Under review as a conference paper at ICLR 2026

REGION-ADAPTIVE SAMPLING FOR DIFFUSION
TRANSFORMERS

Anonymous authors
Paper under double-blind review

(a) Lumina-Next-T21 (¢) Lumina-Next-T2I FID RAS VS Rectified Flow

250 Sampling Method
Ratio — RFlow
* 100%  —— RAS-30
e 5%  — Rasis
A 50% —— RAS-10
m 2% pas7
* 125% — Ras6
50 S RAS'S

1 2 7 8 9

4 5
Time(s) per image

(d) Lumina-Next-T2I CLIP Score RAS VS Rectified Flow

Method
Sampling — —— RFlow
Ratio RAS-30
*  100% ~—— RAS-15
o 5% — RAS10
A 50% —— RAS-7
mo25%  — RAS6
* 125% RAS-5

2.51x

CLIP Score

1 2

4 5 6 7 8 9
Time(s) per image
(e) Default VS RAS (1.625x throughput for Stable Diffusion

Ix 3 and 1.561x for Lumina-Next-T2I) Human Evaluation

600

£ 500

g

2 400

S

@ 300 287

]

E200
1

236x 2"
. I

Figure 1: (a)(b) Accelerating Lumina-Next-T2I and Stable Diffusion 3, with 30 and 28 steps sepa-
rately. (c)(d) Multiple configurations of RAS outperform rectified flow in both image qualities and
text-following. RAS-X stands for RAS with X sampling steps in total. (e) RAS achieves compa-
rable human-evaluation results with the default model configuration while achieving around 1.6x
speedup.

ABSTRACT

Diffusion models (DMs) have become the state-of-the-art for generative tasks
across domains, but their reliance on sequential forward passes limits real-time
performance. Prior acceleration methods mainly reduce sampling steps or reuse
intermediate results. Leveraging the flexibility of Diffusion Transformers (DiTs)
to handle variable token counts, we propose RAS, a training-free sampling strategy
that dynamically assigns different update ratios to image regions based on model
focus. Our key observation is that at each step, DiTs concentrate on semantically
meaningful areas, and these regions exhibit strong continuity across consecutive
steps. Exploiting this, RAS updates only focused regions while reusing cached
noise for others, with focus determined from the previous step’s output. Evaluated
on Stable Diffusion 3 and Lumina-Next-T2I, RAS achieves up to 2.36x and 2.51x
speedups, respectively, with minimal quality loss. This demonstrates a practical
step toward more efficient diffusion transformers for real-time generation.

1 INTRODUCTION

Diffusion models (DMs) [Ho et al.|(2020); Dhariwal & Nichol| (2024); Song & Ermon|(2019)); |Sohl-
Dickstein et al.| (2015) have proven to be highly effective probabilistic generative models, produc-
ing high-quality data across various domains. Applications of DMs include image synthesis |Rom-

bach et al|(2022); Dhariwal & Nichol| (2021)), image super-resolution [Li et al.| (2022); |Yue et al.
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(2024)); |Gao et al.| (2023)), image-to-image translation [Wang et al.| (2022)); [Saharia et al.| (2022)); [Li
et al| (2023), image editing [Kawar et al| (2023); Zhang et al.| (2023), inpainting [Lugmayr et al.
(2022), video synthesis Blattmann et al.| (2023); [Esser et al.| (2023), text-to-3D generation [Poole
(2022), and even planning tasks Janner et al.| (2022). However, generating samples with
DMs involves solving a generative Stochastic or Ordinary Differential Equation (SDE/ODE)
ter & Protter] (2005)); [Hartman| (2002)) in reverse time, which requires multiple sequential forward
passes through a large neural network. This sequential processing limits their real-time applicability.
Considerable work has been dedicated to ac-

celerating the sampling process in DMs by re- [ —

ducing the number of sampling steps. Ap- ‘
proaches include training-based methods such
as progressive distillation[Salimans & Hol, con-
sistency models [Song et al.| (2023), and recti-
fied flow (2022); |Albergo & Vanden-|
Eijnden| (2022)); [Lipman et al| (2022), and
training-free methods such as DPM-solver
et al| 2022)), AYS [Sabour et al.| (2023), Deep-
Cache [Xu et al| (2018), and Delta-DiT Figure 2: The main subject and the regions with
(2024b). These methods uniformly pro- e details are brushed for more steps than other

cess all regions of an image during sampling, regions in RAS. Each block represents a patchified
irrespective of the specific needs of differentre- 1,00t token.

gions. Intuitively, however, the complexity of

different regions within an image varies: intricate foreground elements may require more sampling
steps for clarity, while repetitive backgrounds could benefit from more aggressive compression of
sampling steps without significant loss of quality. This suggests a potential for a more flexible
sampling approach that can dynamically adjust the sampling ratio across different regions, enabling
faster, yet high-quality diffusion process.

This concept is a natural progression in the evolution of DMs. From DDPM (2020) to
Stable Diffusion XL |Podell et al.| (2023)), diffusion models have predominantly relied on U-Nets,
whose convolutional structures Ronneberger et al.| (2015) necessitate uniform treatment of all image
regions due to fixed square inputs. However, with the advent of DiTs |Peebles & Xie| (2023) and
the increasing exploration of fully transformer-based architectures Vaswani| (2017), the research
focus has shifted towards architectures that can accommodate flexible token inputs , opening up new
possibilities. This shift has inspired us to design a new sampling approach capable of assigning
different sampling steps to different regions within an image.
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To assess the feasibility of this idea, we visualized diffusion outputs at different sampling steps
(Figure[3). Two patterns emerged: (1) regions of focus show strong continuity across adjacent steps
in later stages, and (2) each step concentrates on semantically meaningful areas of the image. This
resembles an artist refining a canvas in thousands of strokes, where each step selectively improves
certain regions. Consequently, areas ignored at a given step could be skipped in DiT computation,
allowing resources to focus on regions of interest.

