CONCUR: A FRAMEWORK FOR CONTINUAL CONSTRAINED AND UNCONSTRAINED ROUTING

Anonymous authors

000

001

003 004

010 011

012

013

014

015

016

017

018

019

021

023

025

026

027

028029030

031

033

034

035

037

038

040

041

042

043

044

045

046

047

048

051

052

Paper under double-blind review

ABSTRACT

AI tasks differ in complexity and are best addressed with different computation strategies (e.g., combinations of models and decoding methods). Hence, an effective routing system that maps tasks to the appropriate strategies is crucial. Most prior methods build the routing framework by training a single model across all strategies, which demands full retraining whenever new strategies appear and leads to high overhead. Attempts at such continual routing, however, often face difficulties with generalization. Prior models also typically use a *single* input representation, limiting their ability to capture the full complexity of the routing problem and leading to sub-optimal routing decisions. To address these gaps, we propose CONCUR, a continual routing framework that supports both constrained and unconstrained routing (i.e., routing with or without a budget). Our modular design trains a separate predictor model for each strategy, enabling seamless incorporation of new strategies with low additional training cost. Our predictors also leverage multiple representations of both tasks and computation strategies to better capture overall problem complexity. Experiments on both in-distribution and outof-distribution, knowledge- and reasoning-intensive tasks show that our method outperforms the best single strategy and strong existing routing techniques with higher end-to-end accuracy and lower inference cost in both continual and noncontinual settings, while also reducing training cost in the continual setting.

1 Introduction

AI tasks vary in difficulty, and thus are optimally served by different computation strategies, such as selecting appropriate models (small or large language models) and decoding methods (with or without chain-of-thought reasoning (Wei et al., 2022)). Effective routing ensures tasks are paired with the most suitable strategies to help improve overall accuracy and reduce runtime and costs.

Prior routing work (Zhu et al., 2025; Ong et al., 2024; Ding et al., 2024; Lu et al., 2024; Hari & Thomson, 2023; Chen et al., 2024; Feng et al., 2025; Pan et al., 2025; Zhuang et al., 2024; Liu et al., 2024; Sakota et al., 2024; Mohammadshahi et al., 2024; Nguyen et al., 2024; Damani et al., 2024) typically employs a fixed set of computation strategies, relying on a *single* model trained jointly on data from *all* strategies. However, this monolithic design limits generalization to *continual* settings where routers need to quickly adapt to previously unseen strategies. In practice, continual routing is crucial, as better and increasingly efficient models and decoding methods are constantly emerging, and not incorporating them promptly risks missing potential gains in accuracy and reductions in computational cost. However, whenever a novel strategy appears, existing approaches require retraining the model from scratch using data that covers both previous and new strategies.

Although some recent efforts attempt to move toward a continual setting, they raise significant concerns about generalizability. For example, Wang et al. (2025) adopts a modular design by training separate router models for different computation strategies. However, since these router architectures differ and are specifically tailored to individual strategies, extending them to unseen strategies remains non-trivial. Jitkrittum et al. (2025) introduces a zero-shot router based on model feature vectors, enabling generalization to unseen models without retraining. However, their method depends on *predefined* prompts, which limits its adaptability to varied prompts and tasks.

Besides efficiency concerns in the continual setting, prior work also raises concerns about end-toend performance (accuracy and inference cost) in both continual and non-continual settings. In

Figure 1: CONCUR learns one predictor per computation strategy that uses multiple input representations to support continual routing and better routing decisions under both continual and non-continual settings.

principle, models should adopt flexible parameterizations that allow them to combine both general-purpose and task- or strategy-specific signals, thereby capturing richer information about the routing problem and enabling high-quality routing decisions. However, prior work typically relies on highly restricted parameterizations; for example, Ong et al. (2024) and Zhu et al. (2025) parameterize only task-level representations, while Zhuang et al. (2024) and Pan et al. (2025) restrict themselves to a *single* parameterization of computation strategies and input tasks, respectively. Such limited designs may reduce expressivity and constrain the quality of routing decisions.

Motivated by these issues, we propose a generalizable routing framework applicable to both continual and non-continual, as well as constrained and unconstrained, settings, as illustrated in Figure 1. Our framework adopts a *modular* design, where *separate* predictor models are trained for each computation strategy, using *both* general-purpose and task-specific representations of input tasks and computation strategies to estimate accuracy and efficiency. These estimates are then used to formulate constrained and unconstrained routing as optimization problems, which can subsequently be solved to determine the optimal routing decisions.

In contrast to prior approaches that rely on a single model trained on data from all strategies, our modular predictor design makes continual routing far more practical. New strategies can be incorporated simply by training an additional predictor, without retraining existing ones, thus avoiding costly overhead. Moreover, unlike prior continual routing efforts that lack generalizability, either by tailoring router architectures to specific strategies or by relying on fixed prompts, our predictors share the same model architectures, and our method imposes no restrictions on prompts or task diversity.

In addition, rather than restricting to a single representation as in prior work, our architecture incorporates multiple representations of both input tasks and computation strategies to capture richer information about the routing problem, enabling more accurate routing decisions and improved end-to-end performance in both continual and non-continual settings.

In summary, we present CONCUR, a framework for **continual constrained and un**constrained **routing**. CONCUR trains modular predictors for accuracy and efficiency that draw on both general-purpose and task-specific representations of input tasks and computation strategies, and integrates these estimates with specific routing algorithms to address constrained and unconstrained routing. We evaluated CONCUR on diverse benchmarks (including multi-hop QA, general reasoning multiple-choice tasks, and math problems) across both in- and out-of-distribution settings. Results show that CONCUR consistently outperforms the best single strategy baseline and existing routing methods, achieving higher end-to-end accuracy and lower inference cost in both continual and non-continual settings, as well as improved training efficiency in the continual setting.

