Under review as a conference paper at ICLR 2026

CONCUR: A FRAMEWORK FOR CONTINUAL CON-
STRAINED AND UNCONSTRAINED ROUTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Al tasks differ in complexity and are best addressed with different computation
strategies (e.g., combinations of models and decoding methods). Hence, an ef-
fective routing system that maps tasks to the appropriate strategies is crucial.
Most prior methods build the routing framework by training a single model across
all strategies, which demands full retraining whenever new strategies appear and
leads to high overhead. Attempts at such continual routing, however, often face
difficulties with generalization. Prior models also typically use a single input
representation, limiting their ability to capture the full complexity of the routing
problem and leading to sub-optimal routing decisions. To address these gaps, we
propose CONCUR, a continual routing framework that supports both constrained
and unconstrained routing (i.e., routing with or without a budget). Our modular
design trains a separate predictor model for each strategy, enabling seamless in-
corporation of new strategies with low additional training cost. Our predictors also
leverage multiple representations of both tasks and computation strategies to better
capture overall problem complexity. Experiments on both in-distribution and out-
of-distribution, knowledge- and reasoning-intensive tasks show that our method
outperforms the best single strategy and strong existing routing techniques with
higher end-to-end accuracy and lower inference cost in both continual and non-
continual settings, while also reducing training cost in the continual setting.

1 INTRODUCTION

Al tasks vary in difficulty, and thus are optimally served by different computation strategies, such
as selecting appropriate models (small or large language models) and decoding methods (with or
without chain-of-thought reasoning (Wei et al., 2022)). Effective routing ensures tasks are paired
with the most suitable strategies to help improve overall accuracy and reduce runtime and costs.

Prior routing work (Zhu et al.| [2025} Ong et al., 2024; Ding et al., 2024; |Lu et al., 2024; |Har1 &
Thomson, [2023}/Chen et al.||2024; |Feng et al.| {2025} |Pan et al., 2025;|Zhuang et al.| {2024} |Liu et al.}
2024; Sakota et al.,|2024; Mohammadshahi et al., 2024} [Nguyen et al.| [2024; Damani et al., [2024)
typically employs a fixed set of computation strategies, relying on a single model trained jointly on
data from all strategies. However, this monolithic design limits generalization to continual settings
where routers need to quickly adapt to previously unseen strategies. In practice, continual routing
is crucial, as better and increasingly efficient models and decoding methods are constantly emerg-
ing, and not incorporating them promptly risks missing potential gains in accuracy and reductions
in computational cost. However, whenever a novel strategy appears, existing approaches require
retraining the model from scratch using data that covers both previous and new strategies.

Although some recent efforts attempt to move toward a continual setting, they raise significant con-
cerns about generalizability. For example, Wang et al.| (2025) adopts a modular design by training
separate router models for different computation strategies. However, since these router architec-
tures differ and are specifically tailored to individual strategies, extending them to unseen strategies
remains non-trivial. Jitkrittum et al.|/(2025) introduces a zero-shot router based on model feature vec-
tors, enabling generalization to unseen models without retraining. However, their method depends
on predefined prompts, which limits its adaptability to varied prompts and tasks.

Besides efficiency concerns in the continual setting, prior work also raises concerns about end-to-
end performance (accuracy and inference cost) in both continual and non-continual settings. In

Under review as a conference paper at ICLR 2026

Modular design:
one predictor for each strategy Computation Predicted Predicted
D to predict its performance on the task strategy accuracy cost

Task

Accuracy and
O— cost preferences

Jerry spent $5 for lunch and

o,
Computation strategy representations v CoT - .
Model description P The optimal strategy(©)
Easy integration of novel strategies wen2 STBnsiel 50 6 19.62
|Qwen2.5-7B-Instruct is Vanilla N
i 9

Decoding method > LLaMA-3.1-88-Instrct,
desaﬁpﬁm Task-specific & & 6 & S st 638 60.56 .
representations)
(Chain-of-Thought (CoT) is Cosl budget
&

Prior strategy collection Latest strategy collection

Figure 1: CONCUR learns one predictor per computation strategy that uses multiple input repre-
sentations to support continual routing and better routing decisions under both continual and non-
continual settings.

principle, models should adopt flexible parameterizations that allow them to combine both general-
purpose and task- or strategy-specific signals, thereby capturing richer information about the routing
problem and enabling high-quality routing decisions. However, prior work typically relies on highly
restricted parameterizations; for example, |Ong et al.[(2024) and [Zhu et al.|(2025) parameterize only
task-level representations, while Zhuang et al.| (2024)) and [Pan et al.| (2025) restrict themselves to a
single parameterization of computation strategies and input tasks, respectively. Such limited designs
may reduce expressivity and constrain the quality of routing decisions.

Motivated by these issues, we propose a generalizable routing framework applicable to both contin-
ual and non-continual, as well as constrained and unconstrained, settings, as illustrated in Figurem
Our framework adopts a modular design, where separate predictor models are trained for each com-
putation strategy, using both general-purpose and task-specific representations of input tasks and
computation strategies to estimate accuracy and efficiency. These estimates are then used to for-
mulate constrained and unconstrained routing as optimization problems, which can subsequently be
solved to determine the optimal routing decisions.

In contrast to prior approaches that rely on a single model trained on data from all strategies, our
modular predictor design makes continual routing far more practical. New strategies can be incor-
porated simply by training an additional predictor, without retraining existing ones, thus avoiding
costly overhead. Moreover, unlike prior continual routing efforts that lack generalizability, either
by tailoring router architectures to specific strategies or by relying on fixed prompts, our predic-
tors share the same model architectures, and our method imposes no restrictions on prompts or task
diversity.

In addition, rather than restricting to a single representation as in prior work, our architecture in-
corporates multiple representations of both input tasks and computation strategies to capture richer
information about the routing problem, enabling more accurate routing decisions and improved end-
to-end performance in both continual and non-continual settings.

In summary, we present CONCUR, a framework for continual constrained and unconstrained
routing. CONCUR trains modular predictors for accuracy and efficiency that draw on both general-
purpose and task-specific representations of input tasks and computation strategies, and integrates
these estimates with specific routing algorithms to address constrained and unconstrained rout-
ing. We evaluated CONCUR on diverse benchmarks (including multi-hop QA, general reasoning
multiple-choice tasks, and math problems) across both in- and out-of-distribution settings. Results
show that CONCUR consistently outperforms the best single strategy baseline and existing rout-
ing methods, achieving higher end-to-end accuracy and lower inference cost in both continual and
non-continual settings, as well as improved training efficiency in the continual setting.

