REPOST: Scalable Repository-Level
Coding Environment Construction with Sandbox Testing

Anonymous Authors'

Abstract

We introduce REPOST, a scalable method to
build repository-level code generation environ-
ments that provide execution feedback for model
training. Unlike existing works that require build-
ing the entire repository for execution, which is
challenging for both human and LLMs and lim-
its the scalability of the datasets, we leverage
sandbox testing, which isolates the target func-
tion and its dependencies to a separate script for
testing. In inference, models can still access the
natural repository for code generation, and the
script will be used to provide execution feedback.
‘We use our method to construct REPOST-TRAIN,
a large-scale train set with 7,415 functions from
824 repositories. Training with the execution feed-
back provided by REPOST-TRAIN leads to a per-
formance gain of 5.5% Pass@1 on HumanEval
and 3.5% Pass@1 on RepoEval.!

1. Introduction

Code generation is a special NLP task that can benefit from
execution-based feedback (Simon, 1963; Feng et al., 2020;
Chen et al., 2021). Prior work has demonstrated the effec-
tiveness of execution-based signals for constructing training
datasets (Ni et al., 2024; Zhang et al., 2024; Liu et al., 2023),
particularly for script-level code generation (e.g., LeetCode
problems). However, it is non-trivial to build execution-
based datasets for repo-level code generation at a large
scale, which aims to generate code for real repositories.

One major challenge is to set up executable environments.
Existing repo-level datasets typically perform integration
testing that executes test files within the repositories, which
requires building the entire repository. The process is chal-
lenging for both human and LLMs, either requiring huge
manual effort (Zhang et al., 2023; Jimenez et al., 2024; Pan
et al., 2024) or suffering from a low success rate of con-
verting natural repositories to coding environments when
automated (Jain et al., 2024).

!Code and datasets available at https://anonymous.
4open.science/r/RepoST-4018.

Repo-level Code-Gen

(Training)
B~[def ..():
O.0] 5
oL /
[ho
" LLM if Passed

Training

o,

} Eval icript

(Evaluation)

=

Passed / Failed —— » Pass@k

Figure 1: To build a training set, we first apply the code
generation model to generate candidate solutions with the
original repository as context. Then we evaluate the solu-
tions by executing the evaluation script built by REPOST.
All successful solutions are added as training targets.

In this work, we present REPOST, an automated frame-
work to construct Repo-level coding environments with
Sandbox Testing, as an alternative to traditional integration
testing. Given a target function within a GitHub repository,
REPOST isolates the function along with its local dependen-
cies into a separate script and generates equivalence tests
to verify whether a model-generated solution exhibits the
same behavior. Unlike approaches that require building
the entire repository, our method only installs the external
dependencies for the target function, which significantly
simplifies environment setup and enhances dataset scalabil-
ity. To ensure dataset quality, we conduct execution-based,
AST-based, and LLM-based quality checks to harness the
evaluation script’s executability, functionality equivalence,
test coverage, and correctness. As illustrated in Figure 1,
our dataset enables models to access the natural GitHub
repositories to generate candidate training outputs. We then
use the evaluation script to obtain execution feedback.

We construct REPOST-TRAIN, a coding environment
dataset for model training. As shown in Table 1, REPOST-
TRAIN is, to our knowledge, the largest repo-level code
generation dataset with execution support, containing 7,415
functions sampled from 824 repositories. Experiments
demonstrate that training on REPOST-TRAIN improves per-
formance on both algorithm problems in HumanEval (Chen
et al., 2021) and repo-level tasks in RepoEval (Zhang et al.,

https://anonymous.4open.science/r/RepoST-4018
https://anonymous.4open.science/r/RepoST-4018

REPOST: Scalable Repository-Level Coding Environment Construction with Sandbox Testing

Task: Implement
the forward() Function

O @ Repo & Function Curation @ Sandboxing

class MultiHeadAttention(.

def forward(self, ..):
, ‘query, key, value = [.
for 1, x in ..

@ Test G ti ==
es' eneration p—— X@E

def test_forward():

in src/mh_attn.py.py
m = MultiHeadAttention(..
out = m.forward(...

|

: O:
| out2 = m.forward_new(... . Q{ ;l(@i.
| g
| Correctness Check — Ny &

inport torch..

src/Attention.py T src/mask. py class Attention(..):

docs l /

src Code ~_Blame

-

=) mask. port torch

) mask.py frm Atension sapors ANenson /

[:1 class MultiHeadedAttention(nn.Module): (.

mh_attn. def foruard (self, query, key, value, mask=| = = < . .

@ mh_atin.py batch_size = query.size(0) Functlonallty
B set.catepy T Equivalence Check
) README.md query, key, value = [1(
D) utils.py b

@ Quality Control (with Improvement 0% & Filtering ©)

Outcome:
@ Execution I Debug / Test Coverage T Coding Environments

(with Execution-based
Feedback)

Figure 2: The REPOST coding environment construction framework. We sandbox the target function and its dependencies
to a separate evaluation script, and generate tests to compare its behavior with model-generated code. The process avoids
building the entire repository. We design careful quality control strategies with iterative quality improvement and post-
filtering. The outcome of REPOST is a set of executable repo-level coding environments, which can be used for training.

2023). For instance, we improve Qwen2.5-Coder by 5.5%
Pass@1 on HumanEval and 3.5% Pass@1 on RepoEval.

Since REPOST-TRAIN provides coding tasks with the real-
world repositories as model inputs and it is possible to wrap
the evaluation script in a callable API, we would like to high-
light that REPOST can also be applied to coding agent (Yang
et al., 2024; Wang et al., 2025) training in future works.

2. The REPOST Framework

Existing methods typically construct coding environments
with integration testing, which creates test files that import
the target function from the codebase and require the chal-
lenging process of building the entire repository. Instead, we
present a framework based on sandbox testing. As shown
in Figure 2, the key idea is to isolate the original target
function and its local dependencies to a separate script, and
then generate a set of equivalence tests that compare the
functionality of the generated and original function.

Note that we keep a shared Docker for all the evaluation
scripts. We provide all the details and statistics in §C.

2.1. Preprocessing and Evaluation Script Generation

Repository and Function Curation. We first randomly
sample non-forked, MIT-licensed, Python GitHub Repos-
itories with file sizes smaller than 10M. Then we extract
functions from the repositories. To reduce the need for com-
putational or external resources, we follow R2E (Jain et al.,
2024) and filter out functions associated with GPUs, cloud
tasks, etc. by keywords.

Sandboxing: Key to Environment Setup. To isolate the
target function and its necessary dependencies, we leverage
the call graph to extract such local dependencies that the
target function directly or indirectly calls. In principle, such
context should be sufficient for the executability of the target

function. Then we combine all the code fragments into the
context and prompt an LLM (e.g., GPT-40) to aggregate all
the code fragments into a single script, with as little editing
as possible.

To handle the challenging case where the function accesses
external APIs and files, we explicitly prompt the LLM to
create mock connections or mock strings if necessary. We
provide an example case in Figure 4 and more examples in
Figures 5 to 10. In §2.2, We will introduce the strategies to
ensure that the target function’s functionality does not alter.