2 Methodology

As outlined in Section 1, our goal is to build a routing framework that supports continual settings and improves end-to-end performance in both continual and non-continual settings. The core ideas behind our routing models are: (1) we adopt a modular design, training a separate model for each strategy so that extending to new strategies only requires training additional predictors without touching existing models; and (2) we use multiple input representations to better capture the complexity of the routing problem, rather than relying on a single representation.

Figure 2: Overall predictor architecture of CONCUR. For each computation strategy s_j , we train two predictor models: one estimates the accuracy of applying s_j to the input task, and the other estimates its cost, using both general-purpose and task-specific representations.

Concretely, we formulate both constrained and unconstrained routing as optimization problems over accuracy and efficiency. Therefore, predictors are trained to estimate these metrics, which are subsequently used to solve the optimization problems. Building on this design, Section 2.1 describes how we train modular predictors to model task difficulty using multiple input representations, and Section 2.2 explains how these predictions drive routing decisions.

2.1 Predictors

We outline the training of predictors designed to estimate the performance of applying a computation strategy to a given user task. This involves characterizing input tasks and strategies, detailing the predictor model architectures, and explaining the training procedure and prediction process.

Characterization. We define a task t_i as comprising both the question and any related context. While prior work (Ong et al., 2024; Zhuang et al., 2024; Pan et al., 2025) typically considers only the question, a task may also include supporting documents, such as in the open-domain QA setting, that provide useful signals for estimating task difficulty. We define a computation strategy s_j as a (model, decoding method) pair (m_j, d_j) . In our implementation, a model denotes the underlying language model (e.g., Qwen2.5-7B-Instruct), while a decoding method refers to the decoding algorithm (e.g., chain-of-thought). However, developers can broaden the definition of computation strategies to incorporate additional parameters. Given a set of supported language models M and decoding methods D, the complete set of computation strategies S is the Cartesian product $S = M \times D$.

The performance of applying strategy s_j to task t_i includes both the accuracy a_{ij} and the computational cost measured in FLOPs c_{ij} consumed during inference, which we use as a proxy for efficiency. FLOPs are preferred over token counts because models vary in size, and the computational cost of generating a single token differs across models. Using FLOPs allows for a more standardized comparison of efficiency across different models.

Architecture. To achieve high-quality predictions, we train two independently parameterized predictors: one for estimating accuracy and the other for estimating cost. Each predictor incorporates both general-purpose and task-specific representations of the input task t_i and strategy $s_j = (m_j, d_j)$, enabling them to capture both general and task-strategy specific characteristics. For every s_j , two such predictors are trained, resulting in a *modular* design where predictors for different strategies can be trained independently. This allows new strategies to be supported by training only the corresponding predictors, leaving existing ones untouched and incurring minimal overhead. The overall architecture is shown in Figure 2.

1. General-purpose representation. We generate a general-purpose representation by passing the textual description of the task and strategy (textual descriptions of the strategies are provided in Appendix A) through an off-the-shelf text embedding model R.

$$\mathbf{g}_{i}^{t} = R(t_{i}), \ \mathbf{g}_{i}^{m} = R(m_{i}), \ \mathbf{g}_{i}^{d} = R(d_{i})$$

Concatenating the three parts gives the general representation $\mathbf{g}_{ij} = [\mathbf{g}_i^t; \mathbf{g}_j^m; \mathbf{g}_j^d] \in \mathbb{R}^{3k}$ where k is the dimension of the encoded representation.

2. Task-specific representation. Task-specific representations are derived using learnable projections and embeddings. The task-specific representation of the input task is derived by linearly projecting its previously defined general-purpose representation. Task-specific representations for the model and decoding method are derived from learned embeddings that map model and decoding method IDs into trainable dense vectors optimized alongside the rest of the model.

$$\mathbf{t}_{i}^{a} = W_{t}^{a}R(t_{i}), \ \mathbf{m}_{j}^{a} = E_{M}^{a}[m_{j}], \ \mathbf{d}_{j}^{a} = E_{D}^{a}[d_{j}]; \ \mathbf{t}_{i}^{c} = W_{t}^{c}R(t_{i}), \ \mathbf{m}_{j}^{c} = E_{M}^{c}[m_{j}], \ \mathbf{d}_{j}^{c} = E_{D}^{c}[d_{j}]$$

where X^a and X^c represent X in the accuracy and cost predictor models, respectively. The metric (i.e., accuracy or cost)-specific linear projection is denoted by $W_t \in \mathbb{R}^{k \times k}$, while E_M and E_D are metric-specific embedding lookup tables for models and decoding methods, respectively.

Concatenating the three parts gives the task-specific representations $\mathbf{s}_{ij}^a = [\mathbf{t}_i^a; \mathbf{m}_j^a; \mathbf{d}_j^a]$ and $\mathbf{s}_{ij}^c = [\mathbf{t}_i^c; \mathbf{m}_i^c; \mathbf{d}_i^c] \in \mathbb{R}^{3k}$.

3. MLP. Finally, we concatenate the general-purpose and task-specific representations and feed them through two linear layers to produce the accuracy and cost predictions, \hat{a}_{ij} and \hat{c}_{ij} .

$$\hat{a}_{ij} = f^a([\mathbf{g}_{ij}; \mathbf{s}_{ij}^a]); \ \hat{c}_{ij} = f^c([\mathbf{g}_{ij}; \mathbf{s}_{ij}^c])$$

where f^a is a binary classifier and f^c is a regressor for predicting the accuracy and cost, respectively.

We note that once trained, the representations of a strategy s_j remain fixed and thus contribute a constant term to the predictions. Nonetheless, as we will show in Section 3, including these strategy representations improves performance over strong routing baselines.

