koutsoupias (2009), who
provide excellent overviews of related work in this domain. We present a relatively short account
of prior work here (largely inspired by the detailed account given by Koutsoupias (2009)). The k-
server problem was first introduced by Manasse et al. (1988; 1990). As Koutsoupias (2009) points
out, the problem setting was proposed at a time when several important developments happened in
the context of online algorithms. In particular, Sleator & Tarjan (1985) introduced the notion of
competitive analysis (also known as “amortized efficiency”), a principled paradigm for evaluating
online algorithms. This framework marked a rapid development in the field of online algorithms,
including the introduction of the k-server problem (Manasse et al., 1988). The problem has remained
a popular choice among computer scientists over the last three decades as it presents a rather simple
setting that serves as an abstraction for many practical problems (e.g., emergency resource allocation
and caching (Bertsimas et al., 2019b) while presenting several algorithmic challenges. Much of
prior work has focused on designing online algorithms, evaluating their competitive ratios, and
generalizing the competitive ratios of online algorithms (Chrobak et al., 1991; Chrobak & Larmore,
1991; Grove, 1991). We present a more detailed description of offline and online versions of the k-
server problem and prior work (albeit limited) on deep reinforcement learning to solve the k-server
problem in Appendix A.

6 CONCLUSION

Despite the fundamental nature and significance of the k-server problem, there is extremely limited
prior work on solving this problem using reinforcement learning, even though learning has obvious
advantages (e.g., evaluation of WFA on a few instances took significantly longer than training our
DRL policies). We hypothesize that this gap is due to the difficulty of handling the large and combi-
natorial state and action spaces of the k-server environment. We addressed this gap by introducing
a novel approach that decomposes action-values into a global value and local advantage, estimated
from a shared graph convolutional network. Not only did this approach scale to larger graphs than
any prior learning-based approach, but we also demonstrated that the resulting generalist policies
can be transferred to other instances with no further training. In fact, generalist policies outper-
formed graph specific ones—an interesting phenomenon, which we explain with generalist policies
being forced to generalize more effectively during training.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Noga Alon, Richard M Karp, David Peleg, and Douglas West. A graph-theoretic game and its
application to the k-server problem. SIAM Journal on Computing, 24(1):78–100, 1995.

Yair Bartal and Eddie Grove. The harmonic k-server algorithm is competitive. J. ACM, 47(1):1–15,
jan 2000. ISSN 0004-5411. doi: 10.1145/331605.331606. URL https://doi.org/10.
1145/331605.331606.

Dimitris Bertsimas, Patrick Jaillet, and Nikita Korolko. The k-server problem via a mod-
ern optimization lens. European Journal of Operational Research, 276(1):65–78, 2019a.
ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2018.12.044. URL https://www.
sciencedirect.com/science/article/pii/S0377221718311184.

Dimitris Bertsimas, Patrick Jaillet, and Nikita Korolko. The k-server problem via a modern opti-
mization lens. European Journal of Operational Research, 276(1):65–78, 2019b.

Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. 1998. URL
https://api.semanticscholar.org/CorpusID:5431684.

Marek Chrobak and Lawrence L Larmore. An optimal on-line algorithm for k servers on trees.
SIAM Journal on Computing, 20(1):144–148, 1991.

Marek Chrobak, H Karloof, Tom Payne, and Sundar Vishwnathan. New results on server problems.
SIAM Journal on Discrete Mathematics, 4(2):172–181, 1991.

Sina Dehghani, Soheil Ehsani, MohammadTaghi Hajiaghayi, Vahid Liaghat, and Saeed Seddighin.
Stochastic k-server: How should Uber work? arXiv preprint arXiv:1705.05755, 2017.

Eyal Even-Dar, Sham M Kakade, and Yishay Mansour. Online Markov decision processes. Mathe-
matics of Operations Research, 34(3):726–736, 2009.

Edward F Grove. The harmonic online k-server algorithm is competitive. In Proceedings of the
twenty-third annual ACM symposium on Theory of computing, pp. 260–266, 1991.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 770–778. IEEE Computer Society, 2016. doi:
10.1109/CVPR.2016.90. URL https://doi.org/10.1109/CVPR.2016.90.

Manoel Leandro L Junior, AD Doria Neto, and Jorge D Melo. The k-server problem: a reinforce-
ment learning approach. In Proceedings. 2005 IEEE International Joint Conference on Neural
Networks, 2005., volume 2, pp. 798–802. IEEE, 2005.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl.