Test Generation: Equivalence Testing. To evaluate the
correctness of the generated code, we prompt the LLM to
(1) generate a set of test inputs to the target function and
(2) conduct equivalence testing that checks whether the
generated function has the same behavior as the sandboxed
original function. Compared to traditional methods that
specify the I/O examples in the test cases (Chen et al., 2021),
equivalence testing does not need to predict the expected
outputs and is more feasible for LLMs (Jain et al., 2024).
Similarly to the sandboxing step, as shown in Figures 8
to 10, we also observe that the LLM is able to generate
tests with the mock classes created in the sandboxing step
as context. We will check the coverage and correctness of
the tests in §2.2.

2.2. Quality Control and Filtering

Executability Control with Iterative Debugging. In prin-
ciple, if the model-generated function is exactly the same as
the ground truth, the evaluation scripts should be success-
fully executed, with all the tests passed. Hence, we copy the
ground truth function and execute the examples sequentially.
If there are any execution errors or assertion errors, we pro-
vide the error message as the context and prompt an LLM to
debug the evaluation script. Examples that still have errors
after k execution-debugging iterations are filtered out.

REPOST: Scalable Repository-Level Coding Environment Construction with Sandbox Testing

During the process, we dynamically install external pack-
ages by reading the package names in ModuleNotFound
and prompting the LLM to output package installation com-
mands during debugging, if necessary.

Test Coverage Control with Iterative Improvement. Af-
ter the executability control step, if the branch coverage
rate is lower than some threshold (we set 80% in our exper-
iments), we provide the LLM with the missing lines and
prompt it to add tests for larger coverage.

Functionality Equivalence Check. To ensure the validity
of sandbox testing, we examine the functionality equiv-
alence between the sandboxed and original function. We
first compare the AST of the function bodies, which is a
sufficient condition of functionality equivalence. In our
resulting dataset, 81.7% of the examples have the same
AST. The remaining ones are filtered out from the eval-
uation set. To include more examples in the train set,
since it is also possible that code with the same function-
ality has different ASTs (e.g., HTML tags can be parsed
with LexborHTMLParser and BeautifulSoup), we
prompt an LLM to compare the functionality equivalence,
which is shown to have high agreement with human (see
our human study in §3 for details).

Test Correctness Check. In principle, a test that calls
the target function without any assertion checks still has a
100% coverage rate. We hence conduct test correctness
check and apply an LLM to check whether the tests are
correct, reasonable, and are completing the verification of
the functionality, as listed in Table 14. Human study in §3
demonstrates the high precision of the LLM checker.

3. Resulting Dataset: REPOST-TRAIN

Statistics. We build our dataset, REPOST-TRAIN,
based on repositories created between 2023-01-31 and
2024-08-31. As shown in Table 1, to our knowledge,
REPOST-TRAIN is currently the largest repo-level dataset
with execution feedback. Table 3 shows detailed statistics of
our datasets. We achieve on average 5.7 tests with a branch
coverage rate of 97.8%. Furthermore REPOST can create
relatively complex examples with on average 75.7 lines in
the evaluation script, covering 894 external libraries.

Human Studies. We conduct a human study to compute
the agreement between human and LL.M-based functional-
ity equivalence and test correctness checks (as introduced
in §2.2). Results in Table 4 show that all 13/20 examples
that pass GPT-40’s functionality check are also predicted as
“same functionality” by human. Among 10 examples that
pass GPT-40’s test quality check, 9 of them are predicted
as “high-quality tests” by human. It demonstrates that af-
ter applying our filtering strategies for quality control, the
remaining examples have high quality.

Dataset #Examples #Repo Repo? Auto Test?
HumanEval 164 - X X
DS1000 1,000 - X X
ClassEval 100 - X X
RepoEval-Func 455 6 v X
SWE-Bench 2,294 12 v X
CoderEval 230 43 v X
DevEval 1,874 117 v X
EvoCodeBench 275 25 v X
SWE-Gym 2,438 11 v X
R2E-Evall 246 137 v v
R2E (Our Input) 744 123 v v
REPOST-TRAIN 7,415 824 v v

Table 1: Statistics of REPOST-TRAIN compared to existing
execution-based code generation datasets. R2E (Our Input)
applies the R2E method to the same set of input reposito-
ries as REPOST-TRAIN, but results in a smaller number of
repositories and examples. “Repo?” and “Auto Test?” refer
to the repo-level setting and automatically generated tests.

As shown in Table 5, we conduct another human study
to check whether the examples are reasonable and can be
solved by human by sampling 27 examples generated by
REPOST. Results show that 81.5% of the examples were
solved by human, indicating that most examples are reason-
able and not too complicated. More experimental details
can be found in §D.

4. Code Generation Training Experiments

Training with REPOST-TRAIN. In standard supervised
fine-tuning (SFT), we can train the model with the code
context c as the input and the ground truth target function
f* as the output. The execution feedback provided by our
REPOST evaluation scripts further allows us to employ
the rejection sampling fine-tuning (RFT) algorithm to
generate additional valid training targets. Specifically, we
apply the model itself to our dataset, generating n candi-
date solutions for each function based on its code context:
(¢, f1), ... (¢, fn). The method is denoted as RFT (Self).
We can also apply other stronger models to generate candi-
dates (denoted as RFT (Distill)). Only solutions that pass
our test cases are retained. We then finetune the model on
the successful functions (¢, f1), ... (¢, f!) and the ground
truth (¢, f*) using the standard negative log-likelihood loss.

Experimental Setup. We train two models: StarCoder2-
7B (Lozhkov et al., 2024) and Qwen2.5-Coder-7B (Hui
et al., 2024) with REPOST-TRAIN and evaluate on Hu-
manEval (Chen et al., 2021), an algorithm problem dataset,
and RepoEval-function (Zhang et al., 2023), a repo-level
code generation dataset. For RepoEval, we use the “Oracle”
context to mitigate the bias of context retrieval methods. We
report the Pass@1 scores on all datasets. More training and

REPOST: Scalable Repository-Level Coding Environment Construction with Sandbox Testing

Model HumanEval RepoEval-Func
Pass@1 A Pass@1 A
StarCoder2-7B 34.76 - 32.98 -

+ SFT 3720 1244 3378 10.80

+ RFT (Self) 39.63 14.87 34.58 11.61

+ RFT (Distill) 40.24 1549 3512 12.14
Qwen2.5-Coder-7B 79.27 - 38.06 -

+ SFT 8048 f1.21 39.94 11.88

+ RFT (Self) 84.76 15.49 40.75 12.69

+ RFT (Distill) 84.76 15.49 41.55 13.49

Table 2: Code generation training results. We evaluate
Pass@1 for all experiments. For RepoEval, we use the
“Oracle” repo-level context as used in their original paper.

