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ABSTRACT

Parameter-efficient fine-tuning (PEFT) significantly reduces memory costs when
adapting large language models (LLMs) for downstream applications. However,
traditional first-order (FO) fine-tuning algorithms incur substantial memory over-
head due to the need to store activation values for back-propagation during gra-
dient computation, particularly in long-context fine-tuning tasks. Zeroth-order
(ZO) algorithms offer a promising alternative by approximating gradients using
finite differences of function values, thus eliminating the need for activation stor-
age. Nevertheless, existing ZO methods struggle to capture the low-rank gradient
structure common in LLM fine-tuning, leading to suboptimal performance. This
paper proposes a low-rank ZO gradient estimator and introduces a novel low-
rank ZO algorithm (LOZO) that effectively captures this structure in LLMs. We
provide convergence guarantees for LOZO by framing it as a subspace optimiza-
tion method. Additionally, its low-rank nature enables LOZO to integrate with
momentum techniques while incurring negligible extra memory costs. Exten-
sive experiments across various model sizes and downstream tasks demonstrate
that LOZO and its momentum-based variant outperform existing ZO methods and
closely approach the performance of FO algorithms.

1 INTRODUCTION

Large language models (LLMs) have demonstrated exceptional performance across a wide range of
domains (Solaiman et al., 2019; Brown, 2020; Achiam et al., 2023). To adapt LLMs for specific
downstream applications, fine-tuning pre-trained models has become the de facto approach (Guru-
rangan et al., 2020; Sanh et al., 2021). Parameter-efficient fine-tuning (PEFT) methods, such as
those proposed by (Hu et al., 2021; Lester et al., 2021), aim to reduce memory consumption by
freezing most pre-trained weights and updating only a subset of parameters. However, even with
these approaches, first-order (FO) optimization algorithms like stochastic gradient descent (SGD)
(Amari, 1993) and Adam (Kingma, 2014) still encounter substantial memory overhead due to the
need to store activation values for back-propagation during gradient computation. This issue be-
comes even more pronounced in applications involving long contexts, where activations account for
the majority of memory usage.

To enhance memory efficiency, a promising alternative is the use of zeroth-order (ZO) algorithms
(Spall, 1992). Unlike FO methods, ZO algorithms do not require direct gradient computation. In-
stead, they approximate gradients using finite differences of function values, eliminating the need for
back-propagation and the storage of activation values, which leads to substantial memory savings.
ZO algorithms have been extensively studied over the past few decades (Duchi et al., 2015; Nesterov
& Spokoiny, 2017; Berahas et al., 2022) and were recently applied to fine-tuning LLMs for the first
time in (Malladi et al., 2023), where the authors adapt the classical ZO stochastic gradient descent
(ZO-SGD) algorithm (Ghadimi & Lan, 2013) to a memory-efficient variant known as the MeZO
algorithm. As demonstrated in (Malladi et al., 2023), the MeZO algorithm can reduce memory costs
to a quarter of those incurred by standard SGD.

However, ZO algorithms still face several challenges when fine-tuning LLMs. A primary concern is
the substantial discrepancy in the matrix rank between estimated ZO gradients and true FO gradients.
Extensive literature reports that FO gradients generated during backpropagation in LLM fine-tuning
exhibit a low-rank structure (Malladi et al., 2023; Zhao et al., 2024a; Hao et al., 2024). In contrast,
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the ZO gradients in MeZO are derived from a perturbation matrix sampled from a Gaussian dis-
tribution, which is nearly full-rank. This discrepancy can result in a performance gap between ZO
and FO algorithms. Another challenge is constructing momentum algorithms using ZO gradients.
Since ZO gradients are typically full-rank, the resulting momentum variable also becomes full-rank,
leading to significant overhead in storing the momentum (Malladi et al., 2023; Zhang et al., 2024;
Chen et al., 2019). This overhead offsets the memory efficiency gained through ZO algorithms.

It is evident that the above challenges arise from the full-rank structure of ZO gradient estimates.
To address these issues, this work presents a novel strategy for the gradient approximation based
on finite differences of function values. Specifically, we propose a low-rank matrix-wise gradient
estimator (LGE) scheme and a new variant of the ZO-SGD algorithm that capitalizes on this ap-
proach. This ensures that our ZO gradient estimator consistently retains a low-rank structure, fluc-
tuating within a low-dimensional subspace across iterations. As a result, our estimator more accu-
rately approximates the low-rank FO gradient employed in LLM fine-tuning, leading to improved
empirical performance. Moreover, the low-rank ZO gradient facilitates the use of low-rank mo-
mentum variables, significantly reducing memory usage compared to conventional ZO momentum
algorithms. Our contributions can be summarized as follows:

• We propose a low-rank ZO gradient estimator. Unlike traditional coordinate-wise or ran-
domized approaches, our approach derives the ZO gradient using a low-rank perturbation
matrix, ensuring that the approximated gradient retains a low-rank structure. Our derived
ZO gradient closely resembles the FO gradient structure in LLM fine-tuning.

• We develop two novel low-rank ZO algorithms for LLM fine-tuning: Low-rank ZO-SGD
(LOZO) and its momentum-based variant LOZO-M. A critical component in these algo-
rithms is the lazy sampling strategy, where the low-rank random perturbation matrix is
sampled over multiple steps, rather than at each iteration. This allows the ZO algorithm
to sufficiently explore a low-rank subspace over a longer period, preventing per-iteration
abrupt changes to model parameters and enhancing fine-tuning performance. Moreover,
LOZO-M incurs negligible additional memory overhead for storing momentum.

• We establish convergence guarantees for LOZO under common assumptions in stochas-
tic ZO optimization. A key insight from our convergence analysis is that LOZO can be
viewed as a subspace optimization method employing a standard ZO gradient estimator.
This method iteratively solve the fine-tuning problem by alternating between different low-
rank subspaces to progressively improve the overall solution.

• We conduct extensive experiments across various model scales (ranging from 350M to
66B) and downstream tasks, including classification, multiple-choice, and generation.
LOZO and LOZO-M outperform zero-shot, ICL, MeZO, and MeZO-LoRA in most tasks,
while maintaining the same storage overhead as MeZO.

1.1 RELATED WORK

Zeroth-order optimization. Zeroth-order (ZO) optimization typically employs finite difference
of function values to approximate gradients. Since it does not require gradient computation, ZO
methods have been widely applied in various machine learning (ML) domains, including adversarial
attack and defense (Ilyas et al., 2018; Zhao et al., 2019; Tu et al., 2019; Zhang et al., 2022b), model-
agnostic contrastive explanations (Dhurandhar et al., 2019), and AutoML (Wang et al., 2022). ZO
algorithms have been derived from FO methods in numerous studies, such as ZO-SGD (Ghadimi &
Lan, 2013; Liu et al., 2019a), ZO-Adam (Chen et al., 2019), and ZO-SVRG (Liu et al., 2018; Ji et al.,
2019), among others (Lian et al., 2016; Liu et al., 2020). Although straightforward, these adaptations
often exhibit high variance and slow convergence because of the dimensionality of the model. To
address this, techniques such as sparse gradient exploitation (Balasubramanian & Ghadimi, 2018;
Cai et al., 2022) and feature reuse in deep neural networks (Chen et al., 2023) have been proposed,
highlighting the potential of ZO optimization in large-scale ML problems.

Memory-efficient fine-tuning. A range of memory-efficient methods have been proposed to en-
hance the accessibility of LLM fine-tuning. For instance, LoRA (Hu et al., 2021) introduces low-
rank perturbations to pre-trained model weights, utilizing only a few trainable parameters while
achieving performance comparable to full fine-tuning. Other approaches (Zhao et al., 2024a; Hao
et al., 2024; Muhamed et al., 2024) compress gradients by projecting them into subspaces, thereby
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reducing the memory required for storing optimizer states. In contrast to first-order (FO) algorithms,
zeroth-order (ZO) algorithms (Malladi et al., 2023) have gained considerable attention for their ef-
ficiency, as they avoid storing activation values. To accelerate ZO fine-tuning, Gautam et al. (2024)
introduced ZO-SVRG for LLM fine-tuning, while Zhao et al. (2024b) employed ZO methods to
approximate a natural gradient algorithm. Although these approaches improve convergence, they
often incur increased memory costs. To address this trade-off, Liu et al. (2024) proposed incorpo-
rating a sparse mask into ZO iterations to reduce dimensionality and expedite fine-tuning, albeit at
the cost of some accuracy. Li et al. (2024) explored a hybrid approach, combining FO gradients
with ZO estimators in each iteration. Complementing these efforts, Zhang et al. (2024) provide a
comprehensive benchmark of various ZO-based algorithms for LLM fine-tuning.