Training. Using the training tasks and their target answers, we apply each strategy s_j to each task t_i to obtain the ground-truth labels a_{ij} (by comparing the generated and the target answers) and c_{ij} . Due to the modular design with respect to each s_j , training a predictor for a given strategy *only* requires the training data associated with that strategy. The training procedure for the predictors is as follows. The accuracy predictor is a binary classifier trained with cross-entropy loss:

$$L_{acc} = -a_{ij} \log{(\hat{a}_{ij})} - (1 - a_{ij}) \log{(1 - \hat{a}_{ij})}$$

where a_{ij} is the ground-truth accuracy label and \hat{a}_{ij} is its predicted value. The cost predictor is a regressor trained with mean squared error loss:

$$L_{cost} = (c_{ij} - \hat{c}_{ij})^2$$

where c_{ij} is the ground-truth cost and \hat{c}_{ij} is its predicted value.

Inference. For a new task t_i , we encode it with the same embedding model used during training and pass this representation, along with the representation of each strategy s_j , through the respective accuracy and cost predictors to obtain \hat{a}_{ij} and \hat{c}_{ij} .

Continual routing. Our modular design assigns a separate predictor to each strategy s_j , so incorporating a new strategy s'_j involves training only its predictors, leaving previously trained models unchanged, making extensions straightforward and efficient.

2.2 ROUTING

Using the predicted accuracy a_{ij} and cost c_{ij} of applying strategy s_j to task t_i , we demonstrate how both constrained and unconstrained routing can be formulated as optimization problems and solved, leading to the final routing decisions.

Unconstrained routing. For a given task t_i , unconstrained routing involves choosing the computation strategy that achieves an optimal trade-off between accuracy and cost. This can be framed as the following bi-objective optimization problem, maximizing accuracy while simultaneously minimizing cost: $\max_i a_{ij}$, $\min_i c_{ij}$.

By introducing a weight w to represent the trade-off between accuracy and cost, the bi-objective optimization problem can be reformulated as a single-objective problem that maximizes the weighted sum of these two objectives.

$$\max_{j} \sum_{i} (w \cdot a_{ij} + (1 - w) \cdot (-c_{ij})) = \sum_{i} \max_{j} (w \cdot a_{ij} + (1 - w) \cdot (-c_{ij}))$$
 (1)

Then, t_i is routed to the strategy s_i^* that maximizes the weighted sum.

Constrained routing. For a task t_i with an associated cost budget B, constrained routing seeks the computation strategy that delivers the highest possible accuracy without exceeding the budget. This can be expressed as the following optimization problem: $\max_{j,c_{ij} \leq B} a_{ij}$

However, optimizing each task individually may not yield the best overall result, as local optima do not always translate to global optimality. For a batch of n tasks $t_1, t_2, ..., t_n$, the constrained optimization problem can be reformulated as

$$\max_{j,\sum_{i} c_{ij} \le nB} \sum_{i} a_{ij} \tag{2}$$

We address this optimization problem by formulating a dynamic programming (DP) approach (see Appendix B for details), which has an overall complexity of $O(n \cdot nB \cdot |S|) = O(n^2 \cdot B|S|)$, where B represents the budget per task and |S| is the number of computation strategies. Since the budget can be kept relatively small through scaling, and the number of computation strategies (i.e., LLM-decoding pairs) used simultaneously is usually moderate, the DP algorithm can be solved efficiently for a reasonable number of tasks.

Although the above formulation is designed to maximize accuracy under a cost constraint, it can be straightforwardly adapted to minimize cost for a given accuracy requirement.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets. We select a diverse set of tasks covering different skills and output formats: factual multi-hop question answering with short text answers, general reasoning with multiple-choice answers, and mathematical problems requiring numerical answers. For each task category, we select two datasets: one in-distribution for both training and testing, and one out-of-distribution reserved exclusively for testing. A summary of these datasets and their statistics is provided in Table 1.

Table 1: Datasets and their sizes. Out-of-distribution In-distribution Dataset Test size Dataset Test size Multi-hop QA 2WikiMultiHop (Ho et al., 2020) HotpotQA (Yang et al., 2018) General reasoning MMLU (Hendrycks et al., 2021) GPQA (Rein et al., 2024) Math problems GSM8k (Cobbe et al., 2021) SVAMP (Patel et al., 2021)

Computation strategies. As described in Section 2.1, the set of computation strategies comprises combinations of models and decoding methods. For models, we used Qwen2.5-Instruct models (1.5B, 3B, and 7B) and Llama-3.x-Instruct models (3.2-3B and 3.1-8B). For decoding, we considered two common approaches: *vanilla*, where models directly generate the answer, and *chain-of-thought* (Wei et al., 2022), where models produce intermediate reasoning steps before the final answer. The descriptions and prompts for each strategy are presented in Appendix A and Appendix C, respectively. In total, this yields five LLMs and two decoding methods, for a total of ten strategies.

Baselines. We compare our routing framework against the best single strategy without routing and three strong routing baselines. Implementation details are provided in Appendix D.

(1) Best single strategy: We use the same model-decoding pair that achieves the highest overall accuracy across all tasks. In this case, Qwen2.5-7B-Instruct with chain-of-thought (CoT) decoding is selected for its superior accuracy.

(2) RouteLLM (Ong et al., 2024): This approach uses a *single* classifier that relies on the *single* general-purpose task representations to select a strategy. Since it does not take the budget into account, we evaluate it only in unconstrained settings.

