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ABSTRACT

We present LLM to Tokenizer, a new distrilling method that preserves the prior
knowledge from LLMs in the form of tokenizer, diverging from neural network
based methods. This simple, intuitive method allows strong performance even
only using one-hot encoding and a simgle-layer logistic regression. Based on the
generated tokenizer, without any pre-training, surpressing GPT-2 with just 0.01%
parameters. On event recognition tasks, the L2T method achieves an F1 score
of 0.408 while using only 0.1% of the parameters compared to previous models.
We also observed that stronger foundation models lead to improved tokenizer per-
formance. And long tokenizers can harm the performance since the capacity of
single-layer logistic regression is limited. This demonstrates a zero-shot capabil-
ity of LLMs–through training on internet-scale corpora, they can recognize words
that are important for specific tasks. We released all models, codes and the dataset
to promote the furture exploration.

1 INTRODUCTION

Large language models (LLMs) have demonstrated unprecedented capabilities, leveraging vast
knowledge acquired during pre-training to achieve state-of-the-art performance on a wide range of
tasks (Brown et al., 2020; Touvron et al., 2023). Despite their success, their practical deployment is
often hindered by immense computational and memory requirements, making inference costly and
fine-tuning prohibitively resource-intensive (Chowdhery et al., 2023). In sight of this, knowledge
distillation has emerged as a prominent technique to compress these massive models into smaller,
more efficient counterparts (Guo et al., 2021). Broadly, distillation approaches fall into two cate-
gories: (1) response-based methods, which train a student to mimic the final output probabilities of
the teacher LLM, and (2) feature-based methods that align the student’s intermediate hidden states
with those of the teacher (Sanh et al., 2019; Jiao et al., 2019).

In this paper, we aim to explore an entirely new paradigm that diverges from these conventional neu-
ral network-based distillation methods. Concretely, current distillation techniques typically follow
the teacher-student paradigm (Hinton et al., 2015). The basic idea is to first select a smaller neural
network architecture for the student model, and then train it to minimize a loss function that mea-
sures the divergence between its predictions and the teacher LLM’s outputs. The common objective
for this process is to make the student model, S, effectively replicate the behavior of the teacher,
T, on a given dataset. Additionally, a standard cross-entropy loss against the ground-truth labels is
often incorporated, acting as a constraint to ensure task-specific accuracy.

Despite their success, the current paradigm faces a critical limitation: it distills the LLM’s knowl-
edge into another, albeit smaller, neural network. This process inherently suffers from a loss of
fidelity, as the student model’s limited capacity struggles to fully capture the nuanced knowledge
embedded within the teacher LLM’s billions of parameters. This capacity mismatch often leads to
a significant performance drop. Worse still, the student model still requires a costly and complex
training phase, and its architecture remains a ”black box,” making the transferred knowledge dif-
ficult to interpret. The fundamental reliance on a neural network student curtails the potential for
creating truly lightweight and efficient models.

To address these flaws, we instead propose distilling the LLM’s knowledge not into a network’s
weights, but into a symbolic and interpretable representation: a task-specific tokenizer. We introduce
a new paradigm where the LLM’s role is not to teach a smaller model what to predict, but rather
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to identify what features are important for a given task. Our method leverages the LLM’s vast
prior knowledge to generate a highly compact and optimized vocabulary of tokens that are most
salient for the downstream task. By using this generated tokenizer, we can represent input text in a
sparse and highly informative way. This allows an extremely simple model, such as a single-layer
logistic regression with one-hot encoding, to achieve surprisingly strong performance without any
pre-training. This approach effectively transfers the LLM’s understanding of task-relevant semantics
into the tokenization step itself, radically simplifying the downstream classifier. In a nutshell, we
term the method as LLM2Token (L2T), a simple yet effective approach that distills LLMs into task-
specific tokenizers.

To validate the effectiveness of our method, we conducted extensive experiments on event recog-
nition tasks. The results show that, compared to previous models, L2T can achieve a competitive
F1 score of 0.408 while using only 1% of the parameters and surprisingly surpassing the perfor-
mance of GPT-3.5. This is achieved using just a single-layer logistic regression model that requires
no pre-training. Furthermore, we empirically verified that stronger foundation models yield better-
performing tokenizers, demonstrating a novel zero-shot capability of LLMs: their ability to discern
task-critical lexical features from their vast pre-training. This highlights L2T’s crucial role in creat-
ing efficient and interpretable models, enabling broader applications and future advancements in the
field. All models and codes have been released to promote further exploration.

