
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CONCUR: A FRAMEWORK FOR CONTINUAL CON-
STRAINED AND UNCONSTRAINED ROUTING

Anonymous authors
Paper under double-blind review

ABSTRACT

AI tasks differ in complexity and are best addressed with different computation
strategies (e.g., combinations of models and decoding methods). Hence, an ef-
fective routing system that maps tasks to the appropriate strategies is crucial.
Most prior methods build the routing framework by training a single model across
all strategies, which demands full retraining whenever new strategies appear and
leads to high overhead. Attempts at such continual routing, however, often face
difficulties with generalization. Prior models also typically use a single input
representation, limiting their ability to capture the full complexity of the routing
problem and leading to sub-optimal routing decisions. To address these gaps, we
propose CONCUR, a continual routing framework that supports both constrained
and unconstrained routing (i.e., routing with or without a budget). Our modular
design trains a separate predictor model for each strategy, enabling seamless in-
corporation of new strategies with low additional training cost. Our predictors also
leverage multiple representations of both tasks and computation strategies to better
capture overall problem complexity. Experiments on both in-distribution and out-
of-distribution, knowledge- and reasoning-intensive tasks show that our method
outperforms the best single strategy and strong existing routing techniques with
higher end-to-end accuracy and lower inference cost in both continual and non-
continual settings, while also reducing training cost in the continual setting.

1 INTRODUCTION

AI tasks vary in difficulty, and thus are optimally served by different computation strategies, such
as selecting appropriate models (small or large language models) and decoding methods (with or
without chain-of-thought reasoning (Wei et al., 2022)). Effective routing ensures tasks are paired
with the most suitable strategies to help improve overall accuracy and reduce runtime and costs.

Prior routing work (Zhu et al., 2025; Ong et al., 2024; Ding et al., 2024; Lu et al., 2024; Hari &
Thomson, 2023; Chen et al., 2024; Feng et al., 2025; Pan et al., 2025; Zhuang et al., 2024; Liu et al.,
2024; Sakota et al., 2024; Mohammadshahi et al., 2024; Nguyen et al., 2024; Damani et al., 2024)
typically employs a fixed set of computation strategies, relying on a single model trained jointly on
data from all strategies. However, this monolithic design limits generalization to continual settings
where routers need to quickly adapt to previously unseen strategies. In practice, continual routing
is crucial, as better and increasingly efficient models and decoding methods are constantly emerg-
ing, and not incorporating them promptly risks missing potential gains in accuracy and reductions
in computational cost. However, whenever a novel strategy appears, existing approaches require
retraining the model from scratch using data that covers both previous and new strategies.

Although some recent efforts attempt to move toward a continual setting, they raise significant con-
cerns about generalizability. For example, Wang et al. (2025) adopts a modular design by training
separate router models for different computation strategies. However, since these router architec-
tures differ and are specifically tailored to individual strategies, extending them to unseen strategies
remains non-trivial. Jitkrittum et al. (2025) introduces a zero-shot router based on model feature vec-
tors, enabling generalization to unseen models without retraining. However, their method depends
on predefined prompts, which limits its adaptability to varied prompts and tasks.

Besides efficiency concerns in the continual setting, prior work also raises concerns about end-to-
end performance (accuracy and inference cost) in both continual and non-continual settings. In

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

 The optimal strategy

Chain-of-Thought (CoT) is ...

Jerry spent $5 for lunch and ...

Modular design: 
one predictor for each strategy 

to predict its performance on the task
Computation

strategy
Predicted
accuracy

Predicted
cost

Qwen-2.5-7B-Instruct,
CoT

74.3 41.63

Qwen-2.5-7B-Instruct,
Vanilla

50.6 19.62

LLaMA-3.1-8B-Instruct,

CoT
63.8 60.56

... ... ...

Unconstrained

Task description

Decoding method
description

Accuracy and 
cost preferences

Cost budget

Computation strategy

...

Easy integration of novel strategies

Prior strategy collection Latest strategy collection

S1

Constrained

Qwen2.5-7B-Instruct is ...

Model description

S2
S1

S2 S3
S4

General-purpose
representations

Task-specific
representations

Figure 1: CONCUR learns one predictor per computation strategy that uses multiple input repre-
sentations to support continual routing and better routing decisions under both continual and non-
continual settings.

principle, models should adopt flexible parameterizations that allow them to combine both general-
purpose and task- or strategy-specific signals, thereby capturing richer information about the routing
problem and enabling high-quality routing decisions. However, prior work typically relies on highly
restricted parameterizations; for example, Ong et al. (2024) and Zhu et al. (2025) parameterize only
task-level representations, while Zhuang et al. (2024) and Pan et al. (2025) restrict themselves to a
single parameterization of computation strategies and input tasks, respectively. Such limited designs
may reduce expressivity and constrain the quality of routing decisions.

Motivated by these issues, we propose a generalizable routing framework applicable to both contin-
ual and non-continual, as well as constrained and unconstrained, settings, as illustrated in Figure 1.
Our framework adopts a modular design, where separate predictor models are trained for each com-
putation strategy, using both general-purpose and task-specific representations of input tasks and
computation strategies to estimate accuracy and efficiency. These estimates are then used to for-
mulate constrained and unconstrained routing as optimization problems, which can subsequently be
solved to determine the optimal routing decisions.

In contrast to prior approaches that rely on a single model trained on data from all strategies, our
modular predictor design makes continual routing far more practical. New strategies can be incor-
porated simply by training an additional predictor, without retraining existing ones, thus avoiding
costly overhead. Moreover, unlike prior continual routing efforts that lack generalizability, either
by tailoring router architectures to specific strategies or by relying on fixed prompts, our predic-
tors share the same model architectures, and our method imposes no restrictions on prompts or task
diversity.