Scaling Law Analysis Repo Diversity Analysis

42 —@— Rej Sampling 41.55 42 By-Repo
By-Example
M 41 EEE + Rej Sampl.
39.94
40 40
39.14
39 39 3833
38 ®--------- ?: §L8_7____§_8_'(_)§. 38

0 1k 2k 4k All (7k) Data Sampling Method

(a) Scaling law analysis (b) Repository diversity
Figure 3: (a) Pass@]1 scores on RepoEval with different
numbers of training examples. (b) Pass@1 scores on Re-
poEval with different methods to sample 2,000 training
examples. Sample-by-Example has a broader repository
coverage and achieves better Pass@ 1. The performance is
further enhanced with Rejection Sampling (Distill).

evaluation details are provided in §E.

Main Results. Table 2 demonstrates that models trained
with REPOST-TRAIN can generalize well to other public
benchmarks. Specifically, we improve Qwen2.5-Coder by
5.5% Pass@1 on HumanEval and 3.5% on RepoEval-Func.
Furthermore, in all experiments, training with RFT, even
with self-training only, achieves better performance than
finetuning on the original GitHub function only. For in-
stance, RFT (Distill) outperforms SFT by 4.3% Pass@1 on
HumanEval. This shows the benefit of training with envi-
ronments that can provide execution feedback. We can also
observe that RFT with self-training in general has lower
performance than distilling from stronger models, which is
probably due to fewer successful outputs (Table 6).

Scaling Law Analysis. In Figure 3(a), we investigate how
the scale of training data affects model performance. Specif-
ically, we randomly sample different numbers of examples
from REPOST-TRAIN to train the model. We can see that
the performance of RFT (Distill) increases as we scale up
the training data, which suggests the advantage of train-

ing data with high scalability. Furthermore, with different
scales of data, RFT consistently achieves better performance
than SFT, which further demonstrates the effectiveness of
training environments with execution feedback.

Repository Diversity Experiment. Figure 3(b) examines
whether broader repository coverage leads to better perfor-
mance, given a fixed budget of training examples. We fix
the number of examples to 2,000 and experiment with two
example sampling methods: (1) Sample-by-Repo, where we
keep sampling repositories and adding all the functions in
the repository to the training set, until the data size reaches
2,000; (2) Sample-by-Example, which is the same setting
as Figure 3(a), where we randomly sample functions from
REPOST-TRAIN. We observe that Sample-by-Example,
covering 678 repositories, outperforms Sample-by-Repo,
which only covers 221, suggesting that training data with
broader repository coverage benefits model training.

5. Related Work

Existing works have shown the effectiveness of pretrain-
ing (Roziere et al., 2024; Lozhkov et al., 2024; Guo et al.,
2024) or instruction tuning (Wei et al., 2023; Luo et al.,
2023; DeepSeek-Al, 2025) on real-world code. To further
finetune models for code generation, existing works have
built large-scale training datasets with test cases by leverag-
ing large-scale online algorithm problems. The execution
feedback from test cases is used in constructing training
targets (Ni et al., 2024; Zhang et al., 2024) or reward sig-
nals (Liu et al., 2023; Jiang et al., 2024). As repo-level
code generation, existing works such as SWE-Gym (Pan
et al., 2024) build training environments by manually setting
up dependencies and configurations for the entire GitHub
repositories. The repository setup process is complicated
and challenging to automate, resulting in limited dataset
scales. In comparison, we design a sandbox testing method
that only requires setting up the necessary dependencies for
individual GitHub functions, which reduces the difficulty of
environment setup and leads to better scalability.

6. Conclusion and Future Works

We present REPOST, a scalable method to construct en-
vironments for code generation in real-world repositories
that support sandbox testing. REPOST is fully automatic
and enables the construction of scalable execution-based
training environments. Experiments demonstrate that train-
ing with the resulting dataset, REPOST-TRAIN, leads to
performance gain on other public benchmarks. For instance,
we improve Qwen2.5Coder by 5.49%/3.49% Pass@1 on
HumanEval/RepoEval. In future works, REPOST can also
be applied to more repo-level tasks, further analysis, and
coding agent training (see §A for details).

REPOST: Scalable Repository-Level Coding Environment Construction with Sandbox Testing

References Hui, B., Yang, J., Cui, Z., Yang, J., Liu, D., Zhang, L.,
Liu, T., Zhang, J., Yu, B., Lu, K., Dang, K., Fan, Y.,

Bogin, B., Yang, K., Gupta, S., Richardson, K., Bran- Zhang, Y., Yang, A., Men, R., Huang, F., Zheng, B.,

som, E., Clark, P.,, Sabharwal, A., and Khot, T. SU-
PER: Evaluating agents on setting up and executing
tasks from research repositories. In Al-Onaizan, Y.,
Bansal, M., and Chen, Y.-N. (eds.), Proceedings of
the 2024 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 12622—12645, Miami,
Florida, USA, November 2024. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2024.emnlp-main.
702. URL https://aclanthology.org/2024.
emnlp-main.702/.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P, Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings, D.,
Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss, A.,
Guss, W. H., Nichol, A., Paino, A., Tezak, N., Tang,
J., Babuschkin, I., Balaji, S., Jain, S., Saunders, W.,
Hesse, C., Carr, A. N., Leike, J., Achiam, J., Misra,
V., Morikawa, E., Radford, A., Knight, M., Brundage,
M., Murati, M., Mayer, K., Welinder, P., McGrew, B.,
Amodei, D., McCandlish, S., Sutskever, 1., and Zaremba,
W. Evaluating large language models trained on code,
2021.

DeepSeek-Al. Deepseek-rl: Incentivizing reasoning ca-
pability in llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2501.12948.

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X,
Gong, M., Shou, L., Qin, B., Liu, T., Jiang, D.,
and Zhou, M. CodeBERT: A pre-trained model
for programming and natural languages. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020. Association for Computational Linguis-
tics, 2020. URL https://aclanthology.org/
2020.findings—-emnlp.139.

Gautam, D., Garg, S., Jang, J., Sundaresan, N., and Moghad-
dam, R. Z. Refactorbench: Evaluating stateful reason-
ing in language agents through code. In The Thirteenth
International Conference on Learning Representations,
2025. URL https://openreview.net/forum?
id=NiNIthntx7.

Guo, D., Zhu, Q., Yang, D., Xie, Z., Dong, K., Zhang, W.,
Chen, G, Bi, X., Wu, Y., Li, Y. K,, Luo, F,, Xiong, Y.,
and Liang, W. Deepseek-coder: When the large language
model meets programming — the rise of code intelligence,
2024.

Miao, Y., Quan, S., Feng, Y., Ren, X., Ren, X., Zhou, J.,
and Lin, J. Qwen2.5-coder technical report, 2024. URL
https://arxiv.org/abs/2409.12186.

Jain, N., Shetty, M., Zhang, T., Han, K., Sen, K., and

Stoica, I. R2E: Turning any github repository into
a programming agent environment. In Salakhutdinov,
R., Kolter, Z., Heller, K., Weller, A., Oliver, N., Scar-
lett, J., and Berkenkamp, F. (eds.), Proceedings of
the 41st International Conference on Machine Learn-
ing, volume 235 of Proceedings of Machine Learn-
ing Research, pp. 21196-21224. PMLR, 21-27 Jul
2024. URL https://proceedings.mlr.press/
v235/jain24c.html.