2 METHODOLOGY

As outlined in Section[I] our goal is to build a routing framework that supports continual settings and
improves end-to-end performance in both continual and non-continual settings. The core ideas be-
hind our routing models are: (1) we adopt a modular design, training a separate model for each strat-
egy so that extending to new strategies only requires training additional predictors without touching
existing models; and (2) we use multiple input representations to better capture the complexity of
the routing problem, rather than relying on a single representation.

Under review as a conference paper at ICLR 2026

Accuracy HMLP (two linear layers)

(T 1)) e

Task-specific representations

‘Embedding lookup

MLP (two linear Iayers)H Cost ‘

T
L) Crry CErd

Task-specific representations

LT k) Cdd

General-purpose representations

[Embedding lookup
T I T

M Model } [Decoding method J

Linear projection \ Off-the-shelf text embedding model&3 ‘

[Model description } { (zesllvg i) } { Task description J
description

Linear projection

Embedding lookup|
T T T

IO

Computation strategy s; \ ‘ Description of computation strategy s; ‘ ‘ Computation strategy s; ‘

Embedding lookup

Figure 2: Overall predictor architecture of CONCUR. For each computation strategy s;, we train
two predictor models: one estimates the accuracy of applying s; to the input task, and the other
estimates its cost, using both general-purpose and task-specific representations.

Concretely, we formulate both constrained and unconstrained routing as optimization problems over
accuracy and efficiency. Therefore, predictors are trained to estimate these metrics, which are sub-
sequently used to solve the optimization problems. Building on this design, Section [2.1] describes
how we train modular predictors to model task difficulty using multiple input representations, and
Section [2.2]explains how these predictions drive routing decisions.

2.1 PREDICTORS

We outline the training of predictors designed to estimate the performance of applying a computation
strategy to a given user task. This involves characterizing input tasks and strategies, detailing the
predictor model architectures, and explaining the training procedure and prediction process.

Characterization. We define a task t; as comprising both the question and any related context.
While prior work (Ong et al., 2024; | Zhuang et al.,[2024; Pan et al., 2025) typically considers only the
question, a task may also include supporting documents, such as in the open-domain QA setting, that
provide useful signals for estimating task difficulty. We define a computation strategy s; as a (model,
decoding method) pair (m;,d;). In our implementation, a model denotes the underlying language
model (e.g., Qwen2.5-7B-Instruct), while a decoding method refers to the decoding algorithm (e.g.,
chain-of-thought). However, developers can broaden the definition of computation strategies to
incorporate additional parameters. Given a set of supported language models M and decoding
methods D, the complete set of computation strategies S is the Cartesian product S = M x D.

The performance of applying strategy s; to task ¢; includes both the accuracy a;; and the com-
putational cost measured in FLOPs ¢;; consumed during inference, which we use as a proxy for
efficiency. FLOPs are preferred over token counts because models vary in size, and the compu-
tational cost of generating a single token differs across models. Using FLOPs allows for a more
standardized comparison of efficiency across different models.

Architecture. To achieve high-quality predictions, we train two independently parameterized
predictors: one for estimating accuracy and the other for estimating cost. Each predictor incor-
porates both general-purpose and task-specific representations of the input task t; and strategy
sj = (mj,d;), enabling them to capture both general and task-strategy specific characteristics.
For every s;, two such predictors are trained, resulting in a modular design where predictors for dif-
ferent strategies can be trained independently. This allows new strategies to be supported by training
only the corresponding predictors, leaving existing ones untouched and incurring minimal overhead.
The overall architecture is shown in Figure 2}

1. General-purpose representation. We generate a general-purpose representation by passing the
textual description of the task and strategy (textual descriptions of the strategies are provided in
Appendix [A) through an off-the-shelf text embedding model R.

g = R(t:), g)" = R(m;), g = R(d;)

Concatenating the three parts gives the general representation g;; = [g!; g7 gji] € R3* where k is
the dimension of the encoded representation.

Under review as a conference paper at ICLR 2026

2. Task-specific representation. Task-specific representations are derived using learnable projections
and embeddings. The task-specific representation of the input task is derived by linearly projecting
its previously defined general-purpose representation. Task-specific representations for the model
and decoding method are derived from learned embeddings that map model and decoding method
IDs into trainable dense vectors optimized alongside the rest of the model.

ti = Wi R(t:), m§ = By [m;], df = Ep[d;]; t7 = WiR(t:), m§ = Ej[m;], dj = Epld;]
where X“ and X represent X in the accuracy and cost predictor models, respectively. The metric
(i.e., accuracy or cost)-specific linear projection is denoted by W; € R¥** while Ej; and Ep are
metric-specific embedding lookup tables for models and decoding methods, respectively.

Concatenating the three parts gives the task-specific representations sj; = [t%; my; d‘;] and s; =
[t§; m¢; dS] € R,

3. MLP. Finally, we concatenate the general-purpose and task-specific representations and feed them
through two linear layers to produce the accuracy and cost predictions, d;; and ¢;;.

aij = f([&i388])s ¢ = fo([gi385])
where f is a binary classifier and f¢ is a regressor for predicting the accuracy and cost, respectively.

We note that once trained, the representations of a strategy s; remain fixed and thus contribute a
constant term to the predictions. Nonetheless, as we will show in Section[3] including these strategy
representations improves performance over strong routing baselines.

Training. Using the training tasks and their target answers, we apply each strategy s; to each task
t; to obtain the ground-truth labels a;; (by comparing the generated and the target answers) and c;;.
Due to the modular design with respect to each s;, training a predictor for a given strategy only
requires the training data associated with that strategy. The training procedure for the predictors is
as follows. The accuracy predictor is a binary classifier trained with cross-entropy loss:

Lace = —aijlog (ai;) — (1 — aij)log (1 — ai;)
where a;; is the ground-truth accuracy label and a,; is its predicted value. The cost predictor is a
regressor trained with mean squared error loss:
42
Leost = (Cij - Cij)
where c;; is the ground-truth cost and ¢;; is its predicted value.