Zoltán Kiraly and Péter Kovacs. Efficient implementations of minimum-cost flow algorithms. Acta
Universitatis Sapientiae, 4(1):67–118, 2012.

Elias Koutsoupias. The k-server problem. Computer Science Review, 3(2):105–118, 2009.

Ramon Augusto Sousa Lins, Adrião Duarte Neto Dória, and Jorge Dantas de Melo. Deep reinforce-
ment learning applied to the k-server problem. Expert Systems with Applications, 135:212–218,
2019a.

Ramon Augusto Sousa Lins, Adrião Duarte Neto Dória, and Jorge Dantas de Melo. Deep rein-
forcement learning applied to the k-server problem. Expert Systems with Applications, 135:212–
218, 2019b. ISSN 0957-4174. doi: https://doi.org/10.1016/j.eswa.2019.06.015. URL https:
//www.sciencedirect.com/science/article/pii/S0957417419304154.

Mark Manasse, Lyle McGeoch, and Daniel Sleator. Competitive algorithms for on-line problems.
In Proceedings of the 20th Annual ACM Symposium on Theory of Computing, pp. 322–333, 1988.

11

https://doi.org/10.1145/331605.331606
https://doi.org/10.1145/331605.331606
https://www.sciencedirect.com/science/article/pii/S0377221718311184
https://www.sciencedirect.com/science/article/pii/S0377221718311184
https://api.semanticscholar.org/CorpusID:5431684
https://doi.org/10.1109/CVPR.2016.90
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://www.sciencedirect.com/science/article/pii/S0957417419304154
https://www.sciencedirect.com/science/article/pii/S0957417419304154

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Mark Manasse, Lyle McGeoch, and Daniel Sleator. Competitive algorithms for server problems.
Journal of Algorithms, 11(2):208–230, 1990.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning, 2013.

Ayan Mukhopadhyay, Chao Zhang, Yevgeniy Vorobeychik, Milind Tambe, Kenneth Pence, and
Paul Speer. Optimal allocation of police patrol resources using a continuous-time crime model.
In Decision and Game Theory for Security: 7th International Conference, GameSec 2016, New
York, NY, USA, November 2-4, 2016, Proceedings 7, pp. 139–158. Springer, 2016.

Wei Peng, Guohua Dong, Kun Yang, Jinshu Su, and Jun Wu. A random road network model for
mobility modeling in mobile delay-tolerant networks. In 8th International Conference on Mobile
Ad-hoc and Sensor Networks, MSN 2012, Chengdu, China, December 14-16, 2012, pp. 140–146.
IEEE Computer Society, 2012. doi: 10.1109/MSN.2012.25. URL https://doi.org/10.
1109/MSN.2012.25.

Wei Peng, Guohua Dong, Kun Yang, and Jinshu Su. A random road network model and its effects
on topological characteristics of mobile delay-tolerant networks. IEEE Transactions on Mobile
Computing, 13(12):2706–2718, 2014. doi: 10.1109/TMC.2013.66. URL https://doi.org/
10.1109/TMC.2013.66.

Geoffrey Pettet, Ayan Mukhopadhyay, Mykel J Kochenderfer, and Abhishek Dubey. Hierarchical
planning for resource allocation in emergency response systems. In Proceedings of the ACM/IEEE
12th International Conference on Cyber-Physical Systems, pp. 155–166, 2021.

Caroline Privault and Gerd Finke. k-server problems with bulk requests: an application to tool
switching in manufacturing. Annals of Operations Research, 96(1-4):255–269, 2000.

Prabhakar Raghavan and Marc Snir. Memory versus randomization in on-line algorithms. In Au-
tomata, Languages and Programming: 16th International Colloquium Stresa, Italy, July 11–15,
1989 Proceedings 16, pp. 687–703. Springer, 1989.

Tomislav Rudec, Alfonzo Baumgartner, and Robert Manger. A fast work function algorithm for
solving the k-server problem. Central European Journal of Operations Research, 21:1–19, 01
2009. doi: 10.1007/s10100-011-0222-7.

Daniel D Sleator and Robert E Tarjan. Amortized efficiency of list update and paging rules. Com-
munications of the ACM, 28(2):202–208, 1985.

Transportation Networks for Research Core Team. Transportation networks for research, 2023. URL
https://github.com/bstabler/TransportationNetworks.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the 30th AAAI Conference on Artificial Intelligence, volume 30,
2016.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Duel-
ing network architectures for deep reinforcement learning. In 33nd International Conference on
Machine Learning (ICML), pp. 1995–2003. PMLR, 2016.

