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ABSTRACT

Large language models (LLMs) have achieved remarkable progress, with
Parameter-Efficient Fine-Tuning (PEFT) emerging as a key technique for down-
stream task adaptation. However, existing PEFT methods mainly operate in Eu-
clidean space, fundamentally limiting their capacity to capture complex geomet-
ric structures inherent in language data. While alternative geometric spaces, such
as hyperbolic geometries for hierarchical data and spherical manifolds for circu-
lar patterns, offer theoretical advantages, constraining representations to single
manifold types fundamentally limits expressiveness, even with learnable curva-
ture parameters. To address this, we propose MoS (Mixture of Space), a uni-
fied framework that leverages multiple geometric spaces simultaneously to learn
richer, curvature-aware representations. Building on this scheme, we develop
MoSELoRA, which extends Low-Rank Adaptation (LoRA) with heterogeneous
geometric experts, enabling models to dynamically select or combine appropriate
geometric spaces based on input context. Besides, to address the computational
overhead of frequent manifold switching, we develop a lightweight routing mech-
anism. Moreover, we provide empirical insights into how curvature optimization
impacts training stability and model performance. Our experiments across diverse
benchmarks demonstrate that MoSELoRA consistently outperforms strong base-
lines, achieving up to 5.6% improvement on MATH500 and 15.9% on MAWPS.

1 INTRODUCTION

Large language models (LLMs) have recently demonstrated impressive performance across a wide
range of applications, including translation, comprehension, dialogue, and reasoning (Achiam et al.,
2023; Jaech et al., 2024; Dubey et al., 2024; Team, 2024). With the aid of post-training techniques
such as instruction tuning, they can be further adapted to diverse downstream tasks with notable
gains in effectiveness (Hu et al., 2023; Han et al., 2024). Despite these advances, most existing
approaches rely on a Euclidean assumption, modeling all embeddings in flat Euclidean space, which
are often inadequate to capture the semantic diversity and contextual complexity of natural language
(Bronstein et al., 2017; Park et al., 2024; He et al., 2025b).

Semantic structures in language often display geometric patterns: hierarchical relationships where
broad and general concepts naturally encompass finer subcategories and distinct entities; circular
patterns among synonymous expressions or co-referential terms; and complex multi-level depen-
dencies that resist simple linear organization. These patterns are largely overlooked and constrained
under Euclidean representations, leaving open the question of how to effectively leverage such nat-
urally occurring structures within embedding spaces to unlock richer representational capacity.

Recently, growing attention has shifted toward non-Euclidean constant-curvature spaces as alterna-
tives to Euclidean embeddings for improving model performance (Peng et al., 2021; Yang et al.,
2024d; Pal et al., 2024; Loshchilov et al., 2024). From an embedding perspective, it has been ob-
served that tokens associated with higher-level and more general semantics often occupy regions of
lower norm, whereas tokens tied to more concrete and specific meanings are distributed in regions
of higher norm (Yang et al., 2024c). Hyperbolic space, with its negative curvature and exponen-
tial growth capacity, offers an effective means of embedding complex hierarchical information in
lower dimensions compared to Euclidean space. Building on these advantages, Yang et al. (2024c)
explored combining LoRA with hyperbolic geometry, enabling efficient fine-tuning of pretrained
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LLMs while reducing embedding distortion. Similarly, spherical manifolds have shown promise
for capturing circular patterns and normalized representations, as demonstrated by Loshchilov et al.
(2024) who reformulated Transformers as hyperspherical models (nGPT) by enforcing embeddings
to lie on the unit sphere.

Limitations of Existing Methods. However, real-world language data exhibits complex, heteroge-
neous structural relationships that cannot be adequately captured by constraining representations to a
single geometric space. For instance, a single sentence may contain both hierarchical semantic rela-
tionships (e.g., category-subcategory structures) and circular patterns (e.g., synonymous expressions
or co-referential terms), requiring different geometric inductive biases simultaneously. Furthermore,
existing non-Euclidean approaches face significant computational challenges. Prior work often em-
ploys exponential and logarithmic maps to transition between non-Euclidean and Euclidean spaces
(Ganea et al., 2018; Yang et al., 2022), incurring substantial computational overhead at each model
layer. These repeated mappings are difficult to scale to models with larger parameter counts and
greater depth, creating a practical barrier to widespread adoption.

To address these fundamental limitations, we propose a unified Mixture of Space (MoS) frame-
work that integrates three types of constant-curvature spaces—hyperbolic, spherical, and Eu-
clidean—enabling the simultaneous capture of diverse geometric structures within a single model.
Rather than constraining all representations to a single geometric paradigm, our approach allows
different tokens to reside in the geometric space most suited to their structural properties: hierarchi-
cal concepts in hyperbolic space, circular patterns in spherical space, and general relationships in
Euclidean space.