2 PRELIMINARY

2.1 AUTOREGRESSIVE LANGUAGE MODEL

An autoregressive large language model (LLM) generates sequences by predicting subsequent to-
kens x conditioned on previously generated tokens. The internal representation of token x at a given
layer l, represented by the hidden state hl, is computed through the following formulation:

hl = hl−1 + al +ml, ml = W l
out, σ(W

l
in, γ(h

l−1 + al), ), (1)

Here, al corresponds to the attention block’s output while ml denotes the contribution from the feed-
forward network (FFN) layer at depth l. The FFN transformation involves two weight matrices:
W l

in for the input projection and W l
out for the output projection. The function σ represents the

non-linear activation operation, and γ indicates layer normalization applied to stabilize the hidden
representations. In this formulation, consistent with the approach in Meng et al. (2022), we present
the attention and FFN components as parallel computations rather than sequential operations, which
provides a clearer view of their individual contributions to the final hidden state.

It is worth noting that W l
out within FFN layers is often interpreted as a linear associative memory,

functioning as key-value storage for information retrieval (Geva et al., 2021). Specifically, if the
knowledge stored in LLMs is formalized as (s, r, o) — representing subject s, relation r, and object
o (e.g., s = “The latest Olympic Game”, r = “was held in”, o = “Paris”) — W l

out associates a set
of input keys k encoding (s, r) with corresponding values v encoding (o). That is,

ml︸︷︷︸
v

= W l
out σ(W

l
in γ(h

l−1 + al) )︸ ︷︷ ︸
k

.
(2)

This interpretation has inspired most model editing methods to modify the FFN layers for knowledge
updates (Hase et al., 2023; Li et al., 2024; Hu et al., 2024). For simplicity, we use W to refer to
W l

out in the following sections.

2.2 KNOWLEDGE DISTILLATION

Knowledge distillation is a model compression technique aimed at transferring knowledge from
a large, complex model (the ”teacher,” T ) to a smaller, more efficient model (the ”student,” S)
(Hinton et al., 2015). The core idea is to train the student to mimic the teacher’s behavior. Instead
of only learning from hard labels (e.g., one-hot vectors), the student is also trained on the ”soft”
probability distributions produced by the teacher. These soft targets contain richer information about
the relationships between classes.
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The standard distillation objective combines a distillation loss with a task-specific loss:

L = αLDistill(σ(zT /τ), σ(zS/τ)) + (1− α)LTask(y, σ(zS)) (3)

where zT and zS are the logits from the teacher and student models, respectively. σ is the softmax
function, τ is a temperature parameter that softens the distributions, y are the ground-truth labels,
and α is a weighting hyperparameter. Conventional methods distill knowledge into another neural
network, which we argue is a fundamental limitation.

2.3 FEATURE SELECTION FOR TEXT CLASSIFICATION

Feature selection is the process of selecting a subset of relevant features (e.g., words, n-grams)
from a high-dimensional vocabulary to build a learning model. Its primary goals are to improve
model performance by removing irrelevant or noisy features, reduce computational complexity, and
enhance model interpretability. Traditional methods for feature selection in NLP can be broadly
categorized as:

• Filter Methods: These methods rank features based on statistical metrics computed from
the data, independent of the classifier. Common metrics include the Chi-squared (χ2) test,
Information Gain, and Term Frequency-Inverse Document Frequency (TF-IDF).

• Embedded Methods: In this approach, feature selection is integrated into the model train-
ing process. A classic example is L1 regularization (Lasso), which adds a penalty propor-
tional to the absolute value of the weights, forcing the weights of less important features to
become exactly zero.

These methods are purely data-driven, relying on the statistical properties of the training corpus. In
contrast, L2T leverages the vast, pre-existing world knowledge encoded within an LLM to perform
feature selection in a zero-shot or few-shot manner.

3 METHOD

We introduce LLM2Token (L2T), a novel knowledge distillation paradigm that distills a large lan-
guage model’s (LLM) knowledge into a task-specific tokenizer rather than a smaller neural network.
This approach fundamentally shifts the complexity from the model architecture to the feature rep-
resentation itself. The process involves two primary stages: (1) leveraging an LLM to generate
a compact and highly informative vocabulary for a specific task, and (2) training a simple, inter-
pretable downstream classifier on the resulting sparse representations. Figure 1 provides a high-level
overview of the L2T workflow.