12

https://doi.org/10.1109/MSN.2012.25
https://doi.org/10.1109/MSN.2012.25
https://doi.org/10.1109/TMC.2013.66
https://doi.org/10.1109/TMC.2013.66
https://github.com/bstabler/TransportationNetworks

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Table 2: List of Symbols

Symbol Description

k-Server Problem

G = (N , E) graph with set of nodes N and set of edges E
d(u, v) shortest path distance between nodes u and v

n number of nodes (n = |N |)
k number of servers (k ∈ N)
pv probability of a request arising at node v ∈ N
T time horizon (T ∈ N)
σt location of the request at time t (σt ∈ N)
xt
i location of server i at time t (xt

i ∈ N)

Markov Decision Process

S set of states (S ∋ st = (xt, σt))
A set of actions (A = {1, . . . , k})
ρ state transition function (ρ : S ×A× S 7→ R)
r reward function (r(st, a) = d(σt, xt

a))
π policy function (π : S 7→ A)

A EXTENDED DISCUSSION OF RELATED WORK

k-server Problem There are two major types of the k-server problem—the offline version, in
which the set of requests to be served is known beforehand, and the online version, in which the
requests arrive as decisions are made. The offline problem can be reduced to the standard network
flow optimization problem and solved efficiently (Chrobak et al., 1991; Bertsimas et al., 2019b).
The reduction centers around adding a source and a sink to to the existing graph, along with an
additional node for each of the requests, manipulating the weights of the edges to direct the flow
between the source and the sink, and solving a minimal-cost maximal-flow problem problem on the
modified graph (Chrobak et al., 1991). The offline solution can then be used for competitive anal-
ysis of the online problem, where the requests are not known in advance. Many online approaches
have been proposed for solving the k-server problem, and despite the complexity of the problem,
several simple algorithms work reasonably well. For example, a simple greedy algorithm is a de-
terministic approach that always dispatches the server closest to a request for service. Although
non-competitive, such an approach has been noted to work well in several settings (Bertsimas et al.,
2019b). As opposed to deterministic approaches, there are several randomized algorithms that work
well; e.g., HARMONIC is a competitive algorithm that selects servers with probability inversely
proportional to the distance from the request (Raghavan & Snir, 1989). In an orthogonal categoriza-
tion of the problem type, Dehghani et al. (2017) introduced the stochastic k-server problem, where
the requests are drawn from a (potentially time-varying) probability distribution; this setting mim-
ics many real-world problems such as emergency response and micro-transit optimization, where a
distribution over the arrival of requests can be approximated using historical data.

Deep Reinforcement Learning The sequential nature of the k-server problem naturally leads to
it being modeled as a stochastic control process. Surprisingly, this modeling paradigm has been
under-explored in prior work. The earliest effort was made by Junior et al. (2005), who used rein-
forcement learning (Q-learning) to compute the optimal decisions for small problem instances. Lins
et al. (2019a) transformed the k-server problem to a visual task problem and used reinforcement
learning, but neither approach can scale to large problem instances. Our work presents the first
decision-theoretic approach to model the k-server problem that can scale to large problem instances.
Moreover, we exploit the information embedded in the local structure of graphs to learn generalist
policies that perform well even when the graph topology or the arrival distribution of the requests
changes (as long as the change is captured during training of the policy). We point out that such
generalist policies are particularly desirable in practice. Consider emergency response as an exam-
ple, where the underlying graph denotes the road network of a city. Roads might get closed or be
affected by traffic congestion, thereby changing the underlying network Pettet et al. (2021). While

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 3: Travel Costs with Unknown Arrival Probabilities

Type Size n Greedy WFA GCN DQN Generalist GCN DQN

EM 74 1.44 ± 0.02 1.39 ± 0.01 1.35 ± 0.02 1.34 ± 0.02
SF 24 1.28 ± 0.01 1.28 ± 0.01 1.22 ± 0.01 1.22 ± 0.01

G
ri

d
(G

R
E

)
9 1.24 ± 0.05 1.21 ± 0.02 1.26 ± 0.05 1.26 ± 0.05
16 1.31 ± 0.03 1.29 ± 0.02 1.25 ± 0.05 1.23 ± 0.03
25 1.24 ± 0.02 1.25 ± 0.01 1.19 ± 0.02 1.17 ± 0.01
36 1.33 ± 0.03 1.29 ± 0.02 1.24 ± 0.02 1.21 ± 0.02
49 1.37 ± 0.03 1.33 ± 0.02 1.32 ± 0.03 1.29 ± 0.01
64 1.45 ± 0.03 1.35 ± 0.01 1.29 ± 0.02 1.30 ± 0.02
81 1.53 ± 0.04 1.39 ± 0.01 1.37 ± 0.03 1.29 ± 0.01
100 1.59 ± 0.04 1.38 ± 0.02 1.32 ± 0.02 1.31 ± 0.02

