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ABSTRACT

Medical imaging has revolutionized diagnosis, yet unnecessary procedures are
rising, exposing patients to radiation and stress, limiting equitable access, and
straining healthcare systems. The American College of Radiology Appropri-
ateness Criteria®, developed through extensive multidisciplinary review, provide
evidence-based guidance but remain underutilized. Leveraging advances in LLM
reasoning, we introduce a Reasoning Agent trained with Reinforcement Learning
(RL), specifically Group Relative Policy Optimization (GRPO), to replicate ex-
pert clinical reasoning from the ACR Criteria. We present a novel RL approach
for structured medical reasoning, systematically comparing reasoning-focused re-
ward functions and evidence integration strategies. Our lightweight 8B model,
MedReason-Embed, improves macro F1 by 18% over baseline, shows stronger
reasoning alignment, and outperforms both larger and alternatively trained mod-
els, showing that reasoning-based supervision enables efficient, trustworthy clin-
ical AI. Building on this, we design a modular end-to-end agentic architecture
that automates imaging referrals: mapping diagnoses to ICD codes, retrieving
PubMed evidence, and recommending optimal procedures. Crucially, the ability
to generalize beyond static ACR guidelines not only enables clinicians to han-
dle out-of-distribution cases, but also supports scaling the guideline development
process itself, potentially reducing the significant effort required to create and up-
date them. This work shows the potential of reasoning-focused RL within agentic
architectures to deliver transparent, scalable, and reliable clinical decision sup-
port. Our code is available at: https://anonymous.4open.science/r/
agentic-imaging-recommender-iclr-877D

1 INTRODUCTION

Low-value medical imaging, defined as procedures whose risks outweigh their benefits, has risen
sharply in recent years. Unnecessary CT and MRI use is particularly concerning, with 20–50%
of CT scans in the US deemed unnecessary U.S. Food and Drug Administration (2022), and other
studies reporting 35–80% of imaging outside established clinical standards Alahmad et al. (2024);
Deshommes et al. (2024); Lavery et al. (2024); Marin et al. (2024). Such procedures expose patients
to harmful radiation linked to increased cancer risk, contribute to overdiagnosis and anxiety, delay
critical diagnoses, and waste healthcare resources Miglioretti et al. (2013), with reductions estimated
to save approximately $12 billion annually in the US Radiology Business (2025).

To reduce inappropriate imaging, the American College of Radiology (ACR) developed the Ap-
propriateness Criteria® (ACR-AC), evidence-based guidelines for imaging selection of Radiology
(2025). For nearly 30 years, expert panels systematically review literature for clinical scenarios,
apply the GRADE scale to rate evidence quality Schünemann et al. (2008), and synthesize this evi-
dence into graded recommendations balancing diagnostic value and patient risk Kurth et al. (2021).
As of September 2025, they cover 257 imaging topics, yet adoption is very low, with fewer than 1%
of clinicians using them as a primary reference Bautista et al. (2009).

AI systems, particularly Large Language Models (LLMs), hold promise for guideline-based decision
support but face key barriers, including hallucinations, shortcut learning, and limited explainability
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Figure 1: ACR-AC Guideline Development Process.

that challenge clinical validity and regulatory compliance Pan et al. (2025). Although recent work
shifts LLMs toward stepwise “System 2” reasoning Li et al. (2025), medical LLMs remain largely
trained with Supervised Fine-Tuning (SFT), that often leads to weak reasoning Chu et al. (2025).
Reinforcement learning (RL) offers a stronger alternative, using reward signals to improve reason-
ing, scalability, and generalization, with Group Relative Policy Optimization (GRPO) Guo et al.
(2025) providing scalable rule-based reward comparisons and early success across domains includ-
ing medicine Jaech et al. (2024). While RL effectiveness depends heavily on reward design, most
medical RL models use rewards for format compliance and final correctness often optimizes only
format or correctness, with some studies show these fail to capture the complexity of clinical reason-
ing DeYoung et al. (2019).Incorporating reasoning steps yields stronger rewards than answer-only
signals Cobbe et al. (2021), yet remains underexplored in medicine. We address this by leverag-
ing ACR-AC expert knowledge to design rewards that align intermediate reasoning with clinical
standards in imaging referrals.

Moreover, grounding in high-quality literature improves accuracy and trust Wang et al. (2024), and,
importantly, enables generalization beyond static, human-dependent guidelines. Building on this, we
designed a deployable architecture that mirrors the the ACR-AC development process; but replaces
time-limited human experts with LLM agents. It automatically retrieves and filters studies from
medical databases, ensuring recommendations are based on strong, up-to-date evidence.

Starting from a clinical note, the system standardizes it and maps it to the International Classi-
fication of Diseases, Ninth Revision coding system (ICD-9-CM) U.S. Department of Health and
Human Services (2011), ensuring interoperability with hospital workflows. It then retrieves and
filters medical literature, synthesizing the evidence into a final imaging recommendation using a
GRPO-trained Reasoning Agent. This agent outputs both an appropriateness recommendation and
a concise, evidence-grounded justification. We align intermediate reasoning with expert ACR-AC
traces through custom rewards, going beyond answer-level optimization. To our knowledge, this
is the first medical study to apply RL with reasoning supervision and compare reasoning-focused
rewards, advancing decision support toward greater transparency and trust. By closely mirroring the
ACR workflow, the system notably also supports a capability unmatched by other systems: providing
justified recommendations even for conditions not covered by the ACR-AC, that though comprehen-
sive, are not exhaustive Chan et al. (2019).

