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ABSTRACT

In our work, we explore the synergistic capabilities of pre-trained vision-and-
language models (VLMs) and large language models (LLMs) for visual common-
sense reasoning (VCR). We categorize the problem of VCR into visual common-
sense understanding (VCU) and visual commonsense inference (VCI). For VCU,
which involves perceiving the literal visual content, pre-trained VLMs exhibit
strong cross-dataset generalization. On the other hand, in VCI, where the goal
is to infer conclusions beyond image content, VLMs face difficulties. We find
that a baseline where VLMs provide perception results (image captions) to LLMs
leads to improved performance on VCI. However, we identify a challenge with
VLMs’ passive perception, which often misses crucial context information, lead-
ing to incorrect or uncertain reasoning by LLMs. To mitigate this issue, we sug-
gest a collaborative approach where LLMs, when uncertain about their reasoning,
actively direct VLMs to concentrate on and gather relevant visual elements to sup-
port potential commonsense inferences. In our method, named ViCor, pre-trained
LLMs serve as problem classifiers to analyze the problem category, VLM com-
manders to leverage VLMs differently based on the problem classification, and
visual commonsense reasoners to answer the question. VLMs will perform visual
recognition and understanding. We evaluate our framework on two VCR bench-
mark datasets and outperform all other methods that do not require in-domain
supervised fine-tuning.

1 INTRODUCTION

The problem of visual commonsense reasoning (VCR) (Zellers et al., 2019; Hessel et al., 2022;
Schwenk et al., 2022) expands upon the traditional visual question answering (Antol et al., 2015;
Goyal et al., 2017). VCR requires machines to utilize commonsense knowledge for drawing novel
conclusions or providing explanations go beyond the explicit information present in the image. To
solve these problems, existing state-of-the-art methods mainly treat VCR as an image-text alignment
task between the image content and candidate commonsense inferences (Hessel et al., 2022; Zhang
& Fernando, 2023). These approaches, however, lack explicit modeling of the underlying reasoning
steps, limiting their ability to generalize beyond the training data distribution. Recent methods have
also been leveraging large language models (LLMs) for VCR problems (Hu et al., 2022; Shao et al.,
2023).

However, these methods have several drawbacks. Firstly, they all require supervised training or
fine-tuning on each specific dataset. Since different visual commonsense reasoning datasets have
different focuses and data distributions (e.g. human-centric reasoning (Zellers et al., 2019) and rea-
soning in general topics (Schwenk et al., 2022)), the trained models struggle to generalize effectively
to different datasets. Secondly, current state-of-the-art methods on different datasets are either based
on supervised VLMs (Zellers et al., 2019; 2021) or combine VLMs (fine-tuned on in-domain VCR
datasets) with LLMs (Hu et al., 2022; Shao et al., 2023). Notably, to the best of our knowledge, there
is no comprehensive discussion on how VLMs and LLMs compare in the context of VCR problems
and how to best harness their complementary capabilities.
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Figure 1 comparing image-text matching with LLM guided image-text matching in VCR
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Figure 1: Two examples demonstrating different kinds of visual commonsense reasonings require
different model capabilities. Upper: Visual commonsense understanding (VCU) requires the
model to understand high-level concepts and attributes such as actions, events, relations, etc, which
pre-trained VLMs can achieve via image-text alignment (ITA). Lower: Visual commonsense in-
ference (VCI) requires the model to generate conclusions or explanations based on input image.
Overlooking visual clues can result in erroneous conclusions. LLMs steer VLMs in discovering
vital visual cues for answer support. The LLM employs the top ITA-scored visual clue (e.g.,“It is
cloudy.”) to perform commonsense inference.

To address these issues, in this work, as shown in Figure 1, we first systematically study the problem
of visual commonsense reasoning and categorize it into two sub-problems – visual commonsense
understanding (VCU) and visual commonsense inference (VCI). The visual commonsense under-
standing (VCU) problem requires the model to recognize various low-level visual patterns and then
understand high-level concepts like actions, events, and relations in the image. The visual com-
monsense inference (VCI) problem requires the model to deduce conclusions or form explanations,
likely to be true, based on visual observation. It requires a broad array of commonsense knowledge
about the world, including cause-and-effect relationships, intentions, and mental states (Sap et al.,
2020).