3.1 STAGE 1: LLM-POWERED TOKENIZER GENERATION

The core innovation of L2T lies in harnessing the extensive prior knowledge of an LLM to perform
zero-shot feature selection. Instead of relying on statistical methods that require a large labeled
dataset to compute feature relevance (e.g., chi-squared or TF-IDF variants), we directly query the
LLM to identify the tokens most salient for the task.

Problem Formulation Given a classification task T with a label set Y (e.g., binary classification,
Y = {0, 1}), our goal is to construct a task-specific vocabulary (tokenizer) VT = {w1, w2, . . . , wk}
of size k. This vocabulary should contain tokens that are maximally discriminative for distinguishing
between the classes in Y .

Prompting Strategy We design a structured prompt to guide the LLM in generating the desired
vocabulary. The prompt is composed of three key components:

• Role and Task Definition: We instruct the LLM to act as an expert in linguistics and data
science. We clearly define the task, including a description of the positive and negative
classes.
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Figure 1: The LLM2Token (L2T) workflow. In Stage 1, a teacher LLM is prompted with the task
description and few-shot examples to generate a ranked list of salient tokens, forming a task-specific
tokenizer (VT ). In Stage 2, input sentences are converted into sparse one-hot vectors using VT ,
which are then used to train an extremely lightweight logistic regression classifier.

• Few-Shot Examples (Optional but Recommended): We provide a small number of rep-
resentative positive and negative examples. This helps to ground the LLM’s understanding
of the task’s nuances and data distribution.

• Output Instruction: We explicitly ask the LLM to generate a ranked list of words and
phrases that are highly indicative of the positive class. The instruction emphasizes the
principle of ”abnormal frequency”—identifying tokens that are disproportionately common
in positive examples compared to general language or negative examples.

A template for our prompting strategy is shown in Figure 2. The LLM’s response, a ranked list of
tokens, is then truncated to the top-k most relevant tokens to form our final task-specific tokenizer,
VT . The vocabulary size k is a hyperparameter that balances feature richness and model simplicity.

3.2 STAGE 2: TEXT REPRESENTATION AND CLASSIFICATION

With the task-specific tokenizer VT generated, the subsequent stages are designed for maximum
simplicity, efficiency, and interpretability.

One-Hot Feature Representation For any given input sentence S, we represent it as a k-
dimensional binary vector x ∈ {0, 1}k. The representation is generated based on the presence
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System Prompt: You are an expert in linguistics and data science. Your goal is to identify the most
discriminative words for a text classification task.
User Prompt: I need to build a classifier to determine if a sentence is about ”[TASK DESCRIPTION
FOR POSITIVE CLASS]”. I will provide you with a few examples. Based on these, please generate
a ranked list of the top [k] words or short phrases that are the strongest indicators of the positive
class. Focus on tokens that appear frequently in positive sentences but are rare in negative ones or
in general text.
Examples: - [Example sentence t with positive/negative label]
User Prompt: Please provide a ranked list of the top [k] most indicative tokens for the ”[POSI-
TIVE/NEGATIVE]” class.

Figure 2: The prompt template used to guide the LLM in generating the task-specific tokenizer.

or absence of tokens from VT in the sentence. The j-th element of the vector, xj , is defined as:

xj =

{
1 if wj ∈ S

0 otherwise
for j = 1, . . . , k (4)

where wj is the j-th token in our task-specific tokenizer VT . This one-hot encoding approach is
extremely simple and carries no additional information, thereby avoiding any influence from prior
knowledge in pre-trained text embeddings on the results. If the task can be successfully completed
using only one-hot encoding, it demonstrates that the LLM-generated tokenizer indeed contains
task-relevant information.

Downstream Classifier: Logistic Regression We employ a single-layer logistic regression model
as our downstream classifier. This choice is deliberate, as its simplicity ensures that the performance
gains are almost entirely attributable to the quality of the L2T-generated features rather than complex
model interactions. The model predicts the probability of the positive class as:

P (y = 1|x) = ŷ = σ(wTx+ b) =
1

1 + e−(wTx+b)
(5)

where w ∈ Rk is the weight vector, b ∈ R is the bias term, and σ(·) is the sigmoid function. The
model is trained by minimizing the binary cross-entropy loss over the training dataset Dtrain:

L(w, b) = − 1

|Dtrain|
∑

(xi,yi)∈Dtrain

[yi log(ŷi) + (1− yi) log(1− ŷi)] (6)

The training is performed using standard optimization algorithms Adam (Kingma & Ba, 2014),
without any need for pre-training.