Our main contributions are: (a) we design an end-to-end agentic architecture for clinical imag-
ing referrals that integrates ICD coding, evidence retrieval, and GRPO-trained reasoning, closely
replicating the ACR decision process while enabling generalization beyond fixed guidelines; (b)
we introduce and evaluate GRPO-adapted reasoning models, showing that RL lightweight models
can rival larger ones by providing accurate, transparent imaging recommendations; (c)we contribute
reasoning-focused rewards aligned with ACR traces and evidence-integration strategies, improving
performance, reasoning alignment, and clinical reliability.

2 BACKGROUND AND RELATED WORK

2.1 ICD CODING

To align with clinical practices, we use the International Classification of Diseases (ICD) for Health
Statistics (US) the WHO-maintained global standard that hierarchically organizes conditions with
standardized codes and descriptions (e.g., ICD-9-CM code 611.71 “Mastodynia” under 611 “Breast
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Disorders”).Our system maps notes to ICD codes as an intermediate layer before linking to ACR
guidelines, projecting both notes and ACR conditions onto a shared validated vocabulary to reduce
errors and ensure interoperability.

ICD coding, the assignment of standardized codes to clinical documentation, is an important task,
as evidenced by commercial adoption in tools like Ambience Ambience Healthcare (2025), but
remains challenging due to severe label imbalance and variation in note style, and language Zhou
et al. (2021). Manual coding is slow and error-prone, with widely variable accuracy ranging from
50% to 98% in the UK Burns et al. (2012), motivating automation. Methods have evolved from rule-
based approaches Farkas & Szarvas (2008), to embeddings Gomes et al. (2024); Michalopoulos et al.
(2022) and neural networks Azam et al. (2019), often using code hierarchies to improve accuracy
Chen & Ren (2019). LLMs show promise for ICD coding but often hallucinate and underperform
on rare cases, reaching only ∼46% top-1 accuracy Mustafa et al. (2025); Soroush et al. (2023).
Retrieval-Augmented Generation and reranking approaches show improved results, with MedCoder
achieving 0.60 F1 score on synthetic data Baksi et al. (2024). Still, performance remains modest
and variable; perhaps highlighting the need for tailored models, validation, and human oversight
Abdelgadir et al. (2024).

2.2 CLINICAL REASONING MODELS

LLMs are shifting from “System 1” thinking to analytical “System 2” reasoning Li et al. (2025),
as seen in models like OpenAI’s o1 and DeepSeek’s R1 Jaech et al. (2024). This is especially
important in medicine, where safe deployment requires transparent reasoning. Supervised Fine-
Tuning (SFT) has been the dominant post-training method but studies have shown that it often leads
to shortcut learning and poor generalization since it only encourages reasoning implicitly Chu et al.
(2025). Reinforcement Learning (RL), by contrast, optimizes models with task-specific rewards and
better supports complex objectives like multi-step reasoning. Recent methods such as GRPO and its
variants like Dr. GRPO Liu et al. (2025), and Group Sequence Policy Optimization (GSPO)Zheng
et al. (2025), enabled material improvements in efficiency and reasoning.

RL methods improve reasoning and show clear benefits in medical tasks, even with limited data.
MedVLM-R1, a 2B-parameter model trained on only 600 samples, gained 20% accuracy and
showed strong generalization on medical visual question answering (VQA) benchmarks Pan et al.
(2025), while Med-R1 achieved nearly 30% gains across eight modalities, even outperforming a
much larger counterpart Lai et al. (2025). Across studies, RL-adapted models consistently outper-
form SFT, especially in generalization Lai et al. (2025), with a study summarizing this as “SFT
memorizes, RL generalizes” Chu et al. (2025). Currently, most RL medical models rely on dual
rewards for answer correctness and formatting, aiming to produce accurate and structured outputs.
Studies show that generic rewards often fail to capture true clinical reasoning Chen et al. (2025),
and Pan et al. (2025) further note that correct answers can sometimes mask flawed reasoning.

Reward functions are central to RL. While many argue that clinical reasoning should be the primary
reward Brodeur et al. (2024), most works still optimize answer accuracy Chen et al. (2025).A key
design choice is the supervision strategy of the reward model; Outcome-supervised Reward Mod-
els (ORMs) reward the final answer, while Process-supervised Reward Models (PRMs) evaluate
intermediate steps Lightman et al. (2023). PRMs may reward identifying clinical risks before rec-
ommending imaging, helping the model learn the reasoning process rather than just the outcome,
like an ORM would. PRMs encourage interpretable, aligned reasoning, reduce errors and reward
hacking, and have been shown to outperform ORMs in multi-step reasoning Amodei et al. (2016).