Inference. For a new task ¢;, we encode it with the same embedding model used during training
and pass this representation, along with the representation of each strategy s;, through the respective
accuracy and cost predictors to obtain a;; and ¢;;.

Continual routing. Our modular design assigns a separate predictor to each strategy s;, so incor-
porating a new strategy s; involves training only its predictors, leaving previously trained models
unchanged, making extensions straightforward and efficient.

2.2 ROUTING

Using the predicted accuracy a;; and cost ¢;; of applying strategy s; to task ¢;, we demonstrate how
both constrained and unconstrained routing can be formulated as optimization problems and solved,
leading to the final routing decisions.

Unconstrained routing. For a given task ¢;, unconstrained routing involves choosing the compu-
tation strategy that achieves an optimal trade-off between accuracy and cost. This can be framed as
the following bi-objective optimization problem, maximizing accuracy while simultaneously mini-
mizing cost: max; a;;, min; c;;.

By introducing a weight w to represent the trade-off between accuracy and cost, the bi-objective op-
timization problem can be reformulated as a single-objective problem that maximizes the weighted
sum of these two objectives.

max Z(w caij+ (1 —w) - (—¢y)) = ijax(w cai; + (1 —w) - (—cij)) (D)

Under review as a conference paper at ICLR 2026

Then, ¢; is routed to the strategy s; that maximizes the weighted sum.

Constrained routing. For a task ¢; with an associated cost budget B, constrained routing seeks
the computation strategy that delivers the highest possible accuracy without exceeding the budget.
This can be expressed as the following optimization problem: max; ., < B a;

However, optimizing each task individually may not yield the best overall result, as local optima
do not always translate to global optimality. For a batch of n tasks ¢1,%s, ..., t,, the constrained
optimization problem can be reformulated as

max Za-» 2)
B i <nB

We address this optimization problem by formulating a dynamic programming (DP) approach (see
Appendix [B|for details), which has an overall complexity of O(n-nB - |S|) = O(n?- B|S|), where
B represents the budget per task and |.S| is the number of computation strategies. Since the budget
can be kept relatively small through scaling, and the number of computation strategies (i.e., LLM-
decoding pairs) used simultaneously is usually moderate, the DP algorithm can be solved efficiently
for a reasonable number of tasks.

Although the above formulation is designed to maximize accuracy under a cost constraint, it can be
straightforwardly adapted to minimize cost for a given accuracy requirement.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets. We select a diverse set of tasks covering different skills and output formats: factual
multi-hop question answering with short text answers, general reasoning with multiple-choice an-
swers, and mathematical problems requiring numerical answers. For each task category, we select
two datasets: one in-distribution for both training and testing, and one out-of-distribution reserved
exclusively for testing. A summary of these datasets and their statistics is provided in Table I}

Table 1: Datasets and their sizes.

In-distribution Out-of-distribution
Dataset Test size \ Dataset Test size
Multi-hop QA 2WikiMultiHop (Ho et al.||2020) 1000 HotpotQA (Yang et al.||2018) 500
General reasoning MMLU (Hendrycks et al.|[2021) 1000 GPQA (Rein et al.|[2024) 448
Math problems GSMB8k (Cobbe et al.[[2021) 1000 SVAMP (Patel et al.|[2021) 500

Computation strategies. As described in Section[2.1] the set of computation strategies comprises
combinations of models and decoding methods. For models, we used Qwen2.5-Instruct models
(1.5B, 3B, and 7B) and Llama-3.x-Instruct models (3.2-3B and 3.1-8B). For decoding, we consid-
ered two common approaches: vanilla, where models directly generate the answer, and chain-of-
thought (Wei et al} |2022), where models produce intermediate reasoning steps before the final an-
swer. The descriptions and prompts for each strategy are presented in Appendix [A]and Appendix[C]
respectively. In total, this yields five LLMs and two decoding methods, for a total of ten strategies.

Baselines. We compare our routing framework against the best single strategy without routing and
three strong routing baselines. Implementation details are provided in Appendix D}

(1) Best single strategy: We use the same model-decoding pair that achieves the highest overall
accuracy across all tasks. In this case, Qwen2.5-7B-Instruct with chain-of-thought (CoT) decoding
is selected for its superior accuracy.

(2) RouteLLM (Ong et al., |2024): This approach uses a single classifier that relies on the single
general-purpose task representations to select a strategy. Since it does not take the budget into
account, we evaluate it only in unconstrained settings.

Under review as a conference paper at ICLR 2026

Average performance on in-distribution datasets Average performance on out-of-distribution datasets

65.0%

76.0% 64.0%

63.0%

74.0%

62.0%

72.0%

Accuracy
Accuracy

61.0%

60.0% 1~

70.0% X
==+ EmbedLLM i —==- EmbedLLM

—-- RTR 59.0% —-- RTR

= CONCUR (Ours) = CONCUR (Ours)

ol _ Bestsingl gy: Best single strategy:
68.0% Qwen2.5-7B-Instruct, CoT Qwen2.5-7B-Instruct, CoT
58.0%
25.0 275 30.0 325 35.0 375 40.0 425 45.0 25.0 275 30.0 325 35.0 375 40.0 425 45.0

FLOPs (x10'!) FLOPs (x10'1)

Figure 3: Pareto curves for unconstrained routing on both in- and out-of-distribution datasets across
various values of w defined in Section[2.2] illustrating the trade-off between accuracy and cost. Full
diagrams are available in Appendix [E]

(3) EmbedLLM (Zhuang et al. 2024): Originally, this method uses a single model to predict the
accuracy of each strategy and picks the one with the highest accuracy. We adapt it by adding an
additional model to predict the cost. Unlike CONCUR, EmbedLLLM only uses a single task-specific
representation for computation strategies.

(4) RTR (Pan et al.| [2025): This method employs a single model to jointly predict accuracy and cost
for all strategies. In contrast to CONCUR, RTR only uses a single general-purpose representation
for input tasks.

Metrics. We compare our method and the baselines based on end-to-end performance. Once com-
putation strategies are assigned to tasks, we compute the overall accuracy and total inference FLOPs
(as a proxy for efficiency and cost) for each approach. Inference FLOPs are calculated using the
standard formula from |Kaplan et al. (2020) and scaled down by 101! for readability.