In addition, rather than restricting to a single representation as in prior work, our architecture in-
corporates multiple representations of both input tasks and computation strategies to capture richer
information about the routing problem, enabling more accurate routing decisions and improved end-
to-end performance in both continual and non-continual settings.

In summary, we present CONCUR, a framework for continual constrained and unconstrained
routing. CONCUR trains modular predictors for accuracy and efficiency that draw on both general-
purpose and task-specific representations of input tasks and computation strategies, and integrates
these estimates with specific routing algorithms to address constrained and unconstrained rout-
ing. We evaluated CONCUR on diverse benchmarks (including multi-hop QA, general reasoning
multiple-choice tasks, and math problems) across both in- and out-of-distribution settings. Results
show that CONCUR consistently outperforms the best single strategy baseline and existing rout-
ing methods, achieving higher end-to-end accuracy and lower inference cost in both continual and
non-continual settings, as well as improved training efficiency in the continual setting.

2 METHODOLOGY

As outlined in Section 1, our goal is to build a routing framework that supports continual settings and
improves end-to-end performance in both continual and non-continual settings. The core ideas be-
hind our routing models are: (1) we adopt a modular design, training a separate model for each strat-
egy so that extending to new strategies only requires training additional predictors without touching
existing models; and (2) we use multiple input representations to better capture the complexity of
the routing problem, rather than relying on a single representation.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Computation strategy Description of computation strategy 

General-purpose representations

Model description Task descriptionDecoding method
description

Off-the-shelf text embedding model❄️

Task-specific representations

Decoding methodModel

Linear projection Embedding lookup Embedding lookup

MLP (two linear layers)

Computation strategy 

Task-specific representations

Decoding methodModel

Linear projectionEmbedding lookup Embedding lookup

MLP (two linear layers)Accuracy Cost

Figure 2: Overall predictor architecture of CONCUR. For each computation strategy sj , we train
two predictor models: one estimates the accuracy of applying sj to the input task, and the other
estimates its cost, using both general-purpose and task-specific representations.

Concretely, we formulate both constrained and unconstrained routing as optimization problems over
accuracy and efficiency. Therefore, predictors are trained to estimate these metrics, which are sub-
sequently used to solve the optimization problems. Building on this design, Section 2.1 describes
how we train modular predictors to model task difficulty using multiple input representations, and
Section 2.2 explains how these predictions drive routing decisions.

2.1 PREDICTORS

We outline the training of predictors designed to estimate the performance of applying a computation
strategy to a given user task. This involves characterizing input tasks and strategies, detailing the
predictor model architectures, and explaining the training procedure and prediction process.

Characterization. We define a task ti as comprising both the question and any related context.
While prior work (Ong et al., 2024; Zhuang et al., 2024; Pan et al., 2025) typically considers only the
question, a task may also include supporting documents, such as in the open-domain QA setting, that
provide useful signals for estimating task difficulty. We define a computation strategy sj as a (model,
decoding method) pair (mj , dj). In our implementation, a model denotes the underlying language
model (e.g., Qwen2.5-7B-Instruct), while a decoding method refers to the decoding algorithm (e.g.,
chain-of-thought). However, developers can broaden the definition of computation strategies to
incorporate additional parameters. Given a set of supported language models M and decoding
methods D, the complete set of computation strategies S is the Cartesian product S = M ×D.

The performance of applying strategy sj to task ti includes both the accuracy aij and the com-
putational cost measured in FLOPs cij consumed during inference, which we use as a proxy for
efficiency. FLOPs are preferred over token counts because models vary in size, and the compu-
tational cost of generating a single token differs across models. Using FLOPs allows for a more
standardized comparison of efficiency across different models.

Architecture. To achieve high-quality predictions, we train two independently parameterized
predictors: one for estimating accuracy and the other for estimating cost. Each predictor incor-
porates both general-purpose and task-specific representations of the input task ti and strategy
sj = (mj , dj), enabling them to capture both general and task-strategy specific characteristics.
For every sj , two such predictors are trained, resulting in a modular design where predictors for dif-
ferent strategies can be trained independently. This allows new strategies to be supported by training
only the corresponding predictors, leaving existing ones untouched and incurring minimal overhead.
The overall architecture is shown in Figure 2.

1. General-purpose representation. We generate a general-purpose representation by passing the
textual description of the task and strategy (textual descriptions of the strategies are provided in
Appendix A) through an off-the-shelf text embedding model R.

gt
i = R(ti), g

m
j = R

(
mj), g

d
j = R(dj)

Concatenating the three parts gives the general representation gij = [gt
i ;g

m
j ;gd

j ] ∈ R3k where k is
the dimension of the encoded representation.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2. Task-specific representation. Task-specific representations are derived using learnable projections
and embeddings. The task-specific representation of the input task is derived by linearly projecting
its previously defined general-purpose representation. Task-specific representations for the model
and decoding method are derived from learned embeddings that map model and decoding method
IDs into trainable dense vectors optimized alongside the rest of the model.
tai = W a

t R(ti), m
a
j = Ea

M [mj ], d
a
j = Ea

D[dj ]; t
c
i = W c

t R(ti), m
c
j = Ec

M [mj ], d
c
j = Ec

D[dj ]

where Xa and Xc represent X in the accuracy and cost predictor models, respectively. The metric
(i.e., accuracy or cost)-specific linear projection is denoted by Wt ∈ Rk×k, while EM and ED are
metric-specific embedding lookup tables for models and decoding methods, respectively.