Despite these benefits, PRMs remain underused in medicine mainly due to the lack of a clear frame-
work for evaluating reasoning. Surface metrics based on n-gram overlap such as BLEU miss seman-
tics Schluter (2017), while semantic approaches like verifier training requires costly annotations Li
et al. (2022); Lightman et al. (2023). A growing alternative is LLMs-as-critics, which assess rea-
soning for faithfulness and coverage Gu et al. (2024). While models using this approach, such as
LlamaV-o1 Thawakar et al. (2025) and PathVLM-R1 Wu et al. (2025) improve on reasoning, these
evaluators come at a high computational cost.

In summary, a pressing need exists in the biomedical space to distill clinical reasoning for agents
handling medical referrals. Building on the advantages of PRMs over ORMs Lu et al. (2024); Zhu
et al. (2025) and the clinician-trust reasoning fosters Brodeur et al. (2024), we propose and evaluate
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multiple reward functions that compare generated reasoning with gold-standard reasoning from the
ACR-AC to encourage models to learn expert-like thinking.

2.3 MEDICAL RETRIEVAL

Clinical decision support requires expert-aligned reasoning grounded in solid evidence Wang et al.
(2024). Our approach combines reasoning rewards with literature retrieval to reduce hallucinations
even without in-domain training Tan et al. (2025). RetCare Wang et al. (2024) showed that grounding
outputs in PubMed’s 38 million citations pub enhances accuracy and clinician trust, though it is
generally accepted that its keyword-based retrieval could be further improved. Effective evidence
retrieval is difficult given the rapid growth of medical literature Lu (2011). Beyond query expansion
and filters Lu (2011), DeepRetrieval offers a recent innovative solution Jiang et al. (2025). By
training an LLM with RL to rewrite queries into Boolean logic, it boosts recall to 65% versus 25%
with LEADS Wang et al. (2025). For example, the query “best imaging for breast pain” becomes
”((Breast Pain OR Mastalgia) AND (Imaging OR Mammography OR MRI OR CT))“, expanding
with synonyms to improve retrieval.

However, an effective evidence-search strategy alone is not enough; filtering high-quality results
remains expert-dependent and time-consuming Abdelkader et al. (2021). Machine learning (ML)
approaches have been proposed to predict evidence quality using features like study design, sample
size, and other metadata, reaching 60–70% accuracy Abdelkader et al. (2021), though comparisons
are difficult due to differing methods. Still, ML automation remains a promising option for strength-
ening evidence assessment.

Our system uses DeepRetrieval Jiang et al. (2025) to query PubMed for candidate papers, which
are then filtered for quality. We rely on this off-the-shelf retriever to adequately handle large-scale
biomedical search, enabling us to focus on the medical reasoning.

3 METHODOLOGY

3.1 SYSTEM ARCHITECTURE

Our system employs a modular, agent-based architecture, where outputs are passed forward in a
pseudo-sequential flow to mirror clinical reasoning, orchestrated via LangGraph.

Figure 2: Overview of the multi-agent system architecture.

Our cognitive architecture is designed to address the question: ‘For a patient with condition Y, is pro-
cedure X appropriate?’. Firstly, the ICD Coding Agent maps clinical diagnostic notes to ICD-9-CM
codes, which the ACR Criteria Checker uses to match against the ACR-AC list. If the mapped ICD
code matches the ACR list, the relevant guideline evidence is passed to the Reasoning Agent; oth-
erwise, the Medical Review Agent retrieves relevant studies literature interrogating PubMed using
DeepRetrieval-mediated queries, and the Post-Filtering Agent selects high-quality evidence using
GRADE principles. Finally, the Reasoning Agent pieces together the evidence into a recommenda-
tion for or against a particular medical imaging procedure. Implementation details for each agent
are provided in the following sections.
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3.2 ICD CODING AGENT

We developed our ICD coding Agent on a synthetic dataset of ∼6,500 records, each containing
an Italian natural language diagnostic note and its associated ICD-9-CM code, covering diverse
codes, scenarios, and notation styles. Quality was improved using embedding-based similarity to
detect and correct mislabeled or ambiguous entries, yielding a reliable dataset. Our dataset contains
short, less ambiguous notes with one code per record, highlighting the data-specific nature of ICD
coding. We then applied this approach to both clinical notes and ACR-AC conditions, creating an
ICD intermediate space for easier alignment and deployment.

To improve ICD coding, clinical texts were first standardized into English medical language us-
ing LLaMA-3.1-8B Grattafiori et al. (2024), effectively reducing semantic mismatch, improving
alignment with ICD terminology and retrieval. Standardized texts were then matched to ICD code
descriptions found in our dataset with FAISS-based similarity search, while the same LLM reranked
results whenever retrieval showed ambiguity, including low similarity or high variance among top
candidates. Performance was evaluated with top-1/top-5 accuracy, hierarchical accuracy defined as
a 3-digit match indicating if the key condition is captured, and Mean Reciprocal Rank (MRR). This
novel hybrid pipeline combines LLM standardization, dense retrieval, and reranking; facilitating
deployment and providing a bridge between clinical notes and the guideline criteria.