As prior work does not adopt this categorization, we instruct LLMs to classify these tasks, pro-
viding problem type descriptions along with a limited number of manually-annotated in-context
samples. Based on the categorization, we assess the performance of VLMs (Li et al., 2023) and
LLMs (equipped with image captions from VLMs) on VCU and VCI. Our findings (in Table 1)
show that VLMs perform slightly better in VCU tasks, while also being more efficient. Conversely,
in VCI tasks, LLMs outperform VLMs in most cases. This observation aligns with previous findings
indicating that LLMs excel in text-based commonsense benchmarks (Anil et al., 2023).

We observe that image captions provided by VLMs such as (Li et al., 2023), often lack crucial
contextual information necessary for answering questions. This poses a particular challenge for
commonsense inference problems, as inferences are often defeasible given additional context (Choi,
2022). To illustrate this issue, consider the example depicted in Figure 1 (bottom). At first glance,
it may appear that there’s nothing noteworthy beyond horses on a grassy farm, leading one to select
“D: still wind” as an answer. However, upon closer examination of the swaying grass, we must
revise our conclusion to “A: wind.” Existing perception modules, including VLMs, operate in a
feed-forward manner and cannot adjust their perception based on a high-level understanding or
inference. To address this, we propose instructing LLMs to intervene with VLMs in cases where
they are uncertain about inference, typically indicative of a lack of sufficient visual evidence. This
intervention would guide VLMs to focus on specific visual factors, such as weather or emotions, to
support commonsense inferences.

We propose the ViCor framework, which employs the following components: (1) LLMs function-
ing as problem type classifiers (VCU and VCI), VLM commanders for directing VLMs based on
problem classification, and visual commonsense reasoners to harness their extensive world knowl-
edge and reasoning capabilities. (2) Pre-trained VLMs are responsible for visual recognition and
understanding. Communication between LLMs and VLMs occurs through text, such as image cap-
tions, as they are universal medium for all existing models. On VCR (Zellers et al., 2019) and
A-OKVQA (Schwenk et al., 2022), our method achieves state-of-the-art results among methods
without supervised in-domain fine-tuning. On A-OKVQA, the result of ViCor is close to supervised
state-of-the-art methods.
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2 RELATED WORK

Visual Commonsense Reasoning Visual Commonsense Reasoning (VCR) Zellers et al. (2019);
Hessel et al. (2022); Schwenk et al. (2022) is an emerging research area that aims to endow AI mod-
els with a human-like understanding and reasoning of visual scenes, beyond what can be directly
observed. The goal is to understand high-level concepts such as events, relations, and actions and
infer unobservable aspects such as intents, causal relationships, and future actions, requiring the
integration of visual perception, understanding, and commonsense knowledge. The VCR task was
introduced by Zellers et al. (2019), where models must answer a question about an image, given
a set of four possible answers. Further, more datasets focus on more types of reasoning were pro-
posed Park et al. (2020); Hessel et al. (2022); Schwenk et al. (2022). Most state-of-the-art methods
treat VCR as an image-text alignment problem, where they encode the commonsesense inference
and the visual input, then predict the alignment score of the image-text pair via a classification head
or image-text similarity Zellers et al. (2019); Chen et al. (2020); Zellers et al. (2022); Hessel et al.
(2022). Although achieving impressive performance, the generalizability of these methods is lim-
ited by supervised training. Recently, several works have leveraged large language models for visual
commonsense reasoning Hu et al. (2022); Shao et al. (2023); You et al. (2023). However, Hu et al.
(2022); Shao et al. (2023) require some VLMs trained on the datasets to provide visual information.
You et al. (2023) use LLMs to decompose the main problem and use VQA models to acquire visual
information. Our work systematically studies the visual commonsense reasoning problem and better
leverages the strength of different pre-trained VLMs and the reasoning abilities of LLMs, which can
be generalized to different visual commonsense reasoning datasets.