2 PRELIMINARIES

This section provides an overview of ZO optimization and the commonly used ZO gradient estima-
tors. We also introduce the MeZO algorithm (Malladi et al., 2023) used in LLM fine-tuning.

2.1 ZEROTH-ORDER (ZO) OPTIMIZATION

We consider the following optimization problem:

min
X

f(X) := Eξ[F (X; ξ)], (1)

where X represents the set of trainable parameters with dimension d. For example, in the LLM
fine-tuning process, we can express X = {Xℓ}Lℓ=1, where Xℓ ∈ Rmℓ×nℓ denotes the ℓ-th weight
matrix and L is the number of layers. The function F (X; ξ) is the loss function that depends on a
random variable ξ.

The ZO method estimates gradients using only function evaluations, without requiring direct access
to gradient information. Two commonly employed gradient estimation schemes are the determin-
istic Coordinate-wise Gradient Estimation (CGE) (Lian et al., 2016; Chen et al., 2023) and the
Randomized vector-wise Gradient Estimation (RGE) (Spall, 1992; Duchi et al., 2015; Nesterov &
Spokoiny, 2017). These are formally defined as:

(CGE) ∇̂F (X; ξ) :=

d∑
i=1

F (X + ϵEi; ξ)− F (X − ϵEi; ξ)

2ϵ
Ei, (2)

(RGE) ∇̂F (X; ξ) :=
F (X + ϵZ; ξ)− F (X − ϵZ; ξ)

2ϵ
Z. (3)

The scalar ϵ denotes the perturbation magnitude, which influences the accuracy of the gradient
approximation. Both Ei and Z are of the same dimensions as X . The quantity Ei is a basis
vector/matrix with its i-th element set to one and all other elements set to zero, whereas the elements
of Z are randomly generated, typically sampled independently from a standard normal distribution.
An extension of the RGE method is the q-RGE approach. Here, the RGE is computed q times
independently, and the final gradient estimate is obtained by averaging these estimations.

Utilizing these gradient estimators, the ZO-SGD method is implemented through the following iter-
ative scheme:

Xt+1 = Xt − α∇̂F (Xt; ξt), (4)

where α denotes the step size, also termed the learning rate, and ∇̂F represents the gradient esti-
mated with ZO information.

2.2 MEMORY-EFFICIENT ZO-SGD (MEZO)

The standard implementation of ZO-SGD incurs substantial memory costs. For example, when con-
structing the gradient estimator using the RGE scheme, the traditional ZO-SGD method requires
memory to store the perturbation matrix Z. To mitigate this memory overhead, the MeZO method
(Malladi et al., 2023) was introduced as a memory-efficient variant of ZO-SGD. Unlike the standard
approach, MeZO avoids storing the entire perturbation matrix Z. Instead, the algorithm performs
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Figure 1: The low-rank structure of the gradients encountered in the fine-tuning of LLMs, demoenstrated using
the OPT-1.3B model with the COPA dataset, where the gradient matrices have dimensions of 2048 × 2048.
For both two figures, we report only the 100 largest singular values. Left: Singular value distribution of the
gradient of the attention Q matrix in layer 10 across different training steps. Right: Singular value distribution
of the gradient of the attention V matrix across different layers at training step 50.

both the perturbation and ZO-SGD updates in place and employs a technique of saving the ran-
dom seed used to generate Z, allowing it to be regenerated when necessary. While this introduces
additional computational costs, it significantly reduces memory usage.

3 LOW-RANK ZEROTH-ORDER GRADIENT ESTIMATOR

LLM gradients exhibit low-rank structures. The low-rank structure of neural networks has been
extensively investigated in previous literature (Li et al., 2018; Larsen et al., 2021). These studies
suggest that loss landscapes exist within an intrinsic dimension, implying that model weights can be
optimized within a low-rank subspace. Furthermore, additional researches (Sagun et al., 2017; Gur-
Ari et al., 2018) have demonstrated that stochastic gradients dynamically converge to a remarkably
small subspace, especially when fine-tuning LLMs (Zhang et al., 2023). Recent work (Zhao et al.,
2024a) also provides theoretical evidence that the gradient matrix becomes low-rank during LLM
training and fine-tuning. Figure 1 investigates the rank of the gradient matrix during LLM fine-
tuning. The left plot demonstrates that the gradient matrix remains low-rank across training steps,
while the right plot shows that this low-rank property persists across different layers.

Existing ZO methods are ineffective at capturing low-rank structures. Commonly used ZO
gradient estimators like CGE and RGE cannot capture the low-rank structure of the true gradients
during LLM fine-tuning. The RGE scheme produces an estimated gradient that is essentially a
projection of the true gradient onto a standard normal random matrix Z, which is almost always full
rank. On the other hand, although the CGE scheme can approximate the full true gradient, it requires
evaluating the loss function d times per iteration, making it impractical for large-scale problems. As
a result, existing ZO algorithms (Ghadimi & Lan, 2013; Liu et al., 2019a; Chen et al., 2019; Liu
et al., 2018; Ji et al., 2019; Balasubramanian & Ghadimi, 2018; Cai et al., 2022; Chen et al., 2023;
Malladi et al., 2023; Zhang et al., 2024), which rely on either CGE or RGE, fail to effectively account
for the low-rank structure inherent in the gradient matrix during LLM fine-tuning.

Low-rank ZO gradient estimator (LGE). To bridge this gap, we propose a matrix-wise ZO gra-
dient estimator, LGE, that preserves the low-rank structure in gradients. In LLM fine-tuning, let
X = {Xℓ}Lℓ=1 represent the model’s weights, where Xℓ ∈ Rmℓ×nℓ is the weight matrix of the ℓ-th
layer. We sample two matrices, Uℓ ∈ Rmℓ×rℓ and Vℓ ∈ Rnℓ×rℓ , from standard normal distributions,
where rℓ ≪ min{mℓ, nℓ}. The LGE for partial gradient of the ℓ-th weight matrix is defined as

∇̂Xℓ
F (X; ξ) :=

F ({Xℓ + ϵUℓV
T
ℓ }Lℓ=1; ξ)− F ({Xℓ − ϵUℓV

T
ℓ }Lℓ=1; ξ)

2ϵ
(UℓV

T
ℓ /rℓ). (5)

The scaling factor 1/rℓ is introduced to ensure that LGE is an unbiased estimator of the true gradient
as ϵ → 0 (see Proposition A.1). Defining U := {Uℓ}Lℓ=1, V := {Vℓ}Lℓ=1, r := {rℓ}Lℓ=1, and
∇̂F (X; ξ) := {∇̂Xℓ

F (X; ξ)}Lℓ=1, we express X± ϵUV T := {Xℓ± ϵUℓV
T
ℓ }Lℓ=1 and UV T /r :=

{UℓV
T
ℓ /rℓ}Lℓ=1. Using these notations, LGE can be written into a more compact form:

(LGE) ∇̂F (X; ξ) :=
F (X + ϵUV T ; ξ)− F (X − ϵUV T ; ξ)

2ϵ
(UV T /r). (6)
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Using the definition in (5), we observe that the gradient matrix ∇̂Xℓ
F (X; ξ) has a rank of at most

rℓ, effectively capturing the low-rank structure of the FO gradient in LLM fine-tuning.

4 LOW-RANK ZEROTH-ORDER SGD

This section introduces LOZO, a novel low-rank ZO algorithm for LLM fine-tuning. LOZO can
be interpreted as a ZO subspace optimization method that leverages a standard gradient estimator.
Based on this key insight, we establish convergence guarantees for LOZO.