3.3 REASONING AGENT

Preprocessing the ACR Criteria
The Reasoning Agent was developed from a subset of 30 different ACR-AC conditions, covering
varied categories, body regions, and symptoms. From each, we parsed their “Narrative and Rating”
documents to obtain condition–variant–procedure triplets with their corresponding appropriateness
ratings (“Usually Appropriate”, “May Be Appropriate”, or “Usually Not Appropriate”) and expert-
authored justification texts, yielding ∼1,800 entries after excluding non-consensus cases.

Extracting reasoning traces
ACR justifications are often lengthy and complex, so we extracted concise “reasoning traces”:
atomic, verifiable claims capturing the core rationale, following Huang et al. (2025). We used
LLaMA-4-Scout-17B-16E-Instruct for its strong summarization and reasoning skills AI (2025a) at
the time of writing, with human oversight to prevent hallucinations or omissions. This standardized
format improves interpretability, supports downstream tasks, and eases expert review, as ACR-AC
reasoning is usually unordered factual points rather than complex logical chains.

Group Relative Policy Optimization (GRPO)
This agent is trained with GRPO and LoRA-based fine-tuning Hu et al. (2022) using the Unsloth
framework Daniel Han & team (2023). GRPO, introduced in DeepSeekMath Shao et al. (2024),
extends Proximal Policy Optimization (PPO) Schulman et al. (2017) by removing the reward value
network. For each prompt q, the model generates G outputs {oi}Gi=1, each assigned a reward ri, and
advantages are computed relative to the group mean, simplifying training and lowering cost. The
clipped PPO-style objective with importance ratio ρi ensures stability, while a KL penalty keeps
the new policy πθnew close to a frozen reference πref . The objective maximizes expected clipped
advantage across outputs while minimizing KL divergence.

JGRPO(θ) = Eq,{oi}

[
1

G

G∑
i=1

min
(
riρi, clip(ρi, 1− ϵ, 1 + ϵ)ri

)
− β DKL(πθnew∥πref)

]
(1)

Model Variants and Reward Designs
We evaluate multiple aspects of the Reasoning Agent, which is built on the LLaMA-3.1-8B back-
bone, chosen for its open-source availability at the time this study begun, size, and compatibility
with RL training frameworks like Unsloth. Model variants and rewards are described below and
implementation details and a training example can be found in Appendix A.

Baseline model: Our first model was trained using standard rewards common in prior work:
one binary “answer” reward for the correct appropriateness label and another binary “format” re-
ward for properly enclosing reasoning within <think></think> followed by the answer in
<answer></answer> tags.
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Citations model: Prior RL-based medical models often over-rely on on the backbone’s pre-trained
knowledge, risking outdated or inaccurate outputs. The Citations model tests whether grounding
in ACR-AC cited evidence improves reliability. References were retrieved via PubMed IDs, with
abstracts condensed into results/conclusions subsections and added as context. The model uses the
same rewards as the Baseline, but with condensed abstracts as additional input.

LLM Eval model: Building on Citations, this model adds an LLM-based reward inspired by
Thawakar et al. (2025); Wu et al. (2025), that scores generated reasoning against ACR-AC gold,
explicitly teaching what constitutes “good” reasoning, encouraging closer alignment. A smaller
Qwen1.5-1.8B evaluator Qwen Team (2024) judges concept overlap, logical consistency, and evi-
dence use, yielding a continuous score between 0 and 1.

MedReason-Embed model: This model introduces a novel joint reward, motivated by findings that
models may give correct answers with flawed reasoning Chen et al. (2025). For each gold reasoning
sentence, we take its maximum cosine similarity with generated sentences, average these scores,
and multiply by a binary answer reward; rewarding the model when its answer is correct. The de-
sign links reasoning quality to outcome correctness, enforcing that valid reasoning must lead to the
correct decision. While it ignores good reasoning when paired with wrong answers, it helps with
risk–benefit assessment, improving both reasoning and accuracy. The MedReason-Embed therefore
uses two rewards: the binary format reward and this joint reasoning reward, with all medical evi-
dence included. Mathematically, it is defined as: Rjoint = Igen=gold · 1

N

∑N
i=1 maxj cos(e

gold
i , egen

j ).

Table 1: Comparison of Reasoning Agent Variants
Model Evidence ranswer rformat rreasoning
Baseline None ✓ ✓ None
Citations ✓ ✓ ✓ None
LLM Eval ✓ ✓ ✓ LLM-based
MedReason-Embed ✓ ✓(via reasoning) ✓ Joint reward

Finally, in line with prior work Lai et al. (2025), we compared our RL-based models to standard
approaches. We trained an SFT model on the same dataset with the LLaMA-3.1-8B backbone,
cross-entropy loss, and matched parameters for fairness. We also evaluated the larger LLaMA-3.1-
405B AI (2025b), used in raw form without task-specific fine-tuning. Both baselines predict only
appropriateness labels, without reasoning, as in prior work Pan et al. (2025).

Evaluation of Reasoning Agent
We evaluate models on three aspects: predictive performance, reasoning alignment, and training
efficiency. For prediction, due to dataset imbalance (∼64% “Usually Not Appropriate”), we report
Macro F1 to weight classes equally and highlight minority performance, and Weighted F1 to reflect
prevalence. Reasoning alignment is assessed by two metrics: (i) an LLM-based score (LLM-align-
score) rating clinical relevance and medical knowledge on a 0–10 scale following Zhu et al. (2025),
and (ii) a NER-based F1 score using OpenMed’s pipeline OpenMed (2024), comparing embedded
entities and rule-based phrases between expert and generated reasoning to capture semantic over-
lap of clinically meaningful concepts while avoiding hallucinations. Finally, training efficiency is
reported relative to the baseline, since inference time is similar across models.