Advantages of the L2T Framework This two-stage methodology offers several key advantages
over traditional distillation approaches:

• Efficiency: The final classifier is a simple logistic regression model with only k + 1 pa-
rameters, enabling near-instantaneous training and inference.

• Interpretability: The learned weights in the vector w directly correspond to the impor-
tance of each token in VT for the classification decision, making the model a ”white box”.

• Decoupled Knowledge Transfer: The LLM’s knowledge is transferred once during the
creation of the tokenizer. This static artifact, VT , can then be used to train simple models
on various datasets or in resource-constrained environments without needing further access
to the LLM.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

We evaluate LLM2Token (L2T) on event recognition tasks using the People’s Daily corpus (January
1998), containing 23,268 annotated sentences with part-of-speech tags following the 2003 corpus

5
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specification. We focus on two binary classification tasks: (1) Meeting/Reception detection and (2)
Inspection/Examination detection. The dataset is split into 60% training, 20% validation, and 20%
test sets, with positive examples comprising less than 10% of the data. To prevent overfitting, we
partition the data based on time. A model that performs well on the later test set demonstrates its
ability to predict future events, not just memorize the training data.

For implementation, we use both scikit-learn (L-BFGS solver) and PyTorch with Adam optimizer.
Learning rates range from 1× 10−6 to 0.1, training for up to 150,000 epochs on an RTX 3090 GPU.
We apply StandardScaler normalization and employ one-hot encoding for text representation. The
primary evaluation metric is F1-score: F1 = 2×recall×precision

recall+precision .

Figure 3: The training process of task 1. We change the learning rate to 1e-6 on 47 epoch. What
surprising us is we get 0.4416 on val set and maxium of 0.5397 on test set. This shows that our
dynamic changing method is work well.

4.2 BENCHMARKING RESULTS

Table 1: Performance comparison of different feature selection methods on event recognition tasks.
The best and second best results are highlighted in red and blue.

2*Method 2*Vocab Size Task 1 (Meeting) Task 2 (Inspection)
Val F1↑ Test F1↑ Val F1↑ Test F1↑

Manual Selection 4,150 0.283 0.321 0.194 0.270
Chi-square 5,000 0.252 - - -
Linear Model Fitting 20,344 0.223 0.259 - -
L2T (Ours) 4,709 0.382 0.459 - -
L2T (Ours) 1,847 0.442 0.540 - -
L2T (Ours) 1,598 0.405 0.512 - -
L2T (Ours) 1,341 - - 0.342 0.491
L2T (Ours) 620 - - 0.314 0.489

The experimental results demonstrate that L2T with abnormal frequency selection significantly out-
performs traditional methods. On Task 1, L2T achieves a test F1 of 0.540 with 1,847 words, repre-
senting a 68.2% improvement over manual selection. The optimal vocabulary size varies by task:
approximately 1,800 words for Task 1 and 1,300 words for Task 2. Notably, linear model fitting with
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20,344 features severely overfits (0.988 F1 on training, 0.259 on test), highlighting the importance
of appropriate feature selection.

4.3 ABLATION STUDY

Figure 4: The pure training process without any specific tricks. This figure shows that our LLM
generated features works quite well.

Impact of Vocabulary Size. We investigate how vocabulary size affects model performance, as
shown in Table 2.

Table 2: Effect of vocabulary size on Task 1 performance. The best results are highlighted in red.

Vocabulary Size Val F1↑ Test F1↑ Training Behavior
620 - - Underfitting

1,598 0.405 0.512 Good generalization
1,847 0.442 0.540 Optimal
4,709 0.382 0.459 Slight overfitting

The results reveal a sweet spot around 1,500-2,000 words. Smaller vocabularies lack discriminative
power while larger ones introduce noise and increase overfitting risk due to the limited capacity of
single-layer logistic regression.

Optimization Strategies. Table 3 presents the impact of different optimization techniques on model
performance.

Table 3: Comparison of optimization strategies on validation set performance.

