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ABSTRACT

Replay-based methods provide a promising solution to address catastrophic forget-
ting issue in continual learning. They try to retain previous knowledge by using a
small amount of data from previous tasks stored in a fix-sized buffer. In this work,
we invoke the information bottleneck principles and reveal some fundamental
limitations of those methods on their effectiveness in capturing the truly important
features from the prior tasks by relying on the buffer data selected according to
the model’s performance on known tasks. Since future tasks are not accessible
during model training and buffer construction, the trained model and the buffer
data tend to be biased towards making accurate predictions on the labels of known
tasks. However, when new task samples are introduced along with labels, the
biased model and the buffer data become less effective in differentiating samples
of the old tasks from those of the new ones. Inspired by the way humans learn over
time, we propose a novel relearning technique that makes use of additional past
data, referred to as the library, to test how much information the model loses after
learning the new task. We then realign the model towards those forgotten samples
by training on a carefully selected small subset samples from the library for a few
epochs with comparable computational cost as existing replay-based models. The
experimental results on multiple real-world datasets demonstrate that the proposed
relearning process can improve the performance of the state-of-the-art continual
learning methods by a large margin.

1 INTRODUCTION

Continual learning (CL) models are capable of learning from a continuous stream of various tasks
over time without forgetting previously acquired knowledge (Wang et al., 2024). Different from
the relatively simple task-incremental learning (TIL), the forgetting problem arises as a central
challenge for the class-incremental learning (CIL), as it seeks to balance the exploitation of new
knowledge while preserving existing information, thereby enabling models to become more versatile
and long-lasting learners. Replay buffer-based methods have been developed to address the forgetting
problem. They integrate the concept of a “replay buffer” , which is a designated storage that contains
a subset of previously learned data. In a replay buffer setting, the model θ learns from both the
current task data Zt and the replay buffer Ct during model training on the t-th task. By combining
the learning of the current task and the retained buffer data, the model is trained to recognize all
classes without specifying which task they belong to. The replay buffer contains information of
previous tasks 1, .., t − 1 that can help to mitigate catastrophic forgetting by simply including the
seen classes in the t-th task training. However, the replay buffer is fundamentally limited given how
it is constructed because the model may be biased when selecting the buffer without accessing the
future task data. Although some balancing mechanics such as up-sampling can be applied during
training to alleviate biases, they are insufficient to help the model regain the knowledge that has
already been lost. When the buffer is selected at the end of the t-th task, it may have already forgotten
about certain information of previous tasks as this information is less relevant when learning with Zt

and Ct. However, such information may become crucial when generalizing to future new tasks.

While catastrophic forgetting has been widely recognized as a major bottleneck of CL, the exact
reason causing its occurrence is yet to be discovered. Most previous work attributes the inability
to retain the previous task data performance as the forgetting issue. However, they do not explore
the case of wrong learning. In the case of wrong learning, the old model learns the wrong features
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(a) Gradient attention maps for two images. (b) Mutual Information

Figure 1: (a) An example of the shortcut issue present in the continual learning setting. (b) The effect
of learning a shortcut is verified by the value of mutual information and how relearning can address it.

or reasoning to perform well only on the current task. This results in worse performance when
generalizing to future tasks where the wrong features are no longer discriminative. The presence of
a shortcut is shown in Figure 1a in our theoretical investigation described in Section 3. Here, the
shortcut learning in the middle column is seen from training on only Plane and Auto of Task 1
data for CIFAR-10. We call it shortcut learning because the model focuses on the background instead
of the object of concern (i.e., Plane). However, when the model is trained on both Tasks 1&2
(Plane, Auto, Bird, and Cat) in a non-CL setting, the model then focuses on the object instead
of the background (third column) as it cannot rely on the shortcut feature (sky) for classification.

In this paper, we take the first step of using the information bottleneck principle to explain the issue
of shortcut learning that commonly exists in CL. In principle, a learning process distills the most
relevant information from an input variable X that is necessary for predicting an output variable
Y , effectively compressing X while retaining its predictive power for Y . The core idea is to find a
compact representation of the input data (such as ht) that maximizes the model’s ability to predict the
output, minimizing irrelevant or redundant information. The retained knowledge can be quantified
by the mutual information. This effect is seen in the CL setting shown in Figure 1b. In Task 1 of
the split-CIFAR-10 dataset in the CL setting, the model learns to classify between only Plane and
Auto. This results in the compression of the information about Task 1 data in the hidden layer
representation I(X1;H) (red plot). This compression takes place because the model can learn to
classify between the classes Plane and Auto just by focusing on the sky. However, when the model
is trained on combined Task 1 and Task 2 data (Plane, Auto, Bird, and Cat), it can no longer
rely on the sky to classify between Plane and Bird. Thus, the information about the same Task 1
data contained in the hidden layer representation I(X1;H) (blue plot) will be higher.

This key theoretical insight inspires us to draw analogy from human learning to fundamentally
address the shortcut learning issue, advancing the state-of-art in CL. The connection between a
machine’s continual learning and real human learning is often made as continual learning mimics the
human ability to accumulate and build upon past experiences (see Figure 2), thus making artificial
intelligence systems more adaptable and efficient in dynamic environments. Our innovative library
concept further strengthens this connection by drawing inspiration from how humans leverage a vast
reservoir of prior knowledge to enhance learning. Just as humans access and retrieve information
from past learning resources to make sense of new experiences, the library in a CL model serves a
similar purpose. It acts as an expansive, accessible database from which the model can draw upon
past data, significantly enriching the current learning process. This approach is reminiscent of a
student revisiting notes from previous lessons or a professional drawing on past experience to solve a
new problem. Although revisiting alone helps in solidifying connections within the brain, making
it easier to recall information when needed, relearning reinforces the connection by using the most
current understandings and allows the swap of more long-term required information. The analogy to
a library-based relearning in a human learning scenario is visualized in Figure 2.