Concatenating the three parts gives the task-specific representations saij = [tai ;m
a
j ;d

a
j ] and scij =

[tci ;m
c
j ;d

c
j ] ∈ R3k.

3. MLP. Finally, we concatenate the general-purpose and task-specific representations and feed them
through two linear layers to produce the accuracy and cost predictions, âij and ĉij .

âij = fa(
[
gij ; s

a
ij

]
); ĉij = f c(

[
gij ; s

c
ij

]
)

where fa is a binary classifier and f c is a regressor for predicting the accuracy and cost, respectively.

We note that once trained, the representations of a strategy sj remain fixed and thus contribute a
constant term to the predictions. Nonetheless, as we will show in Section 3, including these strategy
representations improves performance over strong routing baselines.

Training. Using the training tasks and their target answers, we apply each strategy sj to each task
ti to obtain the ground-truth labels aij (by comparing the generated and the target answers) and cij .
Due to the modular design with respect to each sj , training a predictor for a given strategy only
requires the training data associated with that strategy. The training procedure for the predictors is
as follows. The accuracy predictor is a binary classifier trained with cross-entropy loss:

Lacc = −aij log (âij)− (1− aij) log (1− âij)

where aij is the ground-truth accuracy label and âij is its predicted value. The cost predictor is a
regressor trained with mean squared error loss:

Lcost = (cij − ĉij)
2

where cij is the ground-truth cost and ĉij is its predicted value.

Inference. For a new task ti, we encode it with the same embedding model used during training
and pass this representation, along with the representation of each strategy sj , through the respective
accuracy and cost predictors to obtain âij and ĉij .

Continual routing. Our modular design assigns a separate predictor to each strategy sj , so incor-
porating a new strategy s′j involves training only its predictors, leaving previously trained models
unchanged, making extensions straightforward and efficient.

2.2 ROUTING

Using the predicted accuracy aij and cost cij of applying strategy sj to task ti, we demonstrate how
both constrained and unconstrained routing can be formulated as optimization problems and solved,
leading to the final routing decisions.

Unconstrained routing. For a given task ti, unconstrained routing involves choosing the compu-
tation strategy that achieves an optimal trade-off between accuracy and cost. This can be framed as
the following bi-objective optimization problem, maximizing accuracy while simultaneously mini-
mizing cost: maxj aij ,minj cij .

By introducing a weight w to represent the trade-off between accuracy and cost, the bi-objective op-
timization problem can be reformulated as a single-objective problem that maximizes the weighted
sum of these two objectives.

max
j

∑
i

(w · aij + (1− w) · (−cij)) =
∑
i

max
j

(w · aij + (1− w) · (−cij)) (1)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Then, ti is routed to the strategy s∗j that maximizes the weighted sum.

Constrained routing. For a task ti with an associated cost budget B, constrained routing seeks
the computation strategy that delivers the highest possible accuracy without exceeding the budget.
This can be expressed as the following optimization problem: maxj,cij≤B aij

However, optimizing each task individually may not yield the best overall result, as local optima
do not always translate to global optimality. For a batch of n tasks t1, t2, ..., tn, the constrained
optimization problem can be reformulated as

max
j,
∑

i cij≤nB

∑
i

aij (2)

We address this optimization problem by formulating a dynamic programming (DP) approach (see
Appendix B for details), which has an overall complexity of O(n ·nB · |S|) = O(n2 ·B|S|), where
B represents the budget per task and |S| is the number of computation strategies. Since the budget
can be kept relatively small through scaling, and the number of computation strategies (i.e., LLM-
decoding pairs) used simultaneously is usually moderate, the DP algorithm can be solved efficiently
for a reasonable number of tasks.

Although the above formulation is designed to maximize accuracy under a cost constraint, it can be
straightforwardly adapted to minimize cost for a given accuracy requirement.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets. We select a diverse set of tasks covering different skills and output formats: factual
multi-hop question answering with short text answers, general reasoning with multiple-choice an-
swers, and mathematical problems requiring numerical answers. For each task category, we select
two datasets: one in-distribution for both training and testing, and one out-of-distribution reserved
exclusively for testing. A summary of these datasets and their statistics is provided in Table 1.

Table 1: Datasets and their sizes.
In-distribution Out-of-distribution

Dataset Test size Dataset Test size

Multi-hop QA 2WikiMultiHop (Ho et al., 2020) 1000 HotpotQA (Yang et al., 2018) 500
General reasoning MMLU (Hendrycks et al., 2021) 1000 GPQA (Rein et al., 2024) 448
Math problems GSM8k (Cobbe et al., 2021) 1000 SVAMP (Patel et al., 2021) 500

Computation strategies. As described in Section 2.1, the set of computation strategies comprises
combinations of models and decoding methods. For models, we used Qwen2.5-Instruct models
(1.5B, 3B, and 7B) and Llama-3.x-Instruct models (3.2-3B and 3.1-8B). For decoding, we consid-
ered two common approaches: vanilla, where models directly generate the answer, and chain-of-
thought (Wei et al., 2022), where models produce intermediate reasoning steps before the final an-
swer. The descriptions and prompts for each strategy are presented in Appendix A and Appendix C,
respectively. In total, this yields five LLMs and two decoding methods, for a total of ten strategies.

Baselines. We compare our routing framework against the best single strategy without routing and
three strong routing baselines. Implementation details are provided in Appendix D.