Configuration Best Val F1↑ Convergence Behavior
SGD (lr=0.01) 0.283 Slow, unstable
Adam (lr=0.1) 0.405 Oscillation around optimum
Adam (lr=0.01) 0.442 Stable convergence
Adam (lr=10−6) - Requires ¿90,000 epochs
Adam + LR Schedule 0.442 Optimal at epoch 49

7
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Adam optimizer with lr=0.01 provides stable convergence, while dynamic scheduling (lr×0.1 at
epochs 49 and 60) achieves the best validation F1 of 0.442. The model exhibits highly regular
convergence, consistently reaching optimal performance at epochs 47-50.

Effect of StandardScaler. Normalization accelerates convergence by approximately 3× (reaching
same F1 in 7,000 vs 20,000 epochs). After scaling, zero-valued positions become ∼-0.01, providing
non-zero gradients that facilitate optimization.

Class Imbalance Impact. The severe class imbalance significantly affects model training. On Task
2 with fewer positive examples:

• With 4,451 words: Val F1=0.072, Test F1=0.130
• With 2,065 words: Val F1=0.194, Test F1=0.270
• With 1,341 words: Val F1=0.342, Test F1=0.491

This demonstrates that reducing parameter count is crucial when training data is limited, especially
for minority classes.
4.4 COMPARISON WITH NEURAL NETWORKS
As a reference, we tested scikit-learn’s MLPClassifier without hyperparameter tuning:

• With 4,709 words: F1=0.370
• With 1,598 words: F1=0.460

While neural networks achieve comparable performance, the logistic regression model remains
preferable due to its interpretability (only 1.6K parameters vs 102M in BERT) and efficiency (train
time less than 1 minute).

5 RELATED WORK

Deep SISR Models. The emergence of deep neural networks (DNNs) has revolutionized single
image super-resolution tasks. The pioneering work by Dong et al.Dong et al. (2014) marked the
beginning of CNN-based SR with a simple three-layer convolutional architecture. This foundation
was expanded by VDSRKim et al. (2016), which incorporated residual learning to enable training
of 20-layer deep networks. EDSR Lim et al. (2017) by Lim et al. further advanced the field
through streamlined residual blocks He et al. (2016), while RCAN Zhang et al. (2018) by Zhang et
al. pushed architectural depth even further. Subsequently, CSNLN Zhang et al. (2019) by Mei et
al. integrated feature correlation mechanisms alongside external statistical priors. These methods
achieved remarkable performance primarily through increased network depth and width. The
recent shift toward Transformer architectures has opened new possibilities for image restoration
tasks. IPT Chen et al. (2021) by Chen et al. pioneered the use of pre-trained Transformers for
image processing applications. SwinIR Liang et al. (2021) successfully adapted residual Swin
Transformer blocks for deep feature learning in restoration tasks. Restormer Zamir et al. (2022)
introduced a hierarchical multi-scale architecture with optimized Transformer blocks featuring
modified self-attention and MLP components. In parallel, Uformer Wang et al. (2022b) developed
LeWin Transformer blocks specifically for restoration applications. Despite their superior perfor-
mance, both CNN and Transformer architectures face significant challenges in terms of memory
requirements and computational complexity.

Efficient SISR. Addressing the efficiency bottleneck has motivated numerous strategies for
reducing model redundancy. These include neural architecture search (NAS)Chu et al. (2021); Song
et al. (2020), development of compact architectural blocksAhn et al. (2018); Song et al. (2021); Nie
et al. (2021); Wang et al. (2022a;b); Zamir et al. (2022), network pruning techniques Wang et al.
(2021a;b), and low-bit quantization methods Ma et al. (2019); Li et al. (2020); Hong et al. (2022).
While NAS can discover optimal architectures, the extensive search space demands substantial
computational resources and time investment. Consequently, research has increasingly focused on
designing inherently compact SR architectures Zhang et al. (2022); Hui et al. (2019); Ahn et al.
(2018); Dong et al. (2016). ELAN Zhang et al. (2022) by Zhang et al. exemplifies this approach
through its group-wise multi-scale self-attention (GMSA) module, which captures long-range
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dependencies while outperforming transformer-based methods with dramatically reduced computa-
tional requirements. Network pruning Wang et al. (2021a;b) and quantization Ma et al. (2019); Li
et al. (2020); Hong et al. (2022) offer alternative compression strategies through sparsification and
low-bit representation respectively. Despite these advances in lightweight design, such models still
require non-trivial computational resources for deployment.