Jiang, N., Li, X., Wang, S., Zhou, Q., Hossain, S. B.,

Ray, B., Kumar, V., Ma, X., and Deoras, A. Ledex:
Training LLMs to better self-debug and explain code.
In The Thirty-eighth Annual Conference on Neural In-
formation Processing Systems, 2024. URL https:
//openreview.net/forum?id=d1XrZz4EINV.

Jimenez, C. E., Yang, J., Wettig, A., Yao, S., Pei, K., Press,

0., and Narasimhan, K. R. SWE-bench: Can language
models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
1d=VTF8yNQM66.

Li, J., Li, G., Zhao, Y., Li, Y., Jin, Z., Zhu, H., Liu, H.,
Liu, K., Wang, L., Fang, Z., Wang, L., Ding, J., Zhang,
X., Dong, Y., Zhu, Y., Gu, B., and Yang, M. Deveval:
Evaluating code generation in practical software projects,
2024.

Liu, J., Zhu, Y., Xiao, K., FU, Q., Han, X., Wei, Y.,
and Ye, D. RLTF: Reinforcement learning from unit
test feedback. Transactions on Machine Learning Re-
search, 2023. ISSN 2835-8856. URL https://
openreview.net/forum?id=hjYmsVénXz.

Lozhkov, A., Li, R., Allal, L. B., Cassano, F., Lamy-Poirier,
J., Tazi, N., Tang, A., Pykhtar, D., Liu, J., Wei, Y., Liu, T.,
Tian, M., Kocetkov, D., Zucker, A., Belkada, Y., Wang,
Z., Liu, Q., Abulkhanov, D., Paul, 1., Li, Z., Li, W.-D.,
Risdal, M., Li, J., Zhu, J., Zhuo, T. Y., Zheltonozhskii,
E., Dade, N. O. O., Yu, W., KrauB3, L., Jain, N., Su, Y.,
He, X., Dey, M., Abati, E., Chai, Y., Muennighoff, N.,
Tang, X., Oblokulov, M., Akiki, C., Marone, M., Mou,
C., Mishra, M., Gu, A., Hui, B., Dao, T., Zebaze, A.,
Dehaene, O., Patry, N., Xu, C., McAuley, J., Hu, H.,
Scholak, T., Paquet, S., Robinson, J., Anderson, C. J.,
Chapados, N., Patwary, M., Tajbakhsh, N., Jernite, Y.,

https://aclanthology.org/2024.emnlp-main.702/
https://aclanthology.org/2024.emnlp-main.702/
https://arxiv.org/abs/2501.12948
https://aclanthology.org/2020.findings-emnlp.139
https://aclanthology.org/2020.findings-emnlp.139
https://openreview.net/forum?id=NiNIthntx7
https://openreview.net/forum?id=NiNIthntx7
https://arxiv.org/abs/2409.12186
https://proceedings.mlr.press/v235/jain24c.html
https://proceedings.mlr.press/v235/jain24c.html
https://openreview.net/forum?id=d1XrZ4EINV
https://openreview.net/forum?id=d1XrZ4EINV
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=hjYmsV6nXZ
https://openreview.net/forum?id=hjYmsV6nXZ

REPOST: Scalable Repository-Level Coding Environment Construction with Sandbox Testing

Ferrandis, C. M., Zhang, L., Hughes, S., Wolf, T., Guha,
A., von Werra, L., and de Vries, H. Starcoder 2 and
the stack v2: The next generation, 2024. URL https:
//arxiv.org/abs/2402.19173.

Luo, Z., Xu, C., Zhao, P., Sun, Q., Geng, X., Hu, W., Tao,
C.,Ma, J, Lin, Q., and Jiang, D. Wizardcoder: Empower-
ing code large language models with evol-instruct, 2023.
URL https://arxiv.org/abs/2306.08568.

Ni, A., Allamanis, M., Cohan, A., Deng, Y., Shi, K., Sut-
ton, C., and Yin, P. Next: teaching large language mod-
els to reason about code execution. In Proceedings of
the 41st International Conference on Machine Learning,
ICML’24. JMLR.org, 2024.

Pan, J., Wang, X., Neubig, G., Jaitly, N., Ji, H., Suhr, A.,
and Zhang, Y. Training software engineering agents and
verifiers with swe-gym, 2024. URL https://arxiv.
org/abs/2412.211309.

Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I,
Tan, X. E., Adi, Y., Liu, J., Sauvestre, R., Remez, T.,
Rapin, J., Kozhevnikov, A., Evtimov, 1., Bitton, J., Bhatt,
M., Ferrer, C. C., Grattafiori, A., Xiong, W., Défossez,
A., Copet, J., Azhar, F., Touvron, H., Martin, L., Usunier,
N., Scialom, T., and Synnaeve, G. Code llama: Open
foundation models for code, 2024.

Simon, H. A. Experiments with a heuristic compiler. J.
ACM, 1963. URL https://doi.org/10.1145/
321186.321192.

Wang, X, Li, B., Song, Y., Xu, F. F,, Tang, X., Zhuge, M.,
Pan, J., Song, Y., Li, B., Singh, J., Tran, H. H., Li, F,,
Ma, R., Zheng, M., Qian, B., Shao, Y., Muennighoff, N.,
Zhang, Y., Hui, B, Lin, J., Brennan, R., Peng, H., Ji, H.,
and Neubig, G. Openhands: An open platform for Al soft-
ware developers as generalist agents. In The Thirteenth
International Conference on Learning Representations,
2025. URL https://openreview.net/forum?
1d=0Jd3ayDDoF.

Wei, Y., Wang, Z., Liu, J., Ding, Y., and Zhang, L. Magi-
coder: Source code is all you need. arXiv preprint
arXiv:2312.02120, 2023.

Xie, Y., Naik, A., Fried, D., and Rose, C. Data augmen-
tation for code translation with comparable corpora and
multiple references. In Bouamor, H., Pino, J., and Bali, K.
(eds.), Findings of the Association for Computational
Linguistics: EMNLP 2023, pp. 13725-13739, Singa-
pore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.findings-emnlp.
917. URL https://aclanthology.org/2023.
findings-emnlp.917/.

Yang, J., Jimenez, C. E., Wettig, A., Lieret, K., Yao,
S., Narasimhan, K., and Press, O. Swe-agent: Agent-
computer interfaces enable automated software engineer-
ing, 2024. URL https://arxiv.org/abs/2405.
15793.

Zhang, D., Diao, S., Zou, X., and Peng, H. PLUM: Im-
proving code Ims with execution-guided on-policy prefer-
ence learning driven by synthetic test cases, 2024. URL
https://arxiv.org/abs/2406.06887.