We validated this hypothesis by ranking tokens at each step using our proposed output-noise met-
ric, which highlights regions of primary focus. Measuring ranking similarity with NDCG (Figure
M) revealed high continuity between adjacent steps, motivating a sampling strategy that allocates
different ratios to regions based on their attention persistence.
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Figure 3: Visualization of predicted noise of each step. DiT model focuses on certain regions during
each step and the change in focus is continuous across steps.

As is shown in Figure [5] our method leverages the output noise from the previous step to identify
the model’s primary focus for the current step (fast-update regions), allowing only these regions to
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proceed through DiT for denoising. Conversely, for regions of less interest (slow-update regions),
we reuse the previous step’s noise output directly. This approach enables regional variability in
sampling steps: areas of interest are updated with a higher ratio, while others retain the previous
noise output, thus reducing computation.

For each input X;, we select a fast-update rate to deter-

mine the regions needing updates in each step, while re- 1000

gions in the slow-update regions retain the previous noise 0975 L .
output, which, combined with the updated fast-region 8050

noise, forms X;_; for the next step. To maintain global =

consistency, we keep features from slow-update regions

as reference keys and values for subsequent steps. Al- %0 s it O
though the fast-region selection is dynamic and recalcu-

lated after each update to prioritize significant areas, we gure 4: NDCG [Jirvelin & Kekaldinen

periodigally reset the inference for all regions to mitigate (2000); Wang et al] (2013) for each
cumulative errors.

0.925 —e— Normalized Discounted Cumulative Gain

pair of adjacent sampling steps is high
In summary, we propose RAS, the first diffusion sampling throughout the diffusion process, mark-
strategy that allows for regional variability in sampling ing the similarities in the ranking of fo-
ratios. Compared to spatially uniform samplers, this flex- cused tokens ranging from 0 to 1.
ibility enables our approach to allocate DiT’s processing

power to the model’s current areas of interest, signifi-

cantly improving generation quality within the same inference budget. As shown in Figure[T](c)(d),
our method achieves substantial reductions in inference cost with minimal FID increase, while out-
performing the uniform sample baseline in terms of FVD within equivalent inference times. Figure
(a)(b) also demonstrates that with models like Lumina-Next-T2I |anda Le Zhuo et al.| (2024) and
Stable Diffusion 3 [Esser et al.| (2024b)), our method’s fast-region noise updating yields over twice
the acceleration with minimal image quality loss.

2 RELATED WORK

2.1 DIFFUSION MODELS: FROM U-NET TO TRANSFORMER

Diffusion models [Ho et al.| (2020); |Dhariwal & Nichol| (2024); Song & Ermon| (2019)); |Sohl-
Dickstein et al.| (2015 have shown strong generative capabilities, often surpassing GANs |Good-
fellow et al.| (2014) in downstream tasks. Early approaches such as DDPMs Ho et al.| (2020) and
Stable Diffusion XL Podell et al.[(2023) primarily relied on convolutional U-Nets|Ronneberger et al.
(2015). Howeyver, convolutional backbones require preserving spatial resolution for operations like
pooling, limiting the ability to exploit redundancy in latent inputs and making pruning difficult.

This limitation has been addressed by Diffusion Transformers (DiTs) |[Peebles & Xie| (2023), now
adopted in state-of-the-art models including Stable Diffusion 3 [Esser et al.| (2024a), Lumina T2X
anda Le Zhuo et al.| (2024), and Pixart-Sigma (Chen et al.[(2024a)). Unlike U-Nets, DiTs use a pure
Transformer architecture [Vaswani (2017)) with adaptive layer norm for conditional prompts, elimi-
nating convolution entirely. Positional information is provided via embeddings, making latent tokens
independent of spatial constraints. This independence allows us to exploit redundancy (Section [I))
by computing only the most relevant tokens at each step while caching others’ noise predictions
from previous steps.

2.2 EFFICIENT DIFFUSION MODEL INFERENCE

To address the problem of high inference cost in diffusion models, various acceleration techniques
have been proposed from different perspectives. A commonly used approach is to reduce the number
of sampling steps. Some of these techniques require additional training, such as progressive distil-
lation [Salimans & Ho, consistency models [Song et al.[(2023), and rectified flow [Liu et al.[(2022);
Lipman et al.| (2022); |Albergo & Vanden-Eijnden| (2022). Among these methods, rectified flow has
been widely used in models like Stable Diffusion 3 |[Esser et al.| (2024a)). It learns the ODE to follow
straight paths between the standard normal distribution and the distribution of the training dataset.
These straight paths significantly reduce the distance between the two distributions, which in turn
lowers the number of sampling steps needed.
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Training-free methods have also been proposed to reduce

Sampleyiq Sample,
either the number of sampling steps or the per-step com- | N K
putation. For example, DeepCache [Xu et al.| (2018), tai- | F:_st W . |
lored for U-Net-based models, caches and retrieves fea- Re?'“‘ .
tures across adjacent stages to skip certain down- and up- B ok
sampling operations. However, such methods treat all B
image regions uniformly, overlooking the varying com- — Morosd
plexity across different parts of an image and leading to Noiser:y I Noise
inefficiency.

As discussed in Section[I] image regions often differ sub- Figure 5: Overview of RAS design.
stantially in complexity. To exploit this heterogeneity, Only current fast-update regions of each
we propose RAS, which optimizes computation by adapt- Step are passed to the model.

ing processing to region-specific characteristics. RAS

is orthogonal to prior techniques—such as step reduc-

tion or module-level optimizations (e.g., DiTFastAttn [Yuan et al.| (2024)) and A-DiT [Chen et al.
(2024b)))—and can be combined with them for further efficiency.