3.4 MEDICAL REVIEW AND POST-FILTERING FOR GENERALIZATION

For the Medical Review Agent, we use the Deep-Retrieval-PubMed-3B model DeepRetrieval Team
(2024). Because a single query rarely captures all relevant aspects of the ACR-AC strategy (e.g.,
synonyms, related conditions, procedure terms), we submit multiple rewritten queries per condition
(see Appendix B). We focus on retrieving evidence with similar clinical concepts to ACR-AC ref-
erences to approximate their reasoning, as replicating their extensive manual review is infeasible.
Coverage is evaluated by comparing retrieved evidence against ACR-AC references using clustered
embeddings and topic modeling (LDA) Blei et al. (2003). Retrieved evidence is passed to the Post-
Filtering Agent, which models the GRADE scale Schünemann et al. (2008) to score strength of
evidence (SOE) and prioritize quality studies. ML models trained on ACR-AC SOE labels us-
ing PubMed metadata (e.g., publication type) and abstract features (e.g., cohort size) are evaluated
mainly on recall of “high” SOE papers to ensure inclusion of top-tier studies.
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Our final goal is to test generalization. We created a set of four unseen conditions (Appendix 8), cho-
sen for clinical relevance and low similarity to the training set, spanning diverse regions, domains,
and diagnostic purposes. For these cases, the full pipeline of evidence retrieval was run to simulate
performance outside the ACR-AC. We need to evaluate how well the model handles both unfamiliar
scenarios and alternative evidence sources. Specifically, (a) we test the models on new conditions,
using ACR-AC citations as reference to isolate condition novelty, and (b) we vary the evidence
source, comparing ACR-AC references with our retrieved literature on the same conditions.

4 RESULTS

4.1 ICD CODING

Table 2 shows the performance of the ICD Coding Agent. The LLM standardization step proved
effective, mapping the original clinical notes to ICD descriptions with near-exact wording and han-
dling language variability without heavy hallucinations.

Table 2: Evaluation Results ICD Agent
Metric Value
Top-1 Accuracy 80.45%
Top-5 Accuracy 91.97%
Mean Reciprocal Rank (MRR) 85.46%
Top-1 Hierarchical Accuracy 91.47%

Results show reliable performance: top-1 accuracy of 80.45%, hierarchical accuracy of 91.47%
showing that the key condition is captured in the vast majority of cases, and MRR of 85.46%, with
the correct code in the top-5 nearly 92% of the time. The LLM reranker added a modest 0.5% boost.
While promising, results may reflect the dataset’s relatively short and unambiguous notes.

4.2 MODEL PERFORMANCE AND REASONING QUALITY

The Reasoning Agent is trained on 1,800 condition-variant-procedure triplets from 30 conditions,
with stratified 70/30 train-test split. Table 3 compares the four RL models, the SFT, and the larger
LLaMA-3.1-405B, while Table 4 reports reasoning quality and training metrics for the RL models.

Table 3: Model Predictive Performance Results
Model / Config Macro Avg F1 Weighted F1
Baseline 33.5% 37.1%
Citations 45.6% 56.6%
LLM Eval 52.7% 65.6%
MedReason-Embed 51.6% 65.6%
SFT model 36.7% 56.2%
LLaMA 405B 47.0% 53.7%

Table 4: Model Reasoning Alignment and Training efficiency
Model/Config LLM-align-score (/10) NER Embedding F1 Relative Training Time
Baseline 5.64 37.9% 1.0
Citations 7.28 61.2% 1.2
LLM Eval 7.57 65.4% 1.8
MedReason-Embed 7.67 65.5% 1.3

The Baseline, trained only with format and answer rewards as in most literature, achieves macro and
weighted F1 scores of 33.5% and 37.1%, scores not far off from a majority-class classifier, showing
that while the Baseline captures class diversity, it remains weak overall. Reasoning alignment is
also low (5.64/10; 37.9%), making it unsuitable for deployment. Adding medical evidence in the
Citations model substantially improves performance (45.6% macro F1, 56.6% weighted F1), a gain

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

of +12% and +20% over the Baseline, alongside higher reasoning alignment (7.28/10; 61.2%). This
highlights that high-quality context enables foundation models to adapt effectively to domain tasks.

Using reasoning rewards further boosts performance. The LLM Eval model achieves 52.7% macro
and 65.6% weighted F1, with stronger alignment (7.57/10; 65.4%), but at high cost since each
generated answer requires an extra LLM call. Our MedReason-Embed model reaches similar scores
(51.6%, 65.6%) at much lower cost, showing that task-specific rewards can match resource-intensive
strategies. Overall, rewarding reasoning quality improves both alignment and answer accuracy.
McNemar’s test McNemar (1947) confirmed significant differences between all models except LLM
Eval and MedReason-Embed, which perform comparably at very different computational costs.