Large Language Models for Vision-and-Language Tasks Benefiting from the rich knowledge
in LLMs, they have been used for various vision-and-language tasks in a zero-shot or few-shot
manner. Yang et al. (2022); Hu et al. (2022); Shao et al. (2023) leverage LLMs for OK-VQA
task Marino et al. (2019) by feeding the caption, question, candidate answers by VQA models, etc.
to GPT3 models, and prompt the GPT model to answer the question with its pre-trained knowledge.
Wang et al. (2022b) propose to use LLMs with image descriptors for video-language tasks. More
recently, with the discovery of LLMs’ tool using ability Yao et al. (2023); Schick et al. (2023), LLMs
were equipped with various visual tools Gupta & Kembhavi (2023); Dı́dac et al. (2023); Shen et al.
(2023); Lu et al. (2023); Wu et al. (2023) and achieved significant performance in Compositional
Visual Question Answering, Science Question Answering tasks Suhr et al. (2018); Hudson & Man-
ning (2019); Lu et al. (2022). Different from these works, we study a more complex and challenging
task with different levels of reasoning, including requiring reasoning beyond direct image observa-
tion. In our method, the LLMs will perform reasoning for problem classification, visual information
query, and commonsense reasoning.

3 VISUAL COMMONSENSE REASONING

3.1 VISUAL COMMONSENSE UNDERSTANDING

The visual commonsense understanding (VCU) problem requires the model to judge if a text T
describing a concept or an attribute aligns with the image I:

e = F (I, T ) (1)

where e stands for evaluation of T by model F . To answer these questions, the model needs to
be able to map the low-level visual observations, such as objects and spatial relations to various
high-level visual concepts and attributes, such as landmarks, actions, events, and relations.

3.2 VISUAL COMMONSENSE INFERENCE

The visual commonsense inference (VCI) problem usually requires the model to evaluate the plau-
sibility of an inference about the image. Besides understanding the literal content in the image as
in VCU, evaluating the inferences T in VCI problems needs involves drawing novel conclusions or
explanations from these visuals, often using (non-visual) commonsense knowledge and rules, based
on some visual observations {oi} derived from the image:

e = F ({oi}, T ) (2)

3



Under review as a conference paper at ICLR 2024

Problem 
Classification

VCU

VCI

BLIP2-ITA

Question: What will the 
people face?
Answers: 
A: earthquake B: raining
C: sunburn D: tsunami

Caption: a large body of 
water with a bridge in the 
background …

Output

Text 
Transform

Output

Required 
Visual Factor

Visual Clue 
Reasoning

Final 
Reasoning

BLIP2-ITA

Output

Instruction: What 
visual factor is 
required? …

Instruction: 
Value of the 
visual factor that 
support choice...

What is the 
weather now?

Clear, cloudy, 
sunny, windy

Confident?

Yes

Initial 
Reasoning

LLM modules

BLIP2 modules

Module outputs

No

For revision

BLIP2-VQA

or

Figure 2: Our ViCor framework. Given a visual commonsense reasoning problem and a caption,
our framework will leverage LLM to perform initial reasoning and confidence check. If the reason-
ing is not confident, the LLM will perform problem classification and acquire visual information
according to the problem type. ∗Note that the final reasoning takes the question and the caption as
input as well.

Here, oi could be some low-level visual observations or high-level visual commonsense understand-
ing. Examples of non-visual commonsense knowledge could be the purpose of an object, people’s
opinions about an object, potential future events, etc.

3.3 VISUAL COMMONSENSE REASONING FORMULATION

Both categories of visual commonsense reasoning tasks share a common formulation. In visual
commonsense reasoning, the input consists of two parts: an image denoted as I and a multiple-
choice question input represented as q, ci, where q corresponds to the question, and ci stands for the
i-th answer choice. The model needs to choose the choice ci that is most likely to be true based on
the image I .

4 METHOD

As shown in Figure 2, our approach involves a multi-step process. Initially, a pre-trained large
language model (LLM) first takes the initial perception result (i.e., image caption), a question-answer
pair, and instructions as input to evaluate potential answer candidates. Then, if the LLM is not
confident about its reasoning, it will reason about what visual factors should be perceived from the
image to make a confident commonsense inference. Using this information as a guidance, a vision-
and-language model (VLM) will focus on specific aspects of the image, returning the perception
result back to the LLM. Finally, the LLM re-evaluates the candidates in light of new perception
results.

4.1 LARGE LANGUAGE MODELS AS VCR REASONER

Evaluating answer choices VCR requires drawing new conclusions based on commonsense knowl-
edge, which LLMs excels at (Anil et al., 2023). On the other hand, pre-trained vision-and-language
models have exhibited a capability for visual understanding, including tasks such as image cap-
tioning and image-text alignment, with a demonstrated ability to generalize across various datasets,
as highlighted in (Li et al., 2023). Therefore, we decided to harness the strengths of vision-and-
language models for visual understanding and the capabilities of large language models for evaluat-
ing answer candidates in the context of visual commonsense reasoning.