In the following subsections, we first evaluate our method against the baselines in non-continual un-
constrained (Section [3.2)) and constrained (Section [3.3)) settings to primarily assess the effectiveness
of our model architecture, which leverages multiple representations of both input tasks and compu-
tation strategies to improve end-to-end performance. We then examine performance in a continual
setting (Section[3.4) to highlight the impact of our modular design on reducing training cost.

3.2 UNCONSTRAINED ROUTING

Figure [3| shows that our method consistently outperforms the baselines in both in-distribution and
out-of-distribution scenarios. Tables[2]and[3]report the maximum accuracy achieved by each method.
Among the approaches that surpass the best single strategy, our method generally achieves the high-
est accuracy with the lowest FLOPs. This demonstrates that, compared to the best single strategy,
routing enables higher accuracy at reduced computational cost. Furthermore, when compared to
other routing baselines, our method delivers both superior accuracy and efficiency, highlighting its
higher effectiveness as a router.

3.3 CONSTRAINED ROUTING

Constrained routing means routing under budget constraints. To test generalizability, we evaluate
performance under both low- and high-budget settings. Furthermore, as noted in Section [2.2] given
the predicted accuracy and cost, the constrained routing problem can be addressed in two ways:
(1) local optimization, which treats each task independently and allocates the budget evenly across
tasks, and (2) global optimization (our approach), which distributes the total budget jointly across
all tasks. We also compare the performance when using these two optimization methods.

Examining the accuracy improvement from the local optimization baseline to our global optimiza-
tion method, Table] shows a substantial positive change in both budget settings, demonstrating the
effectiveness of our global optimization approach in making better routing decisions. Moreover,
when comparing the accuracy of different routing methods under global optimization, Table [indi-

Under review as a conference paper at ICLR 2026

Table 2: Performance for unconstrained routing on in-distribution datasets: 2WikiMultiHop,
MMLU, and GSM8k. Gray denotes methods whose average accuracy falls below that of the

best single-strategy baseline. Bolded numbers indicate the best performance among the remaining

methods.
2WikiMultiHop MMLU GSM8k Average

Acc FLOPs| | Acc FLOPs | Acc FLOPs | Acc FLOPs
Best single strategy ~ 57.6 49.63 73.7 4445 | 91.6 30.82 | 743 41.63

RouteLLM 41.7 17.90 54.7 3.20 64.1 9.51 53,5 10.20
EmbedLLM 58.4 43.68 72.1 33.68 | 89.8 2528 | 734 3421
RTR 579 44.04 73.7 4445 | 913 33.07 | 743 40.52

CONCUR (Ours) 59.5 38.54 744 40.73 | 91.6 3023 | 752 36.50

Table 3: Performance for unconstrained routing on out-of-distribution datasets: HotpotQA, GPQA,

and SVAMP.
HotpotQA GPQA SVAMP Average

Acc FLOPs| | Acc FLOPs | Acc FLOPs | Acc FLOPs
Best single strategy ~ 59.8 39.75 35.0 75.18 | 922 2346 | 623 46.13

RouteLLM 52.8 6.62 29.5 4.22 79.8 8.18 54.0 6.34
EmbedLLM 57.0 30.15 353 6975 | 920 19.63 | 614 39.84
RTR 59.8 36.16 350 75.18 | 924 23.65 | 624 45.00

CONCUR (Ours) 60.6 33.62 353 7331 | 920 2275 | 62.6 43.23

Table 4: Accuracy gains of constrained routing when transitioning from local optimization (L) to
global optimization (G), along with the accuracy achieved by global optimization under varying
budget settings. Bolded and underlined numbers represent the performance of our method when it
ranks as the best and second best, respectively.

2WikiMultiHop MMLU GSM8k Average

AL—-G) G |AL—-G) G |AL—-G G |AL—-G G
Low budget (FLOPs budget = 25)

EmbedLLM +4.4 524 +3.2 70.6 +1.5 89.8 +3.0 70.9
RTR +6.0 539 +4.7 73.7 +2.0 90.4 +4.2 72.7
CONCUR (Ours) +9.7 56.5 +3.8 7217 +3.7 90.3 +5.7 73.2

High budget (FLOPs budget = 40)

EmbedLLM +4.6 57.6 +2.4 72.6 0.0 90.1 +2.3 73.4
RTR +3.3 56.6 +2.9 74.1 +0.2 91.2 +2.1 74.0
CONCUR (Ours) +8.1 59.5 +3.2 74.4 +0.8 91.6 +4.0 75.2

cates that our method achieves the highest average accuracy across both settings, highlighting the
overall strength of our routing framework.

3.4 CONTINUAL ROUTING

We consider the following scenarios where routers must adapt to unseen computation strategies.
Initially, an organization prioritizes accuracy and selects moderate-to-large models: Qwen2.5-7B-
Instruct and Llama-3.1-8B-Instruct. Later, to reduce cost and latency without sacrificing accu-
racy, the organization introduces smaller models: Qwen2.5-1.5B-Instruct, Qwen2.5-3B-Instruct,
and Llama-3.2-3B-Instruct. We refer to the first scenario with only large models as Setting 1, and
the second scenario with both large and small models as Setting 2.

Since all routing baselines (RouteLLM, EmbedLLM, and RTR) train a single router model using
training data across all computation strategies, the straightforward way to incorporate unseen strate-
gies is to retrain the model from scratch using all available data. However, this can be unnecessarily
costly given that the router model has already been trained on prior data. To address this, we also

Under review as a conference paper at ICLR 2026

Average performance with large

only Average performance with both large and small

78.0%

78.0%
76.0% 76.0%

74.0% 74.0%

-+ EmbedLLMzs

72.0% 1 EmbedLLMsrios%)

72.0%

embetith oo
=== EmbedLLM¢r100%)
=+ RTRes

RTReri2s%)
s5.0% + RoutelLMss 68.0% ity
===+ EmbedLLM¢s i

Accuracy
Accuracy

70.0% 70.0%

—-- RTRgs RTRer00%)
—— CONCUR (Ours) —— CONCUR (Ours)

66.0% Best single strategy: 66.0% Best single strategy:
Qwen2.5-7B-Instruct, CoT Qwen2.5-7B-Instruct, CoT

25.0 275 30.0 325 35.0 375 40.0 425 45.0 25.0 275 30.0 325 35.0 375 40.0 425 45.0
FLOPs (x10'!) FLOPs (x10'1)

Figure 4: Performance of different methods under the continual routing with different collections of
strategies. Xrs denotes method X trained from scratch. Xgry%) denotes method X fine-tuned from
its prior version, which was trained from scratch in Setting 1, using Y% of the new data.