(1) Best single strategy: We use the same model-decoding pair that achieves the highest overall
accuracy across all tasks. In this case, Qwen2.5-7B-Instruct with chain-of-thought (CoT) decoding
is selected for its superior accuracy.

(2) RouteLLM (Ong et al., 2024): This approach uses a single classifier that relies on the single
general-purpose task representations to select a strategy. Since it does not take the budget into
account, we evaluate it only in unconstrained settings.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3: Pareto curves for unconstrained routing on both in- and out-of-distribution datasets across
various values of w defined in Section 2.2, illustrating the trade-off between accuracy and cost. Full
diagrams are available in Appendix E.

(3) EmbedLLM (Zhuang et al., 2024): Originally, this method uses a single model to predict the
accuracy of each strategy and picks the one with the highest accuracy. We adapt it by adding an
additional model to predict the cost. Unlike CONCUR, EmbedLLM only uses a single task-specific
representation for computation strategies.

(4) RTR (Pan et al., 2025): This method employs a single model to jointly predict accuracy and cost
for all strategies. In contrast to CONCUR, RTR only uses a single general-purpose representation
for input tasks.

Metrics. We compare our method and the baselines based on end-to-end performance. Once com-
putation strategies are assigned to tasks, we compute the overall accuracy and total inference FLOPs
(as a proxy for efficiency and cost) for each approach. Inference FLOPs are calculated using the
standard formula from Kaplan et al. (2020) and scaled down by 1011 for readability.

In the following subsections, we first evaluate our method against the baselines in non-continual un-
constrained (Section 3.2) and constrained (Section 3.3) settings to primarily assess the effectiveness
of our model architecture, which leverages multiple representations of both input tasks and compu-
tation strategies to improve end-to-end performance. We then examine performance in a continual
setting (Section 3.4) to highlight the impact of our modular design on reducing training cost.

3.2 UNCONSTRAINED ROUTING

Figure 3 shows that our method consistently outperforms the baselines in both in-distribution and
out-of-distribution scenarios. Tables 2 and 3 report the maximum accuracy achieved by each method.
Among the approaches that surpass the best single strategy, our method generally achieves the high-
est accuracy with the lowest FLOPs. This demonstrates that, compared to the best single strategy,
routing enables higher accuracy at reduced computational cost. Furthermore, when compared to
other routing baselines, our method delivers both superior accuracy and efficiency, highlighting its
higher effectiveness as a router.

3.3 CONSTRAINED ROUTING

Constrained routing means routing under budget constraints. To test generalizability, we evaluate
performance under both low- and high-budget settings. Furthermore, as noted in Section 2.2, given
the predicted accuracy and cost, the constrained routing problem can be addressed in two ways:
(1) local optimization, which treats each task independently and allocates the budget evenly across
tasks, and (2) global optimization (our approach), which distributes the total budget jointly across
all tasks. We also compare the performance when using these two optimization methods.

Examining the accuracy improvement from the local optimization baseline to our global optimiza-
tion method, Table 4 shows a substantial positive change in both budget settings, demonstrating the
effectiveness of our global optimization approach in making better routing decisions. Moreover,
when comparing the accuracy of different routing methods under global optimization, Table 4 indi-

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Performance for unconstrained routing on in-distribution datasets: 2WikiMultiHop,
MMLU, and GSM8k. Gray denotes methods whose average accuracy falls below that of the
best single-strategy baseline. Bolded numbers indicate the best performance among the remaining
methods.

2WikiMultiHop MMLU GSM8k Average

Acc FLOPs ↓ Acc FLOPs Acc FLOPs Acc FLOPs

Best single strategy 57.6 49.63 73.7 44.45 91.6 30.82 74.3 41.63
RouteLLM 41.7 17.90 54.7 3.20 64.1 9.51 53.5 10.20
EmbedLLM 58.4 43.68 72.1 33.68 89.8 25.28 73.4 34.21
RTR 57.9 44.04 73.7 44.45 91.3 33.07 74.3 40.52
CONCUR (Ours) 59.5 38.54 74.4 40.73 91.6 30.23 75.2 36.50

Table 3: Performance for unconstrained routing on out-of-distribution datasets: HotpotQA, GPQA,
and SVAMP.

HotpotQA GPQA SVAMP Average

Acc FLOPs ↓ Acc FLOPs Acc FLOPs Acc FLOPs

Best single strategy 59.8 39.75 35.0 75.18 92.2 23.46 62.3 46.13
RouteLLM 52.8 6.62 29.5 4.22 79.8 8.18 54.0 6.34
EmbedLLM 57.0 30.15 35.3 69.75 92.0 19.63 61.4 39.84
RTR 59.8 36.16 35.0 75.18 92.4 23.65 62.4 45.00
CONCUR (Ours) 60.6 33.62 35.3 73.31 92.0 22.75 62.6 43.23

Table 4: Accuracy gains of constrained routing when transitioning from local optimization (L) to
global optimization (G), along with the accuracy achieved by global optimization under varying
budget settings. Bolded and underlined numbers represent the performance of our method when it
ranks as the best and second best, respectively.

2WikiMultiHop MMLU GSM8k Average

∆(L → G) G ∆(L → G) G ∆(L → G) G ∆(L → G) G

Low budget (FLOPs budget = 25)

EmbedLLM +4.4 52.4 +3.2 70.6 +1.5 89.8 +3.0 70.9
RTR +6.0 53.9 +4.7 73.7 +2.0 90.4 +4.2 72.7
CONCUR (Ours) +9.7 56.5 +3.8 72.7 +3.7 90.3 +5.7 73.2

High budget (FLOPs budget = 40)

EmbedLLM +4.6 57.6 +2.4 72.6 0.0 90.1 +2.3 73.4
RTR +3.3 56.6 +2.9 74.1 +0.2 91.2 +2.1 74.0
CONCUR (Ours) +8.1 59.5 +3.2 74.4 +0.8 91.6 +4.0 75.2

cates that our method achieves the highest average accuracy across both settings, highlighting the
overall strength of our routing framework.