Zhang, F., Chen, B., Zhang, Y., Keung, J., Liu, J., Zan,
D., Mao, Y., Lou, J.-G., and Chen, W. RepoCoder:
Repository-level code completion through iterative re-
trieval and generation. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics,
2023. URL https://aclanthology.org/2023.
emnlp-main.151.

https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2306.08568
https://arxiv.org/abs/2412.21139
https://arxiv.org/abs/2412.21139
https://doi.org/10.1145/321186.321192
https://doi.org/10.1145/321186.321192
https://openreview.net/forum?id=OJd3ayDDoF
https://openreview.net/forum?id=OJd3ayDDoF
https://aclanthology.org/2023.findings-emnlp.917/
https://aclanthology.org/2023.findings-emnlp.917/
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2406.06887
https://aclanthology.org/2023.emnlp-main.151
https://aclanthology.org/2023.emnlp-main.151

REPOST: Scalable Repository-Level Coding Environment Construction with Sandbox Testing

A. Future Works

Future works may include: (1) further scaling up the datasets
with more input repositories, (2) exploring the utility of
different types of context in training and evaluation, (3)
adapting REPOST to other repo-level coding tasks such as
issue-solving (Pan et al., 2024), code translation (Xie et al.,
2023), code refactoring (Gautam et al., 2025), environment
setup (Bogin et al., 2024), etc., and (4) using REPOST-
TRAIN to train and evaluate coding agents (Yang et al., 2024;
Wang et al., 2025). This is possible because our datasets
provide both access to the original GitHub repositories and
execution feedback. Specifically, one can set the instruction
as “generate the target function”, and the coding agent will
need to explore and interact with the entire repository by
itself to obtain relevant information. We can then use the
evaluation scripts to select successful trajectories and use
them for model training.

B. Reproducibility Statement

We provide the following ways to reproduce our results:
(1) We release the code for the entire REPOST pipeline,
including repository and function curation, sandboxing, test
generation, execution, and final-stage quality verification.
(2) We release the code for training data construction, in-
cluding both the SFT and RFT settings. (3) We release
the REPOST-TRAIN dataset, including the repository com-
mit ids and the evaluation scripts generated by REPOST.
We also release the RFT (Distill) data constructed based
on REPOST-TRAIN. (4) We release the docker image of
REPOST-TRAIN, which already installs all the external
packages required for executing all the evaluation scripts.

All the above resources can be found at https:
//github.com/RepoST-Code-Gen-Paper/
RepoST.

C. Methodology Details

C.1. Repository and Function Curation Details

To balance the distribution of examples, we keep at most 30
functions for each repository. After this step, for the train
set, we started from 1,000 repositories and obtained 17,448
functions from 851 repositories. Note that with our sandbox
testing method, we do not need to build the entire repository
and do not need to filter out repositories without setup files
(e.g., setup.py). In theory, we can further scale up the
dataset with more starting repositories.

C.2. Sandboxing and Test Generation Details

Sandbox Testing for External APIs and Tests. Even if
all the dependencies are presented, it is still nontrivial to

execute the sandboxed script if it requires external API,
databases, files, etc. We explicitly prompt the LLM to
create mock connections for any external API and create
strings or write example files to a specific directory for file
reading. Figure 4 presents a successful case of sandboxing
with mock APIs. We provide examples of the generated
sandboxed scripts in Figures 5 to 10.

We observe that the LLM is also able to generate tests with
the mock classes created in the sandboxing step as context.
As shown in Figures 8 to 10, we create mock class instances
as the test inputs and still ensure that the function body of
the sandboxed function remains the same as the original
function.

Prompts. Table 9 shows the prompt we use to sandbox
the target function and its local dependencies to a separate
evaluation script. Table 10 shows the prompt template we
use to generate tests in the evaluation scripts.

C.3. Quality Control Details

Prompts. Table 11 shows the prompt we use to debug
the evaluation scripts if there are any errors when we copy
the ground truth solution as the new implementation and
execute the scripts. Table 12 shows the prompt we use to
improve the coverage of the test function if there are any
missing branches. Table 13 shows the prompt we use in the
quality check stage, where we check whether the sandboxed
and original functions have exactly the same functionality.
Table 14 shows the prompt we use in the quality check
stage, where we check whether the generated test function
is correct, reasonable, and are completing the verification of
the functionalities of the ground truth function and the new
implementation.

D. Human Study Details
D.1. Quality Check Agreement Check

We ask 3 computer science graduate students to conduct
functionality equivalence and test correctness checks for 20
examples built by our method (before the final filtering),
with the same instruction we use to prompt the LLM check-
ers. The Kappa agreement scores among human annotators
are 0.9179 for the functionality check and 0.7750 for the
test check.

For functionality equivalence check, we randomly sample
20 examples built by our method. The instruction we present
to the participants is exactly the same as the prompt for the
LLM functionality checker, as shown in Table 13. Specifi-
cally, we show them the original and sandboxed functions
and ask them whether their functionalities are the same. We
allow minor differences including additional sanity checks
or different print information.

https://github.com/RepoST-Code-Gen-Paper/RepoST
https://github.com/RepoST-Code-Gen-Paper/RepoST
https://github.com/RepoST-Code-Gen-Paper/RepoST

REPOST: Scalable Repository-Level Coding Environment Construction with Sandbox Testing

As for the test correctness check, we randomly select 10
examples where the LLM predicts as “Yes” and 10 examples
where the LLM predicts as “No”. The instruction is the same
as the prompt for the LLM test correctness check, as shown
in Table 14. We additionally prevent checking the values of
printed or logged information because it is typically difficult
to match the exact same information in code generation.

D.2. Solvability Check

We assigned 27 examples constructed by REPOST to 9
computer science students, with no overlaps, and asked
them to complete the function and answer questions about
the difficulties of the examples.

Similar to the setting we use to benchmark coding models
in §4, we show the participants the direct or indirect de-
pendencies of the target function and ask them to complete
it. After submitting an answer, the participants will see the
execution results of our evaluation scripts and can choose to
revise their answers accordingly or to give up. Finally, we
asked them whether they used external tools (e.g., search
engines) in completing the function and asked them to rate
the difficulty of each example. Note that we do not directly
show the evaluation script to the participants and explicitly
ask them not to use any Al models.

Results show that 81.5% of the examples were solved by hu-
man, indicating that most examples are reasonable and not
too complicated. The remaining examples were not solved
for various reasons, such as the participant is not familiar
with the task (e.g., reading html data) or related libraries
(e.g., BeautifulSoup4), the intent of the function can-
not be fully entailed from the context, etc. We also observe
that the generated examples have varying complexity lev-
els based on the usage of external tools and the difficulty
ratings.

E. Code Generation Training Details
E.1. Evaluation Details

The performance of repo-level code generation also depends
on the quality of the retrieved context. To mitigate the bias
of retrieval models, we evaluate the models with the “Oracle”
context for the two repo-level datasets. For RepoEval-Func,
we follow the setting in their original paper that retrieves
in-repo code fragments with the target function as the query.

E.2. Training Details

We compare three training methods: SFT, RFT (Self), and
RFT (Distill). For the “Distill” method, we apply GPT-40
and Claude-3.5-Sonnet to generate and debug candidate so-
lutions, separately, and combine their successful candidates
for training. We provide the number of examples where we

Orig Function

s =9~ |
def API_call(prompt: str) —> str:
return API_client.generate(
mode1=API_MODEL, messages=[...]
)

\. J

(Eual Crvid)
- Eval Script
class Mock_API(object):

def generate(model, messages):
return “mock_” + messages[0][‘content’]

API_MODEL = “model_name”
API_client = Mock_API(“api_key”)
def API_call(prompt: str) —> str:
return API_client.generate(
mode1=API_MODEL, messages=[...]
)

\. J

Figure 4: An example where the LLM successfully creates
a mock class, Mock _APT, to replace real external API calls.
This enables us to execute the target function API_call,
which remains exactly the same as in the original codebase,
without making real API calls.