It is important to note the fundamental difference between the proposed library and the replay buffer
commonly adopted by existing CL models. First, with a larger size, the library forms an accurate and
unbiased approximation of the true previous task data distribution. This allows it to provide a much
richer knowledge source to overcome shortcut learning as verified by our theoretical investigation.
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Figure 2: Continual learning with relearning from condensed past knowledge resource by humans

Second, only a small subset of data samples will be selected from the library to perform relearning
if needed. By keeping the size of the selected subset to the same level as the replay buffer, the
computational overhead of relearning is comparable to the replay-buffered based CL models. Last,
the library also serves as a “testbed” to detect the existence of shortcut learning issue. If a model
can successfully pass an active quiz uniquely designed to testing shortcut learning, relearning can be
safely skipped without affecting the generalization performance on the new task. We summarize our
contributions as follows:

• a novel library-based relearning framework for continual learning which better balances the
reinforcement of past knowledge and acquisition of new knowledge,

• theoretical insight from an information bottleneck principle to justify the necessity of using a
knowledge-rich library to overcome shortcut learning,

• an efficient and effective sample selection method for choosing informative samples from the
library to perform relearning

• a uniquely design active quiz mechanism to effectively detect shortcut learning behavior that can
bypass relearning,

Extensive experiments on multiple real-world datasets and comparison with the competitive CL
baselines demonstrate the state-of-the-art performance of the proposed relearning framework.

2 RELATED WORK

A continual learner continuously updates its parameters to adapt to dynamic environments. However,
during this process, there is a risk that previously acquired knowledge may be overwritten due to
parameter updates, a phenomenon known as catastrophic forgetting. To address this issue, various
approaches have been proposed. In this work, we categorize and discuss these methods based on
whether they involve task-id prediction, to contextualize our proposed method. Additional related
works are discussed in the Appendix.

Non-task-id prediction-based CL models. Non-task-id prediction-based methods typically use a
single classification head and share all parameters across tasks. To retain knowledge from previous
tasks, these methods either regularize the parameters to prevent deviation or use rehearsal examples.
Regularization-based methods estimate the importance of weights with respect to previous tasks.
For instance, EWC (Kirkpatrick et al., 2017) uses the Fisher information matrix to determine the
strength of regularization. Orthogonal to the regularization techniques, rehearsal-based methods
use small replay buffer to store a subset of examples from past tasks, periodically revisiting these
examples during training. These methods generally focus on either the utilization or selection of replay
examples. Particularly, beyond just using labels, they also align the behavior of the current model with
the past model on the replay examples using a knowledge distillation loss to enhance performance.
For example, Der++ Buzzega et al. (2020) and (Li & Hoiem, 2017) perform knowledge distillation
on output logits and feature space, respectively. While those method use randomly sampling, some
methods focus on the selection criteria of replay examples to maximize the performance. The
sampling criterion could be choosing the most confusing examples (Chaudhry et al., 2021) or samples
with least second-order influence (Sun et al., 2023).

Task-id prediction-based CL models. In contrast to non-task-id prediction-based methods, task-id
prediction-based methods employ multiple classification heads and share a portion of parameters
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across different tasks. The goal is to isolate parameters so that previously learned parameters remain
fixed while learning new tasks. Specifically, we utilize the HAT model introduced by (Serra et al.,
2018), which employs hard attention to selectively activate parts of the model. However, during
testing, this approach relies on task-ids, which are only provided in task-incremental learning (TIL)
settings. To generalize such TIL approach to class-incremental learning (CIL), several strategies
have been developed to predict task IDs. For example, TPL (Lin et al., 2024) trains a separate gating
network using buffer data to predict task id, but its performance depends on the availability of a large
buffer. Other approaches operate independently of replay examples. For instance, MoE (Abati et al.,
2020) and MOE4CL (Yu et al., 2024) train multiple autoencoders to estimate the relevance between
an input and a task. HATCIL (Kim et al., 2022c) and MORE (Kim et al., 2022b) leverage confidence
scores from multiple classification heads to identify task-id, relying on the prediction from the most
confident classification head. However, deep neural networks are known to produce overconfident
predictions. In the context of continual learning, shortcut features can lead to overconfident prediction
or low reconstruction score, which can undermine the effectiveness of these methods. These methods
however only focus on a single task in their training objective making them susceptible to shortcut
learning which affects their task-id detection performance. Our library-based relearning approach
solves this problem by identifying the samples whose information is lost during the shortcut learning
and relearning those samples.

Shortcut learning is a commonly observed behavior in deep networks, yet it is under-explored
in the context of continual learning. Our work is among the few attempts to address this issue
within continual learning (i.e., OnPro (Wei et al., 2023)). Our approach stems from the information
bottleneck perspective, and our techniques differ from the prototype learning strategy adopted by
OnPro (Wei et al., 2023).

3 WHY RELEARN? AN INFORMATION BOTTLENECK JUSTIFICATION

Problem Formulation. Consider a continual learning problem where we want to learn a continual
model θ. At an instant or task t ∈ {1, ..., T} of learning, we only have access to certain training
datasets Zt = (Xt, Yt) = {(xn, yn)}Nt

n=1 and the corresponding test set Ẑt = {(xn̂, yn̂)}N̂t

n̂=1.
The problem of Catastrophic Forgetting arises after the model is trained on Zt+1, as it forgets the
previous data Zt if we adopt no means to address it. There are two standard strategies to mitigate
catastrophic forgetting. One is using a replay buffer, which is a small size data Ct selected from Zt

after training the model θt on Zt. The other approach predicts the task ID from (1, .., t) and then
uses the corresponding classifier. An enhanced task ID prediction approach may also use Zt + Ct−1

to calibrate the task ID prediction for better generalization. In order to further improve the task ID
prediction and utilize the advantages of both methods, it is beneficial to combine the task ID-based
approach with replay buffers. The feature extractor is continuously trained with Z1, ...,Zt and only
the classification head is trained with both Zt and Ct−1 during the current task.

This formulation mitigates the Catastrophic Forgetting issue by keeping the information of previous
tasks in the feature extractor. Nevertheless, during the training of the classification head, the model is
guided to minimize the training loss of both current data Zt and the buffer Ct−1:

θ∗t = argmin
θt

∑
zi
t∈Zt∪Ct−1

L(zit, θt) (1)

The remaining issue with this way of classification is two-fold. First, similar to a standard replay
buffer-based method, the model will easily overfit to the past data Ct−1 due to the emphasis on the
current task (and the sizes being |Ct−1| ≪ |Zt|). This causes the generalization performance to
drop for those classes in Ct−1. Second, the buffer Ct−1, limited by its size, cannot capture all the
information contained in the previous data Zt−1 and the model has no way of knowing how much
information it misses from old data Zt−1. Although the in-task performance can be maintained in
task ID prediction-based methods, this impacts the ability to differentiate between different tasks in
the future and damages test performance much more. Both these issues can be categorized as shortcut
learning issues, which can be formalized from an information theory perspective, as detailed below.