3 METHODOLOGY

3.1 OVERVIEW

In this section, we present the RAS

design and techniques to exploit

inter-timestep token correlations and  Table 1: Meanings of the symbols that are used in this paper
the regional token attention mecha-
nism introduced in Section D
Based on the regional characteris-
tics we observed in the DiT infer-
ence process, we propose an end-to-
end pipeline that dynamically elim-
inates the computation through DiT
of certain tokens at each timestep.
(2) To leverage the continuity across
consecutive timesteps, we propose a
straightforward method to identify the fast-update regions that require refinement in upcoming
timesteps. (3) Building on our observations of continuous distribution patterns, we introduce several
scheduling optimization techniques to further enhance the quality of generated content.

The current timestep

The noise output of the DiT model

The cached noise output from the previous timestep

The estimated full-length noise calculated with N and N
The unpathified image sample

The pathified input of the DiT model

Mask generated to drop certain tokens in the input

Sz nm

The number of times the tokens in a patch being dropped

3.2 REGION-ADAPTIVE SAMPLING

Region-Aware DiT Inference with RAS. Building on the insight that only certain regions are im-
portant at each timestep, we introduce the RAS pipeline for DiT inference. In U-Net-based models
such as SDXL |Podell et al.| (2023)), tokens must remain in fixed positions to preserve positional
information. However, given the structure of DiT, we can now mask and reorder elements within
latent samples, as positional information is already embedded using techniques like RoPE |Su et al.
(2024). This flexibility allows us to selectively determine which regions are processed by the model.
To achieve this, some additional operations are required starting from the final step. At the end
of each timestep, the current sample is updated by combining the fresh model output for the ac-
tive tokens and the cached noise for the inactive tokens. Specifically, the noise for the entire se-
quence is restored by integrating both the model output and the cached noise from the previous
step. This mechanism enables active, important tokens to move in the new direction determined at
the current timestep, while the inactive tokens retain the trajectory from the previous timestep. We
then compute the metric R, which is used to identify the fast-update regions based on the noise,
update the drop count D to track the frequency with which each token has been excluded, and
generate the mask M accordingly. With the mask M, the noise for the slow-update regions is
cached, while the sample for the current fast-update regions is patchified and passed through the
DiT model. Since modules like Layernorm and MLP do not involve cross-token operations, the
computation remains unaffected even when the sequence is incomplete. For the attention |Vaswani
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(2017) module, we introduce a caching mechanism to further enhance performance, which will
be detailed later. In summary, RAS dynamically detects regions of focus and reduces the over-
all computational load of DiT by at least the same proportion as the user-defined sampling ratio.

Region Identification. The DiT model pro-
cesses the current timestep embedding, latent
sample, and prompt embedding to predict the
noise that guides the current sample closer to
the original image at each timestep. To quan-
tify the refinement of tokens at each timestep,
we use the model’s output as a metric. Through
observation, we found that the standard devia-
tion of the noise strongly marks the regions in
the images, with the main subject (fast-update
regions) showing an obvious lower standard de-
viation than the background (slow-update re-
gion). This could be caused by the difference in
the amount of information between the regions
after mixing with the Gaussian noises. Utiliz-
ing the deviation as a metric achieves reason-
able results of image qualities and notable dif-
ferences between regions, as is shown in Figure
Also, considering the similarities between la-
tent samples across adjacent timesteps, we hy-
pothesize that tokens deemed important in the
current timestep are likely to remain important
in the next, while the less-focused tokens can be
dropped with minimal impact. Before we reach
the final formulation of the metric, we need to
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Figure 6: A RAS self-attention module using At-
tention Recovery to enhance generation quality.
XL Q4 KUl VB and OLY represent the in-
put hidden states, query, key, value and attention
output of active tokens on layer [ during step t, re-
spectively. K*! and V! denote the key and value
caches. The scatter operation to partially upload
the key and value caches are fused into the pre-
vious projection using a PIT GeMM kernel. The
keys and values of the not-focused area (K f *and
Vit’l) are estimated with the cache from the last
sampling step (K*~ 1! and VI=11),

introduce another technique to prevent starva-
tion.

Starvation Prevention. During the diffusion process, the main subject regions typically require
more refinement compared to the background. However, consistently dropping computations for
background tokens can lead to excessive blurring or noise in the final generated image. To address
this, we track how often a token is dropped and incorporate this count as a scaling factor in our metric
for selecting tokens to cache or drop, ensuring less important tokens are still adequately processed.

Additionally, since DiT patchifies the latent tokens before feeding them into the model, we compute
our metric at the patch level by averaging the scores of the tokens within each patch. Combining all
the factors mentioned above, our metric can be written as:

R = meanpatch(std(Nt)) -exp(k * Dpaten) (1)

where Nt is the current estimated noise, Dp4cn is the count of how many times the tokens in a
patch have been dropped, and k is a scale factor to control the difference of sample ratios between
fast-update regions and slow-update regions.

Key and Value Caching. As we know, the attention mechanism works by using the query for each
token to compute its attention score with each other tokens by querying the keys and values of the
whole sequence, thus giving the relations between each two tokens. The attention of the active
tokens in RAS can be calculated with only other active tokens. However, the metric R we introduce
to identify the current fast and slow regions does not take their contribution to the attention score
into consideration. Thereby, losing these tokens during attention can cause a huge change in the final
output. Our solution here is also caching. During each step, the full keys and values are cached until
they are partially updated with the current active tokens. As is described in Figure[6] this solution is
also based on the similarity between each two sampling steps, and now we can estimate the original
attention output by:

Qa [Kaa K’L]T

O, = softmaz( Va )[Va, Vi]

2

where ¢ stands for the inactive tokens.
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Figure 7: Visualization of RAS on Lumina-Next-T2I and Stable Diffusion 3.
3.3 SCHEDULING OPTIMIZATION