Building upon this framework, we introduce MoSELoRA, which combines the MoS paradigm with
Low-Rank Adaptation for efficient fine-tuning of large language models. MoSELoRA employs a
lightweight token routing mechanism that dynamically assigns each token to its optimal geometric
expert, avoiding the computational overhead of repeated space transformations while maintaining
the representational benefits of multiple geometries. This design enables the model to adapt its
geometric inductive biases on-the-fly, matching the heterogeneous structural requirements of real-
world language data. Our contributions can be summarized as follows:

• We introduce a unified architecture that integrates three distinct constant-curvature spaces,
and combine it with Mixture-of-Experts (MoE) and Low-Rank Adaptation (LoRA) to form
a novel and efficient fine-tuning framework for LLMs.

• We design a lightweight token routing mechanism that efficiently directs tokens among
multiple geometric spaces to overcome high-overhead space transformation.

• We provide an in-depth analysis of the training dynamics of space selection and routing
strategies, along with optimizing geometric space integration during fine-tuning.

• We evaluate the proposed method on benchmarks including natural language understanding
and mathematical reasoning, where it consistently outperforms several strong baselines.

2 RELATED WORK

2.1 MIXTURE OF LORA EXPERTS

MoE introduces multiple expert networks and a gating network that selects experts based on dif-
ferent data characteristics(Jacobs et al., 1991). Specifically, the Sparsely-Gated Mixture-of-Experts
mechanism(Shazeer et al., 2017) improves the capacity and computational efficiency of large-scale
models by selecting sparse combinations of experts. Recently, with the LLMs PEFT techniques,
MoE architectures have begun to be extended to corresponding PEFT methods(Mangrulkar et al.,
2022; Gao et al., 2022; Zadouri et al., 2024), particularly LoRA-based MoE methods(Feng et al.,
2024; Wu et al., 2024b;a). Mini-Ensemble LoRA (MELoRA)(Ren et al., 2024) partitions the original
LoRA matrices into smaller, equivalent submatrices along the diagonal, which are then concatenated
to form a structure akin to the MoE architecture, achieving a higher effective rank with fewer pa-
rameters, while simultaneously reducing computational complexity by a factor of n2. To improve
parameter efficiency, HydraLoRA(Tian et al., 2024) proposes an asymmetric structure for LoRA ex-
perts, where a common LoRA matrix WA is shared across all experts, while each expert has its own
distinct LoRA matrix WBi further extending the LoRA-based MoE architectures. HMoRA(Liao
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et al., 2025) employs a hierarchical hybrid routing strategy, combining token-level and task-level
routing mechanisms, and proposes a novel routing auxiliary loss function. This design not only en-
hances the task router’s ability to distinguish tasks, but also more effectively captures fine-grained
token information and broader task context, resulting in remarkable performance in multi-task learn-
ing. However, these approaches often struggle with the trade-off between parameter efficiency and
model performance, as increasing the number of activated parameters can lead to higher computa-
tional costs and reduced efficiency. Our work extends LoRA experts to heterogeneous geometric
space, compared to the original experts, offering stronger expressiveness and achieving a better
balance between fewer activated parameters and model performance.

2.2 NON-EUCLIDEAN AND CURVATURE-AWARE MODELING

Recent research increasingly emphasized the importance of non-Euclidean geometry for representa-
tion learning, aiming to overcome the limitations of standard Euclidean embedding spaces (Shimizu
et al., 2020; Peng et al., 2021; Pal et al., 2024; He et al., 2025c;b). Early attempts focused on con-
structing neural networks that operated fully in hyperbolic space. For example, Chen et al. (2022)
formalized all operations as Lorentz transformations, thereby avoiding the reliance on tangent-space
approximations. Beyond purely hyperbolic models, Skopek et al. (2020) introduced mixed-curvature
variational autoencoders, whose latent spaces were composed of multiple constant-curvature mani-
folds, enabling generative models to benefit from diverse geometric structures simultaneously. More
recently, Yang et al. (2024d) explored an efficient Transformer architecture in the Lorentz model of
hyperbolic space, providing hyperbolic counterparts for essential modules such as positional en-
codings, layer normalization, and residual connections. Parallel to architectural advances, Yang
et al. (2024c) investigated fine-tuning Euclidean LLMs directly in hyperbolic space, demonstrating
improved downstream performance by leveraging the inherent hierarchical structure of token em-
beddings. Building on this line of work, He et al. (2025a) introduced Hyperbolic Large Language
Models with a Mixture-of-Curvature Experts design, where each expert resided in a hyperbolic
manifold of distinct curvature, allowing flexible encoding of input sequences and showcasing the
scalability of curvature-aware modeling in large-scale pretraining.