4.1 ALGORITHM DEVELOPMENT

Vanilla recursion. Following the LGE definition (6), we introduce the LGE operator

LGE(X,U ,V , r, ϵ, ξ) :=
F (X + ϵUV T ; ξ)− F (X − ϵUV T ; ξ)

2ϵ
(UV T /r). (7)

To solve problem (1), the vanilla recursion with the LGE scheme is as follows. For any t ≥ 0,
Xt+1 = Xt − α∇̂F (Xt; ξt) where ∇̂F (Xt; ξt) = LGE(Xt,U t,V t, r, ϵ, ξt). (8)

In practice, we only need to store Uℓ and Vℓ for each layer ℓ, and we apply the perturbation (6) and
the update (8) layer by layer, eliminating the need to retain the full gradient estimator UℓV

T
ℓ . Since

rℓ ≪ min{mℓ, nℓ}, the additional memory required for storing Uℓ and Vℓ is negligible. Moreover,
memory costs can be further reduced using the random seed technique (Malladi et al., 2023). Instead
of storing Uℓ and Vℓ directly, only the random seeds sUℓ and sVℓ used to generate them are saved.
Whenever Uℓ and Vℓ are needed, the seeds sUℓ and sVℓ are used to regenerate these matrices, thereby
eliminating the need for their storage. While this approach reduces memory usage, it introduces
additional floating-point operations (flops) due to the regeneration process.

Lazy sampling strategy. In the main recursion (8), the variable Xt is updated within the subspace
spanned by U t and V t at each iteration t. However, if U t and V t are resampled at every iteration,
the subspace will shift too frequently. This limits the algorithm’s ability to adequately explore one
low-rank subspace over a longer period, potentially causing abrupt changes in the model parameters
X at each iteration and degrading fine-tuning performance.

Additionally, ZO methods capture less information about the true gradient compared to FO algo-
rithms, necessitating more iterations to achieve similar performance. In other words, multiple ZO
steps may be required to match the progress of a single FO step. This suggests that maintaining a
low-rank structure in the gradient estimator at each step is insufficient; instead, the cumulative sum
of gradient estimators over several consecutive iterations must also preserve a low-rank structure.

The motivations outlined above lead us to propose a lazy sampling strategy. While U is sampled at
every iteration t, we only sample V every ν iterations, where ν > 0 represents the chosen period
duration. During the iterations t ∈ {kν, . . . , (k + 1)ν − 1} for each period k, the matrix V (k)

remains fixed, thus restricting the model update to the subspace spanned by V (k). This leads to our
proposed LOZO algorithm, whose update rule for any t ≥ 0 is defined as:

Xt+1 = Xt − α∇̂F (Xt; ξt), where ∇̂F (Xt; ξt) = LGE(Xt,U t,V (k), r, ϵ, ξt). (9)

With the lazy sampling strategy, ∇̂F (Xt; ξt) consistently lies within the subspace determined by
V (k) for any t ∈ {kν, . . . , (k + 1)ν − 1}. Therefore, the accumulation of the estimated gradients
over these consecutive ν steps, which can be viewed as a more accurate approximation of the true
gradient in a single FO step, has a rank that does not exceed r. When ν = 1, the LOZO update
rule (9) reduces to the standard recursion (8). LOZO (9) can be implemented in Algorithm 1 with
memory efficiency.

Hyperparameter tuning. The parameter ν, which defines the number of steps over which Xt is
updated within the same subspace, is critical for performance and should be set to a moderate value.
If ν is too small, frequent subspace shifts may lead to abrupt model changes, while a ν that is too
large limits the algorithm to focus on only a few subspaces, potentially reducing generalization. The
parameter r defines the rank of the gradient estimator. Since the true gradient rank is unknown, we
typically set r as a small constant that is significantly less than both mℓ and nℓ to avoid additional
memory overhead. In our experiments, we set rℓ = r through all layers. The typical choices for the
parameters are r = 2, 4, 8 and ν = 50, 100.
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Algorithm 1: Low-rank ZO-SGD (LOZO)
Input: parameters X , loss function F (X; ξ), step budget T , perturbation scale ϵ, learning rate

α, sample interval ν and rank {rℓ}.
for t = 0, . . . , T − 1 do

foreach Xℓ ∈X do
Sample Uℓ ∈ Rmℓ×rℓ from the standard normal distribution ;
if t mod ν = 0 then

Sample Vℓ ∈ Rnℓ×rℓ from the standard normal distribution ; // Resample Vℓ

X ← Perturbation(X, ϵ, {Uℓ, Vℓ}) ;
F+ ← F (X; ξ) ;
X ← Perturbation(X,−2ϵ, {Uℓ, Vℓ}) ;
F− ← F (X; ξ) ;
X ← Perturbation(X, ϵ, {Uℓ, Vℓ}); // Reset parameters
c← (F+ − F−)/2ϵ ; // Calculate finite difference
foreach Xl ∈X do

Xℓ ← Xℓ − α · c(UℓV
T
ℓ /rl) ; // Update parameters in place

Function Perturbation(X, ϵ, {Uℓ, Vℓ}):
foreach Xℓ ∈X do

Xℓ ← Xℓ + ϵUℓV
T
ℓ ; // Modify parameters in place

return X ;

4.2 LOZO IS ESSENTIALLY A ZEROTH-ORDER SUBSPACE OPTIMIZATION METHOD

This section offers an in-depth understanding on LOZO, showing that it can be interpreted as a
ZO subspace optimization method. This interpretation provides an insight into why LOZO can
effectively solve problem (1) even with low-rank gradient estimates and a lazy sampling strategy.

Random coordinate minimization. We begin by revisiting the classical coordinate minimization
algorithm for high-dimensional optimization problems. Consider the unconstrained minimization
problem minx∈Rd{f(x)}, where the dimension d is exceedingly large. A commonly used and effi-
cient method to tackle this problem is the coordinate minimization algorithm. Let I := [e1; · · · ; ed]
be the d-dimensional identity matrix, where ei represents the i-th basis vector. The random coordi-
nate minimization algorithm then iterates as follows:

b⋆k = argmin
b∈R

{f(xk + b · eik)}, where ik ∼ U{1, . . . , d}, (10)

xk+1 = xk + b⋆k · eik , (11)

where x0 is the initialized variable. The coordinate minimization algorithm has strong convergence
guarantees, as demonstrated in studies such as (Hong et al., 2017; Tseng, 2001; Wright, 2015).

Random subspace minimization. Analogous to random coordinate minimization, the random sub-
space minimization approach is to solve optimization problems involving large matrix variables. To
solve problem (1), i.e., minX f(X) = Eξ[F (X; ξ)], we can employ the following recursions

B⋆
k = argmin

B
{f(X(k) +B(V (k))T )}, where V (k) follows a normal distribution, (12)

X(k+1) = X(k) +B⋆
k(V

(k))T . (13)
Here, V is a low-rank matrix and B is a matrix variable with much smaller size than X . For
example, in the ℓ-th layer, the matrix variable Bℓ has dimensions mℓ× rℓ, while Xℓ has dimensions
mℓ×nℓ. The random subspace optimization approach addresses the original problem (1) by solving
a series of subproblems that involve significantly smaller matrix variables, as shown in (12).

ZO subspace optimization method. To solve the k-th subproblem in (12), we apply the standard
ZO-SGD and iterate for ν steps. The result is then used as an inexact solution to (12), followed by
the update step in (13). Specifically, the update rule for the ZO subspace method is given by:

B(k,s+1) = B(k,s) − γ∇̂BF (X̃(k) +B(k,s)(V (k))T ; ξ(k,s)), s = 0, · · · , ν − 1, (14a)
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X̃(k+1) = X̃(k) +B(k,ν)(V (k))T . (14b)

Here, we initialize B(k,0) = 0, the superscript k indicates that the recursion is solving the k-th
subproblem in (12), γ is the step size, and ∇̂BF (X̃(k) +B(k,s)(V (k))T ; ξ(k,s)) is computed using
the RGE scheme. Specifically, we sample U (k,s) from a normal distribution and compute:

∇̂BF (X̃(k) +B(k,s)(V (k))T ; ξ(k,s)) (15)

=
F(X̃(k)+(B(k,s)+ϵU (k,s))(V (k))T ; ξ(k,s))−F (X̃(k)+(B(k,s)−ϵU (k,s))(V (k))T ; ξ(k,s))

2ϵ
U (k,s).