Lastly, the SFT model (36.7% macro; 56.2% weighted F1) predicts mostly “Usually Not Appro-
priate’, overfitting to the majority class, while the much larger LLaMA-3.1-405B (47.0%; 53.7%)
only matches the Citations model, lags behind our reasoning-based models, and demands far greater
resources. Overall, our RL models with evidence and reasoning rewards outperform both SFT and
larger models, showing that domain-specific context and reward design, rather than scale alone,
drive robust and efficient reasoning.

4.3 EVIDENCE RETRIEVAL, POST-FILTERING AND GENERALIZATION

For the Medical Review Agent, we used Deep-Retrieval-PubMed-3B, with the best strategy retriev-
ing 25 papers per condition via structured Boolean queries (Appendix B). For the Post-Filtering
Agent, a Random Forest Biau & Scornet (2016) leveraging study design, SJR score, and sample
size achieved 0.74 recall for high-strength studies, generalized well, with study design and journal
quality as top features. The full feature list and task definition are provided in Appendix C.

To directly evaluate our evidence gathering pipeline, we evaluate generalization on four unseen con-
ditions (roughly half the test set), comparing performance with (a) gold ACR-AC citations (Table 5)
and (b) our pipeline’s citations (Table 6). Results for all RL models, SFT, and LLaMA-3.1-405B are
reported against each other and their original test set scores (Table 3).

Table 5: Generalization dataset performance with ACR citations
Model / Config Macro Avg F1 Weighted F1
Baseline 31.0% 34.5%
Citations 40.5% 53.0%
LLM Eval 46.6% 63.6%
MedReason-Embed 44.5% 63.3%
SFT 43.3% 65.1%
LLaMA 405B 51.7% 60.0%

Table 6: Generalization dataset performance with our own citations
Model / Config Macro Avg F1 Weighted F1
Baseline 31.0% 34.5%
Citations 40.4% 46.6%
LLM Eval 43.8% 54.9%
MedReason-Embed 45.9% 55.0%

Firstly, we compare test and generalization performance using ACR-AC citations, to capture the
effect of condition novelty (Tables 3, 5). The Baseline dropped only 2.5% in F1, while Citations,
LLM Eval, and Custom Embedding fell 5–6% macro and 2–3% weighted F1, showing modest sen-
sitivity to distribution shifts. This likely reflects heterogeneity in the generalization set, but rankings
remained stable with no signs of overfitting; such small gaps are expected and suggest potential
generalization, consistent with other studies Pan et al. (2025). The SFT model still overpredicted
“Usually Not Appropriate”, confirming poor generalization, while LLaMA-3.1-405B slightly ex-
ceeded its test score but remains impractical due to size.

We next test on the generalization set using our retrieved citations (Table 6) versus ACR-AC citations
(Table 5), to assess evidence source effects. This setup tests full autonomy; retrieving, filtering,
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and reasoning without human curation. The Baseline was unchanged as it uses no citations, while
Citations held macro F1 (∼40%) but dropped 6% weighted F1, still beating Baseline by 9–12%
with our citations. LLM Eval fell slightly (–3% macro, –8% weighted) yet remained stronger than
Citations, and MedReason-Embed gained 1% macro but lost 8% weighted F1, showing robustness
to diverse evidence sources, though further analysis is needed to understand these shifts. Overall,
results were comparable across different evidence sets, suggesting autonomy without human-curated
citations is feasible, though broader tests are needed.

5 CONCLUSIONS AND DISCUSSION

We introduced a cognitive architecture reproducing the full imaging referral pipeline; from patient
condition to ICD coding, evidence retrieval, filtering, and structured reasoning—built for efficiency,
scalability, and integration with clinical workflows. Trained on only 30 conditions versus 257 in
ACR-AC, it is designed to generalize beyond covered cases, complementing guidelines where none
exist, especially since the ACR cannot feasibly cover every scenario. While not a substitute for
expert consensus, the system offers a low-cost complement to guideline development, timely amid
debates on AI’s role in radiology The New York Times. The main conclusions are presented below.

Strong Performance of Our ICD Coding Agent: Our Agent, combining LLM-based standardiza-
tion, RAG, and LLM reranking, achieved a top-1 accuracy of over 80% on real-world data, compet-
itive with recent research systems and in line with average human accuracy in the UK (83%) Burns
et al. (2012). These results reinforce the emerging role of LLMs as standardizers in clinical NLP
Agrawal et al. (2023); Yao et al. (2024) and encourage broader adoption of this pipeline, though
further research is needed to assess performance in more complex and ambiguous cases.

RL for Efficient Clinical Reasoning: RL effectively adapts general-purpose LLMs for clinical
reasoning, outperforming SFT and even larger models. Contextualizing models further boosted per-
formance and alignment, offering a simple strategy to adapt models without fine-tuning. Crucially,
reasoning-specific rewards consistently surpassed evidence-only models, improving both perfor-
mance and reasoning, reinforcing that process-based supervision is more effective than answer-only
rewards. MedReason-Embed offered the best balance of performance, alignment, and efficiency,
showing stable reasoning and signs of self-correction. These results highlight reasoning-aligned RL
as a scalable path to trustworthy, lightweight clinical AI.