3 PRELIMINARY

3.1 MIXTURE OF LORA EXPERTS

Mixture of LoRA Experts consists of a group of N uniform experts {Ei}Ni=1, where each features
a parameter-efficient LoRA module to store updated parameters while fine-tuning. Each expert Ei

has the following forward process:

Ei = BiAiX, (1)

where the tunable weight matrices Ai ∈ Rr×din , Bi ∈ Rdout×r, and r ≪ min{din, dout} is the
maximum rank attainable by the trainable matrix, with matrix Ai randomly initialized and matrix
Bi set to all zero. The Mixture of LoRA Experts forward process can be formulated as follows:

O = WX +

N∑
i=1

G(X)iEi = WX +

N∑
i=1

G(X)iBiAiX, (2)

where W is the frozen pretrained weight of the feed-forward neural network (FFN) block, G(X) is
the token router in the MoE module which routes each token into several distinct experts (eg., top-K
experts for sparse MoE (Fedus et al., 2022)) among all N experts.

3.2 LORENTZ MODEL OF HYPERBOLIC SPACE

Lorentz Model. The Lorentz model, also called the hyperboloid model, provides one of the iso-
metric realizations of the hyperbolic space as a Riemannian manifold. Formally, an n-dimensional
Lorentz model with constant negative curvature κ < 0 is defined as

Ln,κ =
{
x ∈ Rn+1

∣∣ ⟨x,x⟩L = 1/κ, xt > 0
}
,
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Figure 1: The MoSELoRA architecture contains heterogeneous geometric experts unified in our
MoS scheme, with various curvatures. Three geometric expert groups are embedded into the FFN
layer of LLMs and labeled in three different colored blocks.

where x = [xt; xs]
⊤ with xt ∈ R and xs ∈ Rn, and the Lorentzian inner product is given by

⟨x,y⟩L = −xtyt + x⊤
s ys = x⊤diag(−1, 1, . . . , 1)y.

Geometrically, Ln,κ corresponds to the upper sheet of a two-sheeted hyperboloid embedded in (n+
1)-dimensional Minkowski space, with the distinguished coordinate xt representing the time-like
axis and the remaining n coordinates forming the space-like axes. This construction not only aligns
with the terminology of special relativity (Resnick, 1991) but also ensures numerical stability in
optimization tasks.

Tangent Space and Maps. For each point x ∈ Ln,κ, the tangent space TxLn,κ is defined as the
Lorentz-orthogonal complement of x and constitutes a smooth Euclidean subspace of Rn+1. This
tangent space provides a local linear approximation of the curved hyperbolic manifold, which is
fundamental for optimization and representation learning. The transition between the manifold and
its tangent space is realized through the exponential and logarithmic maps.

The exponential map expκx : TxLn,κ → Ln,κ takes a tangent vector u ∈ TxLn,κ and projects it onto
the manifold along the geodesic starting at x:

expκx(u) = cosh
(√
|κ|∥u∥L

)
x+

sinh
(√
|κ|∥u∥L

)
√
|κ|∥u∥L

u.

Conversely, the logarithmic map logκx : Ln,κ → TxLn,κ takes a point y ∈ Ln,κ and returns the
unique tangent vector at x that corresponds to the geodesic connecting x and y:

logκx(y) =
cosh−1

(
κ⟨x,y⟩L

)
sinh

(
cosh−1(κ⟨x,y⟩L)

) (y − κ⟨x,y⟩Lx) .

These two maps establish a rigorous correspondence between the locally Euclidean tangent space
and the globally curved hyperbolic manifold, ensuring that vectors can be transferred consistently
between the two domains.

4 OUR MOS AND MOSELORA FRAMEWORK

In this section, we propose our curvature-aware tuning scheme that adapts the model to the implicit
curvature of semantic subspaces while autonomously exploring and transitioning between different
constant curvatures within the same subspace, and also across distinct subspaces.
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We start by constructing a unified framework that accommodates embeddings from spaces with dif-
ferent curvatures, including Euclidean, Hyperbolic, and Spherical geometries. Such a formulation
enables representations to be jointly learned across multiple manifolds, thereby capturing comple-
mentary structural information and offering diverse perspectives of the embedding knowledge. By
integrating these curved spaces within a single scheme, the model can flexibly adapt to heteroge-
neous relational patterns while maintaining consistency across geometries. Moreover, the unified
design is implemented in a computationally efficient manner, ensuring that the transformation be-
tween different manifolds can be seamlessly incorporated into the forward pass of modern neural
architectures. Afterwards, we will outline our curvature-aware tuning scheme with a mixture of
geometry-integrated experts.

Mixture of Space scheme. As previously introduced, the standard Mixture of LoRA Experts
scheme comprises a group of isomorphic experts, which are intended to exploit the combinato-
rial richness offered by the large number of possible substructure configurations. However, the
backbone of these combinations still resides in a flat (Euclidean) space, which is characterized by
polynomial volume growth with respect to radius, and therefore overlooks the intrinsic geometry of
the embedding space.