R
an

do
m

tr
ee

9 1.17 ± 0.09 1.21 ± 0.07 1.15 ± 0.06 1.16 ± 0.09
16 1.27 ± 0.05 1.31 ± 0.03 1.23 ± 0.04 1.23 ± 0.04
25 1.27 ± 0.03 1.33 ± 0.03 1.28 ± 0.05 1.24 ± 0.03
36 1.36 ± 0.04 1.39 ± 0.02 1.31 ± 0.03 1.29 ± 0.03
49 1.36 ± 0.04 1.41 ± 0.03 1.36 ± 0.04 1.34 ± 0.03
64 1.36 ± 0.04 1.42 ± 0.04 1.34 ± 0.04 1.31 ± 0.02
81 1.38 ± 0.03 1.45 ± 0.03 1.36 ± 0.06 1.33 ± 0.02
100 1.39 ± 0.03 1.46 ± 0.04 1.44 ± 0.14 1.34 ± 0.03

existing approaches will require time for retraining (a luxury not available in time-critical domains
such as emergency response), a generalist approach can easily adapt to the changed conditions.

B NUMERICAL EVALUATION WITH UNKNOWN ARRIVAL PROBABILITIES

Recognizing that the WFA requires substantial exposure to requests before demonstrating optimal
performance Bertsimas et al. (2019a), we implement a fair comparison strategy by introducing a
burn-in period of 100 requests for the WFA, all arriving under the same distribution, and present
these results in the main text. However, acknowledging potential reader skepticism about providing
an unfair advantage to other methods, as they possess information about arrival probabilities from
the first request, we address this concern by conducting additional experiments using the Estimated
Arrival Probabilities Approach.

Estimated Arrival Probabilities Approach: This approach involves comparing other methods with
the WFA while incorporating estimated arrival probabilities. Initially, precise information about the
arrival probabilities of requests originating from specific nodes is unavailable. The arrival probabil-
ities for the first request from all nodes are assumed to be zero. As requests are processed, these
probabilities are iteratively updated. This iterative process continues as more data is collected.

The estimated arrival probability at time t for a request originating from node j can be denoted as
p̂tj . The iterative update process for the estimated arrival probabilities can be expressed as follows:

p̂tj =

∑t
i=1 I(σ

i = j)

t

where I(σi = j) is an indicator function that equals 1 if the i-th request originated from node j, and
0 otherwise. This formula updates the estimated arrival probability based on the history of observed
requests.

This iterative update continues as more requests are processed over time, providing a dynamic es-
timation of arrival probabilities and eventually converging to the real probability distribution of a
particular problem instance. Then, using the same method described in the methodology part, we
transform these probabilities to arrival rates.

B.1 NUMERICAL RESULTS

In this section, we compare the WFA against GCN DQN and Generalist GCN DQN, as the latter
approaches consider request arrival probabilities during estimation. Additionally, we include the

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

9 16 25 36 49 64 81 100
Graph Size

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Re
la

tiv
e

Re
wa

rd

Policy
Greedy
GCN DQN
Generalist GCN DQN
WFA

(a) Random tree

9 16 25 36 49 64 81 100
Graph Size

1.2

1.3

1.4

1.5

1.6

Re
la

tiv
e

Re
wa

rd

Policy
Greedy
GCN DQN
Generalist GCN DQN
WFA

(b) Grid (GRE)

Figure 4: Episodic travel cost of various policies with unknown arrival probabilities.

Table 4: Comparison of MLP DQN and Lins et al.’s Approach

Type Size |V| MLP DQN Lins et al. (2019b)

Grid
16 1.30 ± 0.03 1.58 ± 0.17
49 1.48 ± 0.07 2.81 ± 0.37
100 3.18 ± 0.36 6.74 ± 0.79

Tree
16 1.28 ± 0.03 1.37 ± 0.17
49 1.66 ± 0.11 2.23 ± 0.35
100 3.65 ± 0.27 3.64 ± 0.39

Greedy policy. The results, shown in Figure 4, once again highlight the superior performance of
Generalist GCN DQN, outperforming GCN DQN.