Dynamic Sampling Ratio. As shown in

Figure [] correlations between timesteps

are lower in the early stages but increase as Table 2: Pareto Improvements of rectified flow with
the diffusion process stabilizes, consistent RAS on COCO Val2014 1024 x 1024. Full experiment
with the patterns in Figure [3] This indi- results are available in Figure 2 and the Supplementary
cates that applying selective sampling too Material.

early could harm the structural foundation  Jethod Steps Sample Tmage/sT FID | sFID | CLIPT
of the generated image. To account for Ratio score
this, we adopt a dynamic sampling strat- §p3

egy: the first few steps (e.g., 4 out of 28) RFlow 5 100% 143 39.70 2234 29.84
use a full 100% ratio to preserve image RAS 7 25.0% 1.45 3199 21.70 30.64
outlines, after which the ratio is gradually = RAS 7 125% 148 3286 22.10 30.55
reduced during the stable phase. This de- RAS 6 250% 1.52 3324 21.51 3038
sign balances efficiency and quality, en- RAS 6 125% 157 33.81 21.62 30.33
abling substantial computational savings Eilgw ‘5‘ 212%?; }gi gig% %;‘6‘3 %ggz
while minimizing negative effects on the L : : . .

final output. Eﬁj‘ina 5 125% 199 5324 26.04 28.94
Accumulated Error Resetting. RAS fo- RFlow 7  100% 049  48.19 38.60 28.65
cuses on the model’s regions of interest, ~RAS 10 250% 059  45.67 3236 29.82
which tend to be similar across adjacent RAS 10 125%  0.65 4734 32.69 29.75
sampling steps. However., regions that Eilgw ; égoogz 8?/(9) gg;g gggg %ggg
are not f”or‘tt‘fec; for .n?“mg.le SOPS A RAS 7 125% 074 5462 4023 2883
accumulate stale denoising directions, re- g xg 6 250% 075 67.16 4646 27.85
sulting in significant error between the Rag 6 125% 078 67.88 4588 27.83

original latent sample and the one gener-
ated with RAS. To mitigate this issue, we
introduce dense steps into the RAS diffusion process to periodically reset accumulated errors. For
instance, in a 30-step diffusion process where RAS is applied starting from step 4, we designate
steps 12 and 20 as dense steps. During these dense steps, the entire image is processed by the
model, allowing it to correct any drift that may have developed in unfocused areas. This approach
ensures that the accumulated errors are reset, maintaining the denoising process in alignment with
the correct direction.

3.4 IMPLEMENTATION

Kernel Fusing. As previously mentioned, we introduced key and value caching in the self-attention
mechanism. In each attention block of the selective sampling steps, these caches are partially up-
dated by active tokens and then used as key and value inputs for the attention functions. This partial
updating operation is equivalent to a scatter operation with active token indices.
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In our scenario, the source data of the scatter oper-
ation comprises active keys and values outputted by
the previous general matrix multiplication (GeMM)
kernel in the linear projection module. The extra
GPU memory read/store on active keys and values
can be avoided by fusing the scatter operation into
the GeMM kernel, rather than launching a separate

Table 3: Memory Consumption of RAS.

Stable Diffusion 3
Method Steps Memory (GB) Speedup
RFlow 28 19.21 (1x) Ix
RAS-50% 28 20.36 (1.06x) 1.62x
RAS-12.5% 28 20.36 (1.06x) 2.44x

scatter kernel. Fortunately, PIT Zheng et al.| (2023) Lumina-Next-T2I

demonstrates that all permutation invariant transfor- Method Steps Memory (GB) Speedup

mations, including one-dimensional scattering, can RFlow 30 10.30 (1x) Ix

be performed in the I/O stage of GPU-efficient com- ~ RAS-50% 30 10.73 (1.04x)  1.56x
RAS-12.5% 30 10.73 (1.04x)  2.70x

putation kernels (e.g. GeMM kernels) with minimal
overhead. Using this method, we fused the scatter
operation into the epilogue of the previous GeMM kernel.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Models, Datasets, Metrics and Baselines. We evaluate RAS on Stable Diffusion 3 |Esser
et al.| (2024a) and Lumina-Next-T2I |anda Le Zhuo et al. (2024) for text-to-image genera-
tion tasks, using 10,000 randomly selected caption-image pairs from the MS-COCO 2017
dataset [Lin et al.| (2014). To assess the quality of generated images and their compatibil-
ity with prompts, we use the Fréchet Inception Distance (FID) |[Heusel et al.| (2017), the Slid-
ing Fréchet Inception Distance (sFID) Heusel et al.| (2017), and the CLIP score Hessel et al.
(2021)) as evaluation metrics. For baseline comparison, we evaluate RAS against widely-used
Rectified-Flow-based Flow-Matching methods [Liu et al.| (2022); |Albergo & Vanden-Eijnden
(2022); [Esser et al. (2024a); ILipman et al| (2022); Dao et al.| (2023); [Fischer et al.| (2023)),
which uniformly reduce the number of timesteps in the generation process for the whole image.
Code Implementation. We im-

plement RAS using PyTorch [Paszke

et al| (2019), leveraging the dif- ———————. 33 ,% 2
fusers library [von Platen et al] **7 ra—— v
(2022) and its FlowMatchEulerDis- 2,55 — A0 ' p

creteScheduler. The evaluation met- DerpCache 1 e
rics are computed using public repos-
itories available on GitHub |Seitzer 175 200 225 250 275
(2020); Hu| (2022); Zhengwentai

(2023)). Experiments are conducted
on four servers, each equipped with
eight NVIDIA A100 40GB GPUs,
while speed tests are performed on an
NVIDIA A100 80GB GPU.

FID vs. Inference Time (28 steps) CLIP Score vs. Inference Time (28 steps)

w
part
w
o

CLIP Score

VIS 31.25 : DeepCache
50 ¢ T — A-DIT

1.75 2,00 225 250 275
Time per image (s)

Figure 8: Comparison on Stable Diffusion 3 of RAS with
DeepCache and A-DiT, utilizing different cache interval.