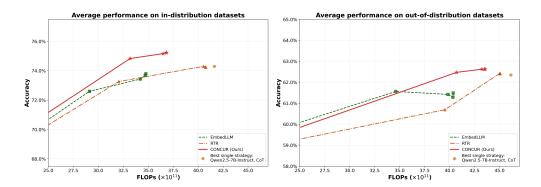


Figure 3: Pareto curves for unconstrained routing on both in- and out-of-distribution datasets across various values of w defined in Section 2.2, illustrating the trade-off between accuracy and cost. Full diagrams are available in Appendix E.

(3) EmbedLLM (Zhuang et al., 2024): Originally, this method uses a *single* model to predict the accuracy of each strategy and picks the one with the highest accuracy. We adapt it by adding an additional model to predict the cost. Unlike CONCUR, EmbedLLM only uses a *single* task-specific representation for computation strategies.

(4) RTR (Pan et al., 2025): This method employs a *single* model to jointly predict accuracy and cost for all strategies. In contrast to CONCUR, RTR only uses a *single* general-purpose representation for input tasks.

Metrics. We compare our method and the baselines based on end-to-end performance. Once computation strategies are assigned to tasks, we compute the overall accuracy and total inference FLOPs (as a proxy for efficiency and cost) for each approach. Inference FLOPs are calculated using the standard formula from Kaplan et al. (2020) and scaled down by 10^{11} for readability.

In the following subsections, we first evaluate our method against the baselines in non-continual unconstrained (Section 3.2) and constrained (Section 3.3) settings to primarily assess the effectiveness of our model architecture, which leverages multiple representations of both input tasks and computation strategies to improve end-to-end performance. We then examine performance in a continual setting (Section 3.4) to highlight the impact of our modular design on reducing training cost.

3.2 Unconstrained routing

Figure 3 shows that our method consistently outperforms the baselines in both in-distribution and out-of-distribution scenarios. Tables 2 and 3 report the maximum accuracy achieved by each method. Among the approaches that surpass the best single strategy, our method generally achieves the highest accuracy with the lowest FLOPs. This demonstrates that, compared to the best single strategy, routing enables higher accuracy at reduced computational cost. Furthermore, when compared to other routing baselines, our method delivers both superior accuracy and efficiency, highlighting its higher effectiveness as a router.

3.3 CONSTRAINED ROUTING

Constrained routing means routing under budget constraints. To test generalizability, we evaluate performance under both low- and high-budget settings. Furthermore, as noted in Section 2.2, given the predicted accuracy and cost, the constrained routing problem can be addressed in two ways: (1) local optimization, which treats each task independently and allocates the budget evenly across tasks, and (2) global optimization (our approach), which distributes the total budget jointly across all tasks. We also compare the performance when using these two optimization methods.

Examining the accuracy improvement from the local optimization baseline to our global optimization method, Table 4 shows a substantial positive change in both budget settings, demonstrating the effectiveness of our global optimization approach in making better routing decisions. Moreover, when comparing the accuracy of different routing methods under global optimization, Table 4 indi-

324 325 326

328

Table 2: Performance for unconstrained routing on in-distribution datasets: 2WikiMultiHop, MMLU, and GSM8k. Gray denotes methods whose average accuracy falls below that of the best single-strategy baseline. Bolded numbers indicate the best performance among the remaining methods.

	2WikiMultiHop		M	MLU	GS	SM8k	Average	
	Acc	FLOPs \downarrow	Acc	FLOPs	Acc	FLOPs	Acc	FLOPs
Best single strategy	57.6	49.63	73.7	44.45	91.6	30.82	74.3	41.63
RouteLLM	41.7	17.90	54.7	3.20	64.1	9.51	53.5	10.20
EmbedLLM	58.4	43.68	72.1	33.68	89.8	25.28	73.4	34.21
RTR	57.9	44.04	73.7	44.45	91.3	33.07	74.3	40.52
CONCUR (Ours)	59.5	38.54	74.4	40.73	91.6	30.23	75.2	36.50

Table 3: Performance for unconstrained routing on out-of-distribution datasets: HotpotQA, GPQA, and SVAMP.

Average

J	40	
3	41	
3	42	
3	43	

338

339

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	HotpotQA		G	PQA	SV	/AMP	Average		
	Acc	FLOPs ↓	Acc	FLOPs	Acc	FLOPs	Acc	FLOPs	
Best single strategy	59.8	39.75	35.0	75.18	92.2	23.46	62.3	46.13	
RouteLLM	52.8	6.62	29.5	4.22	79.8	8.18	54.0	6.34	
EmbedLLM	57.0	30.15	35.3	69.75	92.0	19.63	61.4	39.84	
RTR	59.8	36.16	35.0	75.18	92.4	23.65	62.4	45.00	
CONCUR (Ours)	60.6	33.62	35.3	73.31	92.0	22.75	62.6	43.23	

345 347

348

349

350

Table 4: Accuracy gains of constrained routing when transitioning from local optimization (L) to global optimization (G), along with the accuracy achieved by global optimization under varying budget settings. Bolded and underlined numbers represent the performance of our method when it ranks as the best and second best, respectively.

MMLU

2WikiMultiHop

GSM8k

3	5	1
3	5	2
3	5	3
3	5	4

	$\overline{\Delta(L\to G)}$	G	$\boxed{\Delta(L \to G)}$	G	$\overline{\Delta(L\to G)}$	G	$\overline{\Delta(L\to G)}$	G
Low budget (FLOF	Ps budget = 25)						
EmbedLLM RTR CONCUR (Ours)	+4.4 +6.0 +9.7	52.4 53.9 56.5	+3.2 +4.7 +3.8	70.6 73.7 <u>72.7</u>	+1.5 +2.0 +3.7	89.8 90.4 <u>90.3</u>	+3.0 +4.2 +5.7	70.9 72.7 73.2
High budget (FLO)	$Ps\ budget = 40$	9)						
EmbedLLM RTR CONCUR (Ours)	+4.6 +3.3 +8.1	57.6 56.6 59.5	+2.4 +2.9 +3.2	72.6 74.1 74.4	0.0 +0.2 +0.8	90.1 91.2 91.6	+2.3 +2.1 +4.0	73.4 74.0 75.2

362 364

cates that our method achieves the highest average accuracy across both settings, highlighting the overall strength of our routing framework.