3.4 CONTINUAL ROUTING

We consider the following scenarios where routers must adapt to unseen computation strategies.
Initially, an organization prioritizes accuracy and selects moderate-to-large models: Qwen2.5-7B-
Instruct and Llama-3.1-8B-Instruct. Later, to reduce cost and latency without sacrificing accu-
racy, the organization introduces smaller models: Qwen2.5-1.5B-Instruct, Qwen2.5-3B-Instruct,
and Llama-3.2-3B-Instruct. We refer to the first scenario with only large models as Setting 1, and
the second scenario with both large and small models as Setting 2.

Since all routing baselines (RouteLLM, EmbedLLM, and RTR) train a single router model using
training data across all computation strategies, the straightforward way to incorporate unseen strate-
gies is to retrain the model from scratch using all available data. However, this can be unnecessarily
costly given that the router model has already been trained on prior data. To address this, we also

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: Performance of different methods under the continual routing with different collections of
strategies. XFS denotes method X trained from scratch. XFT(Y%) denotes method X fine-tuned from
its prior version, which was trained from scratch in Setting 1, using Y% of the new data.

Table 5: Performance for continual routing. Table 2 provides the definitions of the coloring and
bolding scheme.

2WikiMultiHop MMLU GSM8k Average

Relative training time Acc FLOPs ↓ Acc FLOPs Acc FLOPs Acc FLOPs

Setting 1: Large models only (Qwen2.5-7B-Instruct and Llama-3.1-8B-Instruct)

Best single strategy – 57.6 49.63 73.7 44.45 91.6 30.82 74.3 41.63
RouteLLMFS 0.18x 54.0 48.77 68.7 17.03 90.0 30.06 70.9 31.96
EmbedLLMFS 1.32x 58.9 49.62 73.3 44.29 91.2 33.44 74.5 42.45
RTRFS 3.93x 59.4 51.12 72.1 42.98 91.6 30.82 74.4 41.64
CONCUR (Ours) 1.00x 59.3 50.71 74.5 41.02 91.7 30.78 75.2 40.84

Setting 2: Large and small models (Qwen2.5, Llama-3.1, and Llama-3.2 family)

Best single strategy – 57.6 49.63 73.7 44.45 91.6 30.82 74.3 41.63
RouteLLMFS 0.20x 41.7 17.90 54.7 3.20 64.1 9.51 53.5 10.20
RouteLLMFT (25%) 0.14x 41.6 18.21 53.5 2.80 61.5 9.69 52.2 10.23
RouteLLMFT (50%) 0.17x 41.6 19.96 52.9 2.90 66.5 10.13 53.7 11.00
RouteLLMFT (75%) 0.20x 41.5 13.73 53.0 2.91 59.1 9.45 51.2 8.70
RouteLLMFT (100%) 0.23x 41.3 16.62 54.6 3.28 62.5 9.33 52.8 9.74
EmbedLLMFS 3.08x 58.4 43.68 72.1 33.68 89.8 25.28 73.4 34.21
EmbedLLMFT (25%) 1.01x 56.9 40.12 68.9 34.45 89.6 30.83 71.8 35.13
EmbedLLMFT (50%) 1.92x 57.4 36.87 68.3 26.36 89.5 30.64 71.7 31.29
EmbedLLMFT (75%) 2.82x 55.1 36.19 69.5 32.69 90.2 27.40 71.6 32.09
EmbedLLMFT (100%) 3.11x 59.2 42.93 70.0 32.59 89.7 26.45 73.0 33.99
RTRFS 7.66x 57.9 44.04 73.7 44.45 91.3 33.07 74.3 40.52
RTRFT (25%) 1.69x 58.5 39.80 71.3 42.27 88.2 13.49 72.7 31.85
RTRFT (50%) 2.84x 59.2 47.79 68.4 13.53 88.2 13.51 71.9 24.95
RTRFT (75%) 3.89x 58.9 47.81 73.6 44.38 91.6 30.82 74.7 41.01
RTRFT (100%) 4.96x 57.6 44.06 73.4 43.19 88.3 17.91 73.1 35.05
CONCUR (Ours) 1.00x 59.5 38.54 74.4 40.73 91.6 30.23 75.2 36.50

evaluated variants of these baselines where the existing router models are fine-tuned on randomly
sampled 25%, 50%, 75%, and 100% of the new training data.

In addition to end-to-end performance metrics (accuracy and inference FLOPs), we explicitly mea-
sure the training time for each method as an indicator of training cost, reflecting how easily each
method can adapt to unseen strategies.

Figure 4 shows that in both Setting 1 and 2, in terms of end-to-end performance, CONCUR out-
performs all baselines. As shown in Table 5, in Setting 1, our method achieves the highest average
accuracy with the lowest FLOPs among all baselines, demonstrating the effectiveness of our rout-
ing framework. In Setting 2, among routing baselines that outperform the best single strategy, our
method again achieves the highest accuracy with the lowest FLOPs, while requiring significantly
less training time. This highlights the advantage of our modular predictor architecture, which al-
lows easy extension to unseen strategies. Importantly, the goal of the organization is to reduce

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

FLOPs while maintaining accuracy when moving from Setting 1 to Setting 2, a target achieved only
by the RTRFT(75%) baseline and our method, with our approach performing substantially better.