Captioning serves as a fundamental unsupervised pre-training task and most generalized capabilities
of pre-trained VLMs, which captures the most salient information from an image. Moreover, consid-
ering that text serves as a universal interface for both VLMs and LLMs, employing image captions
serves as an effective means to connect VLMs with LLMs without necessitating any model-specific
fine-tuning. Therefore, we first prompt the LLMs to take the caption of the image CI as the initial
information and perform chain-of-thought reasoning on the question:

r1 = LLM({ci}, q, CI). (3)
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BLIP2-COCO

Someone just had an accident in front 

of them

Please classify the question into one 
of the following categories.
1. Visual commonsense understanding: 
questions that require understandings 
of the image's current visual status.
2. Visual commonsense reasoning: 
questions require some visual 
understanding of the image, then need 
some commonsense knowledge to reason 
about the answer. 
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Question: What animal will most likely 
eat this meal?
Choices: A: elephant B: human ......

Analysis: This question requires 
understanding what is the meal in the 
image, then using commonsense to reason 
which animal likes to eat it.
......
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commonsense reasoning question about an 
image and four candidate choices.
Your task is to analyze what visual 
factors are needed to evaluate the 
choices. Then, list the factors you 
need in the format of a list of 
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Question: Where is the plant on the 
sign usually found?
Choices: A. desert B: tropics ......

Analysis: To answer the question, we 
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......
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the image.
Your task is to think about an answer 
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support each choice in the main 
question.

Examples:
Question: Where is the plant on the 
sign usually found?
Choices: A. desert B: tropics ......
Visual factor question: What is the 
category of the plant on the sign?

Reasoned answers:
A: cactus B. rainforest ......

Figure 3: Three simplified prompt examples demonstrating how we define prompts to classify the
problem (left), reason visual factors (middle), and think about visual observations regarding visual
factors (right).

The reasoning result r1 includes both intermediate reasoning steps and the final answer. However,
it’s important to note that the image caption may not encompass all the relevant information within
the image, potentially omitting critical contextual details essential for answering the question. In
such cases, it becomes necessary to gather additional relevant visual observations from the image.
Before this, we must first judge whether there is a lack of supportive visual evidence that would allow
us to make a confident decision. As in Figure 2, we let the LLM take the initial reasoning r1 and the
history prompt as input to judge if current visual information adequately supports the decision. If it
does, the model will directly output the result. Conversely, if there is a lack of sufficient evidence,
the model will progress to the second stage, where it will seek additional visual evidence.

4.2 LARGE LANGUAGE MODELS AS VCR PROBLEM CLASSIFIER

As defined in the last section, there are two kinds of VCR problems, each requiring different levels of
visual reasoning. Therefore, we propose to leverage VLMs in distinct manners when facing different
problem types. To this end, we first prompt the LLM to classify the problem into two categories.
To achieve this, we provide the definitions of these two categories in the prompt. Additionally, we
include a set of manually annotated in-context examples to aid in problem classification, where the
questions of in-context examples are selected from the training set. Figure 3 illustrates the prompt.

4.3 LARGE LANGUAGE MODELS AS VLM COMMANDER

The pre-training dataset of vision-and-language models contains millions to billions of image-text
pairs. Therefore, we propose a hypothesis that vision-and-language models have learned the map-
ping between visual features and the high-level commonsense concept during the pre-training. In
light of this, for visual commonsense understanding (VCU) problems, we propose to leverage pre-
trained VLM in a zero-shot manner. Specifically, for each choice ci, we first instruct the LLM to
transfer it and the question to a declarative sentence with instruction and in-context examples:

si = LLM(q, ci) (4)

For instance, for the question What will the people face? and the choice earthquake,
we will transform them to The people will face earthquake. Then, we feed si and the
image I to the pre-trained VLM to calculate the image-text alignment score. Following (Li et al.,
2023), we use the sum of ITM and ITC scores to compare choices:

Si = ITM(I, si) + ITC(I, si) (5)

We will directly take the choice with the highest score as the final output.