365 366 367

3.4 Continual routing

372

We consider the following scenarios where routers must adapt to unseen computation strategies. Initially, an organization prioritizes accuracy and selects moderate-to-large models: Qwen2.5-7B-Instruct and Llama-3.1-8B-Instruct. Later, to reduce cost and latency without sacrificing accuracy, the organization introduces smaller models: Qwen2.5-1.5B-Instruct, Qwen2.5-3B-Instruct, and Llama-3.2-3B-Instruct. We refer to the first scenario with only large models as Setting 1, and the second scenario with both large and small models as Setting 2.

Since all routing baselines (RouteLLM, EmbedLLM, and RTR) train a single router model using training data across all computation strategies, the straightforward way to incorporate unseen strategies is to retrain the model from scratch using all available data. However, this can be unnecessarily costly given that the router model has already been trained on prior data. To address this, we also

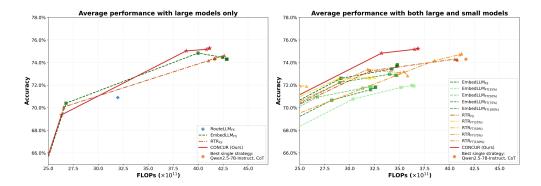


Figure 4: Performance of different methods under the continual routing with different collections of strategies. X_{FS} denotes method X trained from scratch. $X_{FT(Y\%)}$ denotes method X fine-tuned from its prior version, which was trained from scratch in Setting 1, using Y% of the new data.

Table 5: Performance for continual routing. Table 2 provides the definitions of the coloring and bolding scheme.

bolding scheme.		2Wik	2WikiMultiHop		MLU	GS	SM8k	Av	erage
	Relative training time	Acc	FLOPs ↓	Acc	FLOPs	Acc	FLOPs	Acc	FLOPs
Setting 1: Large models only (Qwen2.5-7B-Instruct and Llama-3.1-8B-Instruct)									
Best single strategy	_	57.6	49.63	73.7	44.45	91.6	30.82	74.3	41.63
$RouteLLM_{FS}$	0.18x	54.0	48.77	68.7	17.03	90.0	30.06	70.9	31.96
$EmbedLLM_{FS}$	1.32x	58.9	49.62	73.3	44.29	91.2	33.44	74.5	42.45
RTR_{FS}	3.93x	59.4	51.12	72.1	42.98	91.6	30.82	74.4	41.64
CONCUR (Ours)	1.00x	<u>59.3</u>	50.71	74.5	41.02	91.7	30.78	75.2	40.84
Setting 2: Large and small models (Qwen2.5, Llama-3.1, and Llama-3.2 family)									
Best single strategy	_	57.6	49.63	73.7	44.45	91.6	30.82	74.3	41.63
RouteLLM $_{FS}$	0.20x	41.7	17.90	54.7	3.20	64.1	9.51	53.5	10.20
RouteLLM $_{FT(25\%)}$	0.14x	41.6	18.21	53.5	2.80	61.5	9.69	52.2	10.23
RouteLLM $_{FT(50\%)}$	0.17x	41.6	19.96	52.9	2.90	66.5	10.13	53.7	11.00
RouteLLM $_{FT(75\%)}$	0.20x	41.5	13.73	53.0	2.91	59.1	9.45	51.2	8.70
$RouteLLM_{FT(100\%)}$	0.23x	41.3	16.62	54.6	3.28	62.5	9.33	52.8	9.74
$EmbedLLM_{FS}$	3.08x	58.4	43.68	72.1	33.68	89.8	25.28	73.4	34.21
$EmbedLLM_{FT(25\%)}$	1.01x	56.9	40.12	68.9	34.45	89.6	30.83	71.8	35.13
EmbedLLM $_{FT(50\%)}$	1.92x	57.4	36.87	68.3	26.36	89.5	30.64	71.7	31.29
EmbedLLM $_{FT(75\%)}$	2.82x	55.1	36.19	69.5	32.69	90.2	27.40	71.6	32.09
EmbedLLM $_{FT(100\%)}$	3.11x	59.2	42.93	70.0	32.59	89.7	26.45	73.0	33.99
RTR_{FS}	7.66x	57.9	44.04	73.7	44.45	91.3	33.07	74.3	40.52
$RTR_{FT(25\%)}$	1.69x	58.5	39.80	71.3	42.27	88.2	13.49	72.7	31.85
$RTR_{FT(50\%)}$	2.84x	59.2	47.79	68.4	13.53	88.2	13.51	71.9	24.95
$RTR_{FT(75\%)}$	3.89x	58.9	47.81	73.6	44.38	91.6	30.82	74.7	41.01
$RTR_{FT(100\%)}$	4.96x	57.6	44.06	73.4	43.19	88.3	17.91	73.1	35.05
CONCUR (Ours)	1.00x	59.5	38.54	74.4	40.73	91.6	30.23	75.2	36.50

evaluated variants of these baselines where the existing router models are fine-tuned on randomly sampled 25%, 50%, 75%, and 100% of the new training data.

In addition to end-to-end performance metrics (accuracy and inference FLOPs), we explicitly measure the training time for each method as an indicator of training cost, reflecting how easily each method can adapt to unseen strategies.