Mutual information maximization through augmentation. The task ID prediction part of our
method helps retain the knowledge of previously learned tasks. The key idea is to continuously learn
the feature extractor while maintaining learned knowledge using methods such as masking. Then
we only need to differentiate the tasks when making predictions. As mentioned above, the main
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advantage of doing so is that within-task performances can be well maintained. The challenges are
learning holistic representations in the CIL setting and learning to accurately predict the task IDs.

To tackle the first challenge, we resort to using data augmentations during feature learning. Existing
methods (Khosla et al., 2020) have connected contrastive learning with data augmentation to the
maximization of the lower bound of two mutual information (MI) terms I(X;H) and I(Y ;H). This
approach is intuitive as we want the learned features to contain the most information about both
the input data and target labels of the tasks. We make use of their conclusion that the lower bound
of MI I(X;H) can be effectively maximized through contrastive learning using augmentations:
I(X;H) ≥ max I(X;X ′), where X ′ can be various augmentations of X . However, we make an
important observation here that even though we maximize I(X;H) within each task, the loss of
information will still happen when we move on to the next task. Additionally, the second challenge
also persists because augmentation only happens in-task. We contribute these issues to the shortcut
learning behavior of the model. Next, we analyze this shortcut learning phenomenon in the class
incremental setting using grouped features.

Shortcut Learning from an information bottleneck perspective. The loss of information due to
shortcut learning can be explained from the perspective of Information Bottleneck principle. Let Yt

denote the set of labels corresponding to the inputs Xt for task t in the CIL setting. According to the
information bottleneck principle (Shwartz-Ziv & Tishby, 2017), a deep learning model compresses
the information about the input Xt and maximizes the information about the label Yt contained in
the hidden layer representation Ht. The relationship between these terms can be explained by the
chain rule: I(Xt;Ht) = I(Xt;Ht|Yt) + I(Yt;Ht). Thus, although the previous method (Khosla
et al., 2020) tries to maximize I(Xt;Ht) and I(Yt;Ht) at the same time, what happens naturally is
that the conditional MI I(Xt;Ht|Yt) will be regularized. An alternative formulation describes this
process as a regularized optimization:

min
p(Ht|Xt)

[I(Xt;Ht)− βI(Yt;Ht)] (2)

where β indicates the strength of relevant information about Yt captured in Ht. We then analyze how
the information changes from one task to the next. Suppose for some task t, the model is trained on
a set of two labels y(1) and y(2) where Yt = {y(1), y(2)}. Assume the dataset Xt is represented by
q set of features H = {h(1), h(2), ..., h(q)} through all the individual input Xt. A subset of feature
ht ∈ h might be strongly correlated with the labels in Yt. Thus, while learning to classify between
labels y(1) and y(2), the model will compress the featuresH\ht and maximize the information about
the features ht in the hidden layer representation Ht:

min
p(Ht;Xt)

[I(h\ht ∈ Xt;Ht)− I(ht ∈ Xt;Ht)] (3)

where ht strongly correlates with Yt = {y(1), y(2)} and some features in H\ht also correlate with
current task labels Yt = {y(1), y(2)} but not as strong as ht. The continual learning model θt performs
well on the current task t even though some relevant features H\ht about the data Xt are being
suppressed while learning the model representation Ht. Now suppose in the future task t+ 1, we
train the model on an additional set of labels {y(3), y(4)} while the previous set of labels {y(1), y(2)}
is provided through the replay buffer Ct such that Yt+1 = {y(1), y(2), y(3), y(4)}. Let us consider a
case where a subset of the previous set of compressed features hm ∈ H\ht are now highly correlated
with the new set of labels Yt+1. However, since |Ct| ≪ |Xt|, the relevant compressed features hm

may not be captured by the limited buffer, i.e., I(hm ∈ Ct;Ht+1) < I(hm ∈ Xt;Ht+1). Thus, we
can not recover this information loss by only including Ct in future tasks.

Relearning to counter shortcut learning. The only way to compensate for the shortcut learning
effect is to relearn 1) lost knowledge; 2) useful knowledge previously deemed unrelated to earlier
tasks. In this work, we propose to let the model access previously seen data other than the buffer
Ct. By relearning from a different source of previous task data, we reinstate the model by adding
available I(Ht+1; y(1), y(2), y(3), y(4)).

4 LIBRARY-BASED RELEARNING

The theoretical insight inspires us to design a novel method that can quiz the model on how much
knowledge it has forgotten and select the optimal data points for the model to relearn. This idea
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Figure 3: Relearning model architecture: STEP 1 is the feature extractor training, STEP 2 is the
classifier head training, and Step 3 refers to the relearning. The input X corresponds to the current
data Zt for step 1 and 2 where as it refers to the library buffer CL

t for STEP 3. Feature extractor is
trained using the contrastive loss for step 1 and fixed for STEP 2 and STEP 3. When training task
T, other task mask is kept fixed for step 1. Linear classifier is not used for step 1 and is trained for
STEPS 2 & 3 using the cross-entropy loss. For STEP 2, while training task T , other task’s classifier
head is fixed. Where as for STEP 3, classifier head belonging to all the tasks are updated.

is inspired by how humans learn by storing knowledge externally other than their brain (e.g. in a
library) and how they select which knowledge to relearn from the library. First, we describe the
overall relearning framework and delve into detail about the relearning step.

4.1 OVERVIEW OF THE RELEARNING FRAMEWORK

In the proposed framework, the training of each task is divided into three steps: (1) feature extractor
training,(2) classifier head training, and (3) relearning. Figure 3 visualizes the overall framework.
While learning task t, the current data Zt is augmented to Z ′

t, |Z ′
t| > |Zt| to train a feature extractor

model fθ using a supervised contrastive loss (Khosla et al., 2020) in the feature space (STEP 1). When
the feature extractor is trained for task t, it is frozen and a separate classifier head for task t is trained
using a cross-entropy loss to obtain the classification logits pt (STEP 2). As the training objective
only focuses on a single task, the model only learns the features important to classify current task
classes. In this process, the model compresses the information needed to distinguish between the
current task and future tasks. Thus, when the future task data is present to the current task classifier
head, this current head will output larger prediction values for the future task data. This is how
shortcut learning will hamper the task-id prediction performance. Although the replay-buffer-based
methods can help the future task model to be calibrated with current task data, our theoretical analysis
indicates that the replay-buffer is not enough because of lack of enough information and the smaller
size of replay-buffer. Furthermore, just increasing replay-buffer size is not feasible as the computation
cost of training on the replay-buffer will increase with the size of replay-buffer.