For the visual commonsense inference (VCI) problems, the model needs to acquire related visual
observations and use relevant commonsense knowledge to reason about the answer. This knowledge
often neglected in the descriptions of the image. Therefore, as in Figures 2 and 3, we first prompt the
LLMs to think about some visual factors fj that influence the answer to the question, like ‘the action
of the person’, ‘the interaction between people’, etc. Then, we could acquire the visual observation
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of the visual factor in the image with a visual question-answering model by asking a question about
the visual factor:

oj = V QA(I, fj) (6)
where oj is the answer to the question which we call visual clue. However, although pre-trained
VLMs have zero-shot visual question-answering (VQA) capabilities (Li et al., 2023), VQA datasets
require human labeling and are not one of the pre-training tasks of VLMs. Therefore, the accuracy
and the quality of zero-shot VQA may hinder the performance of the reasoning for the question.
Furthermore, the answer of VQA does not consider the context of the main question and therefore
may lack the most useful information. To this end, we further propose to prompt the LLM to reason
about the potential instantiations of the visual factors that can support the choices as in Figure 3:

oij = LLM(fj , ci, q) (7)

As an illustration, when fj is “category of the plant,” the potential values for oij may include specific
plant names like “cactus.” Then, we could leverage the image-text matching (ITM) and image-text
contrastive (ITC) functions of pre-trained VLMs to select the observation that most align with the
image among the observations for each choice i:

oj = ojk where k = argmax
i

{ITM(oij , I) + ITC(oij , I)} (8)

Finally, we append the visual clues {oj} after the caption as extra information for LLM to perform
final reasoning:

r2 = LLM({ci}, q, CI , {oj}) (9)

5 EXPERIMENTS

5.1 DATASETS

We evaluate our approach using two datasets focused on visual commonsense reasoning:
VCR (Zellers et al., 2019) and AOKVQA (Schwenk et al., 2022). Both datasets formulate vi-
sual commonsense reasoning as 4-choice QA problems about an image, containing various visual
commonsense understanding and inference problems. VCR dataset focuses on human-centric visual
commonsense reasoning problems. In contrast, A-OKVQA dataset requires various commonsense
knowledge about common objects and events in daily life. For A-OKVQA, we use the validation
set with 1145 examples. For VCR dataset, we randomly sample 3000 / 26534 examples from the
validation set for the ablation study, and sample 500 examples to compare with other methods due
to the cost of GPT4. We divide the image from left to right into three bins and name the person
depending on which bin they are located in when feeding text to VLMs and LLMs, similar to (You
et al., 2023). The performance of both datasets is evaluated by accuracy.

5.2 IMPLEMENTATION DETAILS

In our experiments, we use GPT-3.5-turbo-0613 and GPT-4-0613 as the LLMs for reasoning. To
ensure reproducibility, we set the temperature of the LLMs to 0. For image captioning, we employ
LLAVA-7B-v1.1. Furthermore, we use the pre-trained BLIP2 model for image-text alignment and
BLIP2-FlanT5 XL for visual question answering on both datasets. The number of in-context ex-
amples used in the prompts shown in Figure 3 is 6, 1, and 3, respectively. All the questions in the
in-context examples are from training set.

5.3 BASELINES

To demonstrate the effectiveness of our proposed framework, we implement the following zero-shot
baselines for comparison:

• BLIP2-Pretrain (Li et al., 2023): We use the pre-trained BLIP-2 model directly to perform
image-text alignment on both datasets. On both datasets, we utilize GPT-3.5-turbo-0613 to
transform the questions and choices into declarative sentences and feed them to the BLIP-2
model to calculate the image-text alignment score. We select the choice with the highest
alignment score as the answer.
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Table 1: Ablations on the effect of problem categorization and clue generation on VCR Zellers et al.
(2019) and A-OKVQA Schwenk et al. (2022) datasets. We use GPT-3.5-turbo-0613 for LLM-based
methods. *Orig means using the declarative sentences transformed by LLM (Eq.5). *Clue means
using the clues generated by LLM for image-text alignment (Eq.10). All numbers indicate accuracy
(%). “Conf” indicates the samples where the LLM-Caption baseline shows confidence in its initial
reasoning, while “!Conf” indicates cases where it lacks confidence.