Table 5: Performance for continual routing. Table [2] provides the definitions of the coloring and

bolding scheme.
2WikiMultiHop MMLU GSM8k Average

Relative training time ~ Acc~ FLOPs | | Acc FLOPs | Acc FLOPs | Acc FLOPs
Setting 1: Large models only (Qwen2.5-7B-Instruct and Llama-3.1-8B-Instruct)

Best single strategy - 57.6 49.63 737 4445 | 916 30.82 | 743 41.63
RouteLLM rs 0.18x 54.0 48.77 68.7 17.03 | 90.0 30.06 | 709 31.96
EmbedLLMFg 1.32x 58.9 49.62 733 4429 | 912 3344 | 745 4245
RTRFrs 3.93x 59.4 51.12 72.1 4298 | 91.6 3082 | 744 41.64
CONCUR (Ours) 1.00x 59.3 50.71 745 41.02 | 91.7 30.78 | 75.2 40.84
Setting 2: Large and small models (Qwen2.5, Llama-3.1, and Llama-3.2 family)

Best single strategy - 57.6 49.63 73.7 4445 | 91.6 30.82 | 743 41.63
RouteLLM rs 0.20x 41.7 17.90 54.7 3.20 64.1 9.51 535 10.20
RouteLLM pr(25%) 0.14x 41.6 18.21 53.5 2.80 61.5 9.69 522 1023
RouteLLM g7 (50%) 0.17x 41.6 19.96 52.9 2.90 66.5 10.13 | 53.7 11.00
RouteLLM g (75%) 0.20x 41.5 13.73 53.0 291 59.1 9.45 51.2 8.70
RouteLLM 1 (100%) 0.23x 413 16.62 54.6 3.28 62.5 9.33 52.8 9.74
EmbedLLM s 3.08x 58.4 43.68 72.1 33.68 | 89.8 2528 | 734 3421
EmbedLLM g1 (25%) 1.01x 56.9 40.12 689 3445 | 89.6 30.83 | 71.8 35.13
EmbedLLM g (50%) 1.92x 57.4 36.87 683 2636 | 89.5 30.64 | 71.7 31.29
EmbedLLM g1 (75%) 2.82x 55.1 36.19 69.5 3269 | 902 2740 | 71.6 32.09
EmbedLLM 1 (100%) 3.11x 59.2 42.93 70.0 3259 | 89.7 2645 | 73.0 33.99
RTRFrs 7.66x 57.9 44.04 737 4445 | 913 33.07 | 743 40.52
RTR pr(25%) 1.69x 58.5 39.80 713 4227 | 882 1349 | 72.7 31.85
RTR p1(50%) 2.84x 59.2 47.79 684 1353 | 882 13.51 719 2495
RTR pr(75%) 3.89x 58.9 47.81 73.6 4438 | 91.6 30.82 | 747 41.01
RTR p1(100%) 4.96x 57.6 44.06 734 4319 | 883 1791 | 73.1 35.05
CONCUR (Ours) 1.00x 59.5 38.54 744 40.73 | 91.6 30.23 | 75.2 36.50

evaluated variants of these baselines where the existing router models are fine-tuned on randomly
sampled 25%, 50%, 75%, and 100% of the new training data.

In addition to end-to-end performance metrics (accuracy and inference FLOPs), we explicitly mea-
sure the training time for each method as an indicator of training cost, reflecting how easily each
method can adapt to unseen strategies.

Figure E] shows that in both Setting 1 and 2, in terms of end-to-end performance, CONCUR out-
performs all baselines. As shown in Table[5] in Setting 1, our method achieves the highest average
accuracy with the lowest FLOPs among all baselines, demonstrating the effectiveness of our rout-
ing framework. In Setting 2, among routing baselines that outperform the best single strategy, our
method again achieves the highest accuracy with the lowest FLOPs, while requiring significantly
less training time. This highlights the advantage of our modular predictor architecture, which al-
lows easy extension to unseen strategies. Importantly, the goal of the organization is to reduce

Under review as a conference paper at ICLR 2026

FLOPs while maintaining accuracy when moving from Setting 1 to Setting 2, a target achieved only
by the RTR 7759, baseline and our method, with our approach performing substantially better.

4 ANALYSIS

Section |3| highlights the advantages of our routing framework. To understand the source of these
benefits, we focus on our approach and the best single strategy baseline (Qwen2.5-7B-Instruct with
CoT decoding) under the unconstrained routing results shown in Table[2]

Table 6: The table shows (1) the percentage of tasks routed by our framework to different strategies,
(2) the performance of tasks using routed strategies by our framework compared to using the best
single-strategy baseline (Qwen2.5-7B-Instruct with CoT), and (3) the distribution of task accuracy
transitions from the baseline strategy to the routed strategy by our framework, where C and I indicate
correct and incorrect, respectively. Bolded numbers indicate cases where the routed strategy by our
framework outperforms the baseline strategy.