Based on our theoretical analysis, we know that storing a larger dataset from already seen past
training data is necessary to quiz the model to find which information to relearn. We call this dataset
the library. It is important to note that the library only serves as a potential knowledge source to
overcome shortcut learning. We propose an active quiz mechanism to test the model on the library.
Specifically, when the model is trained on the new task data, quizzing on the library helps us detect
potential shortcut learning. Based on how well the model performs on the quiz, only a small portion
of carefully selected samples will be used to perform relearning. The relearning step (STEP 3) selects
a fraction of the dataset from the library, called the library buffer which is then used to relearn the
classifier heads. The size of this library buffer remains the same as the existing replay-buffer-based
approaches, avoiding additional training overhead. This enables the detection of the information lost
about past data attempts to restore that information in the model. In the next section, we will describe
the relearning process in detail.
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4.2 LIBRARY-BASED RELEARNING

Building on that idea, we sample and store the seen samples in two buffer stages. First, we consider
that we can store relatively large sizes of data in the library Lt from the current task data Zt. While
storing the library data is relatively cheap, it is computationally expensive to constantly train on
this data. Since it is not possible to know which information will be important in the future, it is
essential for the library to approximate the true distribution of the prior task data. To form an unbiased
representation of this distribution, we propose to perform uniform sampling in a class-balanced
manner to form the library. Since the data samples are uniformed selected into the library, not all
of them are informative to address the shortcut learning issue. To this end, we proceed to select a
small subset of samples from the from the library Lt to form a library buffer CL

t . The size of library
buffer is chosen such that it is computationally cheaper to train on that amount of data. To select such
data, we first test the model on the library to obtain a difficulty score for each sample in the library.
We obtain the difficulty score Di

t for each sample based on the maximum difference between the
inter-task logits pi

t′ and the maximum logit among the inter-task logits (pi
t):

Di
t = max

(
pi
t′ −maxpi

t

)
(4)

We use this score to guide our selection process for the library buffer. The selection is based on
ranking the samples based on the difficulty score and we select the samples with a higher difficulty
score. However, for the small size of the buffer (for example m = |CL

T | = 200 for CIFAR10),
selecting the high-difficulty score sample makes the model biased towards those samples. Thus,
we switch the focus to moderately difficult samples by transforming the scores and re-ranking the
samples based on the transformed scores.

0.0 0.2 0.4 0.6 0.8 1.0
Di

0.0
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D
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Figure 4: Visualization of the transformation func-
tion in (5). As we change the value of the parame-
ter c from 1.5 (blue) to 2.5 (green), the importance
given to difficult samples increases.

Intuitively, we want a smooth function (Di
new =

I(Di)) with a single peak to give importance
to the desired difficulty level, where Di

new is
the adjusted difficulty score. The peak of the
function should be controllable. Consider the
difficulty score Di is first scaled from 0 to 1 i.e.,
Di ∈ [0, 1] where Di → 0 for easy samples and
Di → 1 for difficult samples. Also, let the range
of Di

new is from −1 to 1 i.e., Di
new ∈ [−1, 1].

To give priority to the most difficult samples,
(Di, Di

new) should be (0,−1) and (1, 1). Sim-
ilarly to give priority to the easiest samples,
(Di, Di

new) should be (0, 1) and (1,−1). To
give priority to moderately difficult samples
(Di, Di

new) should be (0, 0), (1, 0), and (0.5, 1).
At other points between Di = 0 and Di = 1,
the function should be smooth. To select a func-
tion that satisfies this property, we search on the space of smooth functions defined by a Fourier series:
I(Di) ≈ a0/2+ a1 cos (2πD

i/Tp) + b1 sin (2πD
i/Tp) where the higher frequency components are

ignored for smoothness. Here, a0, a1, and b1 are the constant coefficients and Tp is the period. We
find that Di

new = I(Di) = sin(π(Di − c)) satisfies the above requirement of our function where
a0 = 0, a1 = − sinπc, b1 = cosπc, Tp = 2, and c ∈ [1.5, 2.5] is the parameter that controls the
location of the peak. Scale and shift are further applied on this function such that Di

new ∈ [0, 1]:

Di
new =

1

2

(
sin

(
π(Di − c)

)
+ 1

)
(5)

Figure 4 shows the visualization of the function in (5). The difficulty score is first scaled between 0
and 1 before applying the function. The importance given to desired difficulty scores is controlled by
changing the hyperparameter c.

We can also consider a general case where the size of the library can range between the size of the
library buffer and the size of the full set i.e, |CL

t | ≤ |Lt| ≤ |Zt|. When |CL
t | = |Lt|, our method is

similar to the traditional replay-based method whereas when |Lt| = |Zt|, our method is similar to
(Klasson et al., 2023) in terms of number of past samples that could be stored. For our main result,
we choose |Lt| = 0.1× |Zt| and further provide an ablation study where we increase |Lt| from |CL

t |
to |Zt|. To perform relearning, after the classifier head for the current task is trained from STEP 2,
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the classifier head of all the tasks is updated by using the library buffer. Additionally, instead of
training a new set of parameters for each task as in (Kim et al., 2022a), we update the already existing
parameters of the classifier head of each task. The classifier heads are updated using only the library
buffer CL

t which contains data from all the tasks including the current task. The computational cost
involves three major parts, (1) cost of loading the library, (2) gradient computation, and (3) score
computation. The cost of loading the library is O(|Lt| × S) where S is the size of the input image.
As the library buffer size is small, we assume it is suitable for full-batch gradient descent whose cost
is O(|CL

t | × |θt|) where θt is the size of the parameter including feature extractor and the classifier
head. Similarly, the score computation cost is O(|Lt| × |θt|) as it requires the forward pass through
both the feature extractor and the classifier head. Here we ignore the number of tasks and number of
transformations as they are small compared to |Lt| and |CL

t |. Thus, the computational cost linearly
increases with |CL

t | and |Lt|.
To make the task-id prediction more robust, we regularize the value of prediction logits such that the
difference between the maximum prediction of within task logits and the maximum prediction among
other task logits is maximized. Thus, the overall relearning loss is the sum of cross-entropy loss and
the hinge regularizer.