Decision Model Visual Info
AOKVQA VCR

VCU VCI VCU VCI
Conf !Conf Conf !Conf Conf !Conf Conf !Conf

BLIP2-Pretrain Orig* 76.5 66.3 56.5 50.9 70.0 56.3 59.2 47.4
LLM Clue* 74.4 63.0 60.2 56.1 70.6 56.7 63.3 49.2

LLM
Caption 78.9 55.1 85.2 50.9 75.3 46.6 65.3 41.9

Caption + VQA Clue 77.5 56.2 82.4 54.9 75.9 51.9 65.3 47.3
Caption + LLM Clue 79.2 65.6 81.5 64.2 72.9 58.1 57.1 52.9

Num. of Examples 289 575 108 173 170 1779 49 1002

• IdealGPT (You et al., 2023): A concurrent method leveraging LLMs for visual reasoning.
IdealGPT prompts LLMs to iteratively query a VQA model to answer questions for visual
reasoning tasks, including VCR (Zellers et al., 2019). In our experiments, we employ the
original source code of IdealGPT while utilizing the same version of LLM and VLMs for
caption, VQA, and reasoning as our method.

6 RESULTS AND ANALYSIS

6.1 ABLATION STUDY

We conduct ablation studies of our ViCor method on VCR and AOKVQA datasets. Results are
shown in Table 1.

How do VLM and LLM compare on visual commonsense reasoning? By comparing the first
row and the third row in Table 1, we can validate our hypothesis on the comparison between VLM
and LLM. We observe that, in VCU problems, the VLMs perform significantly better than LLM
reasoning based on the caption on both datasets, with an average accuracy of 63.6% vs. 56.0%.
While on VCI problems, LLM based on caption performs better on average at 53.6% vs. 50.5%. We
could also observe that BLIP2 has a significant performance gap between the two kinds of problems
while LLM performs similarly. The significant difference between the two models and two datasets
also validates the effectiveness of the problem classification performed by LLM.

How do visual factors and LLM clue reasoning help visual commonsense reasoning? We val-
idate the effectiveness of visual factors reasoning and LLM clue reasoning on both BLIP2-Pretrain
and LLM-based decision paradigms. Here, we describe how we adapt the clue generation method
(as in Eq. 7) for BLIP2-Pretrain decision paradigm: we first prompt the LLM to generate the re-
quired visual factors fj , then generate visual clues oij of these factors that can support each choice
i. When applying the clues to BLIP2-Pretrain, we take the average of the image-text alignment
scores within the same choice as the image-text alignment score for the choice i:

Si =
1

n

∑
j

(ITM(I, oij) + ITC(I, oij)) (10)

where n is the number of required visual factors determined by LLM. The choice with the highest
score will be selected.

From Table 1, we can first find that visual factors and visual clues are less helpful in VCU prob-
lems. On VCU problems, besides directly taking the concept being asked by the original question
as the visual factor. The model will also consider low-level visual features as visual factors for
the question. For example, for the question What is the event in the image, and the
choice dinner, the visual factor could be objects in the image, and the reasoned visual
clues could be plates with food on the table.

On BLIP2-Pretrain, using clues for image-text alignment is not better than using the transferred
declarative sentences. This validates that BLIP2 can already align visual features with different
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Table 2: Comparison between ViCor and
other methods on VCR Q→A task. * Re-
sults on full validation set. † CoT indicates
the same setting as ‘Caption’ baseline in Ta-
ble. 1: given caption and perform chain-of-
thought reasoning.

Method Acc.(%)

Su
p. R2C Zellers et al. (2019) 67.3

*MERLOT Zellers et al. (2021) 79.4

IC
L

BLIP2-Pretrain Li et al. (2023) 51.2
GPT-3.5
†CoT 43.8
IdealGPT You et al. (2023) 47.9
ViCor (ours) 55.4
GPT-4
CoT 57.8
ViCor (ours) 59.8

Table 3: Comparison between ViCor and
other methods on A-OKVQA dataset. *Both
PromptCap and Prophet trained VLMs on
A-OKVQA dataset as part of the module.
Sup. indicates supervised methods, and ICL
means methods using in-context learning.

Method Acc.(%)

Su
p.