‘ Baseline strategy ~ Routed strategy ‘ Task accuracy transitions (%)

Tasks routed (%) | Acc FLOPs| Acc FLOPs | C—»C I—-C I—1 | C—I

2WikiMultiHop

Qwen7B-CoT (Baseline) 33.6% 82.4 47.7 - - - - - -
Qwen2B-vanilla 25.3% 229 56.9 27.3 7.8 162% 11.1% 66.0% | 6.7%
Llama8B-CoT 21.0% 54.8 48.6 56.7 70.5 48.1% 8.6% 36.7% | 6.7%
Qwen7B-vanilla 17.1% 67.3 43.5 70.2 29.9 591% 11.1% 21.6% | 82%
Others 3.0% 36.7 51.8 333 21.0 233% 10.0% 53.3% | 13.3%
MMLU

Qwen7B-CoT (Baseline) 83.6% 74.2 44.4 - - - - - -
Qwen7B-vanilla 12.7% 69.3 44.5 78.0 144 64.6% 13.4% 173% | 4.7%
Others 3.7% 78.4 45.3 67.6 48.1 62.2% 5.4% 16.2% | 16.2%
GSM8k

Qwen7B-CoT (Baseline) 96.0% 91.6 30.9 - - - - - -
Others 4.0% 92.5 27.9 92.5 13.2 87.5% 5.0% 2.5% 5.0%

The baseline routes all tasks to a single computation strategy. Table [6] details the routing decisions
made by our method. As shown, GSMS8k tasks are still mostly assigned to Q7B-CoT, so performance
remains similar regardless of routing. However, for 2WikiMultiHop and MMLU, a substantial por-
tion of tasks is routed to more cost-efficient strategies (smaller models and/ or simpler decoding
methods). These alternatives often achieve higher accuracy while significantly reducing FLOPs,
explaining the performance gains of our framework.

Additionally, Table [6] shows the distribution of tasks by accuracy change: whether they remain cor-
rect/incorrect or switch between the two. Most questions follow one of two patterns: (1) they keep
their original correctness but are routed to cheaper strategies, significantly reducing computation
cost and improving efficiency; or (2) they switch from previously incorrect to correct answers, lead-
ing to gains in accuracy. A small fraction of questions change from correct to incorrect, but these
losses are minor compared to the overall improvements.

5 CONCLUSION

This work introduces CONCUR, a framework for continual constrained and unconstrained routing.
Central to CONCUR are modular predictors that leverage both general-purpose and task-specific
representations to estimate a strategy’s accuracy and cost on a given task, enabling optimization-
based routing and straightforward extension to unseen strategies. Extensive experiments on a diverse
set of in-distribution and out-of-distribution tasks show that CONCUR outperforms the best single
strategy and existing strong routing methods in both continual and non-continual settings.

Under review as a conference paper at ICLR 2026

REFERENCES

Shuhao Chen, Weisen Jiang, Baijiong Lin, James Kwok, and Yu Zhang. RouterDC: Query-
based router by dual contrastive learning for assembling large language models. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=7RQvjayHrM.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Mehul Damani, Idan Shenfeld, Andi Peng, Andreea Bobu, and Jacob Andreas. Learning how hard
to think: Input-adaptive allocation of Im computation. arXiv preprint arXiv:2410.04707, 2024.

Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Riihle, Laks
V. S. Lakshmanan, and Ahmed Hassan Awadallah. Hybrid LLM: Cost-efficient and quality-aware
query routing. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=02f3mUtgnM.

Tao Feng, Yanzhen Shen, and Jiaxuan You. Graphrouter: A graph-based router for LLM selections.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=eU39PDsZtT.

Surya Narayanan Hari and Matt Thomson. Tryage: Real-time, intelligent routing of user prompts to
large language models. arXiv preprint arXiv:2308.11601, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
d7KBjmI3GmQ.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-
hop QA dataset for comprehensive evaluation of reasoning steps. In Donia Scott, Nuria Bel,
and Chengqing Zong (eds.), Proceedings of the 28th International Conference on Computational
Linguistics, pp. 6609-6625, Barcelona, Spain (Online), December 2020. International Com-
mittee on Computational Linguistics. doi: 10.18653/v1/2020.coling-main.580. URL https:
//aclanthology.org/2020.coling-main.580/.

Wittawat Jitkrittum, Harikrishna Narasimhan, Ankit Singh Rawat, Jeevesh Juneja, Zifeng Wang,
Chen-Yu Lee, Pradeep Shenoy, Rina Panigrahy, Aditya Krishna Menon, and Sanjiv Kumar. Uni-
versal model routing for efficient llm inference. arXiv preprint arXiv:2502.08773, 2025.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL https://arxiv.org/abs/2001.08361.

Yueyue Liu, Hongyu Zhang, Yuantian Miao, Van-Hoang Le, and Zhigiang Li. Optllm: Optimal
assignment of queries to large language models. In 2024 IEEE International Conference on Web
Services (ICWS), pp. 788-798. IEEE, 2024.

Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang Zhou, and Jingren Zhou.
Routing to the expert: Efficient reward-guided ensemble of large language models. In Kevin
Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pp. 1964—1974, Mexico City, Mexico, June 2024. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.109. URL https:
//aclanthology.org/2024.naacl-1long.109/l

Alireza Mohammadshahi, Arshad Rafiq Shaikh, and Majid Yazdani. Routoo: Learning to route to
large language models effectively. arXiv preprint arXiv:2401.13979, 2024.

10

https://openreview.net/forum?id=7RQvjayHrM
https://openreview.net/forum?id=7RQvjayHrM
https://openreview.net/forum?id=02f3mUtqnM
https://openreview.net/forum?id=eU39PDsZtT
https://openreview.net/forum?id=eU39PDsZtT
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://aclanthology.org/2020.coling-main.580/
https://aclanthology.org/2020.coling-main.580/
https://arxiv.org/abs/2001.08361
https://aclanthology.org/2024.naacl-long.109/
https://aclanthology.org/2024.naacl-long.109/

Under review as a conference paper at ICLR 2026

Quang H Nguyen, Thinh Dao, Duy C Hoang, Juliette Decugis, Saurav Manchanda, Nitesh V
Chawla, and Khoa D Doan. Metallm: A high-performant and cost-efficient dynamic framework
for wrapping llms. arXiv preprint arXiv:2407.10834, 2024.

Isaac Ong, Amjad Almabhairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E Gonzalez,
M Waleed Kadous, and Ion Stoica. Routellm: Learning to route 1lms with preference data. arXiv
preprint arXiv:2406.18665, 2024.

Zhihong Pan, Kai Zhang, Yuze Zhao, and Yupeng Han. Route to reason: Adaptive routing for llm
and reasoning strategy selection. arXiv preprint arXiv:2505.19435, 2025.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve sim-
ple math word problems? In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek
Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou
(eds.), Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 2080-2094, Online, June
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.168. URL
https://aclanthology.org/2021.naacl-main.168/.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a
benchmark. In First Conference on Language Modeling, 2024. URL https://openreview.
net/forum?id=Ti67584b98.