4.2 GENERATION BENCHMARKS

We conducted a comparative evaluation of RAS and the rectified flow, which uniformly reduces
the number of timesteps for every token during inference. To assess the performance of RAS, we
performed experiments using various configurations of inference timesteps. The findings can be
interpreted in two principal ways.

Pushing the Efficiency Frontier. From the first aspect, RAS offers a chance to further re-
duce the inference cost for each number of timesteps rectified flow offers. As illustrated in
Figure (1] (c)(d), we generated 10,000 images using dense inference across different timesteps,
ranging from 3 to 30. Subsequently, we applied RAS at varying average sampling ratios over
selective sampling timesteps, with a set of timesteps. The results indicate that RAS can sig-
nificantly reduce inference time while exerting only a minor effect on key evaluation metrics.
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Furthermore, the efficiency improvements

achieved with RAS are attained at a lower cost Table 4: Comparison with detailed prompts on
compared to merely reducing the number of Paralmage-3000Wu et al| (2023a). R-X% repre-
timesteps.  Specifically, the rate of quality sents RAS with X% sample ratio.

degradation observed when decreasing the sam-  Method FID | sFID | CLIP T time/image (s)

pling ratio of RAS is considerably lower than ~ RFlow 3654 40.25  34.29 3.90
that observed when reducing the number of =~ R-75% 37.24 4023 34.18 3.05
timesteps in dense inference, particularly when Egggo iggg i}ﬂ gi(l)(z) %g?
. . . - (9 . B . .
the number of timesteps is fewer than 10. This R-125% 4213 4025 3396 159

demonstrates that RAS constitutes a promising
approach to enhancing efficiency while main-
taining output quality and ensuring compatibility with prompts.

Pareto Improvements of Uniform Sampling. We observed that RAS often yields Pareto improve-
ments for rectified flow. To illustrate this, we sorted results from Stable Diffusion 3 and Lumina-
Next-T2I by throughput and compared different RAS configurations with the closest baselines in
Table 2] Across nearly all cases, RAS achieves higher throughput while simultaneously improving
FID, sFID, and CLIP scores over dense rectified-flow inference. This demonstrates that for any
given throughput level, RAS not only offers configurations with both superior speed and quality, but
also expands the parameter space for balancing efficiency, fidelity, and prompt alignment.

4.3 MEMORY CONSUMPTION

As RAS requires caching the inter-

mediate noise and the correspond-

ing keys and values during inference, Table 5: Benchmarks for evaluating the human preference
we evaluate the extra memory con- on Lumina-Next-T2X. RAS-X% stands for RAS with X%
sumption of RAS in Table 3] RAS tokens activated each step. RAS provides Pareto improve-
requires 6% and 4% extra memory ments in multiple settings.

respectively with Stable Diffusion 3 Method  Steps Time(s) SpeedUp T Img. Rew. 7 PickScore T hpsv2 1

and Lumina-Next-T2I, which is ac- RFlow 30 8.77 1 0.37 21.88 0.26

ceptable compared with the speedup. RFlow 15 436  2.01 0.13 2145 024
AlSO, the extra memory does not vary RAS-25% 30 3.89 2.26 0.13 21.45 0.22
with the sample ratio as the whole ac- _RAS-75% 15 372 2.35 0.05 2134 0.24

P RFlow 10 292 3 -0.20 20.94 0.21
tivations are cached for later usage. RAS5% 15 231 378 018 2098 021
RFlow 7 2.05 4.27 -0.75 20.24 0.19

4.4 COMPARISON RAS-25% 10 1.70 5.15 -0.43 20.54  0.19
WITH LAYER-WISE METHODS RAS-12.5% 10 1.54 5.68 -0.54 20.34 0.18

Although orthogonal, we compare

RAS with widely-used layer-wise

cached-based methods for better comprehension on a subset of 5000 images from COCO. We man-
ually adapted DeepCacheXu et al.| (2018)) for DiT by reusing features and reproduced A-DiTChen
et al.| (2024b) according to its paper. As Figure [ shows, RAS achieves greater speedup while im-
proving FID and CLIP scores.

4.5 DETAILED PROMPTS, OBJECTS, POSITIONS AND COUNTS.

To evaluate the effect of RAS in scenarios when using extremely detailed prompts, and when the
user requires exact numbers or positions of the objects, we test RAS on the Paralmage-3000 [Wu
et al.| (2023a) and GenEvalGhosh et al.| (2023)) dataset. Results show that RAS has little effect on the
overall score and provides Pareto improvement in multiple fields. Please find the detailed results in
the Appendix.

4.6 HUMAN EVALUATION

To assess whether RAS improves throughput while preserving quality, we conducted a human evalu-
ation. We sampled 14 prompts from the official papers and blogs of Stable Diffusion 3 and Lumina,
generating two images per prompt: one with dense inference and one with RAS, using the same



Under review as a conference paper at ICLR 2026

random seed and timesteps. During the selective sampling period, RAS used a 50% average sam-
pling ratio. We recruited 100 participants from 18 universities and companies to compare the paired
outputs.