REPOST-TRAIN

Target Avg # Tokens (Lines) 112.4 (12.8)
Eval Script Avg # Tokens (Lines) 842.5 (75.7)
Avg # Test Cases 5.7

Avg Test Branch Coverage 97.8%
% Standalone Functions 28.1%
External Libraries 894

Table 3: Detailed statistics of our datasets. The percentage
of standalone functions (i.e., functions without local depen-
dencies) are 28.1% and 26.4% in our datasets. Both are very
close to 27%, the percentage of standalone functions among
all GitHub code estimated by Li et al. (2024)

obtained at least one successful solution in Table 6.

To obtain more training pairs for both the “Self” and “Distill”
settings, we further prompt the model itself or a stronger
model to debug the failed solutions, with the error message
in the context. We also train the model on successfully
debugged solutions (c, f1'), ... (¢, fi]).

We train the models with a learning rate of 2e — 6, a batch
size of 32, and a warm-up ratio of 0.1 for 1 epoch. For
QwenCoder, we add a linebreak after the prompt to prevent
the first token of the target output from being 1 inebreak.

REPOST: Scalable Repository-Level Coding Environment Construction with Sandbox Testing

Quality Check Functionality Test

Human Label (—) ‘ Yes No ‘ Yes No
GPT-4o - Yes \ 13/20 0 \ 9/20 120
GPT-40 - No ‘ 120 6/20 ‘ 4/20 6/20

Table 4: Agreement between human and GPT-40 on check-
ing (1) the functionality equivalence between the sandboxed
and original function, and (2) the correctness of the tests.
When GPT-40 predicts “Yes” for both quality checks, it has
a high agreement with human.

% Solved % Require Tool
81.5% 59.3%

% Easy / Medium / Hard
29.6% /51.9% / 18.5%

Table 5: Human study results for solvability verification.
We ask the participants to complete the function with the
same type of context we use to evaluate code generation
models in §4.

Docstring (DocS) Initial Generation w/ Debugging
StarCoder2-7B 1327 /7415 1573 /7415
Qwen2.5-Coder-7B 1428 /7415 1708 / 7415
GPT-40 2438 /7415 2861 /7415
Claude-3.5 2503 /7415 3092 /7415
GPT-40 & Claude-3.5 3110/ 7415 3606/ 7415

Table 6: The number of examples where we obtained at least
one successful solution in RFT (Self) and RFT (Distill). We
report the number (1) after the initial round of generation,
and (2) after debugging.

Sanity Checks for Sandboxing

1. The target function should exist in the evaluation script.
2. The number of tokens in the sandboxed function should
NOT be more than 20 fewer than that in the original func-
tion.

3. The number of tokens in the entire evaluation script
should NOT be more than 50 fewer than the number of
tokens in the combination of all local dependencies.

Table 7: The sanity checks we conduct for the sandboxing
step.

Sanity Checks for Test Generation

1. The target function should exist in the evaluation script.
2. The number of tokens in the sandboxed function should
NOT be more than 20 fewer than that in the original func-
tion.

3. The number of tokens in the entire evaluation script
should NOT be fewer than the number of tokens in the
evaluation script obtained from the sandboxing step.

4. A test function named test_{func_name}() should exist.
5. The test function should call the target function.

6. The test function should call the new implementation
(new_implementation_{func_name}()).

7. There should be at least 3 assertions in the test function.
8. There should be a main function.

9. The main function should call the test function.

10. If the main function calls the test function, the function
call should not be in a try-except block.

Table 8: The sanity checks we conduct for the test genera-
tion step.

REPOST: Scalable Repository-Level Coding Environment Construction with Sandbox Testing

Sandboxing Prompt

Instructions:

- You're given a piece of PYTHON CODE containing a function called {func_name}. We also provide you the CONTEXT of the PYTHON
CODE. Your goal is to aggregate the PYTHON CODE and the CONTEXT into one script, so that we can directly call the {func_name} function
WITHOUT ANY MODIFICATIONS.

- You should edit the original PYTHON CODE as little as possible and you can add code only if necessary.

- DO NOT call any external API, database, etc. Instead, create a mock interface.

- Make sure that your code can be directly executed without any modification. For example, statements like ‘token = ’your_auth_token_here” #
You need to replace this with a real token‘ is NOT allowed.

- If you need to write files to the disk, use ‘{docker CACHE_DIR} as the directory.

- Provide your reasoning and the revised PYTHON CODE below SOLUTION.

PYTHON CODE:
“‘python
{code}

e

CONTEXT:
{context}

Your answer should follow the format below:
Reasoning: ...

““python
Your Code.

113

Do NOT include other formatting. Output every token of the content with no omission or abbreviation. For example, abbreviation like ‘... # the
code keeps unchanged* is NOT allowed.

SOLUTION:

Table 9: The prompt we use to sandbox the target function and its local dependencies to a separate evaluation script.

10

REPOST: Scalable Repository-Level Coding Environment Construction with Sandbox Testing

Test Generation Prompt

Instructions:

- You’re given a piece of PYTHON CODE containing a function called {func_name}. Assume we will later have another implentation of the
{func_name} function called {func_name}_new_implementation.

- Your goal is to add (1) a test function called {test_func_name} to check whether {func_name} _new_implementation has the same functionality
as the {func_name} function, and (2) a __main__ function that calls the test function.

- If the PYTHON CODE already contains a __main__ function, remove it and write a new __main__ function.

- The test function {test_func_name} should contain at least 3 assert statements. If {func_name}_new_implementation has different functionality
as {func_name}, an Assertion Error should be triggered.

- The test function {test_func_name} should cover all the major branches of the {func_name} function

- DO NOT test on error handling and DO NOT test on the print information in the function.

- The __main__ function should NOT contain a try-except structure. If the implementation is incorrect, the program should have a non-zero exit
code.

- You should edit the original PYTHON CODE as little as possible.

- If you need to write files to the disk, use ‘{docker CACHE_DIR}‘ as the directory.

- Provide your reasoning and the new PYTHON CODE containing your test function {test func name} and the __main__ function below
SOLUTION.

PYTHON CODE:
“‘python
{code}

113

Your answer should follow the format below:
Reasoning: ...

“‘python
The new PYTHON CODE containing your test function {test_func_name} and the __main__ function.

e

Do NOT include other formatting. Output every token of your edited PYTHON CODE with no omission or abbreviation.

SOLUTION:

Table 10: The prompt we use to generate tests in the evaluation scripts.

11

REPOST: Scalable Repository-Level Coding Environment Construction with Sandbox Testing

Debugging Prompt (for data construction)

Instructions:

- You're given a piece of PYTHON CODE containing a function called {func_name} and its test function called {test_func_name}. Assume we will
later add another function called {func_name} new_implementation, the test function aims to check whether {func_name}_new_implementation
has the same functionality as {func_name}.