Figure 4 shows that in both Setting 1 and 2, in terms of end-to-end performance, CONCUR outperforms all baselines. As shown in Table 5, in Setting 1, our method achieves the highest average accuracy with the lowest FLOPs among all baselines, demonstrating the effectiveness of our routing framework. In Setting 2, among routing baselines that outperform the best single strategy, our method again achieves the highest accuracy with the lowest FLOPs, while requiring *significantly less training time*. This highlights the advantage of our *modular* predictor architecture, which allows easy extension to unseen strategies. Importantly, the goal of the organization is to reduce

FLOPs while maintaining accuracy when moving from Setting 1 to Setting 2, a target achieved only by the $RTR_{FT(75\%)}$ baseline and our method, with our approach performing substantially better.

4 ANALYSIS

Section 3 highlights the advantages of our routing framework. To understand the source of these benefits, we focus on our approach and the best single strategy baseline (Qwen2.5-7B-Instruct with CoT decoding) under the unconstrained routing results shown in Table 2.

Table 6: The table shows (1) the percentage of tasks routed by our framework to different strategies, (2) the performance of tasks using routed strategies by our framework compared to using the best single-strategy baseline (Qwen2.5-7B-Instruct with CoT), and (3) the distribution of task accuracy transitions from the baseline strategy to the routed strategy by our framework, where C and I indicate correct and incorrect, respectively. **Bolded** numbers indicate cases where the routed strategy by our framework outperforms the baseline strategy.

•	Baseline str		ne strategy	Route	d strategy	Task accuracy transitions (%)			
	Tasks routed (%)	Acc	FLOPs ↓	Acc	FLOPs	$C \rightarrow C$	$\mathrm{I} \to \mathrm{C}$	$\mathrm{I} \to \mathrm{I}$	$C \rightarrow I$
2WikiMultiHop									
Qwen7B-CoT (Baseline)	33.6%	82.4	47.7	_	_	_	_	_	
Qwen2B-vanilla	25.3%	22.9	56.9	27.3	7.8	16.2%	11.1%	66.0%	6.7%
Llama8B-CoT	21.0%	54.8	48.6	56.7	70.5	48.1%	8.6%	36.7%	6.7%
Qwen7B-vanilla	17.1%	67.3	43.5	70.2	29.9	59.1%	11.1%	21.6%	8.2%
Others	3.0%	36.7	51.8	33.3	21.0	23.3%	10.0%	53.3%	13.3%
MMLU									
Qwen7B-CoT (Baseline)	83.6%	74.2	44.4	_	_	_	_	_	
Qwen7B-vanilla	12.7%	69.3	44.5	78.0	14.4	64.6%	13.4%	17.3%	4.7%
Others	3.7%	78.4	45.3	67.6	48.1	62.2%	5.4%	16.2%	16.2%
GSM8k									
Qwen7B-CoT (Baseline)	96.0%	91.6	30.9	_	_	_	_	_	
Others	4.0%	92.5	27.9	92.5	13.2	87.5%	5.0%	2.5%	5.0%

The baseline routes all tasks to a single computation strategy. Table 6 details the routing decisions made by our method. As shown, GSM8k tasks are still mostly assigned to Q7B-CoT, so performance remains similar regardless of routing. However, for 2WikiMultiHop and MMLU, a substantial portion of tasks is routed to more cost-efficient strategies (smaller models and/ or simpler decoding methods). These alternatives often achieve higher accuracy while significantly reducing FLOPs, explaining the performance gains of our framework.

Additionally, Table 6 shows the distribution of tasks by accuracy change: whether they remain correct/incorrect or switch between the two. Most questions follow one of two patterns: (1) they keep their original correctness but are routed to cheaper strategies, significantly reducing computation cost and improving efficiency; or (2) they switch from previously incorrect to correct answers, leading to gains in accuracy. A small fraction of questions change from correct to incorrect, but these losses are minor compared to the overall improvements.

5 CONCLUSION

This work introduces CONCUR, a framework for continual constrained and unconstrained routing. Central to CONCUR are modular predictors that leverage both general-purpose and task-specific representations to estimate a strategy's accuracy and cost on a given task, enabling optimization-based routing and straightforward extension to unseen strategies. Extensive experiments on a diverse set of in-distribution and out-of-distribution tasks show that CONCUR outperforms the best single strategy and existing strong routing methods in both continual and non-continual settings.

REFERENCES

- Shuhao Chen, Weisen Jiang, Baijiong Lin, James Kwok, and Yu Zhang. RouterDC: Querybased router by dual contrastive learning for assembling large language models. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL https://openreview.net/forum?id=7RQvjayHrM.
- Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.
- Mehul Damani, Idan Shenfeld, Andi Peng, Andreea Bobu, and Jacob Andreas. Learning how hard to think: Input-adaptive allocation of lm computation. *arXiv preprint arXiv:2410.04707*, 2024.
- Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Rühle, Laks V. S. Lakshmanan, and Ahmed Hassan Awadallah. Hybrid LLM: Cost-efficient and quality-aware query routing. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=02f3mUtqnM.
- Tao Feng, Yanzhen Shen, and Jiaxuan You. Graphrouter: A graph-based router for LLM selections. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=eU39PDsZtT.
- Surya Narayanan Hari and Matt Thomson. Tryage: Real-time, intelligent routing of user prompts to large language models. *arXiv preprint arXiv:2308.11601*, 2023.
- Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Measuring massive multitask language understanding. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=d7KBjmI3GmQ.
- Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop QA dataset for comprehensive evaluation of reasoning steps. In Donia Scott, Nuria Bel, and Chengqing Zong (eds.), *Proceedings of the 28th International Conference on Computational Linguistics*, pp. 6609–6625, Barcelona, Spain (Online), December 2020. International Committee on Computational Linguistics. doi: 10.18653/v1/2020.coling-main.580. URL https://aclanthology.org/2020.coling-main.580/.
- Wittawat Jitkrittum, Harikrishna Narasimhan, Ankit Singh Rawat, Jeevesh Juneja, Zifeng Wang, Chen-Yu Lee, Pradeep Shenoy, Rina Panigrahy, Aditya Krishna Menon, and Sanjiv Kumar. Universal model routing for efficient llm inference. *arXiv preprint arXiv:2502.08773*, 2025.
- Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models, 2020. URL https://arxiv.org/abs/2001.08361.
- Yueyue Liu, Hongyu Zhang, Yuantian Miao, Van-Hoang Le, and Zhiqiang Li. Optllm: Optimal assignment of queries to large language models. In 2024 IEEE International Conference on Web Services (ICWS), pp. 788–798. IEEE, 2024.
- Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang Zhou, and Jingren Zhou. Routing to the expert: Efficient reward-guided ensemble of large language models. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 1964–1974, Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.109. URL https://aclanthology.org/2024.naacl-long.109/.
- Alireza Mohammadshahi, Arshad Rafiq Shaikh, and Majid Yazdani. Routoo: Learning to route to large language models effectively. *arXiv preprint arXiv:2401.13979*, 2024.