C EXTENDED DESCRIPTION OF BASELINE POLICIES

We compare our proposed approach against several baselines, which represent a wide spectrum of
strategies and algorithms for addressing the k-server problem, ranging from simple heuristics to
RL-based approaches.

Greedy Policy: The greedy policy is a widely used benchmark in the k-server problem the idea of
which is to send the nearest available server to the request Bertsimas et al. (2019b). To elaborate,
at time t, it selects the server action a that minimizes the shortest path distance between the current
request location σt and the location of server a at time t, xt

a:

πgreedy(s
t) = argmin

a∈A
d(σt, xt

a) (7)

This policy aims to minimize the travel distance between the servers and the current request, making
a locally optimal decision at each time step.

MLP DQN: Our MLP DQN baseline is similar to the approach proposed by Lins et al. (2019b) since
both are trained using deep Q-learning; however, our MLP DQN baseline is built on a more capable
architecture. Lins et al. (2019b) propose an MLP with only 1 hidden layer having 64 to 1024 neu-
rons with sigmoid activation. We performed a hyperparameter search to find a better architecture;
in our experiments, we use an MLP with 2 hidden layers having 12× n neurons with ReLU activa-
tion. Further, we represent the state using two n-element vectors, 1{v ∈x} and 1{v=σ} (i.e., 1-hot
encoding the server and request locations), while Lins et al. (2019b) propose to represent the state
using a single n-element vector: 1{v ∈x} − 0.5× 1{v=σ}. Table 4 compares the MLP DQN policy
to the approach proposed by Lins et al. (2019b) in term of the total episodic travel time (lower is
better) on grid and tree graphs of various sizes. Both were trained and evaluated on the same sets
of graphs. The results demonstrate the MLP DQN either significnatly outperforms or matches the
performnance of Lins et al. (2019b).

HARMONIC: The Harmonic is an algorithm that for k ≥ 2 for the k-server problem is O(2k log k)-
competitive against an adaptive online adversary Bartal & Grove (2000). It works by deciding which

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

server should handle a new request based on their distances from the request location. Servers
closer to the request location have a higher chance of being chosen. The algorithm calculates the
probability for each server to be selected, and this probability is influenced by the inverse of their
distance from the request location. The normalization factor helps ensure that these probabilities are
correctly balanced.

The Harmonic policy, denoted by πHARMONIC, can be expressed as:

πHARMONIC(s
t) = argmax

a∈A

1

d(σt, xt
a)

In words, the Harmonic policy at time t selects the server action a that maximizes the inverse of
the distance from the current request location σt to the location of server a at time t, xt

a. This
probability-based approach aims to favor servers that are closer to the request location, with the
normalization factor ensuring correct balance of probabilities.

BALANCE: BALANCE is a deterministic algorithm aimed at maintaining roughly equal total dis-
tances traveled by all servers. The interest in using the BALANCE algorithm as a benchmark stems
from its k-competitive nature, making it a reasonable choice for evaluating the performance of algo-
rithms and its simplicity making it a suitable baseline for comparison against more complex algo-
rithms Bartal & Grove (2000).

The algorithm works by selecting the server action a that minimizes the combined distance traveled
from previous requests and the distance to the new request location. Mathematically, this can be
expressed as:

πBALANCE(s
t) = argmin

a∈A

t−1∑
j=1

d(σj , xj
a) + d(σt, xt

a)

In words, the BALANCE policy at time t selects the server action a that minimizes the sum of
distances traveled by server a for all previous requests up to time t − 1 and the distance from the
current request location σt to the location of server a at time t, xt

a. This algorithm aims to distribute
the workload among servers, maintaining roughly equal total distances traveled.

WFA: The Work Function Algorithm (WFA) Borodin & El-Yaniv (1998) is a server allocation opti-
mization approach for a sequence of requests, modeled as a flow optimization problem. We use the
WFA because it stands out as one of the most important online algorithms for the K-server prob-
lem, addressing both theoretical competitiveness and practical performance concerns Rudec et al.
(2009). Distinguished by its utilization of comprehensive historical data, the WFA contrasts with
simpler online methods in making informed online decisions Bertsimas et al. (2019a).