As shown in Figure [I[e), 45.21%

of 1400 votes judged the two im-

ages to be of similar quality, while Table 6: Ablation Study on Stable Diffusion 3. All tech-
28.29% favored the dense result and niques including dynamic sampling ratio, region identify-
26.50% preferred RAS. These results ing, error reset, key & value recovery are necessary for high
indicate that RAS achieves substantial ~quality generation.

throughput gains (1.625x on Stable (a) Drop Scheduling
Diffusion 3 and 1.561x on Lumina- Method FID | sFID | CLIP score 1
Next-T2I) with negligible impact on Default 35.81 18.41 30.13
human preference. Static Sampling Freq. 37.92 19.11 29.98
Random Dropping  43.19 22.23 29.65
Furthermore, we evaluate RAS on W/O Error Reset 46.10 24.85 30.41
ImageReward Xu et al| (2023), (b) Key and Value Caching
PickScore [Kirstain et al.| (2023), and Method Timesteps FID | sFID | CLIP score
hpsv2 [Wu et al.| (2023b), which are Default 28 2430 26.26 31.34
commonly used for assessing human W/O 28 31.36 20.19 31.29
preferences. As is shown in Figure Default 10 35.81 18.41 30.13
Bl RAS achieves high performance W/O 10 32.33 20.21 30.27
on the benchmarks while providing (¢) Error Reset Schedule (d) Starvation Prevention
higher speed. Reset ID FID | sFID | CLIP | Method Steps FID | sFID | CLIP {
5  27.0419.03 31.33 Default 10 35.81 18.41 30.13
47  ABLATION STUDY 8 246017243131 W/O 10 39.8719.75 29.84

11 25.8016.67 31.17 Default 14 26.48 18.14 31.18
7,11 24.58 15.82 31.31 W/O 14 26.58 17.96 31.11

Token Drop Scheduling. As shown
in Table [6] (a), we evaluate the
scheduling configurations introduced in Section [3} including sampling ratio scheduling, selection
of cached tokens, and the insertion of dense steps during the selective sampling period to reset ac-
cumulated errors, using 10 timesteps with an average sampling ratio of 12.5% on Stable Diffusion
3. The results indicate that each of these techniques contributes to the overall quality of RAS.

Key and Value Caching. As shown in Table[6](b), caching keys and values from the previous step
is crucial, especially when generating high-quality images with more timesteps. While dropping the
keys and values of non-activated tokens during attention can improve throughput, it significantly
affects the attention scores of activated tokens. A token’s low ranking in the model output does not
necessarily mean it has no contribution to the attention scores of other tokens.

Error resetting schedule. As is shown in Table @c), we conducted experiments on the schedule of
error resetting with 14 steps on Stable Diffusion 3. Results show that inserting an error resetting set
in the middle of the RAS process (from step 4 to 13) provides the best performance. Inserting more
dense steps provides little improvement compared with the extra time overhead.

Starvation Prevention. Table [6[d) proves the necessity of starvation prevention, which brings no
obvious extra overhead.

5 CONCLUSION

In this paper, we proposed RAS, a novel diffusion sampling strategy that dynamically adjusts sam-
pling rates according to regional attention, thereby allocating computational resources more effi-
ciently to areas of greater importance Extensive experiments and user studies demonstrate that RAS
achieves substantial speed-ups with minimal degradation in quality, outperforming uniform sam-
pling baselines and paving the way for more efficient and adaptive diffusion models.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

This paper only uses Large Language Models to polish the writing and grammar.

A.2 EVALUATION OF DETAILED PROMPTS, OBJECTS, POSITIONS, AND COUNTS.

Method Step Sing. Obj. T TwoObj.T Count? ColorT Pos.T SpeedUpT Overall Score T
RFlow 30 0.92 0.44 0.40 0.70 0.08 1 0.45
RAS-25% 30 0.92 0.44 0.39 0.69 0.07 1.25 0.44
RAS-50% 30 0.92 0.41 0.40 0.68 0.08 1.56 0.44
RFlow 15 0.91 0.39 0.37 0.67 0.07 2.01 0.42
RAS-75% 30 0.91 0.37 0.37 0.67 0.07 2.25 0.42
RAS-87.5% 30 0.89 0.33 0.35 0.67 0.05 2.70 0.40

Table 7: GenEval of RAS and RFlow on Lumina. GenEval evaluates the method’s ability to follow
instructions, including single object, two objects, object counting, colors, and positions, and gives
an overall score. RAS poses little effect on the overall score while provides high speedup.

Method FID | sFID| CLIP{ time/image (s)

RFlow 36.54 40.25 34.29 3.90
R-75% 37.24 4023  34.18 3.05
R-50% 38.96 41.17 34.12 2.40
R-25% 40.82 4141 34.00 1.81
R-12.5% 42.13 40.25 33.96 1.59

Table 8: Comparison with detailed prompts on Paralmage-3000Wu et al.|(2023a). R-X% represents
RAS with X% sample ratio.

To evaluate the effect of RAS in scenarios when using extremely detailed prompts, and when the user
requires exact numbers or positions of the objects, we test RAS on the Paralmage-3000 Wu et al.
(2023a) and GenEvalGhosh et al.|(2023) dataset, which evaluates the model’s ability to generate
single, two, multiple objects, colors, and positions with a fixed set of prompts and gives an overall
score. As is shown in Table /| and |3} RAS has little effect on the overall score and provides Pareto
improvement in multiple fields.

A.3 MORE VISUALIZATION OF RAS

This section presents RAS accelerating Lumina-Next-T2I and Stable Diffusion 3 with a 50% sam-
pling ratio. As illustrated in Figure[I0} the main object receives more sampling steps compared to the
background, demonstrating the significance of our region-adaptive sampling strategy. This approach
ensures that the primary subject in the generated image consistently undergoes more sampling, while
relatively smooth regions receive fewer sampling steps. For instance, in the example shown in Fig-
ure [10] with the prompt “hare in snow,” the weeds in the snow are sampled more frequently, while
the smooth snow receives fewer sampling steps.

In Figure we visualize the standard deviation of the noise across dimensions, as well as the
decoded images derived from the noise. This stems from our observation that the noise’s standard
deviation is consistently smaller in the main subject areas. A preliminary hypothesis is that this
occurs because the main subject contains more information. When mixed with a certain proportion
of noise at each diffusion step, the foreground tends to retain more deterministic information com-
pared to the background. This allows the model to predict more consistent denoising directions. We
acknowledge that further study is needed to fully understand this phenomenon.