- Quang H Nguyen, Thinh Dao, Duy C Hoang, Juliette Decugis, Saurav Manchanda, Nitesh V Chawla, and Khoa D Doan. Metallm: A high-performant and cost-efficient dynamic framework for wrapping llms. *arXiv* preprint arXiv:2407.10834, 2024.
 - Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E Gonzalez, M Waleed Kadous, and Ion Stoica. Routellm: Learning to route llms with preference data. *arXiv* preprint arXiv:2406.18665, 2024.
 - Zhihong Pan, Kai Zhang, Yuze Zhao, and Yupeng Han. Route to reason: Adaptive routing for llm and reasoning strategy selection. *arXiv preprint arXiv:2505.19435*, 2025.
 - Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve simple math word problems? In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou (eds.), *Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pp. 2080–2094, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.168. URL https://aclanthology.org/2021.naacl-main.168/.
 - David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a benchmark. In *First Conference on Language Modeling*, 2024. URL https://openreview.net/forum?id=Ti67584b98.
 - Marija Sakota, Maxime Peyrard, and Robert West. Fly-swat or cannon? cost-effective language model choice via meta-modeling. In *Proceedings of the 17th ACM International Conference on Web Search and Data Mining*, WSDM '24, pp. 606–615. ACM, March 2024. doi: 10.1145/3616855.3635825. URL http://dx.doi.org/10.1145/3616855.3635825.
 - Xinyuan Wang, Yanchi Liu, Wei Cheng, Xujiang Zhao, Zhengzhang Chen, Wenchao Yu, Yanjie Fu, and Haifeng Chen. Mixllm: Dynamic routing in mixed large language models. *arXiv preprint arXiv:2502.18482*, 2025.
 - Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information processing systems*, 35:24824–24837, 2022.
 - Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun'ichi Tsujii (eds.), *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pp. 2369–2380, Brussels, Belgium, October-November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1259. URL https://aclanthology.org/D18-1259/.
 - Yizhang Zhu, Runzhi Jiang, Boyan Li, Nan Tang, and Yuyu Luo. Elliesql: Cost-efficient text-to-sql with complexity-aware routing. *arXiv preprint arXiv:2503.22402*, 2025.
 - Richard Zhuang, Tianhao Wu, Zhaojin Wen, Andrew Li, Jiantao Jiao, and Kannan Ramchandran. Embedllm: Learning compact representations of large language models. *arXiv preprint arXiv:2410.02223*, 2024.

A DESCRIPTIONS FOR COMPUTATION STRATEGY

Table 7 lists the description for decoding strategies and Table 8 lists the descriptions for models.

Table 7: Descriptions of decoding strategies.

Strategy ID	Description
Vanilla	Vanilla prompting retains the original question content without adding any additional prompt information.
CoT	Chain-of-Thought (CoT) prompting guides the model to articulate a step-by-step reasoning process before providing the final answer. This results in longer responses and slower inference, but delivers superior performance on complex reasoning tasks.

Table 8: Descriptions of models.

Model ID	Description
Qwen2.5-1.5B-Instruct	Qwen2.5-1.5B-Instruct is an ultra-lightweight 1.5 B parameter model designed for minimal-resource environments. It is best suited for simple prompts, basic classification, and short text completion, but struggles with nuanced understanding or advanced reasoning tasks.
Qwen2.5-3B-Instruct	Qwen2.5-3B-Instruct is a lightweight 3 B parameter model with fast inference and low resource usage. It is suitable for simple tasks such as basic question answering and short-form text generation, but is limited in handling complex reasoning or multi-step tasks.
Qwen2.5-7B-Instruct	Qwen2.5-7B-Instruct is a mid-small 7 B parameter model that balances speed and performance. It can handle multi-turn dialogue, basic code and math tasks, and offers improved language understanding over smaller models while maintaining efficient inference.
Llama-3.2-3B-Instruct	Llama-3.2-3B-Instruct is a compact 3 B parameter model optimised for efficient inference in constrained environments. It handles basic instruction following, simple question answering, and short text generation reliably, but lacks the depth for nuanced reasoning or complex task execution.
Llama-3.1-8B-Instruct	Llama-3.1-8B-Instruct is a moderately-sized 8 B parameter model that offers a strong balance between performance and resource usage. It supports multi-turn dialogue, intermediate reasoning, and modest code or math capabilities, though it may still struggle with deeply intricate or highly technical prompts.