4 ANALYSIS

Section 3 highlights the advantages of our routing framework. To understand the source of these
benefits, we focus on our approach and the best single strategy baseline (Qwen2.5-7B-Instruct with
CoT decoding) under the unconstrained routing results shown in Table 2.

Table 6: The table shows (1) the percentage of tasks routed by our framework to different strategies,
(2) the performance of tasks using routed strategies by our framework compared to using the best
single-strategy baseline (Qwen2.5-7B-Instruct with CoT), and (3) the distribution of task accuracy
transitions from the baseline strategy to the routed strategy by our framework, where C and I indicate
correct and incorrect, respectively. Bolded numbers indicate cases where the routed strategy by our
framework outperforms the baseline strategy.

Baseline strategy Routed strategy Task accuracy transitions (%)

Tasks routed (%) Acc FLOPs ↓ Acc FLOPs C → C I → C I → I C → I

2WikiMultiHop

Qwen7B-CoT (Baseline) 33.6% 82.4 47.7 – – – – – –
Qwen2B-vanilla 25.3% 22.9 56.9 27.3 7.8 16.2% 11.1% 66.0% 6.7%
Llama8B-CoT 21.0% 54.8 48.6 56.7 70.5 48.1% 8.6% 36.7% 6.7%
Qwen7B-vanilla 17.1% 67.3 43.5 70.2 29.9 59.1% 11.1% 21.6% 8.2%
Others 3.0% 36.7 51.8 33.3 21.0 23.3% 10.0% 53.3% 13.3%

MMLU

Qwen7B-CoT (Baseline) 83.6% 74.2 44.4 – – – – – –
Qwen7B-vanilla 12.7% 69.3 44.5 78.0 14.4 64.6% 13.4% 17.3% 4.7%
Others 3.7% 78.4 45.3 67.6 48.1 62.2% 5.4% 16.2% 16.2%

GSM8k

Qwen7B-CoT (Baseline) 96.0% 91.6 30.9 – – – – – –
Others 4.0% 92.5 27.9 92.5 13.2 87.5% 5.0% 2.5% 5.0%

The baseline routes all tasks to a single computation strategy. Table 6 details the routing decisions
made by our method. As shown, GSM8k tasks are still mostly assigned to Q7B-CoT, so performance
remains similar regardless of routing. However, for 2WikiMultiHop and MMLU, a substantial por-
tion of tasks is routed to more cost-efficient strategies (smaller models and/ or simpler decoding
methods). These alternatives often achieve higher accuracy while significantly reducing FLOPs,
explaining the performance gains of our framework.

Additionally, Table 6 shows the distribution of tasks by accuracy change: whether they remain cor-
rect/incorrect or switch between the two. Most questions follow one of two patterns: (1) they keep
their original correctness but are routed to cheaper strategies, significantly reducing computation
cost and improving efficiency; or (2) they switch from previously incorrect to correct answers, lead-
ing to gains in accuracy. A small fraction of questions change from correct to incorrect, but these
losses are minor compared to the overall improvements.

5 CONCLUSION

This work introduces CONCUR, a framework for continual constrained and unconstrained routing.
Central to CONCUR are modular predictors that leverage both general-purpose and task-specific
representations to estimate a strategy’s accuracy and cost on a given task, enabling optimization-
based routing and straightforward extension to unseen strategies. Extensive experiments on a diverse
set of in-distribution and out-of-distribution tasks show that CONCUR outperforms the best single
strategy and existing strong routing methods in both continual and non-continual settings.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Shuhao Chen, Weisen Jiang, Baijiong Lin, James Kwok, and Yu Zhang. RouterDC: Query-
based router by dual contrastive learning for assembling large language models. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=7RQvjayHrM.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Mehul Damani, Idan Shenfeld, Andi Peng, Andreea Bobu, and Jacob Andreas. Learning how hard
to think: Input-adaptive allocation of lm computation. arXiv preprint arXiv:2410.04707, 2024.

Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Rühle, Laks
V. S. Lakshmanan, and Ahmed Hassan Awadallah. Hybrid LLM: Cost-efficient and quality-aware
query routing. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=02f3mUtqnM.

Tao Feng, Yanzhen Shen, and Jiaxuan You. Graphrouter: A graph-based router for LLM selections.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=eU39PDsZtT.

Surya Narayanan Hari and Matt Thomson. Tryage: Real-time, intelligent routing of user prompts to
large language models. arXiv preprint arXiv:2308.11601, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
d7KBjmI3GmQ.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-
hop QA dataset for comprehensive evaluation of reasoning steps. In Donia Scott, Nuria Bel,
and Chengqing Zong (eds.), Proceedings of the 28th International Conference on Computational
Linguistics, pp. 6609–6625, Barcelona, Spain (Online), December 2020. International Com-
mittee on Computational Linguistics. doi: 10.18653/v1/2020.coling-main.580. URL https:
//aclanthology.org/2020.coling-main.580/.

Wittawat Jitkrittum, Harikrishna Narasimhan, Ankit Singh Rawat, Jeevesh Juneja, Zifeng Wang,
Chen-Yu Lee, Pradeep Shenoy, Rina Panigrahy, Aditya Krishna Menon, and Sanjiv Kumar. Uni-
versal model routing for efficient llm inference. arXiv preprint arXiv:2502.08773, 2025.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL https://arxiv.org/abs/2001.08361.