Robust Evidence Gathering and Generalization: Our retrieval and filtering pipeline effectively
handled cases without guidelines. DeepRetrieval queries and the Post-Filtering Agent reliably sur-
faced high-quality studies (recall 0.74), offering a scalable alternative to manual review. Perfor-
mance remained stable across different evidence sources, suggesting robustness. While performance
declined slightly on our generalization set of unseen conditions, our two RL reasoning models (LLM
Eval, MedReason-Embed) outperformed SFT under distribution shift, consistent with Pan et al.
(2025). While the generalization set was limited, these results suggest our system can extend ACR-
AC reasoning with robustness and clinical reliability.

Our Architecture Enables Scalable Deployment: The system is built for efficiency and adoption,
with ICD coding for hospital workflow alignment, a fast evidence pipeline supporting continuous
guideline refinement as new research emerges, and a modular graph design enabling extensions like
multi-agent reasoning (e.g. virtual panels), ensuring scalability and flexibility in clinical use.

Limitations and Future Work
While reasoning-based rewards improved performance and alignment, embedding- and LLM-based
methods may overlook logical errors and clinical nuances. Additional limitations include reliance on
abstracts rather than full texts, narrow retrieval from a small number of PubMed papers, and a limited
generalization set, which should be expanded for more reliable conclusions about robustness. Future
work should broaden evaluations, integrate knowledge graphs (e.g., UMLS Bodenreider (2004),
MedGraphRAG Wu et al. (2024)), and explore stronger medical backbones such as MedGEMMA
Sellergren et al. (2025), ideally in collaboration with clinical experts. Beyond ACR, the framework
could also extend to other guidelines such as NICE National Institute for Health and Care Excellence
and ESR European Society of Radiology.
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Richárd Farkas and György Szarvas. Automatic construction of rule-based icd-9-cm coding systems.
In BMC bioinformatics, volume 9, pp. 1–9. Springer, 2008.

National Center for Health Statistics (US). The International Classification of Diseases, 9th Re-
vision, Clinical Modification: Procedures: tabular list and alphabetic index, volume 3. US
Department of Health and Human Services, Public Health Service, Health . . . , 1980.
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A REASONING AGENT

A.1 REASONING AGENT IMPLEMENTATION

All experiments were run on an NVIDIA A100 80GB GPU. We used GRPO with Unsloth
Daniel Han & team (2023), which leverages vLLM Kwon et al. (2023) and LoRA Hu et al. (2022)
for efficient training Unsloth (2024). Models were trained for 2 epochs, with the Baseline model
completing in approximately 2 hours.

Table 7: Reasoning Agent Training Configuration
LoRA Rank 32
Weight Decay 0.1
Warmup Ratio 0.1
LR Scheduler Cosine
Optimizer paged adamw 8bit
Learning Rate 5× 10−6 (AdamW, β1 = 0.9, β2 = 0.99)
Batch Size 6
Gradient Accumulation 2 steps
Num Generations 6
Max Prompt Length 4500 tokens
Max Steps 200 (approx. 2 epochs on dataset)
Save Steps 100
Max Grad Norm 0.1

A.2 ACR PROCESSING

Table 8: ACR Conditions
Train/Test set
Abnormal Liver Function Tests Crohn’s Disease
Abnormal Uterine Bleeding Dementia
Acute Elbow and Forearm Pain Endometriosis
Acute Hip Pain Female Breast Cancer Screening
Acute Nonlocalized Abdominal Pain Female Infertility
Acute Pancreatitis Head Trauma in Children
Acute Shoulder Pain Headache
Acute Spinal Trauma Hernia
Acute Trauma to the Knee Low Back Pain
Anorectal Disease Male Breast Cancer Screening
Back Pain - Child Osteonecrosis
Brain Tumors Osteoporosis and Bone Mineral Density
Breast Pain Renal Failure
Chronic Foot Pain Scoliosis - Child
Congenital or Acquired Heart Disease Suspected and Known Heart Failure
Generalization test
Ovarian Cancer Screening Seizures and Epilepsy
Chronic Elbow Pain Thoracic Back Pain
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A.3 REWARD FUNCTIONS AND EXAMPLES

• Answer Reward (rans): Binary reward for correctly predicting the appropriateness label.
Purpose: Ensures correct clinical recommendations.

• Format Reward (rfmt): Binary reward for using proper <think> and <answer> tags.
Purpose: Enforces consistent output formatting to support structured thinking and improve
performance.

• LLM Evaluator Reward (rLLM): LLM scores reasoning alignment with gold exam-
ples (scaled to 0–1 scale), rewarding medically relevant, expert-like reasoning (LLM-Eval
model).

• MedReason-Embed Reward (rjoint): Combines answer correctness with reasoning trace
alignment (avg. max cosine similarity × binary correctness), promoting both correct an-
swers and well-aligned reasoning (MedReason-Embed model).

Figure 3: Example of training and respective rewards.