Therefore, we proposed to integrate non-Euclidean geometry into each expert to equip each layer
with curvature-aware representation capabilities, capturing underlying features in different depths.
Specifically, we explore three distinct constant curvature spaces characterized by positive, negative,
and zero curvature, and common space models for these three curved spaces are Spherical S, Hy-
perbolic H, and Euclidean E (flat) space. For a n-dimensional hyperbolic space Hn

κ with constant
negative curvature κ, each point x ∈ Rn+1 in Hn

κ should satisfy the following definition:

Hn
κ := {x ∈ Rn+1| ⟨x,x⟩L = 1/κ, κ < 0}, ⟨x,x⟩L = −x2

1 +

n+1∑
i=2

x2
i , (3)

where Hn
κ is defined by the Lorentz inner product ⟨x,x⟩L, and x = [x1, x2, . . . , xn+1] =

[xtime,xspace] denotes an arbitrary point with time-like component x1 and space-like component
[x2, . . . , xn+1]. In the Lorentz model of hyperbolic space, the volume Vκ grows exponentially with
its radius r as Vκ(r) ≍ exp

(
(n− 1)

√
−κ r

)
. Thus, the larger the magnitude of K, the greater the

curvature and the faster the volume expansion, allowing the space to accommodate more hierarchi-
cal structures with higher representational capacity. For spherical spaces with curvature κ > 0, each
point x ∈ Rn+1 should satisfy:

Snκ := {x ∈ Rn+1| ⟨x,x⟩2 = 1/κ, κ > 0}, ⟨x,x⟩2 =

n+1∑
i=1

x2
i , (4)

where ⟨·, ·⟩2 is the Euclidean inner product. Unlike hyperbolic spaces which suits for representing
complex hierarchical structures, volume in spherical spaces grows sub-exponentially with radius,
hence they are especially suitable for modeling cyclic, periodic, or bounded structures, where global
capacity is limited but dense local clustering and angular relationships (e.g., directions, orientations)
are crucial. In natural language, for instance, temporal expressions such as the days of the week
(e.g., Monday, Tuesday, ..., Sunday) or months in a year (e.g., January, February, ..., December)
exhibit intrinsic cyclic structures. These patterns are not only semantic but manifest as circular
topologies in the embedding space (Engels et al., 2024). Combined with the default Euclidean space,
we propose a unified paradigm suitable for LLMs parameter-efficient fine-tuning without relying
on computationally expensive and GPU-unfriendly operations such as exponential and logarithmic
maps, which are standard space transition methods used by previous methods (Chen et al., 2021;
Bdeir et al., 2023; Yang et al., 2024b). Instead, we adopt a unified Lorentz model framework,
which, for the first time, enables consistent and efficient bidirectional stereographic transformations
across all subspaces within a single cohesive architecture.

First, each token xi (in the Euclidean space) in the token embedding sequence from the previous
layer will be transmitted into a projected space through stereographic conformal inverse projection
ρ−1
κ (·) in equation 5 to yi = (ξi; s

T
i )

T ∈ Rn+1, 1 ≤ i ≤ Q, where κ ∈ R is the curvature of the
projected embedding space.

ρ−1
κ (xi) =

(
1√
|κ|

1− κ∥xi∥22
1 + κ∥xi∥22

,
2xi

1 + κ∥xi∥22

)T

= (ξi; s
T
i )

T (5)
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Then, the space-like component si ∈ Rn of the projected embedding (ξi; si
T )T ∈ Rn+1 will be

treated as the unit routing token for our mixture of unified geometric experts (in each layer’s FFN
block). Our unified mixture of space experts is defined as follows:

y′i = GE(W,xi) =

[ √
∥ϕ(Wsi)∥2 · sgn(−κ) + φ(κ)

ϕ(Wsi)

]
=

[
ξ′i
s′i

]
, (6)

sgn(κ) :=

{
−1 if κ < 0,

1 if κ ≥ 0,
φ(κ) :=

{
1/|κ| if κ ̸= 0,

0 if κ = 0.
(7)

where GE(W,xi) denotes the unified neural component of different geometric experts with different
signs of the curvature κ and module weights W . We restrict inputs to the space-like component, as
Lorentz geometry in Rn+1 provides only n degrees of freedom, yielding better numerical stability.

Mixture of Space Experts. The output tokens from the top-K geometric experts, each operating on
distinct curved spaces and capturing various hierarchical or concurrent relations, are projected back
into Euclidean space, where these features are preserved and merged together. Our MoSELoRA is
illustrated in Figure 1, and the non-Euclidean feed-forward output is formulated as follows:

oi =

N∑
i=1

Q∑
j=1

G (xj)i ρκi

((
ξj ; s

′T
j

)T)
, ρκi

((ξj ; s
′T
j )