Li
t = Li

CE +max
(
0, γ +maxpi

t′ −maxpi
t

)
(6)

where t is the task-id for sample i, pi
t′ is the subvector containing the logits for classes belonging to

tasks other than t and pi
t is the subvector containing the logits for classes belonging to task t. γ is the

hyperparameter which controls the strength of the regularizer.

We also develop a method that helps us decide when to perform relearning on the current task. This
could be determined by quizzing the current model on the library. The samples with the incorrect
task-id prediction will have the difficulty score greater or equal to zero. We use the count of samples
in the library with Di

t ≥ 0 as a metric to evaluate the model and use it to guide the decision to whether
to perform relearning. Specifically, we measure the count of non-negative score samples for each
task: {|Dj ≥ 0|}tj=1 to get the worst performing task count Dmax = max{|Dj ≥ 0|}tj=1. We then
set a threshold λ such that if Dmax ≥ λ, we perform relearning. Appendix B provides the detailed
algorithm of our method.

Relearning for non-task-ID-based replay methods. Relearning is a general approach that can
be applied to any standard replay buffer-based methods. Our theoretical analysis also holds for the
replay-only setting, as the buffer will suffer from shortcut learning issues in the same way. Relearning
makes up for the inability to regain lost knowledge about previously unknown useful features that
can not be stored in the buffer. Empirically, we also show that relearning improves the performance
of non-task-ID-based replay methods greatly in Table 2. More details about the relearning analysis
for non-task-ID-based replay methods will be presented in the Appendix.

Empirical evidence for relearning. Figure 1 provides empirical evidence that supports the informa-
tion bottleneck based theoretical analysis as presented in Section 3. The first column in Figure 1 (a) is
the original image, the second column is the attention map obtained from a continual learning model
(trained on Plane and Auto from Cifar10), and the third column is the attention map obtained
from the non-continual learning model (trained on Plane, Auto, Bird, and Cat). When the
model is trained with classes that are closer to each other (such as Plane and Bird) the model is
unable to rely on learning the shortcut feature sky (third column) compared to when the model is
only trained on Task 1 data with classes Plane and Auto in the continual learning setting (second
column). Figure 1 (b) shows the continual learning setting, where only training on Plane and Auto
learns shortcuts that cause the mutual information value to remain lower (red plot) compared to the
non-continual learning setting which has a higher value of mutual information for the same data (blue
plot). The green plot shows the effect of relearning on the mutual information value of task 1 data
while training the model on Task 2 data. The relearning happens at epoch 55 of Task 2 which raises
the mutual information value of Task 1 data, demonstrating its importance.

5 EXPERIMENTS

Experimental settings and baselines. We follow the experiment setting of recent works and
evaluate in a class-incremental setting which is created by NC/NT splitting where the dataset is split
into NT tasks and each task contains NC number of classes. For each task, the feature extractor
is first trained for 700 epochs using supervised contrastive loss. We follow a similar augmentation
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Table 1: Comparison results with the competitive baselines

Category Baseline CIFAR10-5T CIFAR100-10T TinyImg-10T CF100-20T TinyImg-5T

Optimization OWM 51.8±0.05 28.9±0.60 8.6±0.42 24.1±0.26 10.0±0.55

Regularization

MUC 52.9±1.03 30.4±1.18 17.4±0.17 14.2±0.3 33.6±0.19

PASS 47.3±0.98 33.0±0.58 19.1±0.46 25.0±0.69 28.4±0.51

LwF 54.7±1.18 45.3±0.75 24.3±0.26 44.3±0.46 32.2±0.50

iCaRL 63.4±1.11 51.4±0.99 28.3±0.18 47.8±0.48 37.0±0.41

DER++ 66.0±1.20 53.7±1.30 30.5±0.47 46.6±1.44 35.8±0.77

Replay Mnemonics 64.1±1.47 51.0±0.34 28.5±0.72 47.6±0.74 37.1±0.46

BiC 61.4±1.74 52.9±0.64 33.8±0.40 48.9±0.54 41.7±0.74

Task-id

HAT 62.7±1.45 41.1±0.93 29.8±0.65 25.6±0.51 38.5±1.85

HyperNet 53.4±2.19 30.2±1.54 5.3±0.50 18.7±1.10 7.9±0.69

Sup 62.4±1.45 44.6±0.44 36.5±0.36 34.7±0.30 41.8±1.50

CLOM 87.35±0.72 65.37±0.54 47.28±0.52 57.97±0.23 50.73±0.68

CLOM+c 88.34±0.44 66.06±0.02 47.59±0.53 58.89±0.20 51.02±0.66

TPL 78.4±0.78 62.20±0.52 42.90±0.45 55.8±0.57 48.2±0.64

Relearn (ours) 88.79±0.62 68.80±0.51 49.00±0.28 61.88±0.19 51.22±0.55

technique as (Kim et al., 2022a;c). Then the classifier head training is trained for 100 epochs using
cross-entropy loss. For relearning, the classifier head is then loaded for all tasks and trained for
another 100 epochs using the selected library buffer. This relearning phase only starts from task 2.

We evaluate our method using five sequential versions of three real-world datasets: CIFAR10-5T,
CIFAR100-10T, CIFAR100-20T, TinyImagenet-5T, and TinyImagenet-10T. The CIFAR10-5T dataset
is created by dividing the CIFAR10 dataset into 5 tasks where each task contains 2 classes. The
CIFAR100-10T/CIFAR100-20T datasets contain 10/20 tasks with 10/5 classes for each task. Similarly,
the TinyImagenet-5T/TinyImagenet-10T dataset consists of 5/10 tasks and 40/20 classes each. We set
the total library size |LT | to 5000, total library buffer size |CL

T | to 200 for CIFAR10 and 2000 for
CIFAR100 and TinyImagenet datasets.