Yueyue Liu, Hongyu Zhang, Yuantian Miao, Van-Hoang Le, and Zhiqiang Li. Optllm: Optimal
assignment of queries to large language models. In 2024 IEEE International Conference on Web
Services (ICWS), pp. 788–798. IEEE, 2024.

Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang Zhou, and Jingren Zhou.
Routing to the expert: Efficient reward-guided ensemble of large language models. In Kevin
Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pp. 1964–1974, Mexico City, Mexico, June 2024. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.109. URL https:
//aclanthology.org/2024.naacl-long.109/.

Alireza Mohammadshahi, Arshad Rafiq Shaikh, and Majid Yazdani. Routoo: Learning to route to
large language models effectively. arXiv preprint arXiv:2401.13979, 2024.

10

https://openreview.net/forum?id=7RQvjayHrM
https://openreview.net/forum?id=7RQvjayHrM
https://openreview.net/forum?id=02f3mUtqnM
https://openreview.net/forum?id=eU39PDsZtT
https://openreview.net/forum?id=eU39PDsZtT
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://aclanthology.org/2020.coling-main.580/
https://aclanthology.org/2020.coling-main.580/
https://arxiv.org/abs/2001.08361
https://aclanthology.org/2024.naacl-long.109/
https://aclanthology.org/2024.naacl-long.109/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Quang H Nguyen, Thinh Dao, Duy C Hoang, Juliette Decugis, Saurav Manchanda, Nitesh V
Chawla, and Khoa D Doan. Metallm: A high-performant and cost-efficient dynamic framework
for wrapping llms. arXiv preprint arXiv:2407.10834, 2024.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E Gonzalez,
M Waleed Kadous, and Ion Stoica. Routellm: Learning to route llms with preference data. arXiv
preprint arXiv:2406.18665, 2024.

Zhihong Pan, Kai Zhang, Yuze Zhao, and Yupeng Han. Route to reason: Adaptive routing for llm
and reasoning strategy selection. arXiv preprint arXiv:2505.19435, 2025.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve sim-
ple math word problems? In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek
Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou
(eds.), Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 2080–2094, Online, June
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.168. URL
https://aclanthology.org/2021.naacl-main.168/.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a
benchmark. In First Conference on Language Modeling, 2024. URL https://openreview.
net/forum?id=Ti67584b98.

Marija Sakota, Maxime Peyrard, and Robert West. Fly-swat or cannon? cost-effective language
model choice via meta-modeling. In Proceedings of the 17th ACM International Conference on
Web Search and Data Mining, WSDM ’24, pp. 606–615. ACM, March 2024. doi: 10.1145/
3616855.3635825. URL http://dx.doi.org/10.1145/3616855.3635825.

Xinyuan Wang, Yanchi Liu, Wei Cheng, Xujiang Zhao, Zhengzhang Chen, Wenchao Yu, Yanjie Fu,
and Haifeng Chen. Mixllm: Dynamic routing in mixed large language models. arXiv preprint
arXiv:2502.18482, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceed-
ings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2369–
2380, Brussels, Belgium, October-November 2018. Association for Computational Linguistics.
doi: 10.18653/v1/D18-1259. URL https://aclanthology.org/D18-1259/.

Yizhang Zhu, Runzhi Jiang, Boyan Li, Nan Tang, and Yuyu Luo. Elliesql: Cost-efficient text-to-sql
with complexity-aware routing. arXiv preprint arXiv:2503.22402, 2025.

Richard Zhuang, Tianhao Wu, Zhaojin Wen, Andrew Li, Jiantao Jiao, and Kannan Ramchan-
dran. Embedllm: Learning compact representations of large language models. arXiv preprint
arXiv:2410.02223, 2024.

11

https://aclanthology.org/2021.naacl-main.168/
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
http://dx.doi.org/10.1145/3616855.3635825
https://aclanthology.org/D18-1259/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A DESCRIPTIONS FOR COMPUTATION STRATEGY

Table 7 lists the description for decoding strategies and Table 8 lists the descriptions for models.

Table 7: Descriptions of decoding strategies.
Strategy ID Description
Vanilla Vanilla prompting retains the original question content without adding any

additional prompt information.
CoT Chain-of-Thought (CoT) prompting guides the model to articulate a

step-by-step reasoning process before providing the final answer. This
results in longer responses and slower inference, but delivers superior per-
formance on complex reasoning tasks.

Table 8: Descriptions of models.
Model ID Description
Qwen2.5-1.5B-Instruct Qwen2.5-1.5B-Instruct is an ultra-lightweight 1.5 B parameter

model designed for minimal-resource environments. It is best
suited for simple prompts, basic classification, and short text
completion, but struggles with nuanced understanding or ad-
vanced reasoning tasks.

Qwen2.5-3B-Instruct Qwen2.5-3B-Instruct is a lightweight 3 B parameter model with
fast inference and low resource usage. It is suitable for simple
tasks such as basic question answering and short-form text gener-
ation, but is limited in handling complex reasoning or multi-step
tasks.

Qwen2.5-7B-Instruct Qwen2.5-7B-Instruct is a mid-small 7 B parameter model that
balances speed and performance. It can handle multi-turn dia-
logue, basic code and math tasks, and offers improved language
understanding over smaller models while maintaining efficient
inference.

Llama-3.2-3B-Instruct Llama-3.2-3B-Instruct is a compact 3 B parameter model opti-
mised for efficient inference in constrained environments. It han-
dles basic instruction following, simple question answering, and
short text generation reliably, but lacks the depth for nuanced rea-
soning or complex task execution.