- In our experiments, we implemented {func_name} _new_implementation exactly the same as {func_name}, but the PYTHON CODE cannot be
successfully executed.

- Your task is to debug PYTHON CODE based on the ERROR MESSAGE.

- You should modify the code as little as possible, especially the test_{func_name} function and the {func_name} function.

- Make sure that after debugging, the test function test_{func_name} still have at least three assert statements and cover all the major branches of
the {func_name} function.

- DO NOT test the logging information of error handling and DO NOT test on the print information in the function.

- If you need to write files to the disk, use ‘{docker CACHE_DIR}‘ as the directory.

- Provide your reasoning and the debugged PYTHON CODE below SOLUTION. If necessary, output the bash scripts for Linux in another code
block in the format of “‘bash ... “‘.

PYTHON CODE:
“‘python
{code}

e

ERROR MESSAGE:

e

{err_msg}

113

Your answer should follow the format below:

Reasoning: ...

“‘python

The debugged PYTHON CODE in one piece.
“‘bash

the bash script, if necessary

e

Do NOT include other formatting. Output every token of your debugged PYTHON CODE with no omission or abbreviation.

SOLUTION:

Table 11: The prompt we use to debug the evaluation scripts if there are any errors when we copy the ground truth solution
as the new implementation and execute the scripts.

12

REPOST: Scalable Repository-Level Coding Environment Construction with Sandbox Testing

Test Coverage Improvement Prompt

Instructions:

- You're given a piece of PYTHON CODE containing a function called {func_name} and its test function called {test_func_name}. Assume we will
later add another function called {func_name}_new_implementation, the test function aims to check whether {func_name}_new_implementation
has the same functionality as {func_name}.

- You’re also given the MISSING LINES of the {func_name} new_implementation function that are NOT covered by {test_func_name}.

- Your task is to improve the branch coverage rate of the {test_func_name} function.

- You should only modify the {test_func_name} function. DO NOT modify other parts of the code.

- DO NOT test the logging information of error handling and DO NOT test on the print information in the function.

- If you need to write files to the disk, use ‘{docker CACHE _DIR} as the directory.

- Provide your reasoning and your revised {test_func_name} function below SOLUTION.

PYTHON CODE:
““python
{code}

113

MISSING LINES:
{missing_code}

Your answer should follow the format below:
Reasoning: ...

“‘python
Your revised {test_func_name} function

113

Do NOT include other formatting. Output every token of the {test_func_name} function with no omission or abbreviation.

SOLUTION:

Table 12: The prompt we use to improve the coverage of the test function if there are any missing branches.

13

REPOST: Scalable Repository-Level Coding Environment Construction with Sandbox Testing

Functionality Equivalence Check Prompt

Instructions:

- We revised a python function called {func_name} so it can be directly executed in an isolated environment.

- You are given the ORIGINAL FUNCTION and the CODE containing the REVISED FUNCTION.

- Your task is to check whether the functionality of the REVISED FUNCTION is the same as the ORIGINAL FUNCTION.

- If the REVISED FUNCTION is exactly the same as the ORINIGAL FUNCTION, output “same” as your answer.

- Otherwise, if the functionality of the REVISED FUNCTION is the same as the ORIGINAL FUNCTION, output “yes” as your answer.
- if the functionality of the REVISED FUNCTION is different, output “no”.

- Provide your reasoning and the answer under "SOLUTION”.

ORIGINAL FUNCTION:
{orig_func}

CODE containing the REVISED FUNCTION:
{new_code}

Your answer should follow the format below:

113

REASONING: Your reasoning,
ANSWER: “same”, ”yes” or “no”.

e

Do NOT include other formatting.

SOLUTION:

Table 13: The prompt we use in the quality check stage, where we check whether the sandboxed and original functions have
exactly the same functionality.

14

REPOST: Scalable Repository-Level Coding Environment Construction with Sandbox Testing

Test Correctness Check Prompt

Instructions:

- You are given a piece of PYTHON CODE containing a function called {func_name}, its new implementation {func_name} new_implementation
(now hidden) and its test function called {test_func_name}.

- Your task is to judge whether the test function satisfies all the CONDITIONS:

** CONDITION 1 ** The {func_name} function should either have return values or modifies global variables or input arguments (such as a list,
a dictionary, a class, etc.).

** CONDITION 2 ** The test cases should only check the return values or variable states. It should NOT check printed or logged contents.

CONDITION 3 ** {func_name}_new_implementation can pass all the test cases IF AND ONLY IF it has the EXACTLY same functionality as
{func_name}.

** CONDITION 4 ** The test cases and assert statements are reasonable. For example, if {funCJlame} does not have return values, you should
NOT use ‘assert {func_name}() == {func_name}_new_implementation()‘ to test the implementation.

** CONDITION 5 ** The test cases are non-trivial.

- If the test function satisfies all the CONDITIONS, answer “yes”. Otherwise, answer “no”.
- Provide your reasoning and the answer under "SOLUTION”.

PYTHON CODE:
{code}

Your answer should follow the format below:

113

REASONING: Your reasoning,
ANSWER: "yes” or "no”.

113

Do NOT include other formatting.

SOLUTION:

Table 14: The prompt we use in the quality check stage, where we check whether the generated test function is correct,
reasonable, and actually comparing the functionalities of the ground truth function and the new implementation.

15

REPOST: Scalable Repository-Level Coding Environment Construction with Sandbox Testing

[Case 1, Origifinal Function & GitHub Context] score_explicit_question()

**python

chan_questions.py
import json

import prompts

from helpers import get_openai_answer, chunker, clean_and_hash, clean_html, query_to_search_url
def score_explicit_question(string: str) -> list:

Uses LLMs to score a question based on whether it is considered explicit or implicit.
Uses OpenAI.

prompt = prompts.IS_EXPLICIT
answer = get_openai_answer(prompt.replace("[input]", string))

results = json.loads(answer)["results"]
return results

*“python
helpers.py
import openai
import config

def get_openai_answer(prompt: str, response_format="json_object", model=None):
initiate
client = openai.OpenAI(api_key=config.OPENAI_KEY)

if not model:
model = config.MODEL

Get response
response = client.chat.completions.create(
model=model,
temperature=config.TEMPERATURE,
max_tokens=config.MAX_OUTPUT_TOKENS,
response_format={"type": response_format},
messages=[{
"role": "user",
"content": prompt

H

return response.choices[0].message.content

\. /

Figure 5: Case study 1. The original score_explicit_question function and its context extracted from the original
GitHub repository. The function calls the text completion function from the OpenAl APIL.