T ) =
s′j

1 +
√
|κi|ξ′j

(8)

where ρκi
((·; ·)) is the stereographic projection to map points (token embeddings) from the curved

space back to the Euclidean space, κi is the curvature of the i-th geometric expert, G(xj)i is the
routing value for token xj and i-th expert, and we utilize the auxiliary loss to balance top-k routing
across heterogeneous geometric experts. The curvature κ of each expert is a learnable parameter,
so that the model can independently adjust the sub-space of each expert to approach the optimal
geometry. Considering that curvature, as a geometric parameter, differs fundamentally from other
capacity-related parameters, and in order to avoid being trapped in local sub-optima, we assign cur-
vature an independent optimizer and optimization path to encourage further exploring the geometric
curvature of the latent space while reducing the risk of overfitting to local data patterns. Formally,
we have

Θ = {κ(1), . . . , κ(K), θ(1), . . . , θ(M)}, (9)

w ← w −
N∑
j=1

η(j)κ 1w∈κ(j) · g(j)κ (w)−
M∑

m=1

η
(m)
θ 1w∈θ(m) · g(m)

θ (w), (10)

where Θ consists of curvature parameters κ(j) and capacity-related parameters θ(m). η(j)κ and η
(m)
θ

denote their respective learning rates, g(j)κ (·) and g
(m)
θ (·) are the corresponding gradients, and 1(·)

is an indicator function selecting the parameter group.

5 EXPERIMENTS

5.1 EXPERIMENT SETTING

Dataset and Benchmarks. To explore the utility of our methods, we evaluate our approach on
both natural language understanding and mathematical reasoning datasets. For NLP tasks, we adopt
the Microsoft Research Paraphrase Corpus (MRPC) (Dolan & Brockett, 2005), which consists of
sentence pairs labeled as paraphrases or not, and the Corpus of Linguistic Acceptability (CoLA)
(Warstadt et al., 2019), which contains expert judgments on the grammatical acceptability of En-
glish sentences(Wang et al., 2018). For mathematical reasoning, we employ GSM8K (Cobbe et al.,
2021), MAWPS (Koncel-Kedziorski et al., 2016), SVAMP (Patel et al., 2021), and AQuA(Ling
et al., 2017), alongside the MATH500 by OpenAI (Lightman et al., 2023), a curated subset of the
MATH benchmark (Hendrycks et al., 2021), comprising 500 challenging problems that span alge-
bra, geometry, intermediate algebra, number theory, precalculus, and probability. The training set
is constructed by uniformly sampling from the mathematical datasets except MATH500, which is
reserved entirely for evaluation, thereby enabling rigorous assessment of zero-shot and few-shot
performance on unseen problems.
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Table 1: Performance comparison of different tuning methods across different natural language
understanding and mathematical reasoning benchmarks. The Avg. column reports the average score,
and rank ↑ indicates that a larger rank parameter is used compared to other methods.

Methods COLA MRPC GSM8k MATH500 MAWPS SVAMP AQuA Avg.
Base 32.41 69.16 33.13 0.0 43.85 54.33 31.10 37.71
LoRA 87.25 87.30 44.58 15.60 63.85 63.33 28.35 55.75
DoRA 87.15 87.19 42.53 14.20 62.12 62.33 30.71 55.18
LoRA rank ↑ 83.51 86.43 46.85 13.60 61.92 60.33 33.46 55.16
AdaLoRA 82.45 79.77 51.33 16.60 62.50 58.67 23.23 53.51
MELoRA 86.96 86.55 44.96 16.40 62.69 65.67 32.28 56.50
HMoRA 66.63 66.49 12.28 2.60 54.23 46.00 24.41 38.95
HydraLoRA 87.54 88.17 43.67 16.80 62.88 62.67 28.35 55.73

MoSELoRA (Ours) 87.63 88.23 47.23 17.80 75.96 64.67 30.71 58.89
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Figure 2: Curvature dynamics of each geometric expert of different layers during training.

Base Model and Baselines. We include Qwen2-1.5B-Base (Yang et al., 2024a) as our base model.
For parameter-efficient fine-tuning methods, we evaluate our methods with LoRA (Hu et al., 2022),
AdaLoRA (Zhang et al., 2023), DoRA (Liu et al., 2024), MELoRA (Ren et al., 2024), HMoRA (Liao
et al., 2025), HydraLoRA (Tian et al., 2024). These methods share the same training settings as ours,
and several recent approaches also incorporate architectures related to the mixture of experts design.
For other methods such as MoLA and AlphaLoRA, we consider them orthogonal to our approach. In
this work, we instead adopt an asymmetric architecture similar to HydraLoRA, aiming to minimize
the number of activated parameters while verifying the effectiveness of our proposed scheme.

Training settings and Evaluation metrics. All models are trained for three epochs on the same
dataset using NVIDIA A100 (80G) and H800 (80G) GPUs. For MoE-based methods, we adopt eight
experts with top-4 routing and apply the standard auxiliary load-balancing loss with the coefficient
set to 0.01. To ensure fairness, we control the number of activated parameters across methods. For
non-MoE baselines such as LoRA, we additionally match settings by adjusting the adaptation rank.