Llama-3.1-8B-Instruct Llama-3.1-8B-Instruct is a moderately-sized 8 B parameter
model that offers a strong balance between performance and re-
source usage. It supports multi-turn dialogue, intermediate rea-
soning, and modest code or math capabilities, though it may still
struggle with deeply intricate or highly technical prompts.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B DYNAMIC PROGRAMMING FORMULATION FOR SOLVING CONSTRAINED
OPTIMIZATION

To address the constrained optimization in Equation (2), we formulate dynamic programming (DP)-
based solutions. We define DP [i][b] as the maximum achievable total accuracy when routing the
first i tasks, subject to a total cost not exceeding b.

Then, we initialize the DP problem as follows

DP [0][b] =

{
0 if b = 0

−∞ otherwise
∀b ∈ [0, nB] (3)

We define the recurrence relation as follows: for all b ∈ [Bmin
i ,min (Bmax

i , nB)]

DP [i][b] = max
j,b≥cij

DP [i− 1][b− cij ] + aij (4)

where Bmin
i =

∑i
k=0 minj ckj and Bmax

i =
∑i

k=0 maxj ckj . Bmin
i and Bmax

i denote the minimum
and maximum total cost required to assign exactly one method to each of the first i tasks. We
constrain b within these bounds to avoid unnecessary computations. This recurrence reflects the
process of updating the maximum cumulative accuracy by considering all computation strategies
for task ti and choosing the one that achieves the highest accuracy without exceeding the budget.
Since the budget nB and the cost cij can be floating-point numbers, we round them to integers to
enable integer-based indexing in the DP array.

Then, the maximum accuracy attainable within the budget nB is maxb≤nB DP [n][b]. We apply
backtracking to recover the strategy chosen for each task.

C PROMPTS

Tables 9 to 11 show the prompts used for all task types (multi-hop QA, general reasoning, and math
problems) with different decoding strategies.

Table 9: Prompts for multi-hop QA (blue refers to the vanilla prompt and yellow refers to the CoT
prompt).

2WikiMultiHop and HotpotQA (vanilla & CoT)

System: You are an expert at question answering.

User:
You are provided with a user question, and information that might be relevant to the user
question.Your task is to only output a short answer within <ans></ans>.

You are provided with a user question, and information that might be relevant to the user
question.Please reason step by step before providing the short answer; put your final answer
within <ans></ans>.

Document title: Mistress (1992 film)
Document content: Robert De Niro is the producer of the film Mistress.
Document title: The Godfather Part II
Document content: Robert De Niro played the role of Vito Corleone in The Godfather Part
II.
Here is the user question:

In The Godfather Part II, who did the producer of Mistress play?

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 10: Prompts for general reasoning.

MMLU and GPQA (vanilla & CoT)

System: You are an expert at question answering.

User:
You are provided with a multi-choice question. Your task is to only output an an-
swer (the letter corresponding to the answer choice placed inside parentheses) within
<ans></ans> (e.g. <ans>(A)</ans>).

You are provided with a multi-choice question. Please reason step by step before providing
the final answer, and put your final answer (the letter corresponding to the answer choice
placed inside parentheses) within <ans></ans>.

Here is the user question:
Which of the following is a second messenger that stimulates release of calcium ions into

the cytoplasm?
Here are the multiple-choice answers:

(A) Prostaglandins
(B) Inositol triphosphate
(C) Cyclic AMP
(D) Calmodulin

Table 11: Prompts for math problems.

GSM8K and SVAMP (vanilla & CoT)

System: You are an expert at solving math questions.

User:
You are provided with a math question. Your task is to only output a numerical answer
within <ans></ans>.

You are provided with a math question. Please reason step by step before providing a
numerical answer; put your final answer within <ans></ans>.

Here is the user question:
Tommy is fundraising for his charity by selling brownies for $3 a slice and cheesecakes

for $4 a slice. If Tommy sells 43 brownies and 23 slices of cheesecake, how much money
does Tommy raise?

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 5: Performance of all methods for unconstrained routing on both in- and out-of-distribution
datasets across various values of w defined in Section 2.2, illustrating the trade-off between accuracy
and cost.

Figure 6: Performance of all methods under the continual setting with different collections of strate-
gies. XFS denotes method X trained from scratch. XFT(Y%) denotes method X fine-tuned from its
prior version, which was trained from scratch in Setting 1, using Y% of the new data.

D IMPLEMENTATION DETAILS

We used the off-the-shelf ALL-MPNET-BASE-V21 model as the frozen encoder outlined in Sec-
tion 2.1, following the approach in Pan et al. (2025); Zhuang et al. (2024), which generates repre-
sentations of size k = 768. Training was conducted on an A100 GPU cluster for up to 100 epochs,
using the Adam optimizer with a batch size of 32 and an initial learning rate of 1× 10−3.

E FULL DIAGRAMS

Figures 5 and 6 present the full versions of Figures 3 and 4, respectively, including all methods.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLM was used only to aid writing quality (proofreading and polishing grammar). No ideas, claims,
methods, results, or references are generated by LLMs. All content decisions and revisions are made
by the authors.

1https://huggingface.co/sentence-transformers/all-mpnet-base-v2

15

https://huggingface.co/sentence-transformers/all-mpnet-base-v2

	Introduction
	Methodology
	Predictors
	Routing

	Experiments
	Experimental setup
	Unconstrained routing
	constrained routing
	Continual routing

	Analysis
	Conclusion
	Descriptions for computation strategy
	Dynamic Programming formulation for solving constrained optimization
	Prompts
	Implementation details
	Full diagrams
	The Use of Large Language Models (LLMs)