The primary contribution of this work is to highlight that employing different sampling steps for
different regions can significantly enhance the efficiency of diffusion model sampling. The method
for selecting these regions is not limited to the aforementioned approach based on the noise standard
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L2 Norm Mask Noise Sample Final Image
of noise at current step (decoded with VAE) (decoded with VAE)

Figure 9: RAS using norm as the metric, accelerating Lumina-Next-T2I with 50% sample ratio and
30 total steps. The noise, masks and samples are from the 20th step.

deviation across dimensions. For example, we also experimented with using the [ — 2 norm of the
noise output by the network as a criterion for selection. By targeting regions with larger noise norms,
which indicate areas the network deems requiring more refinement, we observed a preference for
more complex regions in the frequency domain as in Figure 0] This approach also achieves high-
quality imaging results, as shown in Table[9] It can be seen that the methods using the /3 norm and
standard deviation (std) yield relatively similar results, and both significantly outperform random
selection, particularly when the cache ratio is higher.
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Prompt: A tall glass of creamy, chocolate milkshake with whipped cream and a cherry on top, sitting next to a decadent slice of triple-layered chocolate cake with frosting and chocolate shavings,
set on a polished wooden table with soft, warm light illuminating the scene, 4K resolution, photorealistic.

Lumina-Next-T2I RAS (50% Sampling) Regional Sample Ratio Stable Diffusion 3 RAS (50% Sampling) Regional Sample Ratio

Figure 10: RAS VS default sampling and the active sampling step for each latent token.
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Low

Standard deviation Mask
of noise at current step (decoded with VAE)

Sample

(decoded with VAE)

Figure 11: The 20th sampling step (out of 30) of Lumina-Next-T2I using RAS.

Method Sample Steps ~ Sampling Ratio Image/st FID| sFID| CLIP score 1
RFlow 7 100.0% 1.01 2723  17.76 30.87
RAS-Std 7 25.0% 1.45 3199  21.7 30.64
RAS-Norm 7 25.0% 1.45 31.65 21.24 30.59
Random 7 25.0% 1.45 3326  22.10 30.67

Table 9: Experiments on using L2 Norm as the metric for RAS on Stable Diffusion 3. The sample

ratio of the first 4 steps is 100% to guarantee generation qualities.
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A.4 FULL EXPERIMENT RESULTS OF RAS

In this section, we present the full experiment results of RAS against rectified flow, with the same
settings as is described in the experiment section. Both Table[I0]and[IT]are ordered by the through-
puts.

Method Sample Steps  Sampling Ratio Image/sT FID| sFID| CLIP score 1

RFlow 30 100.0% 0.11 22.46 16.59 30.47
RAS 30 75.0% 0.14 23.31 17.73 30.49
RFlow 23 100.0% 0.15 23.10 1791 30.42
RAS 30 50.0% 0.18 24.10  18.83 30.51
RFlow 15 100.0% 0.23 24.88  21.02 30.25
RAS 30 25.0% 0.26 27.44 2095 30.45
RAS 15 75.0% 0.27 26.82  23.33 30.26
RAS 30 12.5% 0.31 33.64 2344 30.36
RAS 15 50.0% 0.33 28.48  25.17 30.29
RFlow 10 100.0% 0.34 31.35  27.84 29.74
RAS 10 75.0% 0.40 3419  30.57 29.79
RAS 15 25.0% 0.43 3328 2741 30.24
RAS 15 12.5% 0.48 39.75  28.88 30.14
RAS 10 50.0% 0.48 36.18 3236 29.86
RFlow 7 100.0% 0.49 48.19  38.60 28.65
RAS 7 75.0% 0.54 5045  40.19 28.78
RAS 10 25.0% 0.59 4296  33.51 2991
RAS 7 50.0% 0.61 51.78  40.51 28.82
RAS 6 75.0% 0.62 66.12  46.58 27.80
RAS 10 12.5% 0.65 4734 3270 29.75
RAS 6 50.0% 0.67 66.54  46.71 27.83
RAS 7 25.0% 0.70 5393  39.80 28.85
RAS 7 12.5% 0.74 54.62 4023 28.83
RAS 6 25.0% 0.74 67.16  46.46 27.85
RAS 5 75.0% 0.75 99.01  56.26 26.02
RAS 6 12.5% 0.78 67.88  45.89 27.83
RFlow 5 100.0% 0.69 96.53  59.26 26.03
RAS 5 50.0% 0.83 99.81  56.57 26.01
RAS 5 25.0% 0.95 101.50 56.40 2593
RAS 5 12.5% 1.00 102.90  55.25 25.84
RFlow 3 100.0% 1.15 256.90 94.80 19.67

Table 10: Full experiment results of RAS and rectified flow on Lumina-Next-T2I and COCO
Val2014 1024 x1024.
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Method Sample Steps  Sampling Ratio Image/st FID] sFID] CLIP score T