Equivalence between ZO subspace method and LOZO algorithm. The ZO subspace method
(14) is equivalent to the LOZO algorithm (9) when the step size γ = α/r, as will be shown below.
If both algorithms are initialized identically, i.e., X0 = X̃(0), by comparing the update rules for
Xt in LOZO (9) and (6), and for B in the ZO subspace method (14a) and (15), it is straightforward
to see that Xt = X̃(k) + B(k,s)(V (k))T holds when t = kν + s and s ∈ {0, 1, . . . , ν} (see the
detailed derivation in Appendix A.2). Thus, we have Xkν = X̃(k) for any k, which implies the
equivalence between these two methods.

4.3 CONVERGENCE ANALYSIS

Based on the aforementioned interpretation, we can establish convergence guarantees for the LOZO
algorithm. We adopt the following assumptions, which are standard in stochastic optimization.

Assumption 4.1. For any ξ, the function F (X; ξ) is differentiable with respect to X . Furthermore,

• The gradient ∇F (X; ξ) is uniformly L-Lipschitz continuous, i.e., ∀X,Y ,

∥∇F (X; ξ)−∇F (Y ; ξ)∥ ≤ L∥X − Y ∥, ∀ξ, (16)

where ∥X∥ :=
√∑L

ℓ=1 ∥Xℓ∥2F for any X = {Xℓ}Lℓ=1.

• The stochastic gradient is unbiased and has bounded variance, i.e., ∀X ,

E[∇F (X; ξ)] = ∇f(X) and E∥∇F (X; ξ)−∇f(X)∥2 ≤ σ2. (17)

Assumption 4.2. The random matrix V = {Vℓ}Lℓ=1 is drawn from a distribution such that V T
ℓ Vℓ =

nℓI and E[VℓV
T
ℓ ] = rℓI for each ℓ.

Remark 4.3. Given that nℓ ≫ rℓ in practice, when each Vℓ is drawn from a standard normal
distribution, it typically holds that V T

ℓ Vℓ ≈ nℓI . However, to rigorously satisfy Assumption 4.2,
each Vℓ should be drawn from a Haar distribution or as a random coordinate matrix (see (Kozak
et al., 2023), Examples 1 and 2 for more details).

The following theorem establishes the convergence rate of the LOZO algorithm, with the detailed
proof provided in Appendix B.

Theorem 4.4. Under Assumptions 4.1 and 4.2, and letting T = Kν, with suitable choices of α and
ϵ, the sequence of the kν-th variables {Xkν} generated by LOZO converges at the following rate:

1

K

K−1∑
k=0

E∥∇f(Xkν)∥2 ≤ O

√∆0Ld̃σ2

T
+

∆0Ldν

T

 , (18)

where ∆0 := f(X0)− f∗, d̃ =
∑L

ℓ=1(mℓn
2
ℓ/rℓ) and d =

∑L
ℓ=1 mℓnℓ.

Difference between LOZO and MeZO-LoRA. Theorem 4.4 implies LOZO solves minX f(X) :=
Eξ[F (X; ξ)] directly even when using low-rank gradient estimates. In contrast, the MeZO-LoRA
approach, which combines MeZO (Malladi et al., 2023) and LoRA (Hu et al., 2021), solves
minA,B f(X +AB) := Eξ[F (X +AB; ξ)]. Notably, MeZO-LoRA can only optimize the low-
rank adapters A and B, without the capability to optimize the full parameter X . This distinction
explains why LOZO outperforms MeZO-LoRA in most of our empirical studies.
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4.4 LOZO WITH MOMENTUM

Momentum technique requires additional memory overhead. The momentum technique is
widely used in modern deep learning to reduce gradient variance and accelerate the convergence
of training. The ZO-SGD with momentum (ZO-SGD-M) iteration can be expressed as follows:

M t = βM t−1 + (1− β)∇̂F (Xt; ξt), Xt+1 = Xt − αM t, (19)

where M t := {M t
l }Lℓ=1 is the momentum term, β is the momentum coefficient, and ∇̂F (Xt; ξt)

denotes the ZO estimated gradient at iteration t. Compared with the vanilla ZO-SGD, ZO-SGD-
M introduces additional memory overhead since it requires storing the momentum term, which is
proportional to the size of the model.

The LOZO-M algorithm introduces negligible memory overhead. We can integrate the proposed
LOZO algorithm with the momentum technique (LOZO-M) without the memory overhead issue.
To simplify the formulation, we denote the finite difference of function values at iteration t, where
t ∈ {kν, . . . , (k+1)ν − 1}, as ct. The gradient estimator for the LOZO algorithm, as introduced in
(9), can then be represented as ∇̂F (Xt; ξt) = ctU t(V (k)/r)T .

We now introduce LOZO-M, the memory-efficient version of ZO-SGD with momentum. The key
observation is that V (k) remains fixed for t ∈ {kν, . . . , (k + 1)ν − 1}. Consequently, it suffices
to accumulate ctU t instead of the full gradient estimator ∇̂F (Xt; ξt) for updating the momentum,
thereby significantly reducing memory overhead. The update rule is expressed as follows:

N t = βN t−1 + (1− β)ctU t, Xt+1 = Xt − αN t(V (k)/r)T , (20)

where N t(V (k)/r)T corresponds to the original momentum. When updating Xt, we compute
N t(V (k)/r)T layer by layer and discard the result immediately after updating the weights of each
layer. Consequently, compared with the vanilla ZO-SGD-M (19), LOZO-M (20) only requires stor-
ing N t := {N t

ℓ}Lℓ=1. Since rℓ ≪ min(mℓ, nℓ), the additional memory overhead is negligible.

Momentum projection. When V (k) is updated, an additional step is required. Specifically, at
t = (k + 1)ν, the gradient estimator ∇̂F (Xt; ξt) takes the form ctU t(V (k+1)/r)T due to resam-
pling, while the momentum from the previous step is N t−1(V (k)/r)T . Thus, we cannot update the
momentum by simply combining ctU t and N t−1 as per (20). To address this, we project the old
momentum onto the new subspace spanned by V (k+1) before updating N t. We compute:

Ñ t−1 = argmin
N
∥N t−1(V (k))T −N(V (k+1))T ∥.

By doing this, the projected momentum Ñ t−1(V (k+1)/r)T becomes a good approximation of the
momentum from the previous step, taking the same form as the gradient estimator ∇̂F (Xt; ξt).
Therefore, we use Ñ t−1 to replace N t−1 in the momentum update (20) at t = (k + 1)ν. Given
that V T

ℓ Vℓ ≈ nℓI for any ℓ (see Remark 4.3), the solution is Ñ t−1 = N t−1(V (k))T (V (k+1)/n),
where n := {nℓ}Lℓ=1. The detailed LOZO-M algorithm is provided in Algorithm 2.

5 EXPERIMENTS

This section evaluates the performance of our algorithm across multiple tasks, including the Super-
GLUE benchmark (Wang et al., 2019) and other datasets, as detailed in Appendix C.1. We compare
our LOZO and LOZO-M algorithms with MeZO (Malladi et al., 2023) as well as its variants, and
other baselines including zero-shot and in-context learning (ICL) approaches. We also test full fine-
tuning and LoRA using the gradient-based Adam method (Kingma, 2014), referred to as FT and
FT-LoRA, respectively.

Our experiments evaluate the algorithms on language models (LMs) of various scales, including
RoBERTa-large (Liu et al., 2019b) and large autoregressive LMs such as OPT-13B, 30B, and 66B
(Zhang et al., 2022a). We also test LLaMA models (Touvron et al., 2023) of varying scales, with
the results presented in Appendix D.3. For a fair comparison, we conduct a full grid search of the
parameters provided in (Malladi et al., 2023) and select the best results for MeZO and its variants.
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5.1 MEDIUM-SIZED MASKED LANGUAGE MODELS

We conduct experiments employing RoBERTa-large on tasks including sentiment classification, nat-
ural language inference and topic classification. To mitigate the effects of random variability, all
experimental results reported in this subsection are the means of the outcomes resulted from five
different random seeds.