16

REPOST: Scalable Repository-Level Coding Environment Construction with Sandbox Testing

[Case 1, Evaluation Script - Sandboxing] score_explicit_question()

import json

Mock configuration

class config:
OPENAI_KEY = "mock_openai_key"
MODEL = "mock_model"
TEMPERATURE = 0.5
MAX_OUTPUT_TOKENS = 100

Mock prompts
class prompts:
IS_EXPLICIT = "Is the following question explicit or implicit? [input]"

Mock OpenAI API response
def get_openai_answer(prompt: str, response_format="json_object", model=None):
Mock response simulating the OpenAI API
mock_response = {
"results": [
{"question": prompt, "score": "explicit" if "explicit" in prompt else "implicit"}

b

return json.dumps(mock_response)

The original function from chan_questions.py
def score_explicit_question(string: str) -> list:
Uses LLMs to score a question based on whether it is considered explicit or implicit.
Uses OpenAI.
prompt = prompts.IS_EXPLICIT
answer = get_openai_answer(prompt.replace("[input]", string))

results = json.loads(answer)["results"]
return results

_ /

Figure 6: Case study 1. The sandboxed score_explicit_question function in the evaluation script. The LLM
generates a mock function called get_openai_answer to replace the real API call. With the mock class, the
score_explicit_question has the exactly same functionality as the original function, but does not make real
OpenAl API calls.

17

REPOST: Scalable Repository-Level Coding Environment Construction with Sandbox Testing

[Case 1, Evaluation Script - Tests] score_explicit_question()

def test_score_explicit_question():
Test case 1: Explicit question
input_strl = "Is this an explicit question?"
assert score_explicit_question(input_strl) == score_explicit_question_new_implementation(input_stril)

Test case 2: Implicit question
input_str2 = "What is the meaning of life?"
assert score_explicit_question(input_str2) == score_explicit_question_new_implementation(input_str2)

Test case 3: Neutral question (contains neither explicit nor implicit)
input_str3 = "How are you?"
assert score_explicit_question(input_str3) == score_explicit_question_new_implementation(input_str3)

Test case 4: Very short question
input_str4 = "?"
assert score_explicit_question(input_str4) == score_explicit_question_new_implementation(input_str4)

Test case 5: Very long question
input_str5 = "Is this an explicit question?" *x 100
assert score_explicit_question(input_str5) == score_explicit_question_new_implementation(input_str5)

Test case 6: Case sensitivity
input_str6 = "is this an explicit question?"
assert score_explicit_question(input_str6) == score_explicit_question_new_implementation(input_str6)

Test case 7: Different punctuation
input_str7 = "Is this an explicit question!"
assert score_explicit_question(input_str7) == score_explicit_question_new_implementation(input_str7)

Test case 8: Special characters
input_str8 = "Is this an explicit question? #$%"
assert score_explicit_question(input_str8) == score_explicit_question_new_implementation(input_str8)

Test case 9: Numbers in question
input_str9 = "Is 42 an explicit number?"
assert score_explicit_question(input_str9) == score_explicit_question_new_implementation(input_str9)

Test case 10: Empty string
input_strle = ""
assert score_explicit_question(input_strl@) == score_explicit_question_new_implementation(input_strl@)

Test case 11: Leading and trailing whitespace
input_stril = " Is this an explicit question? "
assert score_explicit_question(input_strll) == score_explicit_question_new_implementation(input_stril)

Test case 12: Excessive internal whitespace
input_strl2 = "Is this an explicit question?”
assert score_explicit_question(input_strl2) == score_explicit_question_new_implementation(input_strl2)

Main function

if __name__ == "__main__":

test_score_explicit_question()

N\

Figure 7: Case study 1. The tests in the evaluation scripts.

18

REPOST: Scalable Repository-Level Coding Environment Construction with Sandbox Testing

[Case 2, Origifinal Function & GitHub Context] QuizBrain.next_question()

*“python
Complete Python Bootcamp/Day 017 Quiz Game/quiz_brain.py
class QuizBrain:
def __init_ (self, questions):
self.question_number = 0@
self.question_list = questions
self.score = @

def still_has_question(self)
return self.question_number < len(self.question_list)

def next_question(self):
user_answer = ""
current_question = self.question_list[self.question_number]
while user_answer.lower() not in ("true", "false"):

user_answer =
user_answer = input(f"Q{self.question_number + 1}: {current_question.question} (True/False)")

self.question_number += 1
self.check_answer(user_answer, current_question.answer)

def check_answer(self, user_answer, correct_answer):
if user_answer.lower() == correct_answer.lower():
print("Correct!")
self.score += 1
else:
print("Incorrect")
print(f"The correct answer is: {correct_answer}\nYour current score is {self.score}/{self.question_number}")

\. J/

Figure 8: Case study 2. The original next_question function. The function reads from system inputs, which are not
available when testing in a docker.

19

REPOST: Scalable Repository-Level Coding Environment Construction with Sandbox Testing

[Case 2, Evaluation Script - Sandboxing] QuizBrain.next_question()

class MockInput:
def __init__ (self, responses):
self.responses = responses
self.index = 0

def __call__(self, prompt):
if self.index < len(self.responses):
response = self.responses[self.index]
self.index += 1
print(prompt + response) # Simulate user seeing the prompt and typing the response
return response
raise Exception("No more mock inputs available.")

class Question:
def __init__ (self, question, answer)
self.question = question
self.answer = answer

class QuizBrain:
def __init__(self, questions):
self.question_number = 0@
self.question_list = questions
self.score = 0

def still_has_question(self):
return self.question_number < len(self.question_list)

def next_question(self):
user_answer = ""

current_question = self.question_list[self.question_number]

while user_answer.lower() not in ("true", "false"):

user_answer =
user_answer = input(f"Q{self.question_number + 1}: {current_question.question} (True/False)")

self.question_number += 1
self.check_answer(user_answer, current_question.answer)

def check_answer(self, user_answer, correct_answer):
if user_answer.lower() == correct_answer.lower():
print("Correct!")
self.score += 1
else:
print("Incorrect")
print(f"The correct answer is: {correct_answer}\nYour current score is {self.score}/{self.question_number}")

\ /

Figure 9: Case study 2. The sandboxed next _quest ion function in the evaluation script. The LLM generates a mock
class called Mock Input to replace the real system input. With the mock class, the next _question has the exactly same
functionality as the original function, but does not read system inputs.

20

REPOST: Scalable Repository-Level Coding Environment Construction with Sandbox Testing

[Case 2, Evaluation Script - Tests] QuizBrain.next_question()

def test_next_question():
questions = [
Question("Is the sky blue?", “True"),
Question("Is the grass red?", "False"),
1
quiz_original = QuizBrain(questions)
quiz_new = QuizBrain(questions)

mock_responses = ["True", "False"]
mock_input = MockInput(mock_responses)

Replace the built-in input function with mock_input for testing
global input

original_input = input

input = mock_input

Run original implementation
while quiz_original.still_has_question():
quiz_original.next_question()

Reset input for the new implementation
mock_input = MockInput(mock_responses)
input = mock_input

Run new implementation
while quiz_new.still_has_question():
quiz_new.next_question_new_implementation()

assert quiz_original.score == quiz_new.score, "Scores differ between implementations"

assert quiz_original.question_number == quiz_new.question_number, "Question numbers differ between
implementations"

assert quiz_original.still_has_question() == quiz_new.still_has_question(), "Question completion state differs
between implementations"

if __name__ == "__main__":
test_next_question()

/

Figure 10: Case study 2. The tests in the evaluation scripts, which call the MockInput class to mock the system input.

21