5.2 BASELINE COMPARISON

We compare our methods with other baselines using 8 distinct experts with top-4 routing with auxil-
iary load balance loss. In our method, three geometric experts are allocated for each non-Euclidean
space group and two for the Euclidean group, with curvatures initialized to –1 for negative curvature
and 1 for positive curvature spaces. To keep the number of activated parameters comparable across
methods, we vary the LoRA rank from 8 to 64 (0.45%–3.53% of activated parameters), while fixing
the rank at 8 for all other baselines. For MoE-related approaches such as HMoRA and HydraLoRA,
the number of experts is set to 8. Due to their fully activated computation, HMoRA and HydraLoRA
yield 2.26% and 2.54% activated parameters, respectively, whereas our method requires only 1.31%.

Main Results. As shown in Table 1, our MoSELoRA achieves higher average performance than
existing state-of-the-art methods across tasks in both natural language understanding and mathemat-
ical reasoning benchmarks. In particular, it obtains the best results on most mathematical reasoning
benchmarks, including the challenging MATH500 dataset. Since our training data is uniformly
sampled from other mathematical reasoning datasets, these results further demonstrate the superior
generalization ability of our MoSELoRA when tackling previously unseen reasoning problems.
We observe that our method achieves particularly notable improvements on mathematical reasoning
benchmarks compared to existing baselines. We attribute this to the introduction of the mixed-
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Table 2: Performance of different optimizer choices across different MATH and general reasoning
benchmarks. UNI and SEP denote using a unified optimizer and separated optimizers, respectively.

Methods COLA MRPC GSM8k MATH500 MAWPS SVAMP AQuA Avg.
MoSELoRA UNI 87.15 87.19 46.85 17.80 74.62 64.33 29.13 58.15
MoSELoRA SEP 87.63 88.23 47.23 17.80 75.96 64.67 30.71 58.89

(a) Time with increasing dimensions. (b) Time with increasing model layers.

Figure 3: Conversion time comparison between exp/log mapping and our MoS framework.

curvature framework, where hyperbolic space is especially well suited for representing hierarchical
numerical and logical structures (Yang et al., 2024b), while spherical space can better capture cyclic
properties such as equivalence relations commonly present in mathematics. Consequently, unlike
Euclidean baselines that rely solely on a flat embedding space, our approach provides clear advan-
tages in handling large-number computations and symbolic operations.

5.3 TUNING DYNAMICS AND ABLATION STUDY

Curvature training dynamics of distinct geometric experts. In our MoSELoRA framework, the
curvature parameter κ is distinct from other capacity parameters θ, serving as a key geometric prop-
erty that simultaneously characterizes both the input latent space and the model’s embedding space.
As shown in Figure 2, we track the evolution of embedding spaces for geometric experts across
model layers. Distinct colors denote different space types, with varying intensities representing ex-
perts within the same type. To provide stable Euclidean embeddings, two Euclidean experts with
fixed curvature were included in all experiments. During training, the geometric experts progres-
sively selected the curvature spaces that minimized embedding loss, and after approximately 6k–8k
steps these selections stabilized, suggesting that the model had automatically identified the optimal
mixture of embedding spaces under the given training configuration. We also observed interesting
dynamic behaviors, such as recurrent switching across curvature spaces and transitions between geo-
metric spaces. For instance, in Fig. 2d, one spherical expert in the 20th layer temporarily shifted into
the Euclidean space around step 4k, but subsequently returned to the spherical space and ultimately
converged to a positive curvature near 0.2. These dynamics indicate that the model can adaptively
adjust combinations of geometric experts across spaces, highlighting the flexibility and stability
of our MoS architecture as a foundation for MoSELoRA. Furthermore, layer-wise trends reveals
that lower layers, particularly the first layer, exhibit more stable but slower convergence compared
to higher layers. This aligns with observations in MoE-related literature (Dai et al., 2024; Muen-
nighoff et al., 2024): early layers primarily capture task-agnostic token-level information, leading to
smoother geometry selection, while higher layers encode more task-specific information, resulting
in more pronounced cross-space transitions and dynamic curvature patterns, thereby underscoring
the necessity of incorporating non-Euclidean geometry for downstream tasks.

Optimizer for geometric experts. We observed that when using a unified optimizer, the curvature
κ fail to adjust alongside other parameters, resulting in nearly static values and relatively poor task
performance (in Table 2). Therefore, we assign independent optimizers and learning rates to κ of
all geometric experts, enabling the model to adjust latent geometric spaces more flexibly without
being constrained by the optimization trajectory of other capacity-related parameters. Empirically,
this setting leads to improved performance on downstream tasks.

Geometric mapping efficiency. In Figure 3, we compare the runtime on GPUs between our pro-
posed lightweight routing and space-mapping method and the conventional approach based on expo-
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Table 3: Performance comparison of different mixture recipes of geometric experts across different
mathematical and general reasoning benchmarks.