Knowledge Distillation for SISR. Knowledge distillation has emerged as a powerful compression
technique that enables lightweight student networks to achieve enhanced performance by learning
from larger teacher models Gou et al. (2021); Yim et al. (2017); Hinton et al. (2015). Several pi-
oneering works have adapted this paradigm for super-resolution tasks. Lee et al.Lee et al. (2020)
introduced a framework where encoders and decoders are pre-trained on identical HR image pairs,
extracting privileged information from the decoder to generate statistical location and scale maps as
transferable knowledge. FAKDHe et al. (2020) by He et al. leveraged second-order statistical infor-
mation derived from feature affinity matrices for distillation. Wang et al. developed CSD Wang et al.
(2021b), which uniquely combines self-distillation with contrastive learning by utilizing simply up-
sampled LR images as negative samples. Despite these contributions, current SRKD approaches
have not addressed critical questions regarding optimal teacher selection for capacity-constrained
students, nor examined whether increasingly powerful teachers necessarily provide greater benefits
to limited-capacity learners. Additionally, existing methods remain architecture-specific, targeting
either depth reduction Wang et al. (2021b) or channel pruning He et al. (2020), limiting their appli-
cability to comprehensive compression scenarios in real-world deployments.

6 CONCLUSION

We introduces LLM2Token, a novel paradigm that distills LLM knowledge into task-specific to-
kenizers rather than neural networks. Through the abnormal frequency method, L2T achieves F1
scores of 0.540 and 0.491 on event recognition tasks using only 1.6K parameters—less than 0.001%
of BERT’s size. The method’s success demonstrates that LLMs possess zero-shot capability to
identify task-critical features from their pre-training. While limited by bag-of-words representation,
L2T offers a compelling alternative for applications requiring extreme efficiency and interpretabil-
ity. Future work could explore incorporating n-grams or position-aware features while maintaining
simplicity.

ACKNOWLEDGMENTS

We use Large Language Models (LLMs) to help polish our writing.

REFERENCES

Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. Fast, accurate, and lightweight super-
resolution with cascading residual network. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pp. 252–268, 2018.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In NeurIPS, 2020.

Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chun-
jing Xu, Chao Xu, and Wen Gao. Pre-trained image processing transformer. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12299–12310,
2021.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1–113, 2023.

Xiangyu Chu, Bo Zhang, Haoran Ma, Ruijie Xu, and Qing Li. Fast, accurate and lightweight super-
resolution with neural architecture search. In International Conference on Pattern Recognition
(ICPR), pp. 59–64. IEEE, 2021.

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep convolutional
network for image super-resolution. In European Conference on Computer Vision (ECCV), pp.
184–199. Springer, 2014.

Chao Dong, Chen Change Loy, and Xiaoou Tang. Accelerating the super-resolution convolutional
neural network. In European Conference on Computer Vision (ECCV), pp. 391–407. Springer,
2016.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. In EMNLP (1), pp. 5484–5495. Association for Computational Linguistics,
2021.

Jianping Gou, Baosheng Yu, Stephen J. Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International Journal of Computer Vision (IJCV), 129:1789–1819, 2021.

Jianyuan Guo, Kai Han, Yunhe Wang, Han Wu, Xinghao Chen, Chunjing Xu, and Chang Xu. Dis-
tilling object detectors via decoupled features. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 2154–2164, 2021.

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghandeharioun. Does localization inform editing?
surprising differences in causality-based localization vs. knowledge editing in language models.
Advances in Neural Information Processing Systems, 36:17643–17668, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, 2016.

Zhi-Song He, Tao Dai, Jian Lu, Yu-Kun Jiang, and Shu-Tao Xia. FAKD: Feature-affinity based
knowledge distillation for efficient image super-resolution. In IEEE International Conference on
Image Processing (ICIP), pp. 518–522. IEEE, 2020.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Cheeun Hong, Sungyong Baik, Heewon Kim, Subeen Nah, and Kyoung Mu Lee. CADyQ: Content-
aware dynamic quantization for image super-resolution. In European Conference on Computer
Vision (ECCV), 2022.

Chenhui Hu, Pengfei Cao, Yubo Chen, Kang Liu, and Jun Zhao. Wilke: Wise-layer knowledge
editor for lifelong knowledge editing. CoRR, abs/2402.10987, 2024.

Zongcai Hui, Xiumei Gao, Yunchu Yang, and Xinbo Wang. Lightweight image super-resolution
with information multi-distillation network. In Proceedings of the 27th ACM International Con-
ference on Multimedia (ACMMM), pp. 2024–2032, 2019.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
Tinybert: Distilling bert for natural language understanding. arXiv preprint arXiv:1909.10351,
2019.

Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution using very deep
convolutional networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 1646–1654, 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Won-Jae Lee, Jae-Hyeok Lee, Dong-Gyun Kim, and Bumsub Ham. Learning with privileged in-
formation for efficient image super-resolution. In European Conference on Computer Vision
(ECCV), pp. 465–482. Springer, 2020.

Haotong Li, Chen Yan, Siyuan Lin, Xilei Zheng, Bihan Zhang, Fengrying Yang, and Rongrong
Ji. PAMS: Quantized super-resolution via parameterized max scale. In European Conference on
Computer Vision (ECCV), pp. 564–580, 2020.

Shuaiyi Li, Yang Deng, Deng Cai, Hongyuan Lu, Liang Chen, and Wai Lam. Consecutive model
editing with batch alongside hook layers. CoRR, abs/2403.05330, 2024.

Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. SwinIR:
Image restoration using Swin Transformer. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV), pp. 1833–1844, 2021.

Bee Lim, Sanghyun Son, Heewon Kim, Subeen Nah, and Kyoung Mu Lee. Enhanced deep residual
networks for single image super-resolution. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 136–144, 2017.

Yuzhi Ma, Hong Xiong, Zixiang Hu, and Li Ma. Efficient super resolution using binarized neural
network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion Workshops (CVPRW), 2019.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in GPT. In NeurIPS, 2022.

Yuchen Nie, Kai Han, Zhenhua Liu, An Xiao, Yiping Deng, Chao Xu, and Yunhe Wang. GhostSR:
Learning ghost features for efficient image super-resolution. arXiv preprint arXiv:2101.08525,
2021.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Dejie Song, Chang Xu, Xiufang Jia, Yunhe Chen, Chunjing Xu, and Yunhe Wang. Efficient residual
dense block search for image super-resolution. In AAAI Conference on Artificial Intelligence
(AAAI), volume 34, pp. 12007–12014, 2020.

Dejie Song, Yunhe Wang, Hanting Chen, Chang Xu, Chunjing Xu, and Dacheng Tao. AdderSR:
Towards energy efficient image super-resolution. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 15648–15657, 2021.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Lielin Wang, Xiu Dong, Yu Wang, Xin Ying, Zhen Lin, Wei An, and Yicong Guo. Exploring sparsity
in image super-resolution for efficient inference. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 4917–4926, 2021a.

Lielin Wang, Dongsheng Li, Lu Tian, and Ying Shan. Efficient image super-resolution with col-
lapsible linear blocks. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 817–823, 2022a.

Yixuan Wang, Su Lin, Yixuan Qu, Haichao Wu, Zhigang Zhang, Yuan Xie, and Annan Yao. To-
wards compact single image super-resolution via contrastive self-distillation. In International
Joint Conference on Artificial Intelligence (IJCAI), 2021b.

Zhendong Wang, Xiaodong Cun, Jianmin Bao, Wengang Zhou, Jianzhuang Liu, and Houqiang Li.
Uformer: A general u-shaped transformer for image restoration. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 17683–17693, 2022b.

Junho Yim, Donggyu Joo, Juhan Bae, and June Kim. A gift from knowledge distillation: Fast
optimization, network minimization and transfer learning. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4133–4141, 2017.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and
Ming-Hsuan Yang. Restormer: Efficient transformer for high-resolution image restoration. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5728–5739,
2022.

Xindong Zhang, Hui Zeng, Shi Guo, and Lei Zhang. Efficient long-range attention network for
image super-resolution. In European Conference on Computer Vision (ECCV), pp. 649–667.
Springer, 2022.

Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image super-
resolution using very deep residual channel attention networks. In European Conference on
Computer Vision (ECCV), pp. 286–301, 2018.

Yulun Zhang, Kunpeng Li, Kai Li, Bineng Zhong, and Yun Fu. Residual non-local attention net-
works for image restoration. arXiv preprint arXiv:1903.10082, 2019.

12


	introduction
	Preliminary
	Autoregressive Language Model
	Knowledge Distillation
	Feature Selection for Text Classification

	Method
	Stage 1: LLM-Powered Tokenizer Generation
	Stage 2: Text Representation and Classification

	Experiment
	Implementation Details
	Benchmarking Results
	Ablation Study
	Comparison with Neural Networks

	Related Work
	Conclusion