The algorithm constructs a directed graph, where nodes represent sources (e.g., initial server loca-
tions, requests) and sinks (e.g., the final server configuration, the end of the process). Edges in the
graph are assigned capacities and weights to depict the flow of resources and associated costs. The
algorithm seeks to find the optimal flow through the graph, minimizing the overall cost by balancing
offline and online optimization terms.

Since there is a bottleneck with the WFA in the sense that it needs to be subjected to a substantial
number of requests before it exhibits optimal performance, we have to establish a fair comparison
with it. Therefore, the comparison between the WFA and alternative methods commences after
the WFA has undergone exposure to a predefined number of requests (100 requests) that arrive
according to the same distribution. The established burn-in period ensures that the comparison
accurately reflects the WFA’s capabilities, allowing it adequate exposure for effective evaluation.
This adaptation is crucial for the WFA because real-time decisions are made based on the current
state of the system and incoming requests. While acknowledging that some primary approaches
may have an advantage by knowing arrival probabilities from the first request, we further explore
this scenario in Appendix B, comparing other methods with the WFA while incorporating estimated
arrival rates.

D ABLATION STUDY

There are three major components of our approach: the graph convolutional layers, the global es-
timator Qglobal, and the local estimator Qlocal. The convolutional layer cannot be omitted since the

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

25000 50000 75000 100000 125000 150000 175000 200000
Steps

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

Es
tim

at
e

Training Curve for Grid with 36 Nodes

Without Qglobal Grid 36 Mean Estimate
Without Qglobal Grid 36 95% CI
With Qglobal Grid 36 Mean Estimate
With Qglobal Grid 36 95% CI

(a) Grid GRE with 36 Nodes

25000 50000 75000 100000 125000 150000 175000 200000
Steps

3.0

2.5

2.0

1.5

1.0

Es
tim

at
e

Training Curve for Grid with 64 Nodes
Without Qglobal Grid 64 Mean Estimate
Without Qglobal Grid 64 95% CI
With Qglobal Grid 64 Mean Estimate
With Qglobal Grid 64 95% CI

(b) Grid GRE with 64 Nodes

25000 50000 75000 100000 125000 150000 175000 200000
Steps

4.0

3.5

3.0

2.5

2.0

Es
tim

at
e

Training Curve for Random Tree with 36 Nodes

Without Qglobal Random Tree 36 Mean Estimate
Without Qglobal Random Tree 36 95% CI
With Qglobal Random Tree 36 Mean Estimate
With Qglobal Random Tree 36 95% CI

(c) Random Tree with 36 Nodes

25000 50000 75000 100000 125000 150000 175000 200000
Steps

4.0

3.5

3.0

2.5

2.0

1.5

Es
tim

at
e

Training Curve for Random Tree with 64 Nodes

Without Qglobal Random Tree 64 Mean Estimate
Without Qglobal Random Tree 64 95% CI
With Qglobal Random Tree 64 Mean Estimate
With Qglobal Random Tree 64 95% CI

(d) Random Tree with 64 Nodes

Figure 5: Learning curves for our proposed approach (with Qglobal) and its ablation (without Qglobal).
Each figure shows learning curves for a particular problem instance (i.e., particular topology and
arrival rates); vertical axis is the travel cost multiple by minus one (higher values are better). For
each problem instance, we trained both the proposed approach and its ablation multiple times with
random weight initialization: solid lines represent the averages of these runs, while shaded areas
represent their 95% confidence intervals. The results demonstrate the importance of Qglobal: without
it, learning is significantly slower and often converges to suboptimal policies.

global-local decomposition would then be impossible, and there would be nothing left of our pro-
posed approach. The local estimator Qlocal cannot be omitted since this would make the action-value
estimates Q(s, a) independent of the action a. However, it is possible to omit the global estimator
Qglobal. To demonstrate the importance of including the global estimator Qglobal in our approach,
we conducted an ablation study. Figure 5 shows learning curves for out proposed approach and its
ablation (higher values are better). Our results clearly show that the global estimator leads to faster
convergence and better policies.

17

	Introduction
	k-Server Problem on Graphs
	Problem Setting
	Model

	Proposed Computational Approach
	Background
	Decomposition of Action-Value
	Representation of Problem Instance and State
	Q-Network Architecture for Action-Value Decomposition

	Numerical Evaluation
	Baseline Policies
	Problem Instances
	Experimental Setup
	Numerical Results
	Limitations

	Related Work
	Conclusion
	Extended Discussion of Related Work
	Numerical Evaluation with Unknown Arrival Probabilities
	Numerical Results

	Extended Description of Baseline Policies
	Ablation Study