Marija Sakota, Maxime Peyrard, and Robert West. Fly-swat or cannon? cost-effective language
model choice via meta-modeling. In Proceedings of the 17th ACM International Conference on
Web Search and Data Mining, WSDM ’24, pp. 606-615. ACM, March 2024. doi: 10.1145/
3616855.3635825. URL http://dx.doi.org/10.1145/3616855.3635825.

Xinyuan Wang, Yanchi Liu, Wei Cheng, Xujiang Zhao, Zhengzhang Chen, Wenchao Yu, Yanjie Fu,
and Haifeng Chen. Mixllm: Dynamic routing in mixed large language models. arXiv preprint
arXiv:2502.18482, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceed-
ings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2369—
2380, Brussels, Belgium, October-November 2018. Association for Computational Linguistics.
doi: 10.18653/v1/D18-1259. URL https://aclanthology.org/D18-1259/,

Yizhang Zhu, Runzhi Jiang, Boyan Li, Nan Tang, and Yuyu Luo. Elliesql: Cost-efficient text-to-sql
with complexity-aware routing. arXiv preprint arXiv:2503.22402, 2025.

Richard Zhuang, Tianhao Wu, Zhaojin Wen, Andrew Li, Jiantao Jiao, and Kannan Ramchan-
dran. Embedllm: Learning compact representations of large language models. arXiv preprint
arXiv:2410.02223, 2024.

11

https://aclanthology.org/2021.naacl-main.168/
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
http://dx.doi.org/10.1145/3616855.3635825
https://aclanthology.org/D18-1259/

Under review as a conference paper at ICLR 2026

A DESCRIPTIONS FOR COMPUTATION STRATEGY

Table[/|lists the description for decoding strategies and Table|8|lists the descriptions for models.

Table 7: Descriptions of decoding strategies.

Strategy ID Description

Vanilla Vanilla prompting retains the original question content without adding any
additional prompt information.
CoT Chain-of-Thought (CoT) prompting guides the model to articulate a

step-by-step reasoning process before providing the final answer. This
results in longer responses and slower inference, but delivers superior per-
formance on complex reasoning tasks.

Table 8: Descriptions of models.
Model ID Description

Owen2.5-1.5B-Instruct Qwen2.5-1.5B-Instruct is an ultra-lightweight 1.5 B parameter
model designed for minimal-resource environments. It is best
suited for simple prompts, basic classification, and short text
completion, but struggles with nuanced understanding or ad-
vanced reasoning tasks.

Qwen2.5-3B-Instruct Qwen2.5-3B-Instruct is a lightweight 3 B parameter model with
fast inference and low resource usage. It is suitable for simple
tasks such as basic question answering and short-form text gener-
ation, but is limited in handling complex reasoning or multi-step
tasks.

Qwen2.5-7B-Instruct Qwen2.5-7B-Instruct is a mid-small 7 B parameter model that
balances speed and performance. It can handle multi-turn dia-
logue, basic code and math tasks, and offers improved language
understanding over smaller models while maintaining efficient
inference.

Llama-3.2-3B-Instruct Llama-3.2-3B-Instruct is a compact 3 B parameter model opti-
mised for efficient inference in constrained environments. It han-
dles basic instruction following, simple question answering, and
short text generation reliably, but lacks the depth for nuanced rea-
soning or complex task execution.

Llama-3.1-8B-Instruct Llama-3.1-8B-Instruct is a moderately-sized 8§ B parameter
model that offers a strong balance between performance and re-
source usage. It supports multi-turn dialogue, intermediate rea-
soning, and modest code or math capabilities, though it may still
struggle with deeply intricate or highly technical prompts.

12

Under review as a conference paper at ICLR 2026

B DYNAMIC PROGRAMMING FORMULATION FOR SOLVING CONSTRAINED
OPTIMIZATION

To address the constrained optimization in Equation (2)), we formulate dynamic programming (DP)-
based solutions. We define D P[i|[b] as the maximum achievable total accuracy when routing the
first ¢ tasks, subject to a total cost not exceeding b.

Then, we initialize the DP problem as follows

{O ifb=0

DP[0][b] = —oo otherwise

Vb € [0, nB] 3)

We define the recurrence relation as follows: for all b € [B™" min (BM>, nB)]

DP[Z] [b] — max DP[’L -].] [b - Cij] + Q4 (@)

J,b>cij

where BMi" = 3~ min; ¢y and BM* = Y} max; cij. BM" and B denote the minimum
and maximum total cost required to assign exactly one method to each of the first ¢ tasks. We
constrain b within these bounds to avoid unnecessary computations. This recurrence reflects the
process of updating the maximum cumulative accuracy by considering all computation strategies
for task ¢; and choosing the one that achieves the highest accuracy without exceeding the budget.
Since the budget n.B and the cost ¢;; can be floating-point numbers, we round them to integers to
enable integer-based indexing in the DP array.

Then, the maximum accuracy attainable within the budget nB is maxy<,5 DP[n][b]. We apply
backtracking to recover the strategy chosen for each task.

C PROMPTS

Tables Q] to[IT]show the prompts used for all task types (multi-hop QA, general reasoning, and math
problems) with different decoding strategies.

Table 9: Prompts for multi-hop QA (blue refers to the vanilla prompt and yellow refers to the CoT
prompt).

2WikiMultiHop and HotpotQA (vanilla & CoT)

System: You are an expert at question answering.

User:
You are provided with a user question, and information that might be relevant to the user
question. Your task is to only output a short answer within <ans></ans>.

You are provided with a user question, and information that might be relevant to the user
question.Please reason step by step before providing the short answer; put your final answer
within <ans></ans>.

Document title: Mistress (1992 film)
Document content: Robert De Niro is the producer of the film Mistress.
Document title: The Godfather Part I1
Document content: Robert De Niro played the role of Vito Corleone in The Godfather Part
11.
Here is the user question:
In The Godfather Part II, who did the producer of Mistress play?

13

Under review as a conference paper at ICLR 2026

Table 10: Prompts for general reasoning.

MMLU and GPQA (vanilla & CoT)

System: You are an expert at question answering.

User:

You are provided with a multi-choice question. Your task is to only output an an-
swer (the letter corresponding to the answer choice placed inside parentheses) within
<ans></ans> (e.g. <ans> (A) </ans>).