RFlow 28 100% 0.26 25.8 15.32 314
RAS 28 75.0% 0.33 24.43 15.94 31.39
RAS 28 50.0% 0.42 2486  16.88 31.36
RFlow 14 100% 0.51 2449 1478 31.34
RAS 28 25.0% 0.55 25.16 17.11 31.29
RFlow 12 100% 0.59 2436  14.89 31.3
RAS 14 75.0% 0.62 23.61 15.92 31.35
RAS 28 12.5% 0.63 25.72 17.3 31.22
RFlow 10 100% 0.71 2417  15.39 31.22
RAS 14 50.0% 0.74 24.6 17.24 31.32
RAS 14 25.0% 0.91 25.88 17.97 31.24
RAS 10 75.0% 0.91 2439  16.29 31.12
RAS 14 12.5% 0.98 26.48 18.14 31.18
RAS 10 50.0% 1.0 27.1 17.5 30.93
RFlow 7 100% 1.01 27.23 17.76 30.87
RAS 7 75.0% 1.16 27.57  18.76 30.81
RAS 10 25.0% 1.2 30.97 18.36 30.67
RAS 10 12.5% 1.3 35.81 18.41 30.13
RAS 7 50.0% 1.3 30.04  20.34 30.73
RAS 6 75.0% 1.3 31.23 19.98 30.48
RAS 6 50.0% 1.41 3221  20.86 30.43
RFlow 5 100% 1.43 39.7 22.34 29.84
RAS 7 25.0% 1.45 31.99 21.7 30.64
RAS 7 12.5% 1.48 32.86 22.1 30.55
RAS 6 25.0% 1.52 3324 21.51 30.36
RAS 6 12.5% 1.57 33.81  21.62 30.33
RAS 5 75.0% 1.59 44.02  23.14 29.53
RAS 5 50.0% 1.75 48.65  24.51 29.29
RFlow 4 100% 1.79 61.92 2742 28.45
RAS 5 25.0% 1.94 51.92 25.67 29.06
RAS 5 12.5% 1.99 5324 26.04 28.94
RFlow 3 100% 2.38 121.61  36.92 25.32

Table 11: Full experiment results of RAS and rectified flow on Stable Diffusion 3 and COCO Val2014
1024 x1024.
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A.5 QUESTIONNAIRE FOR HUMAN EVALUATION

This section contains the questionnaire we used for the human evaluation we mentioned in Section

@

Text-to-Image Quality Preference Survey

We are conducting an evaluation of two image generation methods. You will be presented with 14
pairs of images, each created by one of the two methods, with the order of the images shuffled for
objectivity. Please select your preference for the shown images. Thank you for your participation
and cooperation.

Q1. A massive alien spaceship that is shaped like a pretzel.
A.

[0 A is obviously better than B.
O A is slightly better than B.
O They are of similar qualities.
0] B is slightly better than A.
L] B is obviously better than A.
Q2. Upper body of a young woman in a Victorian-era outfit with brass goggles and leather
straps. Background shows an industrial revolution cityscape with smoky skies and tall, metal

structures.
A.
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[0 A is obviously better than B.
O A is slightly better than B.
O They are of similar qualities.
[0 B is slightly better than A.
O B is obviously better than A.

Q3. This dreamlike digital art captures a vibrant, kaleidoscopic bird in a lush rainforest.
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U A is obviously better than B.

O A is slightly better than B.
O They are of similar qualities.
U] B is slightly better than A.

U] B is obviously better than A.

Q4. A cat wearing a cowboy hat and sunglasses and standing in front of a rusty old white spaceship
at sunrise. Pixar cute. Detailed anime illustration.
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[0 A is obviously better than B.
O A is slightly better than B.
O They are of similar qualities.
O B is slightly better than A.
[0 B is obviously better than A.
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QS. A kangaroo holding a beer, wearing ski goggles and passionately singing silly songs.
A.

L] A is obviously better than B.
[ A is slightly better than B.
[0 They are of similar qualities.
U] B is slightly better than A.

U] B is obviously better than A.

Q6. A photorealistic image of a Pagani Huayra driving through a city at night with glowing city
lights in the background.
A.
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L1 A is obviously better than B.
[ A is slightly better than B.
U] They are of similar qualities.
U] B is slightly better than A.
L1 B is obviously better than A.
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Q7. A cheeseburger with juicy beef patties and melted cheese sits on top of a toilet that looks like
a throne and stands in the middle of the royal chamber.

O A is obviously better than B.

O A is slightly better than B.
O They are of similar qualities.
O B is slightly better than A.

[0 B is obviously better than A.

Q8. A detailed photorealistic image of a steampunk locomotive on a platform with sharp lines,
surrounded by light purple fog.
A.
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L1 A is obviously better than B.
O A is slightly better than B.
O They are of similar qualities.
O B is slightly better than A.
[0 B is obviously better than A.
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Q9. An entire universe inside a bottle sitting on the shelf at Walmart on sale.

L] A is obviously better than B.

[ A is slightly better than B.
[0 They are of similar qualities.
0 B is slightly better than A.

U] B is obviously better than A.

Q10. Snow-covered mountains reflected in a crystal-clear alpine lake, with a small wooden cabin
nestled among tall pine trees.
A.
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1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
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L1 A is obviously better than B.
O A is slightly better than B.
O They are of similar qualities.
O B is slightly better than A.
[0 B is obviously better than A.
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1568 Q11. A red heart in the clouds over water, in the style of zbrush, light pink and sky-blue, I can’t
1367 believe how beautiful this is, hyperbolic expression, nyc explosion coverage, unreal engine 5,

1568 robert bissell.
1569

1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601 O A is slightly better than B.
1602

1603
1604 0 B is slightly better than A.

1605 O B is obviously better than A.
1606

1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617 Q12. Upper body of a young woman adorned in elaborate ancient Egyptian clothing, with a
1618 headdress featuring golden ornaments and colorful gemstones.The background shows the

1619 inside of a grand temple with hieroglyphics on the walls.
A.

[0 A is obviously better than B.

O They are of similar qualities.
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L1 A is obviously better than B.
O A is slightly better than B.
O They are of similar qualities.
O B is slightly better than A.
[0 B is obviously better than A.
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Q13. The Hulk is in a colorful gothic background, with highly detailed dramatic lighting and a
photo realistic style, rendered in 8K resolution.
A.

[0 A is obviously better than B.
O A is slightly better than B.
[0 They are of similar qualities.
O B is slightly better than A.

L1 B is obviously better than A.

Q14. A car made out of vegetables.
A.
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1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
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L1 A is obviously better than B.
O A is slightly better than B.
O They are of similar qualities.
O B is slightly better than A.
[0 B is obviously better than A.
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