Figure 4: Example of model answers from MedReason-Embed Model

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.4 REWARD TRAJECTORIES

As an example of training dynamics, we show the MedReason-Embed model that shows the healthi-
est curves, with a sharp reward jump after epoch 1 suggesting an “aha moment”; described by other
studies as the point where the model “autonomously develops advanced problem-solving strategies,
including reflection and self-correction” Guo et al. (2025). This is impressive given the limited train-
ing, as the model seems to move beyond simple pattern matching toward weighing clinical concepts
like ‘radiation risk’ against ‘diagnostic sensitivity,’ much like an expert. It later plateaus around
epoch 2 at about 1.4/2, where training was concluded.

Figure 5: Smoothed training reward trajectories: reward components for each MedReason-Embed
over 4 epochs, averaged with a window size of 25.

B MEDICAL REVIEW AGENT WITH DEEPRETRIEVAL

Table 9: The suggested input queries to DeepRetrieval with an example for “Breast Pain” condition
and Mammography procedure and a condensed sample of the rewritten queries from DeepRetrieval.

Input Queries
[Breast Pain]
Diagnostic imaging for [Breast Pain]
Clinical evidence for the use of diagnostic imaging in the evaluation of [Breast Pain]
[Breast Pain] and related conditions
Affected conditions [Breast Pain] and synonyms
Other way to say [Breast Pain]
Clinical evidence for the use of [Mammography] in the evaluation of [Breast Pain]
P: [Breast Pain]; I: [Mammography]; C: Alternative imaging procedures; O: Diagnostic accuracy,
risk and benefits
Rewritten Queries
((Breast Pain OR Mastalgia) AND (Breast Cancer OR Breast Cancer Risk OR Cancer Risk) AND
(Diagnostic Imaging))
((Breast Pain OR Mastalgia) AND (Imaging OR Mammography OR Magnetic Resonance Imaging
OR Ultrasound OR Breast Imaging) AND (Diagnostic Imaging))
((Mammography OR mammography) AND (Breast Pain OR Mastalgia OR Mastodynia) AND (Di-
agnostic Imaging))
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C POST-FILTERING AGENT

The Post-Filtering task is defined as predicting the Strength of Evidence (SOE) score for each re-
trieved study, using the ACR-AC 4-level scale (1 = low, 4 = high). The goal is to identify studies in
the top SOE category, prioritizing those most relevant for clinical decision-making. This component
was able to spot studies in the top of the 4 categories (high SOE) with 0.74 recall.

Table 10: Features for SOE Predictor
1. Publication Type
Study Design One-hot encoded (e.g., “Clinical Trial,” “Review,” etc.)
2. GRADE Features (Extracted from Abstract)
Mentions patient outcomes Binary; indicates whether the abstract refers to clinical or patient

outcomes (e.g., mortality, morbidity).
Mentions accuracy metrics Binary; indicates whether diagnostic accuracy metrics are re-

ported (sensitivity, specificity, AUC).
Mentions comparator Binary; indicates presence of a comparator, control group, or

reference standard.
Mentions treatment or effect Binary; indicates references to treatment, therapy, or impact on

clinical management.
Mentions blinding Binary; indicates whether blinding or masking was reported.
Mentions randomization Binary; indicates whether the study employed randomization.
Sample size reported Integer; the sample size if explicitly stated in the abstract (e.g.,

“n = ...”).
Mentions confidence interval Binary; indicates whether confidence intervals are reported.
Mentions funding Binary; indicates whether the abstract discloses funding sources,

grants, or sponsorship.
3. Journal and Year Features
SJR Scientific Journal Rankings; metric of journal quality.
Year Year of publication.

Figure 6: Feature importances observed using a Random Forest predictor
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D ICD CODING AGENT

Table 11: Examples of how different Italian clinical notes are mapped to ICD Code 185: Malignant
neoplasm of prostate.

ICD Code Clinical note (Italian) LLM-Standardized Clinical Note
185 tumori maligni della prostata Malignant neoplasm of prostate
185 tumori maligni della prostata integrazione

richiesta specialistica
Malignant neoplasm of prostate

185 tumore maligno prostatico con sospetto
metastasi

Malignant neoplasm of prostate with sus-
pected metastasis

Figure 7: Distribution of the top 100 ICD codes: The red dashed line shows where cumulative
frequency reaches 75% of occurrences (at code rank 25), highlighting the long-tail pattern seen in
ICD distributions.

E USE OF LARGE LANGUAGE MODELS (LLMS)

For this work, an LLM (GPT-5) was used solely for writing assistance, specifically to polish gram-
mar, style, and clarity and to condense the main text. No LLMs were used for research ideation or
methodological development. The authors take full responsibility for the content of this paper.

19


	Introduction
	Background and Related work
	ICD coding
	Clinical Reasoning Models
	Medical Retrieval

	Methodology
	System Architecture
	ICD Coding Agent
	Reasoning Agent
	Medical Review and Post-Filtering for Generalization

	Results
	ICD coding
	Model Performance and Reasoning Quality
	Evidence Retrieval, Post-Filtering and Generalization

	Conclusions and Discussion
	Reasoning Agent
	Reasoning Agent Implementation
	ACR Processing
	Reward functions and examples
	Reward trajectories

	Medical Review Agent with DeepRetrieval
	Post-Filtering Agent
	ICD Coding Agent
	Use of Large Language Models (LLMs)