You are provided with a multi-choice question. Please reason step by step before providing
the final answer, and put your final answer (the letter corresponding to the answer choice
placed inside parentheses) within <ans></ans>.

Here is the user question:
Which of the following is a second messenger that stimulates release of calcium ions into
the cytoplasm?

Here are the multiple-choice answers:
(A) Prostaglandins
(B) Inositol triphosphate
(C) Cyclic AMP
(D) Calmodulin

Table 11: Prompts for math problems.

GSMS8K and SVAMP (vanilla & CoT)

System: You are an expert at solving math questions.

User:
You are provided with a math question. Your task is to only output a numerical answer
within <ans></ans>.

You are provided with a math question. Please reason step by step before providing a
numerical answer; put your final answer within <ans></ans>.

Here is the user question:

Tommy is fundraising for his charity by selling brownies for $3 a slice and cheesecakes
for $4 a slice. If Tommy sells 43 brownies and 23 slices of cheesecake, how much money
does Tommy raise?

14

Under review as a conference paper at ICLR 2026

20.0% Average performance on in-distribution datasets 80.0% Average performance on out-of-distribution datasets
70.0% 70.0%
°
A
60.0% 60.0%
3- + RoutelLM 5! RoutelLLM
® ——- EmbedLLM ® —=- EmbedLLM
5 50.0% —- RIR 5 50.0% —-+ RTR
9 ~—— CONCUR (Ours) 9 ° —— CONCUR (Ours)
< ® LLaMA-3.2-3B-Instruct, vanilla < ® LLaMA-3.2-3B-Instruct, vanilla
® LLaMA-3.2-3B-Instruct, CoT e ® LLaMA-3.2-3B-Instruct, CoT
40.0% ® LLaMA-3.1-8B-Instruct, vanilla 40.0% ® LLaMA-3.1-8B-Instruct, vanilla
® LLaMA-3.1-8B-Instruct, CoT ® LLaMA-3.1-8B-Instruct, CoT
© Qwen2.5-1.5B-Instruct, vanilla © © Qwen2.5-1.5B-Instruct, vanilla
® Qwen2.5-1.5B-Instruct, CoT ® Qwen2.5-158-Instruct, CoT
30.0% s ° ® Qwen2.5:3B-Instruct, vanilla 30.0% . © Qwen2.5:3B-Instruct, vanilla
® Qwen2.5-38-Instruct, CoT ® Quen2.5-38-Instruct, CoT
° Qwen2.5-7B-Instruct, vanilla Qwen2.5-7B-Instruct, vanilla
Qwen2.5-78-Instruct, CoT Qwen2.5-78-Instruct, CoT
20.0% 20.0%
10 20 50 60 10 20 50 60

FL()Blgs(xlD”)40 FLOBIgs(xlo”)An
Figure 5: Performance of all methods for unconstrained routing on both in- and out-of-distribution
datasets across various values of w defined in Section[2.2] illustrating the trade-off between accuracy
and cost.

0.0% Average performance with large dels only 80.0% Average performance with both large and small del
—
70.0% 70.0%
o °
60.0% 60.0%
3 3‘ # RoutelLMgs = RTRer(r5%)
E E : # RouteLLMgrizsw) == RTRer(100%)
3 50.0% 3 500% i RouteLLMrson) === CONCUR (Ours)
o 3 RouteLLMer(rsw) ® LLaMA-3.2-3B-Instruct, vanilla
< < RouteLLMrrio0%) ® LLaMA-3.2-3B-Instruct, CoT
° 3.1-85-
N N ——- EmbedLLMss © LLaMA-3.1-8B-Instruct, vanilla
40.0% * R°‘::9LLM’5 40.0% EmbedLLMerzss) ® LLaMA-3.1-8B-Instruct, CoT
== E dLLM:
- RTR e s EmbedLLMrsosy ® Qwen2.5-1.5B-Instruct, vanilla
s —=- EmbedLLMs: ® Qwen2.5-1.5B-Instruct, CoT
—— CONCUR (Ours) U g Qwen2.5-3B-Instruct, vanilla
30.0% o ® LLaMA-3.1-8B-Instruct, vanilla 30.0% ° ==+ EmbedLLMsri100%) © Qwen2.5-3B-Instruct, CoT
® LLaMA-3.1-8B-Instruct, CoT = RTRs Qwen2.5-7B-Instruct, vanilla
‘Qwen2.5-7B-Instruct, vanilla ° RTRr(25%) Qwen2.5-7B-Instruct, CoT
Qwen2.5-7B-Instruct, CoT RTRe7(50%)
20.0% 20.0%
10 20 30 40 50 60 10 20 30 40 50 60
FLOPs (x10'!) FLOPs (x10%!)

Figure 6: Performance of all methods under the continual setting with different collections of strate-
gies. Xgs denotes method X trained from scratch. Xprye,) denotes method X fine-tuned from its
prior version, which was trained from scratch in Setting 1, using Y% of the new data.

D IMPLEMENTATION DETAILS

We used the off-the-shelf ALL—MPNET—BASE—VZE model as the frozen encoder outlined in Sec-

tion 2.1} following the approach in [Pan et al| (2025)); Zhuang et al| (2024), which generates repre-

sentations of size k = 768. Training was conducted on an A100 GPU cluster for up to 100 epochs,
using the Adam optimizer with a batch size of 32 and an initial learning rate of 1 x 1073,

E FULL DIAGRAMS

Figures[5]and [6] present the full versions of Figures[3|and [4] respectively, including all methods.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLM was used only to aid writing quality (proofreading and polishing grammar). No ideas, claims,
methods, results, or references are generated by LLMs. All content decisions and revisions are made
by the authors.

'https://huggingface.co/sentence-transformers/all-mpnet-base-v2

15

https://huggingface.co/sentence-transformers/all-mpnet-base-v2

	Introduction
	Methodology
	Predictors
	Routing

	Experiments
	Experimental setup
	Unconstrained routing
	constrained routing
	Continual routing

	Analysis
	Conclusion
	Descriptions for computation strategy
	Dynamic Programming formulation for solving constrained optimization
	Prompts
	Implementation details
	Full diagrams
	The Use of Large Language Models (LLMs)