The baselines we compare can be categorized into orthogonal projection/optimization based methods:
OWM (Zeng et al., 2019); regularization based methods: MUC (Liu et al., 2020b), PASS (Zhu et al.,
2021), LwF (Li & Hoiem, 2017), iCaRL (Rebuffi et al., 2017), and DER++ (Buzzega et al., 2020));
replay based methods: (Mnemonics (Liu et al., 2020a), and Bic (Wu et al., 2019)); task-id/parameter
isolation based methods: (HAT (Serra et al., 2018), HyperNet (Von Oswald et al., 2019), Sup
(Wortsman et al., 2020), CLOM (Kim et al., 2022a), and TPL (Lin et al., 2024)). More details of
the baselines are given in the Appendix. Our method of relearning is orthogonal to any existing CL
methods and can be used to improve upon these baselines. With CLOM (Kim et al., 2022a) using a
task ID prediction-based approach and being the strongest baseline, we select this baseline to perform
relearning for our main results. Combinations with other baselines are also investigated.

5.1 COMPARISON RESULTS

Table 1 shows the class incremental learning result for the sequential combination of three datasets
CIFAR10, CIFAR100, and TinyImagenet. The baseline results are noted as reported on the results of
the works in Kim et al. (2022a) and Lin et al. (2024). We apply relearning on the strongest baseline
(Kim et al., 2022a) and are able to further improve the performance. The most competitive baseline
(Kim et al., 2022a) also uses a separately held out-validation set for the replay buffer Ct to train
parameters W and b to transform (scale and shift) the prediction logits of each task’s classifier
such that the logits of all tasks are calibrated with each other. This result is indicated in the table as
CLOM+c. The use of a buffer like that of (Kim et al., 2022a) is not fair because it requires additional
validation datasets unseen during the training. However, relearning uses already-seen samples during
training and is still able to outperform the baseline.

The baselines cannot match relearning performance because without the library it is not possible
to find the information that was missed by the shortcut learning. Even when the baseline uses the
same size of replay-buffer (CLOM+c, DER++, BiC) as that of library buffer, the replay-buffer is not
enough to capture the information lost during shortcut learning. With the help of library, we can know
what data to select in the library buffer such that the information lost during the shortcut learning
can be captured. One interesting pattern is when the number of tasks increases, the performance
gap between the baseline and our method increases. This is because as new tasks appear, shortcut
learning affects multiple tasks resulting in poor task-id detection performance.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Relearning with best baselines from different categories

Category Baseline CIFAR10-5T CIFAR100-10T TinyImg-10T

Regularization Der++ (m = 500) 71.9±0.71 37.25±2.06 18.77±1.02

Der+++RL (m = 500) 74.24±0.31 40.3±1.09 20.89±0.72

Replay BiC (m = 500) 74.13±1.00 34.26±1.85 14.24±1.18

BiC+RL (m = 500) 79.37±1.61 43.25±0.84 24.15±0.99

Task-id
CLOM 87.35±0.72 65.37±0.54 47.28±0.52

CLOM+c 88.34±0.44 66.06±0.03 47.59±0.53

CLOM+RL 88.79±0.62 68.80±0.51 49.00±0.28

In Table 2, the best baseline from regularization based, replay based and task-id based category
is selected to perform relearning. Here the original baseline is compared with the corresponding
relearning (+RL) version. For Der++ and BiC, we use fixed replay buffer and library buffer size
m = 500 for all datasets. For CLOM, we use the same setting as that of the main result in Table 1.
As can be seen, our method is orthogonal to the CL baselines and can be used to improve them.

5.2 ABLATION STUDY
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Figure 5: Impact of library size on
CIFAR100-10T dataset for different dif-
ficulty level.

Figure 5 shows the change of final accuracy with the dif-
ficulty of library buffer chosen from the library for the
CIFAR100-10T dataset. The library buffer of fixed size
(2000) is chosen from the different sizes of library using
equation 5. The library buffer is then used for relearning
on the CLOM baseline. The result suggests it is not nec-
essary for the size of the library to be very large. As the
difficulty of samples chosen in the library buffer increases,
the use of the larger library size starts to become less bene-
ficial. This is because, for larger library size, there may be
a higher chance to select outliers. When such outliers are
further selected in the library buffer, it negatively affects
the relearning. Thus, having relatively small and represen-
tative samples in the library is more beneficial and further
allows the selection of relatively more difficult samples into the library buffer. We find that having a
library size from 5000 to 10000 gives the best balance.

Table 3: Actively quizzing the model to determine
when to perform relearning for CIFAR10-5T.

Task Dmax Dmax ≥ λ RL All RL No RL

1 - - 99.45 99.45 99.45
2 19 No 93.85 94.7 93.85
3 89 No 89.12 89.75 89.12
4 112 Yes 88.8 89.06 88.45
5 78 No 88.03 88.67 87.67

Mean - - 91.85 92.33 91.71

Table 3 demonstrates our active quiz mecha-
nism to control the time to perform relearning
for CIFAR10-5T. At the end of each task, the
library is queried to get the worst non-negative
score count Dmax among the seen tasks. The
relearning for the current task is only performed
when Dmax ≥ λ. For this experiment, λ is set to
100. RL corresponds to the performance when
relearning is performed based on the criteria.
All RL always performs relearning and No RL
never performs relearning regardless of the value of Dmax. Always performing relearning is better
than selective relearning however, the selective relearning significantly reduces the computation cost
as fewer task needs to be relearned. Additional experiment results are included in the Appendix C.

6 CONCLUSION

We perform a theoretical investigation on the shortcut learning issue that commonly exists in modern
CL models from the lens of the information bottleneck principle. We address this issue by proposing a
novel relearning framework, which relies on a knowledge-rich library that forms an accurate unbiased
approximation of the entire data distribution of the previous tasks. The library provides a “testbed” to
identify the occurrence of shortcut learning through our uniquely designed active quizzes. Relearning
is invoked only if the model fails the test and a small subset of most informative data samples will be
selected from the library to perform relearning so that the computational overhead is comparable to
relay-based CL model training. We show that the relearning complements state-of-the art CL model
and can be used to boost their performance by a large margin.
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Organization of the Appendix. The appendix is organized as follows. Appendix A describes the
additional related works in detail. Appendix B provides the algorithm of our method. In Appendix
C, we provide the experiment details and results. In Appendix D, we discuss the social impact and
limitations of the work.