Methods Space COLA MRPC GSM8k MATH500 MAWPS SVAMP AQuA Avg.
MoSELoRA-S Spherical 86.86 87.77 44.50 17.60 72.69 64.33 28.35 57.44
MoSELoRA-H Hyperbolic 85.81 89.33 45.34 17.80 73.46 63.67 34.25 58.52
MoSELoRA-E Euclidean 87.15 87.19 42.23 16.20 70.77 61.67 31.89 56.73
MoSELoRA (Ours) Mixture 87.63 88.23 47.23 17.80 75.96 64.67 30.71 58.89

nential and logarithmic mappings. The results show that our method achieves significant speedups
up to 4× over the standard exp–log scheme, and this relative acceleration remains consistent as the
network depth increases and the embedding dimension grows.

Different space-mix of experts. To obtain a more fine-grained understanding of how different geo-
metric expert mixture configuration affect performance, we conducted an ablation study by restrict-
ing MoSELoRA to use only a single type of expert. For example, in the hyperbolic-only setting,
each expert is initialized with a negative curvature (e.g., –1), and during the training stage, curva-
tures are learnable so that the model can dynamically adjust the underlying embedding space for in-
puts. All other configurations follow our default setup, including the unified framework, lightweight
routing strategy, top-4 out of 8 expert selection, and the auxiliary load-balancing loss. As shown in
Table 3, on average, MoSELoRA with mixed-geometric experts consistently outperforms all single-
space variants. Nevertheless, specific single-space configurations achieved strong results on certain
datasets. For instance, the hyperbolic-only variant MoSELoRA-H achieves accuracies of 17.80%
on MATH500, 34.25% on AQuA, and 89.33% on MRPC, matching or surpassing all competing
methods, suggesting that hyperbolic embeddings are particularly well-suited for these benchmarks.
The strong performance of hyperbolic experts on MATH500 further indicates their ability to general-
ize effectively in zero-shot settings to previously unseen reasoning problems. On the other hand, the
Euclidean variant MoSELoRA-E outperforms others on CoLA (87.15%), while the spherical vari-
ant MoSELoRA-S achieves the best results on SVAMP (64.33%), highlighting that certain datasets
benefit more from specific geometries. Together, these findings confirm the necessity of combin-
ing multiple spaces, as MoSELoRA effectively integrates the complementary strengths of different
embedding geometries to achieve superior overall performance.

6 CONCLUSION

This paper first introduces MoS, a unified framework that integrates distinct geometric spaces and
enables flexible transformations among three constant-curvature spaces: Hyperbolic, Euclidean, and
Spherical space. Building on this framework, we further propose MoSELoRA, an efficient fine-
tuning architecture for LLMs that combines mixture-of-space experts. This design allows LLMs
to dynamically adjust the curvature of each expert’s underlying space during fine-tuning and to
flexibly reconfigure combinations of different spaces based on the input. In addition, to address
the computational overhead of manifold-based exponential and logarithmic operations commonly
adopted in existing non-Euclidean models, we develop a lightweight routing and space-mapping
strategy that improves the efficiency of space transitions. Experimental results demonstrate that
our approach consistently outperforms strong baselines and provides new insights into geometric
representation learning. Nevertheless, further investigation is required to assess its applicability to
industrial-scale settings, as well as to more recent reasoning and reinforcement learning frameworks.
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A ETHICS STATEMENT

This study follows the ICLR Code of Ethics. In this study, no human subjects or animal ex-
perimentation was involved. All datasets used, including Microsoft Research Paraphrase Corpus
(MRPC) (Dolan & Brockett, 2005), Corpus of Linguistic Acceptability (CoLA) (Warstadt et al.,
2019), GSM8K (Cobbe et al., 2021), MAWPS (Koncel-Kedziorski et al., 2016), SVAMP (Patel
et al., 2021), AQuA (Ling et al., 2017) and MATH500 (Lightman et al., 2023), were sourced in
compliance with relevant usage guidelines, ensuring no violation of privacy. We have taken care
to avoid any biases or discriminatory outcomes in our research process. No personally identifi-
able information was used, and no experiments were conducted that could raise privacy or security
concerns. We are dedicated to upholding transparency and integrity throughout the course of this
research.

B REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All code
and datasets have been made publicly available in an anonymous repository to facilitate replication
and verification. The experimental setup, including training steps, model configurations, and hard-
ware details, is described in detail in the paper. We have also provided a full description of PEFT of
LLMs with mixture of space experts, to assist others in reproducing our experiments. Additionally,
all language understanding and mathematical reasoning datasets, such as MRPC(Dolan & Brockett,
2005), CoLA(Warstadt et al., 2019), GSM8K (Cobbe et al., 2021), MAWPS (Koncel-Kedziorski
et al., 2016), SVAMP (Patel et al., 2021), AQuA (Ling et al., 2017) and MATH500 (Lightman et al.,
2023), are publicly available, ensuring consistent and reproducible evaluation results. We believe
these measures will enable other researchers to reproduce our work and further advance the field.

C THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the writing of this paper, portions of the content were assisted by LLMs. Specifically, the
LLMs were used to optimize language, enhance the fluency of the literature review, and assist with
organizing and refining the structure of certain sections. However, all final content was reviewed
and revised by the authors, based on their own research and analysis, to ensure the accuracy and
originality of the work. The use of the LLMs was intended to improve writing efficiency and did not
influence the core ideas, data analysis, or conclusions of the paper.

D TRAINING DETAILS

D.1 TRAINING HYPERPARAMETERS

Table4 presents the hyperparameters used to fine-tune the Qwen2-1.5B models with MoSELoRA
on two tasks: language understanding and mathematical reasoning. The same hyperparameter set-
tings are applied to both tasks. Each experiment is conducted independently, with a single run for
each model. The final model trained is used for evaluation. For the baseline methods, the same
hyperparameter configuration is reused.

Table 4: Hyperparameters for MoSELoRA.

Hyperparameter Value
Base Model Qwen2-1.5B
Num Train Epoch 3
Optimizer AdamW
Weight Decay 0.01
Warmup Ratio 0.1
Learning Rate 3× 10−4

Target Modules gate proj, down proj, up proj
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D.2 STATISTICS OF THE LANGUAGE UNDERSTANDING DATASET

We conduct experiments using a subset of the General Language Understanding Evaluation (GLUE)
dataset(Wang et al., 2018), a benchmark for for training, evaluating, and analyzing natural language
understanding systems. Specifically, we selected datasets Microsoft Research Paraphrase Corpus
(MRPC)(Dolan & Brockett, 2005) and Corpus of Linguistic Acceptability (CoLA)(Warstadt et al.,
2019). As shown in Table 5, this dataset consists of consist of various training and testing examples,
each designed to evaluate specific linguistic tasks,including semantic equivalence and grammatical
acceptability.

Table 5: The detailed statistics of language understanding datasets.

Dataset Train Test Task Description
MRPC 3,668 1,725 Determine if a pair of sentences are semantically equivalent
CoLA 8,551 1,043 Evaluate the grammatical acceptability of English sentences

D.3 STATISTICS OF MATHEMATICAL REASONING DATASETS

As illustrated in the Table6, we have constructed a mathematical reasoning training set consist-
ing of a mix of four datasets, totaling 13,262 examples. These datasets include GSM8K (Cobbe
et al., 2021), MAWPS (Koncel-Kedziorski et al., 2016), SVAMP (Patel et al., 2021), and subset of
AQuA(Ling et al., 2017), each focusing on different aspects of mathematical reasoning. Addition-
ally, we have incorporated MATH500(Lightman et al., 2023) into the test set to further evaluate the
model’s performance.

Table 6: The detailed statistics of mathematical reasoning datasets.

Dataset Data Number Task Type
Train 13,262 Mixed

Test
GSM8K 1,319 Question-Answering
MAWPS 520 Question-Answering
SVAMP 300 Question-Answering
MATH500 500 Question-Answering
AQuA 254 Option

E GRADIENT BOUND ANALYSIS

The following presents a gradient analysis of our MoSELoRA framework, demonstrating that the
gradients in our design remain bounded.

Bound on the gradient w.r.t. u. Let u = ϕ(z) and define the lifting coordinate

aκ(u) =
√
sgn(−κ) ∥u∥2 + φ(κ), φ(κ) =

{
1/|κ|, κ ̸= 0,

0, κ = 0 .

A direct differentiation gives

∇uaκ(u) =
sgn(−κ)u√

sgn(−κ) ∥u∥2 + φ(κ)
,

∥∥∇uaκ(u)
∥∥ =

∥u∥√
sgn(−κ) ∥u∥2 + φ(κ)

. (11)

Case κ < 0 (hyperbolic). Here sgn(−κ) = 1 and φ(κ) = 1/|κ|. Hence∥∥∇uaκ(u)
∥∥ =

∥u∥√
∥u∥2 + 1/|κ|

≤ 1 for all u,
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so aκ is globally 1-Lipschitz in u.

Case κ > 0 (spherical). Now sgn(−κ) = −1 and the domain requires ∥u∥2 ≤ 1/|κ|. Let R =

sup ∥u∥ < 1/
√
|κ|, which can be enforced by a bounded activation together with scaling/projection.

Then, from equation 11,∥∥∇uaκ(u)
∥∥ =

∥u∥√
1/|κ| − ∥u∥2

≤ R√
1/|κ| −R2

=: Cu(κ,R) <∞.

Therefore, as long as u stays at a fixed margin from the boundary (e.g., R = (1 − ε)/
√
|κ| with

ε > 0), the gradient is uniformly bounded.
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