LOZO outperforms MeZO and MeZO-LoRA on the majority of datasets and achieves perfor-
mance comparable to FT. As shown in Figure 2, our algorithm demonstrates a performance gain on
the three listed datasets, with a particularly significant improvement on the MNLI dataset, surpass-
ing both MeZO and MeZO-LoRA. The performance gap between LOZO and FT is generally less
than 1%, and with a larger k, LOZO can further narrow this gap and even exceed its performance.
We provide the complete results for RoBERTa-large in Appendix D.1.

LOZO-M consumes similar memory usage to LOZO while delivering superior performance
compared to MeZO and MeZO-Adam. We measure the actual memory consumption during the
training of RoBERTa-large using LOZO, MeZO, and their respective variants to evaluate the mem-
ory efficiency of our methods. As shown in Table 1, the additional memory overhead introduced by
the momentum technique in LOZO is negligible. In contrast, MeZO fails to achieve this efficiency.

Algorithm MNLI SNLI

Accuracy (%) Memory Usage (GB) Accuracy (%) Memory Usage (GB)

LOZO 61.6 2.83 73.4 2.83
LOZO-M 62.7 2.84 74.0 2.84
MeZO 56.7 3.00 68.5 3.00
MeZO-M 58.9 5.89 69.6 5.89
MeZO-Adam 62.6 7.42 72.7 7.42

Table 1: Accuracy and Memory Consumption of LOZO and MeZO with their respective variants.
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Figure 2: The figures illustrate the performance of different algorithms on RoBERTa-large across three tasks
(SNLI, MNLI, and RTE), with the left panel corresponding to k = 512 and the right panel corresponding to
k = 16. Detailed numerical results are provided in Table 8.

Task SST-2 RTE CB BoolQ WSC WiC MultiRC COPA ReCoRD SQuAD DROP
Zero-shot 58.8 59.6 46.4 59.0 38.5 55.0 46.9 80.0 81.0 46.2 14.6
ICL 87.0 62.1 57.1 66.9 39.4 50.5 53.1 87.0 82.3 75.9 29.5

MeZO 91.3 68.2 66.1 68.1 61.5 59.4 59.4 88.0 81.3 81.8 31.3
MeZO-LoRA 89.6 67.9 67.8 73.5 63.5 60.2 61.3 84.1 81.5 82.1 31.3
LOZO 91.7 70.4 69.6 71.9 63.5 60.8 63 89.0 81.3 84.9 30.7

FT 91.8 70.9 84.1 76.9 63.5 70.1 71.1 79.0 74.1 84.9 31.3

Table 2: Experiments on OPT-13B (with 1000 examples). ICL: in-context learning; FT: full fine-tuning with
Adam. The best results are shown in bold except for FT.
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5.2 LARGE AUTOREGRESSIVE LANGUAGE MODELS

To further evaluate the effectiveness of LOZO on large language models, we extend our study to the
OPT models (Zhang et al., 2022a) with billions of parameters (13B, 30B and 66B). The results are
presented in Table 2 and Table 3.

Compared to MeZO and MeZO-LoRA, LOZO demonstrates a clear improvement across the
majority of datasets. For instance, LOZO achieves notable performance gains on OPT-30B and
OPT-66B, as presented in Table 3, outperforming MeZO and other baselines in most tasks. Further-
more, the results in Table 2 indicate that LOZO not only surpasses MeZO and MeZO-LoRA but also
approaches the performance exhibited by FT on most cases.

LOZO yields faster convergence rates across different model scales, including 13B, 30B and
66B. As illustrated in Figure 3, the proposed method consistently achieves faster convergence across
various datasets and model scales. For example, in the WIC dataset with the OPT-66B configuration,
the LOZO algorithm requires only half the number of training epochs to achieve the same training
loss as that of the MeZO method, while simultaneously exhibiting smaller loss oscillations.

Task SST-2 RTE BoolQ WSC WiC SQuAD
30B zero-shot 56.7 52.0 39.1 38.5 50.2 46.5
30B ICL 81.9 66.8 66.2 56.7 51.3 78.0
30B MeZO 90.7 64.3 68.2 63.5 56.3 86.1
30B LOZO 92.8 65.3 72.3 64.4 57.2 85.6

66B zero-shot 57.5 67.2 66.8 43.3 50.6 48.1
66B ICL 89.3 65.3 62.8 52.9 54.9 81.3
66B MeZO 92.0 71.5 73.8 64.4 57.8 84.0
66B LOZO 92.5 74.0 74.5 63.5 59.4 85.8

Table 3: Experiments on OPT-30B and OPT-66B on SuperGLUE benchmark. Our results show that LOZO is
superior on most tasks compared to the other baselines. The best results are shown in bold.
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Figure 3: Left: Loss curves of OPT-13B on SQuAD dataset. Middle: Loss curves of OPT-30B on SST-2
dataset. Right: Loss curves of OPT-66B on WIC dataset.

6 CONCLUSION AND LIMITATIONS

This paper introduces the LOZO and LOZO-M algorithms, which are novel zeroth-order (ZO) meth-
ods for fine-tuning language models. Specifically, the LOZO algorithm employs a gradient estimator
with a low-rank structure, closely mirroring the true gradient in first-order (FO) methods. We further
demonstrate that the LOZO algorithm is equivalent to a ZO subspace method, forming the basis for
our convergence results. By combining LOZO with the commonly used momentum technique, we
develop the LOZO-M algorithm, which incurs almost no additional memory overhead. Both LOZO
and LOZO-M achieve improved performance compared to the vanilla ZO-SGD method.

One limitation of our work is the challenge of designing a method that integrates LOZO with the
Adam optimizer without incurring additional memory costs. Additionally, minor fluctuations in
the loss are observed towards the end of the training process, potentially due to the lazy sampling
strategy. Addressing these issues is left for future work.
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A MORE COMMENTS

A.1 UNBIASENESS OF LGE

In the proposed LOZO algorithm, we employ LGE to approximate the gradient. The following
proposition demonstrates that the LGE scheme is unbiased as ϵ→ 0.
Proposition A.1. If F (X; ξ) is differentiable with respect to X , the LGE in (5) is an unbiased
estimator of∇Xℓ

F (X; ξ) when ϵ→ 0.

Proof. For simplicity, we omit the random variable ξ in this proof. Under the differentiability as-
sumption, for any set of real matrices {∆Xℓ}Lℓ=1 with the same dimensions as X , we have

lim
ϵ→0

F ({Xℓ + ϵ∆Xℓ}Lℓ=1)− F (X)−
∑L

ℓ=1⟨∇Xℓ
F (X), ϵ∆Xℓ⟩

ϵ
= 0.

Now, since ∇̂Xℓ
F (X) from (5) can be written as

F ({Xk + ϵUkV
T
k }Lk=1)− F (X)−

∑L
k=1⟨∇Xk

F (X), ϵUkV
T
k ⟩

2ϵ

−
F ({Xk − ϵUkV

T
k }Lk=1)− F (X)−

∑L
k=1⟨∇Xk

F (X),−ϵUkV
T
k ⟩

2ϵ

+
1

ϵ

L∑
k=1

⟨∇Xk
F (X), ϵUkV

T
k ⟩


UℓV

T
ℓ

rℓ
,

we have

lim
ϵ→0

E
[
∇̂Xℓ

F (X)
]
=

1

rℓ
E

[ L∑
k=1

⟨∇Xk
F (X), UkV

T
k ⟩UℓV

T
ℓ

]
.

Since all elements of {Uℓ, Vℓ}Lℓ=1 are i.i.d. Gaussian variables, we can further deduce that

lim
ϵ→0

E
[
∇̂Xℓ

F (X)
]
=

1

rℓ
E
[
⟨∇Xℓ

F (X), UℓV
T
ℓ ⟩UℓV

T
ℓ

]
.

The element at row i and column j of this expression is
1

rℓ
E
[
⟨∇Xℓ

F (X), UℓV
T
ℓ ⟩UℓV

T
ℓ

]
ij

=
1

rℓ
E

[
mℓ∑
p=1

nℓ∑
q=1

∂F (X)

∂[Xℓ]pq

rℓ∑
k=1

[Uℓ]pk[Vℓ]qk ·
rℓ∑
s=1

[Uℓ]is[Vℓ]js

]

=
1

rℓ

∂F (X)

∂[Xℓ]ij
E

[
rℓ∑

k=1

[Uℓ]
2
ik[Vℓ]

2
jk

]
=

∂F (X)

∂[Xℓ]ij
.