B DYNAMIC PROGRAMMING FORMULATION FOR SOLVING CONSTRAINED OPTIMIZATION

To address the constrained optimization in Equation (2), we formulate dynamic programming (DP)-based solutions. We define DP[i][b] as the maximum achievable total accuracy when routing the first i tasks, subject to a total cost not exceeding b.

Then, we initialize the DP problem as follows

$$DP[0][b] = \begin{cases} 0 & \text{if } b = 0\\ -\infty & \text{otherwise} \end{cases} \forall b \in [0, nB]$$
 (3)

We define the recurrence relation as follows: for all $b \in [B_i^{\min}, \min(B_i^{\max}, nB)]$

$$DP[i][b] = \max_{j,b \ge c_{ij}} DP[i-1][b-c_{ij}] + a_{ij}$$
(4)

where $B_i^{\min} = \sum_{k=0}^i \min_j c_{kj}$ and $B_i^{\max} = \sum_{k=0}^i \max_j c_{kj}$. B_i^{\min} and B_i^{\max} denote the minimum and maximum total cost required to assign exactly one method to each of the first i tasks. We constrain b within these bounds to avoid unnecessary computations. This recurrence reflects the process of updating the maximum cumulative accuracy by considering all computation strategies for task t_i and choosing the one that achieves the highest accuracy without exceeding the budget. Since the budget nB and the cost c_{ij} can be floating-point numbers, we round them to integers to enable integer-based indexing in the DP array.

Then, the maximum accuracy attainable within the budget nB is $\max_{b \le nB} DP[n][b]$. We apply backtracking to recover the strategy chosen for each task.

C PROMPTS

 Tables 9 to 11 show the prompts used for all task types (multi-hop QA, general reasoning, and math problems) with different decoding strategies.

Table 9: Prompts for multi-hop QA (blue refers to the vanilla prompt and yellow refers to the CoT prompt).

2WikiMultiHop and HotpotQA (vanilla & CoT)

System: You are an expert at question answering.

User

You are provided with a user question, and information that might be relevant to the user question. Your task is to *only* output a short answer within <ans></ans>.

You are provided with a user question, and information that might be relevant to the user question. Please *reason step by step* before providing the short answer; put your final answer within <ans></ans>.

Document title: Mistress (1992 film)

Document content: Robert De Niro is the producer of the film Mistress.

Document title: The Godfather Part II

Document content: Robert De Niro played the role of Vito Corleone in *The Godfather Part II*.

Here is the user question:

In The Godfather Part II, who did the producer of Mistress play?

Table 10: Prompts for general reasoning.

MMLU and GPQA (vanilla & CoT)

System: You are an expert at question answering.

User:

You are provided with a multi-choice question. Your task is to *only* output an answer (the letter corresponding to the answer choice placed inside parentheses) within <ans></ans> (e.g. <ans> (A) </ans>).

You are provided with a multi-choice question. Please *reason step by step* before providing the final answer, and put your final answer (the letter corresponding to the answer choice placed inside parentheses) within <ans></ans>.

Here is the user question:

Which of the following is a second messenger that stimulates release of calcium ions into the cytoplasm?

Here are the multiple-choice answers:

- (A) Prostaglandins
- (B) Inositol triphosphate
- (C) Cyclic AMP
- (D) Calmodulin

Table 11: Prompts for math problems.

GSM8K and SVAMP (vanilla & CoT)

System: You are an expert at solving math questions.

User:

You are provided with a math question. Your task is to only output a numerical answer within <ans></ans>.

You are provided with a math question. Please *reason step by step* before providing a numerical answer; put your final answer within <ans></ans>.

Here is the user question:

Tommy is fundraising for his charity by selling brownies for \$3 a slice and cheesecakes for \$4 a slice. If Tommy sells 43 brownies and 23 slices of cheesecake, how much money does Tommy raise?

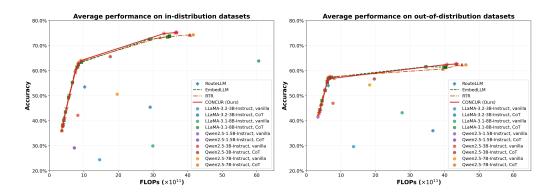


Figure 5: Performance of all methods for unconstrained routing on both in- and out-of-distribution datasets across various values of w defined in Section 2.2, illustrating the trade-off between accuracy and cost.

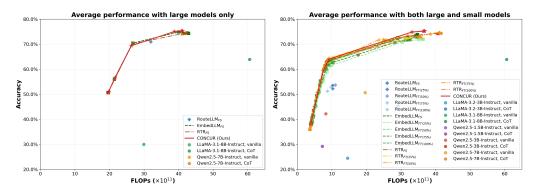


Figure 6: Performance of all methods under the continual setting with different collections of strategies. X_{FS} denotes method X trained from scratch. $X_{FT(Y\%)}$ denotes method X fine-tuned from its prior version, which was trained from scratch in Setting 1, using Y% of the new data.

D IMPLEMENTATION DETAILS

We used the off-the-shelf ALL-MPNET-BASE-V2¹ model as the frozen encoder outlined in Section 2.1, following the approach in Pan et al. (2025); Zhuang et al. (2024), which generates representations of size k=768. Training was conducted on an A100 GPU cluster for up to 100 epochs, using the Adam optimizer with a batch size of 32 and an initial learning rate of 1×10^{-3} .

E FULL DIAGRAMS

Figures 5 and 6 present the full versions of Figures 3 and 4, respectively, including all methods.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLM was used only to aid writing quality (proofreading and polishing grammar). No ideas, claims, methods, results, or references are generated by LLMs. All content decisions and revisions are made by the authors.

https://huggingface.co/sentence-transformers/all-mpnet-base-v2