GPV-2 Kamath et al. (2022) 60.3
*PromptCap Hu et al. (2022) 73.2
*Prophet Shao et al. (2023) 76.4
InstructBLIP Dai et al. (2023) 81.0

IC
L

BLIP2-Pretrain Li et al. (2023) 65.6
GPT-3.5
CoT 63.3
ViCor (ours) 70.9
GPT-4

CoT 70.3
AssistGPT Gao et al. (2023) 74.7
ViCor (ours) 75.6

concepts well. However, introducing visual factors and observations as extra context improves per-
formance on LLM reasoning, especially when the LLM is not confident about its initial judgment,
i.e., initial provided visual information (caption) is insufficient. In this case, the performance of
LLM reasoning (‘Cap + Clue’ in Table 1) is comparable with pre-trained BLIP2.

For VCI problems, visual factors and visual clue generations help both reasoning paradigms. First,
the improvement in the BLIP2-Pretrain paradigm validates that (1) pre-trained BLIP2 cannot well-
align statements that go beyond literal visual content, requiring commonsense inference; (2) LLM
can reason about the visual factors that may contribute to supporting candidate commonsense infer-
ences, and guide the VLM to focus on relevant factors accordingly.

Second, the improvement in the LLM reasoning paradigm shows that LLM clues successfully pro-
vide subtle details of the scene that are crucial for solving the problem. Third, visual clues reasoned
by LLM are better than VQA as the visual information provider. There are mainly two reasons.
First, the pre-trained VLM sometimes could not understand or correctly answer the question due to
the lack of language alignment. Second, the VQA model lacks the main question as the context and
may not get the intention of the visual factor. Therefore, it may produce irrelevant answers. We
provide examples to further illustrate these in Section 6.3.

How to determine the reasoning process based on confidence and problem category? When
deciding the reasoning process, we need to consider both the performance and efficiency, evaluating
by the number of LLM calls. From Table. 1, we can observe that when the LLM is confident
about its initial reasoning, the performance is the best or almost the best on both VCU and VCI
problems. Therefore, using LLM+caption is the best choice. When the LLM is not confident about
its initial reasoning on VCI problems, LLM+Caption+LLM clue significantly outperforms other
decision paradigms. On VCU problems, we can observe that the performance of BLIP2 is similar to
LLM+Caption+LLM clue. However, the LLM+Caption+LLM clue requires five LLM calls, which
is three times more than using BLIP2. Therefore, using BLIP2-ITA is the best choice in this case.

6.2 MAIN RESULTS

VCR The results on VCR dataset are in Table 2. Our method achieves the best result compared
with other methods without supervised training. Specifically, our method outperforms the Ideal-
GPT (You et al., 2023) since it is able to leverage the visual recognition and understanding abilities
of VLMs more effectively by considering the types and definitions of problems. However, we notice
that there is still a significant gap between ICL methods and methods with supervised training. This
could be due to the loss of information in approximating the naming and labeling of the persons
mentioned in Section 5.1.

A-OKVQA On A-OKVQA dataset, on both GPT models, our method can improve on chain-of-
thought baseline by a significant margin. Compared with concurrent method AssistGPT (Gao et al.,
2023), which utilizes GPT4 to call more visual tools such as object detection (Liu et al., 2023), text
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of them

Question What is person in the 
middle standing up to do?

Why is woman holding 
umbrella?

What is the appearance of 
the grass indicating?

Choices A: washing dishes B: serve 
someone 

A: block sun B: repelling 
rain C: to dance

A: wind  B: rain C: drought
D: still wind 

LLAVA Caption A man and a woman 
sitting at a table in a 
restaurant. The man is 
holding a bottle.

A group of people sitting 
at a table outside, with a 
woman sitting at the end 
under an umbrella.

A field with a tractor, a 
horse, and a cow. The 
tractor is parked in the 
grass. 

Initial Evaluation Given it’s in a restaurant 
and the man is holding a 
bottle, it is likely that he is 
serving someone. 

Since the caption does not 
mention any bad weather 
such as rain, the umbrella 
is to block sun.

The animals may not stand 
in rain or drought. The grass 
seems not moving – no 
strong wind.