(21)

Therefore, we conclude that

lim
ϵ→0

E
[
∇̂Xℓ

F (X)
]
= ∇Xℓ

F (X).

A.2 EQUIVALENCE BEWTWEEN LOZO AND ZO SUBSPACE METHOD

We present the detailed proof of the equivalence between LOZO algorithm (9) and the ZO subspace
method (14). Let Xt be the t-th iteration point of LOZO, and let X̃(k) be the k-th iteration point
of the outer loop in the ZO subspace method (14b). We now show that Xkν = X̃(k) holds if the
initialization of both algorithms is the same, i.e., X0 = X̃(0).

We now introduce Y (k,s) := X̃(k) +B(k,s)(V (k))T . When the step size satisfies γ = α/r, using
the update rules for B from (14a) and (15), we can derive the update rule for Y , which is:

Y (k,s+1)=Y (k,s)− γ
F (Y (k,s)+ ϵU (k,s)(V (k))T )−F (Y (k,s)− ϵU (k,s)(V (k))T )

2ϵ
U (k,s)(V (k))T
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=Y (k,s)− α · LGE(Y (k,s),U (k,s),V (k), r, ϵ, ξ(k,s)), ∀s ∈ {0, · · · , ν − 1}. (22)

This update rule for Y aligns with that for X in the LOZO algorithm. Thus, once Y (k,0) = X̃(k) =
Xkν , it follows that Y (k,s) = X̃(k)+B(k,s)(V (k))T = Xkν+s for all s ∈ {0, 1, . . . , ν}. Therefore,
Y (k,ν) = X̃(k) + B(k,ν)(V (k))T = X̃(k+1) = X(k+1)ν . Thus, the relation X̃(k) = Xkν holds
for any k, given that X̃(0) = X0.

A.3 DETAILS OF LOZO-M

We present the detailed LOZO-M algorithm in Algorithm 2. Compared to the LOZO algorithm, the
main difference is the addition of the momentum term update.

Algorithm 2: Low-rank ZO-SGD with Momentum (LOZO-M)
Input: parameters X , loss function F (X; ξ), step budget T , perturbation scale ϵ, learning rate

α, momentum parameter β, sample interval ν and rank {rℓ}.
foreach Xℓ ∈X do

Nℓ ← 0 ; // Initialize momentum

for t = 0, . . . , T − 1 do
foreach Xℓ ∈X do

Sample Uℓ ∈ Rmℓ×rℓ from the standard normal distribution;
if t mod ν = 0 then

Mℓ ← NℓV
T
ℓ ;

Sample Vℓ ∈ Rnℓ×rℓ from the standard normal distribution; ; // Resample Vℓ

Nℓ ← 1
nℓ
MℓVℓ; ; // Project momentum onto the new subspace

X ← Perturbation(X, ϵ, {Uℓ, Vℓ});
F+ ← F (X; ξ);
X ← Perturbation(X,−2ϵ, {Uℓ, Vℓ});
F− ← F (X; ξ);
X ← Perturbation(X, ϵ, {Uℓ, Vℓ}); ; // Reset parameters
c← (F+ − F−)/2ϵ ; // Calculate finite difference
foreach Xℓ ∈X do

Nℓ ← βNℓ + (1− β) · cUℓ; ; // Update momentum in place
Xℓ ← Xℓ − α(NℓV

T
ℓ /rℓ); ; // Update parameters in place

Function Perturbation(X, ϵ, {Uℓ, Vℓ}):
foreach Xℓ ∈X do

Xℓ ← Xℓ + ϵUℓV
T
ℓ ; ; // Modify parameters in place

return X;

B CONVERGENCE ANALYSIS

In this section, we present the convergence analysis of the LOZO algorithm and provide a detailed
proof of Theorem 4.4. Without loss of generality, we focus on the case where the number of layers is
L = 1. Consequently, the problem (1) reduces to minX f(X) := Eξ[F (X; ξ)], where X ∈ Rm×n.
To simplify the notation, we define the following terms:

GX,V (B; ξ) := F (X +BV T ; ξ), gX,V (B) := f(X +BV T ),

∇̂GX,V (B; ξ) :=
GX,V (B + ϵU)−GX,V (B − ϵU)

2ϵ
U.

With these definitions, the subspace minimization problem (12) can be reformulated as follows:

min
B

gX,V (B) = Eξ[GX,V (B; ξ)]. (23)
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As demonstrated in Section 4.2, our proposed LOZO algorithm is equivalent to solving the subprob-
lem (23) using ZO-SGD with the LGE scheme for ν steps, followed by an update of the weight
matrix. Specifically, by applying the following update rule:

B(k,s+1) = B(k,s) − α

r
∇̂GX̃(k),V (k)(B

(k,s); ξ(k,s)), ∀s ∈ {0, 1, . . . , ν − 1}, (24a)

X̃(k+1) = X̃(k) +B(k,ν)(V (k))T , (24b)

it follows that Xkν = X̃(k) for any k, where Xkν represents the kν-th iteration point of the LOZO
algorithm. For the remainder of the proof, we will use Xkν in place of X̃(k) in (24).

Under Assumption 4.2, the following properties hold, which can be straightforwardly derived:

∥AV T ∥F =
√
tr(AV TV AT ) =

√
n∥A∥F ,

∥V ∥2 =
√
∥V TV ∥2 =

√
n,

where A ∈ Rm×n is any matrix. For simplicity, we will not explicitly reference these properties
when they are used.

To construct the convergence result, our analysis is divided into two parts. First, we analyze the
convergence of ZO-SGD (24a) for solving (23) with fixed X and V . Next, we assess the impact of
updating X and resampling V , and establish the global convergence result for LOZO algorithm.

To begin the first part, we introduce some preliminary lemmas. All of these lemmas assume fixed
X and V , so we will omit the subscripts of gX,V (B) and GX,V (B; ξ) when there is no risk of
confusion. The following lemma establishes the desirable properties of the objective function in
(23), which are necessary for the convergence of the iteration given in (24a).

Lemma B.1. Under Assumptions 4.1and 4.2, the following properties hold:

• The function GX,V (B; ξ) is uniformly L̃-smooth with a constant L̃ = nL.

• ∇GX,V (B; ξ) is an unbiased estimator of∇gX,V (B), and its variance is bounded by

E∥∇GX,V (B; ξ)−∇gX,V (B)∥2F ≤ σ̃2,

where σ̃2 = nσ2.

Proof. Given any ξ, since F (X, ξ) is differentiable and X + UV T is a linear function of U , the
function GX,V (U ; ξ) is also differentiable, and we have:

∇GX,V (B, ξ) = ∇F (X +BV T )V.

Thus, it follows that:

∥∇GX,V (B1, ξ)−∇GX,V (B2, ξ)∥F = ∥∇F (X +B1V
T , ξ)V −∇F (X +B2V

T , ξ)V ∥F
≤ ∥∇F (X +B1V

T , ξ)−∇F (X +B2V
T , ξ)∥F ∥V ∥2

≤ L∥(B1 −B2)V
T ∥F ∥V ∥2

≤ nL∥B1 −B2∥F .

The second property holds because

Eξ∥∇GX,V (U ; ξ)−∇gX,V (U)∥2F
= Eξ

∥∥[∇F (X + UV T ; ξ)−∇f(X + UV T )
]
V
∥∥2
F

≤ Eξ

∥∥∇F (X + UV T ; ξ)−∇f(X + UV T )
∥∥2
F
∥V ∥22

≤ σ2∥V ∥22 = nσ2.
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The following lemma, which bounds the second moment of the gradient estimator, is necessary for
proving the convergence of ZO-SGD.

Lemma B.2. For the gradient estimator ∇̂GX,V (B; ξ), the following bound holds:

EU∥∇̂GX,V (B; ξ)∥2F ≤ 6mr∥∇GX,V (B; ξ)∥2F + 64L̃2m3r3ϵ2.

Proof. The triangle inequality provides the following bound:

EU∥∇̂G(B; ξ)∥2F ≤ 2EU∥∇̂G(B; ξ)− ⟨∇G(B; ξ), U⟩U∥2F + 2EU∥⟨∇G(B; ξ), U⟩U∥2F .