A ADDITIONAL RELATED WORKS

A.1 CONTINUAL LEARNING

Catastrophic forgetting is one of the major challenges of continual learning (Wang et al., 2024).
It refers to the situation where a machine learning model dramatically forgets the knowledge for
prior tasks when being trained on new data for a new task. The current proposed solutions target
different steps during the training process, including replay-based (Chaudhry et al., 2019; Lopez-Paz
& Ranzato, 2017; Chaudhry et al., 2018; Sun et al., 2022; 2023), architecture-based (Jin & Kim,
2022; Gurbuz & Dovrolis, 2022; Douillard et al., 2022; Wang et al., 2023), representation-based
(Pham et al., 2021; Gallardo et al., 2021; Wang et al., 2022b; Zhang et al., 2023), optimization-based
(Liu & Liu, 2022; Wang et al., 2022a; 2021), and regularization-based (Rebuffi et al., 2017; Benzing,
2022; Park et al., 2019; Lin et al., 2022; Jung et al., 2020). Replay-based continual learning methods
store a small amount of previous data to be included in the training process. Architecture-based
continual learning methods modify the neural network structure, such as increasing network size, to
accommodate new information as well as retain old knowledge. Representation-based methods focus
on learning a meaningful and general representation through regularization, feature distillation, or
generative replay. Optimization and regularization-based methods design loss functions to penalize
the neural network weight adjustment that would causes the forgetting of prior knowledge, in order
to achieve a balance between learning new knowledge and retraining old knowledge.

A recent work based on influence function (Sun et al., 2023) argues that the buffer selection suffers
from incidental bias. This bias occurs when we have the same or fewer samples in the pool (buffer)
as we go towards the subsequent tasks. This suggests a need to have a wide variety of slightly larger
data in our collection from which we can choose a smaller buffer which is then used to train a model.
This motivates and justifies the use of the library in our work. As the stored library is only an order
magnitude larger than the buffer size, the memory requirement is compared to the methods that store
auxiliary information, augment the dataset, or train a generative model to replay the previous dataset.
Furthermore, the computational cost is the same as that of the past methods because we use the same
buffer size as the past methods to train the model.

A.2 INFORMATION THEORY

The information theory in deep learning was first introduced by (Shwartz-Ziv & Tishby, 2017). They
show how the DNNs compress the information about the input and maximize the information about
the labels contained in the representation as the training progresses for a larger number of iterations.
(Saxe et al., 2018) shows that compression only occurs for a limited number of activation functions
such as tanh and sigmoid activation functions. They also show how information compression can
still take place for irrelevant datasets. (Kawaguchi et al., 2023) introduce the conditional mutual
information and give improved generalization bound using the conditional mutual information. In
our work, we use mutual information values to explain the effect of shortcut learning in the continual
learning setting which worsens the issue of catastrophic forgetting.

B ALGORITHM

The relearning approach is also described in algorithm 1. To learn a task t, first the feature extractor
fθt

parameterized by θt is trained using the current task data Zt. The current data is augmented
and supervised contrastive loss is used in the feature space. In STEP 2, a linear classifier head gθg

t

parameterized by θg
t for task t is trained using cross-entropy loss. Relearning takes place in STEP 3

where the classifier heads from task 1 to t are updated using the library buffer. Library is selected
randomly from the current dataset to make a selection unbiased and diverse. Library buffer is selected
from library using equation 5. During inference, the task-id is predicted such that the classifier head
of the task with the highest logit is selected to make the prediction.
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Algorithm 1 Continual Learning with Relearning (RL)
Step 1: Feature Extractor

Input: Dataset Zt

Output: Learned Feature Extractor fθt

1: If t = 1: Initialize model θt ← θ0
t

2: Augment Zt to Z ′
t

3: Train θt on Z ′
t using supervised contrastive loss in feature space

4: return fθt

Step 2: Linear Classifier
Input: Dataset Zt, Feature extractor fθt

Output: Learned Classifier Head gθg
t

1: Initialize classifier head θg
t ← θg0

t
2: Train θg

t on Zt using cross-entropy loss
3: return gθg

t

Step 3: Relearning
Input: Dataset Zt, feature extractor fθt , classifier heads {gθg

1
, ..., gθg

t
}

Output: Relearned classifier heads {gθg
1
, ..., gθg

t
}

1: If t = 1: Select library L1 ← Z1

2: If t = 1: Select library buffer CL
1 ← L1

3: If t > 1: Select and append library Lt = Lt−1 ∪ {Lt ← Zt}
4: If t > 1: Select and append library buffer CL

t = CL
t−1 ∪ {CL

t ← Lt}
5: Train {gθg

1
, ..., gθg

t
} on CL

t using relearning loss
6: return {gθg

1
, ..., gθg

t
}, fθt

Inference
Input: Dataset Zi, feature extractor fθt , classifier heads {gθg

1
, ..., gθg

t
}

Output: Predicted target ŷi

1: Get prediction logit {pi
t}Tt=1 = {gθt

(
fθ(Zi)

)
}Tt=1

2: Get task id tid = argmaxt{maxpi
t}Tt=1

3: ŷi = argmaxpi
tid

+ |pi
t| × (tid − 1), where |pi

t| is the number of class per task
4: return ŷi

C ADDITIONAL DETAILS OF EXPERIMENTS AND RESULTS

This section includes a description of the baseline used in the main paper C.1 followed by additional
ablations C.2, relearning analysis C.3, model calibration C.4 and computation resource C.5.