Category VCU  VCI  VCI

BLIP2-ITA results A A D

Visual factors N/A The weather Appearance of the grass

LLM clues N/A A: sunny B: rainy C: sunny A: sway B: wet C: wither D: 
motionless

VQA result N/A rainy It is a grassy field

Final result A: washing dishes B: repelling rain A: wind

Ground truth A B A

1. VCU, no info, ITM correct
2. VCI, ITM wrong, init wrong
3. VCI, no info, VQA worse (grass)

Figure 4: Qualitative examples. All the examples are in the case of initial reasonings are not
confident. Left: An example in the VCR dataset, where the ITA corrects the initial reasoning.
Middle: An example in the A-OKVQA dataset, where the LLM corrects the initial reasoning after
giving the observation of the visual factor. Right: An example in the A-OKVQA dataset, where the
reasoned clue provides more useful information than VQA.

detection, and region grounding (Wang et al., 2022a), our method with only BLIP2 and LLAVA can
achieve better results. Meanwhile, we can observe that our method ViCor, without any training on
the dataset, can achieve results close to the best supervised methods. This shows that our analysis
and modeling for visual commonsense reasoning makes our framework tackle the VCR problems
more efficiently.

6.3 QUALITATIVE EXAMPLES

In Fig. 4, we demonstrate several qualitative examples. The left example shows a case where the
problem is classified as VCU, and the BLIP2-Pretrain selects the correct answer. The middle exam-
ple presents a case where the initial evaluation is incorrect, and both the VQA and clue reasoning
methods give the correct observation for the visual factor ‘weather’, based on which the LLM selects
the correct answer. The BLIP2-Pretrain here selects ‘block sun’ due to the lighting condition of the
image. The example on the right demonstrates a case when the LLM reasoned answer is better than
the answer generated by the VQA model. Here, the VQA does not understand the intention of the
visual factor without the context of the main question. The LLM reasoned answer, however, can pro-
vide the most relevant information to the question and help the final reasoning. The BLIP2-Pretrain
fails here due to the textual similarity between ‘wind’ and ‘still wind’.

7 CONCLUSION AND LIMITATIONS

In this work, we study the problem of visual commonsense reasoning (VCR) based on the capabili-
ties of pre-trained vision-language models and large-language models and define two sub-problems
– visual commonsense understanding (VCU) and visual commonsense inference (VCI). Based on
this, we propose the ViCor framework that efficiently uses visual recognition and understanding ca-
pabilities of VLMs and commonsense reasoning capabilities of LLMs to overcome the challenges
in VCR. The experiment results validate our analysis of VCR problems and the effectiveness of our
framework. Currently, our method lags behind best performing methods in the field which are based
supervised fine-tuning. Also, text is the only communication medium between LLMs and VLMs.
The loss of visual details caused by captions may be hindering on certain scenarios. Future work
could explore fine-tuning approach with alternative mediums such as visual embeddings.
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Table 4: Ablations on VCR with more decoding configurations.

Decision Model Decoding Config VCU VCI
Conf !Conf Conf !Conf

LLM + Caption + LLM Clue

Orig 72.9 58.1 57.1 52.9
Temp 0.1 72.4 58.8 57.1 53.9
Temp 0.2 72.4 58.5 61.2 52.2

ICL examples 74.7 56.7 59.2 54.2

Num. of Examples 170 1779 49 1002

Table 5: The result of ViCor on OKVQA dataset.

Method Accuracy

LLM+Caption 34.3
BLIP2-T5XL 36.0
ViCor (ours) 38.4

A ADDITIONAL RESULTS

A.1 RESULTS ON MORE LLM DECODING CONFIGURATIONS

To validate the robustness of our method, we ran the experiments on the VCR dataset with more
decoding configurations using LLM + Caption + LLM Clue decision branch. Specifically, we ran
on two more LLM decoding temperatures 0.1 and 0.2, and used different in-context examples for the
prompt in Fig.3 (right) to guide the LLM to think about observations for visual factors based on can-
didate choices. From the results in Table. 4, we can observe that different decoding configurations
influence the results by a small margin and do not affect the main conclusions.

A.2 RESULTS ON OKVQA DATASET

We adapt our method and baselines to OKVQA Marino et al. (2019) dataset. The results are in
Table. 5. We use GPT-3.5-Turbo for LLM modules. Since OKVQA is an open-ended dataset, we
use the Caption+VQA clue version of our method in Table 1 to tackle unconfident VCI problems.
As shown above, our framework can still leverage the advantage of both VLMs and LLMs to achieve
better results owing to problem classification and active visual information acquisition.
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