To bound the first term, we use Assumption 4.1, leading to the following inequalities:

|G(B + ϵU ; ξ)−G(B; ξ)− ϵ⟨∇G(B; ξ), U⟩| ≤ L̃ϵ2

2
∥U∥2F ,

|G(B − ϵU ; ξ)−G(B; ξ) + ϵ⟨∇G(B; ξ), U⟩| ≤ L̃ϵ2

2
∥U∥2F .

Combining these two inequalities, we obtain:∣∣∣G(B + ϵU ; ξ)−G(B − ϵU ; ξ)

2ϵ
− ⟨∇G(B; ξ), U⟩

∣∣∣ ≤ L̃ϵ

2
∥U∥2F .

Multiplying by U on both sides and taking the expectation with respect to U yields:

EU∥∇̂G(B; ξ)− ⟨∇G(B; ξ), U⟩U∥2F ≤
L̃2ϵ2

4
EU∥U∥6F ≤

L̃2(mr + 4)3ϵ2

4
≤ 32L̃2m3r3ϵ2.

In the final inequality, we use the fact EU∥U∥6F = mr(mr + 2)(mr + 4). The second term can be
calculated directly, giving us:

EU∥⟨∇G(B; ξ), U⟩U∥2F = (mr + 2)∥∇G(B; ξ)∥2F ≤ 3mr∥∇G(B; ξ)∥2F .

Combining these two inequalities completes the proof.

We now introduce the Gaussian smoothing function as follows:

gϵX,V (B) := EU [gX,V (B + ϵU)] =
1

κ

∫
gX,V (B + ϵU)e−

1
2∥U∥2

F dU.

The following lemma outlines several properties of the Gaussian smoothing function.

Lemma B.3 (Section 2 in (Nesterov & Spokoiny, 2017)). For the Gaussian smoothing function
gϵX,V (B), the following properties hold:

• EU,ξ[∇̂GX,V (B; ξ)] = ∇gϵX,V (B).

• gϵX,V (B) is L̃-smooth.

• |gϵX,V (B)− gX,V (B)| ≤ L̃mrϵ2

2 .

• ∥∇gϵX,V (B)−∇gX,V (B)∥2F ≤ L̃2mrϵ2.

Proof. We only prove the last claim. The remaining claims and their proofs can be found in (Nes-
terov & Spokoiny, 2017).

∥∇gϵ(B)−∇g(B)∥2F = ∥EU (∇g(B + ϵU)−∇g(B))∥2F
≤ EU∥∇g(B + ϵU)−∇g(B)∥2F
≤ L̃2ϵ2EU∥U∥2F = L̃2mrϵ2.

In the first inequality, we apply Jensen’s inequality, and the second inequality derives from the L̃-
smoothness of g(B).
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Now we are able to establish the convergence for solving problem (23) using the update rule (24a).
The following lemma bounds the expected difference between any Bt and B0.

Lemma B.4. If the step size condition 16L̃2mνα2

r ≤ 1
ν−1 is satisfied, then for any t ≤ ν, the

following inequality holds:

EU,ξ∥Bt −B0∥2F ≤
64mν2α2

r
EU,ξ∥∇g(B0)∥2F +

24mνα2σ̃2

r
+ 264L̃2m3rϵ2ν2α2.

Proof. To simplify the notation, we use E to denote the expectation taken over both U and ξ. By the
triangle inequality, we have the following:

E∥Bt+1 −B0∥2F = E
∥∥∥Bt − α

r
∇̂G(Bt; ξt)−B0

∥∥∥2
F

= E
∥∥∥Bt − α

r
∇gϵ(Bt)−B0

∥∥∥2
F
+

α2

r2
E∥∇̂G(Bt; ξt)−∇gϵ(Bt)∥2F

≤
(
1 +

1

ν − 1

)
E∥Bt −B0∥2F +

να2

r2
E∥∇gϵ(Bν)∥2F +

α2

r2
E∥∇̂G(Bt; ξt)∥2F .

Next, we use Lemmas B.2 and B.3 to bound the last two terms:

E∥Bt+1 −B0∥2F ≤
(
1 +

1

ν − 1

)
E∥Bt −B0∥2F +

2να2

r2
E∥∇g(Bt)∥2F

+
6mα2

r
E∥∇G(Bt; ξt)∥2F + 66L̃2m3rϵ2να2

≤
(
1 +

1

ν − 1

)
E∥Bt −B0∥2F +

8mνα2

r
E∥∇g(Bt)∥2F

+
6mα2σ̃2

r
+ 66L̃2m3rϵ2να2

≤

(
1 +

1

ν − 1
+

16L̃2mνα2

r

)
E∥Bt −B0∥2F +

16mνα2

r
E∥∇g(B0)∥2F

+
6mα2σ̃2

r
+ 66L̃2m3rϵ2να2.

Applying the step size condition 16L̃2mνα2

r ≤ 1
ν−1 , we obtain:

E∥Bt+1 −B0∥2F ≤
(
1 +

2

ν − 1

)
E∥Bt −B0∥2F +

16mνα2

r
E∥∇g(B0)∥2F

+
6mα2σ̃2

r
+ 66L̃2m3rϵ2να2.

By induction, we have:

E∥Bt −B0∥2F ≤
t−1∑
s=0

(
1 +

2

ν − 1

)s(
16mνα2

r
E∥∇g(B0)∥2F +

6mα2σ̃2

r
+ 66L̃2m3rϵ2να2

)
≤ 64mν2α2

r
E∥∇g(B0)∥2F +

24mνα2σ̃2

r
+ 264L̃2m3rϵ2ν2α2.

In the last inequality, we use the fact that
∑t−1

s=0

(
1 + 2

ν−1

)s
≤ 4ν for t ≤ ν.

The following lemma provides a bound on the function value of (23) over ν iteration steps of the
update rule (24a).

Lemma B.5. If the step size satisfies the condition 32L̃mνα ≤ 1, then the following holds:

EU,ξ(gX,V (B
ν)− gX,V (B

0)) ≤

(
−να

4r
+

18L̃mν2α2

r

)
EU,ξ∥∇gX,V (B

0)∥2F
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+
7L̃mσ̃2να2

r
+ 2L̃mrϵ2,

where L̃ and σ̃2 are defined in Lemma B.1.

Proof. We continue to use E to denote the expectation taken over both U and ξ. We begin with the
following inequality, which is derived from the L̃-smoothness of gϵ(B):

Egϵ(Bν)− Egϵ(B0) ≤ E⟨∇gϵ(B0), Bν −B0⟩+ L̃

2
E∥Bν −B0∥2F

≤ −α

r

ν−1∑
t=0

E⟨∇gϵ(B0), ∇̂G(Bt; ξt)⟩+ L̃α2

2r2
E
∥∥∥ ν−1∑

t=0

∇̂G(Bt; ξt)
∥∥∥2
F
.

For the first term on the right-hand side, we have:

−α

r

ν−1∑
t=0

E⟨∇gϵ(B0),∇̂G(Bt; ξt)⟩ = −α

r

ν−1∑
t=0

E⟨∇gϵ(B0),∇gϵ(Bt)⟩

= −α

r

ν−1∑
t=0

E⟨∇gϵ(B0),∇gϵ(Bt)−∇gϵ(B0) +∇gϵ(B0)⟩

= −να

r
∥∇gϵ(B0)∥2F −

α

r

ν−1∑
t=0

E⟨∇gϵ(B0),∇gϵ(Bt)−∇gϵ(B0)⟩

≤ −να

2r
E∥∇gϵ(B0)∥2F +

α

2r

ν−1∑
t=0

E∥∇gϵ(Bt)−∇gϵ(B0)∥2F

≤ −να

4r
E∥∇g(B0)∥2F +

L̃2α

2r

ν−1∑
t=0

E∥Bt −B0∥2F +
L̃2mϵ2να

2
.

The first inequality follows from ⟨a, b⟩ ≤ ∥a∥2+∥b∥2

2 , and the final inequality holds due to Lemmas
B.1 and B.3.