C.1 DESCRIPTION OF BASELINES

In the main result shown in Table 1, we compare with the following baselines: OWM (Zeng et al.,
2019) is an orthogonal projection-based method that changes the parameter in a direction that is
orthogonal to the previous input space. MUC (Liu et al., 2020b) is a regularization-based method
that uses an ensemble of multiple classifiers. PASS (Zhu et al., 2021) is a regularization-based
replay-free method that uses regularization in the feature space. LwF (Li & Hoiem, 2017) is a
regularization-based method that uses the prediction from the previous output head. iCaRL (Rebuffi
et al., 2017) is also a regularization-based method that uses knowledge distillation on both old and
new task data. Mnemonics (Liu et al., 2020a) is a replay-based approach that modifies training
samples to make them more representative. Bic (Wu et al., 2019) is also a replay-based method that
uses a bias-correction layer along with a validation dataset. DER++(Buzzega et al., 2020) is both a
replay and regularization-based method that tries to solve forgetting by preventing the model from
deviating too much from the past task logits. HAT (Serra et al., 2018) is a parameter isolation-based
method that learns a mask to protect important parameter for each task. HyperNet (Von Oswald
et al., 2019) is a parameter isolation-based method that uses task-specific parameters based on task-id
and uses entropy to predict task-id. Sup (Wortsman et al., 2020) is also a parameter isolation-based
approach that learns a mask to isolate parameters for each task. CLOM (Kim et al., 2022a) is also
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a parameter isolation-based approach that uses augmentation and contrastive learning to learn a
strong feature extractor and uses task-id prediction. The strong feature extractor is responsible for the
superior performance of this baseline even compared to the recent baselines. TPL (Lin et al., 2024) is
also the recent task-id prediction-based method that make use of adapters as a mask to protect the
previous task parameters.

C.2 ADDITIONAL ABLATION

Similar to Figure 5 in the main paper, Figure 6 shows the change of final accuracy with the difficulty
of samples in the library buffer for TinyImagenet-10T dataset. The pattern is consistent with the
CIFAR100-10T dataset where a relatively small library size is more beneficial. As the library size
increases, selecting more difficult samples hurt the performance.
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Figure 6: Impact of library size on TinyimageNet-10T dataset for different difficulty level.

Figure 7 shows the change of final performance with the parameter of the hinge regularizer γ in (6).
γ = 0 refers to without using the hinge regularizer and only using the cross-entropy loss. In our
main result, we use γ = 5 for TinyImagenet, and CIFAR100 and γ = 1 for CIFAR10. Using a hinge
regularizer helps the task-id prediction by maximizing the gap between the maximum logits between
within task and other tasks.

0 1 2 3 4 5 6 7
Hinge Parameter 

88.8

88.9

89.0

89.1

89.2

89.3

89.4

89.5

Fi
na

l T
as

k 
Ac

cu
ra

cy
 (

%
)

(a) CIFAR10-5T
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(b) TinyImagenet-10

Figure 7: The change of final accuracy for different sizes value of hinge parameter γ.

C.3 RELEARNING ANALYSIS

Figure 8 shows the test performance and library performance before and after relearning. The
relearning phase takes place at the end of each task (task > 1) and is highlighted in the green
background. We chose ER (Chaudhry et al., 2019) as a baseline for the demonstration. The library
accuracy decreases as the model learns the current task while the current accuracy increases steadily.
The library accuracy reflects the deteriorated performance in earlier classes and may impact the
test accuracy as seen in several tasks. However, with our proposed relearning strategy, the test
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Figure 8: Effect of Relearning on the Test Accuracy

(a) ER (Chaudhry et al., 2019) (b) ER+RL

Figure 9: Non-task-id Prediction-based Method Confusion matrix on CIFAR10-5T

(a) CLOM (Kim et al., 2022a) (b) CLOM+RL

Figure 10: Task-id Prediction-based Method Confusion matrix on CIFAR10-5T

performance increases simultaneously with the library accuracy by a large margin for each task.
Figure 9 shows the confusion matrix for the final task of the ER (Chaudhry et al., 2019) baseline.
Without relearning, the continual learning model is biased towards the current task. Relearning
alleviates the bias toward the current task. Furthermore, the confusion shows inter-class conflicts, for
instance, between "cat-dog" and "plane-ship-bird". For non-task-id prediction-based methods, we
follow the training setting of Buzzega et al. (2020) and the library contains only the previous task
samples.
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(a) CLOM (Kim et al., 2022a) (b) CLOM+RL

Figure 11: Model Calibration on CIFAR10-5T

(a) CLOM (Kim et al., 2022a) (b) CLOM+RL

Figure 12: Model Calibration on CIFAR100-10T

(a) CLOM (Kim et al., 2022a) (b) CLOM+RL

Figure 13: Model Calibration on TinyImagenet-10T

For the task-id prediction-based method in Figure 10, the confusion matrix shows bias towards certain
tasks that learn shortcut features like tasks 2 and 3 for CIFAR10-5T. The relearning is able to solve
the shortcut issue in the task-id-based method as well.

C.4 MODEL CALIBRATION

Figures 11, 12, and 13 show the Expected Calibration Error (ECE) plots across three datasets. Without
relearning, the model tends to be overconfident, which could be explained by the shortcut features.
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Table 4: Time complexity in seconds of our method for CIFAR100-10T

Library Size 5k 10k 30k 50k

Fetch score 29.65 55.69 162.57 269.83
Select library buffer 0.05 0.06 0.10 0.13

RL Training 1604 1612 1629 1624

The ECE plots demonstrate that relearning improves model calibration across all three datasets, as
indicated by the lower ECE scores.

C.5 COMPUTATIONAL COST AND RESOURCE

We conduct our experiments using NVIDIA RTX A6000 GPU. The GPU memory consumption
depends on the backbone used for training. The experiments should be able to run on a system with
at least 8GB of GPU memory when training on Resnet18. The time required to run the experiment
varies according to the baseline and the dataset.

Table 4 shows the time required for the important stages of our method. Fetch score is the time
required to obtain the difficulty score for each sample in the library. Select library buffer is the time
required to select the library buffer from the library. RL Training refers to the time required to update
the parameter using library buffer for 100 epochs. The results show the overhead of selecting the
samples including the score computation is significantly less than the time required to train on library
buffer. Further, as the library size increases, the time to compute the scores increases whereas the
time to train on the replay buffer remains the same.

D SOCIAL IMPACT AND LIMITATIONS

In this work, we contribute to improving continual learning, which holds the potential to enable more
efficient machine learning tasks including data processing, decision-making, and automation. Our
proposed method is generally applicable to any replay-buffer based continual learning strategy. We
expect similar limitations as other buffer-based methods because the implementation of relearning
strategies may require additional computational resources for data storage and processing, potentially
limiting the applicability in resource-constrained environments. The additional storage and computa-
tion required are however minimal as we analyzed in the paper. Concerns regarding data privacy and
access could restrict the ability to fully utilize these methodologies in sensitive applications.

Our source code is available here.
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