For the second term, we have:

L̃α2

2r2
E
∥∥∥ ν−1∑

t=0

∇̂G(Bt; ξt)
∥∥∥2
F
≤ L̃α2

r2
E
∥∥∥ ν−1∑

t=0

∇̂G(Bt; ξt)−∇gϵ(Bt)
∥∥∥2
F
+

L̃να2

r2

ν−1∑
t=0

E∥∇gϵ(Bt)∥2F

=
L̃α2

r2

ν−1∑
t=0

E
∥∥∥∇̂G(Bt; ξt)−∇gϵ(Bt)

∥∥∥2
F
+

L̃να2

r2

ν−1∑
t=0

E∥∇gϵ(Bt)∥2F

≤ L̃α2

r2

ν−1∑
t=0

E∥∇̂G(Bt, ξt)∥2F +
L̃να2

r2

ν−1∑
t=0

E∥∇gϵ(Bt)∥2F

≤ 6L̃mα2

r

ν−1∑
t=0

E∥∇G(Bt; ξt)∥2F + 64L̃3m3rϵ2να2 +
L̃να2

r2

ν−1∑
t=0

E∥∇gϵ(Bt)∥2F

≤ 8L̃mνα2

r

ν−1∑
t=0

E∥∇g(Bt)∥2F +
6L̃mσ̃2να2

r
+ 66L̃3m3rϵ2ν2α2

≤ 16L̃mν2α2

r
E∥∇g(B0)∥2F +

16L̃3mνα2

r

ν−1∑
t=0

E∥Bt −B0∥2F

+
6L̃mσ̃2να2

r
+ 66L̃3m3rϵ2ν2α2.

The first equation holds due to the independence of U t and ξt for each t, while the third and fourth
inequalities follow from Lemmas B.2 and B.3, respectively. Combining the above results and con-
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sidering the condition 32L̃mνα ≤ 1, we obtain:

E(gϵ(Bν)− gϵ(B0)) ≤

(
−να

4r
+

16L̃mν2α2

r

)
E∥∇g(B0)∥2F +

L̃2α

r

ν−1∑
t=0

E∥Bt −B0∥2F

+
6L̃mσ̃2να2

r
+ 66L̃3m3rϵ2ν2α2 +

L̃2mϵ2να

2
.

Applying Lemma B.4 and again considering the condition 32L̃mνα ≤ 1, we have:

E(gϵ(Bν)− gϵ(B0)) ≤

(
−να

4r
+

18L̃mν2α2

r

)
E∥∇g(B0)∥2F +

7L̃mσ̃2να2

r
+ L̃mrϵ2.

Finally, by applying Lemma B.3 once again, we can complete our proof.

Now we have established the bound for solving the subproblem (23). Next, we investigate the
impact of updating X and resampling V and establish the convergence result for our proposed
LOZO algorithm. This leads to the following theorem.
Theorem B.6 (Theorem 4.4). Under Assumptions 4.1 and 4.2, and assuming the step size α ≤

1
144Lmnν , when applying the proposed LOZO algorithm to solve problem (1), and letting T = Kν,
the following inequality holds:

1

K

K−1∑
k=0

E∥∇f(Xkν)∥2 ≤ 8∆0

Tα
+

56Lmn2σ2α

r
+

16Lmnrϵ2

να
,

where ∆0 := f(X0)− f∗. Furthermore, if we choose

ϵ =

√
∆0ν

16TLmnr
, α =

144Lmnν +

√
56TLmn2σ2

9∆0r

−1

,

then it holds that:

1

K

K−1∑
k=0

E∥∇f(Xkν)∥2 ≤ 16

√
1

T

(
7∆0Lmn2σ2

r

)
+

2592∆0Lmnν

T
.

Proof. Recalling the update rule (24), it follows that

gXkν ,V (k)(Bν) = f(Xkν +B(k,ν)(V (k))T ) = f(X(k+1)ν), gXkν ,V (k)(B0) = f(Xkν).

Moreover, note that∇gXkν ,V (k)(B0) = ∇f(Xkν)V (k). By applying Lemma B.5, we obtain:

EU,ξ(f(X
(k+1)ν)− f(Xkν)) ≤

(
−να

4r
+

18L̃mν2α2

r

)
EU,ξ∥∇f(Xkν)V (k)∥2F

+
7L̃mσ̃2να2

r
+ 2L̃mrϵ2.

Taking the expectation over V (k), and noting that EV (k)(V (k))T = I (by Assumption 4.2), V (k) is
independent of Xkν , we have:

E(f(X(k+1)ν)− f(Xkν)) ≤
(
−να

4
+ 18L̃mν2α2

)
E∥∇f(Xkν)∥2F

+
7L̃mσ̃2να2

r
+ 2L̃mrϵ2.

Note that T = Kν. Rearranging the inequality above and summing over K gives:(
1

4
− 18L̃mνα

)
1

K

K∑
k=1

E∥∇f(Xkν)∥2F ≤
∆0

Tα
+

7L̃mσ̃2α

r
+

2L̃mrϵ2

να
.

Considering the step size condition 144L̃mνα ≤ 1, and using L̃ = nL and σ̃2 = nσ2, we complete
the proof.
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C EXPERIMENTAL DETAILS

C.1 DATASETS

For RoBERTa-large, we evaluate the performance on six NLP tasks: SST-2(Socher et al.,
2013), SST-5(Socher et al., 2013), SNLI(Bowman et al., 2015), MNLI(Williams et al., 2017),
RTE(Dagan et al., 2005; Bar-Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009),
TREC(Voorhees & Tice, 2000). We adopt two settings: k = 16 and k = 512, which require 16 and
512 examples per class, respectively, during both the training and validation stages.

For OPT, we conduct experiments on the following datasets: SST-2(Socher et al., 2013), RTE(Dagan
et al., 2005; Bar-Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009), CB(De Marn-
effe et al., 2019), BoolQ(Clark et al., 2019), WSC(Levesque et al., 2012), WIC(Pilehvar &
Camacho-Collados, 2018), MultiRC(Khashabi et al., 2018), COPA(Roemmele et al., 2011),
ReCoRD(Zhang et al., 2018), SQuAD(Rajpurkar et al., 2016), DROP(Dua et al., 2019).

For the LLaMA model, we evaluate its performance on the SST-2, WiC, COPA, SQuAD, and Wino-
Grande datasets.

C.2 HYPERPARAMETERS

In this section, we present the hyperparameter search grids to support the reproducibility of our
experiments using the RoBERTa-large, OPT, and LLaMA models. Both MeZO and LOZO utilize a
constant learning rate schedule, whereas FT and FT-LoRA adopt a linear learning rate schedule.

For MeZO, LOZO, and their respective variants, we conduct 100K training steps, evaluating the
model every 10K steps for the RoBERTa-large model; 20K training steps with evaluations every 4K
steps for the OPT model; and 20K training steps, evaluating every 500 steps for the LLaMA model.
For all gradient-based algorithms, we adhere to the configurations described in (Malladi et al., 2023;
Zhang et al., 2024).

Experiment Hyperparameters Values

LOZO Batch size 64
Learning rate (k=16) 1e−6

Learning rate (k=512) 2e−7
Rank (r) {4, 8}

Interval (ν) {50, 100}
ϵ 1e−3

Weight Decay 0

MeZO Batch size 64
Learning rate {1e−7, 1e−6, 1e−5}

ϵ 1e−3
Weight Decay 0

MeZO-LoRA Batch size 64
Learning rate {1e−5, 5e−5, 1e−4}

ϵ 1e−3
Weight Decay 0.1

(r, α) (8, 16)

FT Batch size {8}
Learning rate {1e−5, 3e−5, 5e−5}

Weight Decay 0

FT-LoRA Batch size {8}
Learning rate {1e−4, 3e−4, 5e−4}

(r, α) (8, 16)

Table 4: The hyperparameter grids used for RoBERTa-large experiments. The learning rate of the
LOZO algorithm refers to α/r. For LOZO-M, we introduce an additional parameter, β1, which is
searched over the range {0.5, 0.7, 0.9}.
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Experiment Hyperparameters Values

LOZO Batch size 16
Learning rate {1e−6, 1e−7}

ϵ {1e−3, 1e−4}
Rank (r) {1, 2, 4}

Interval (ν) {50, 100}

MeZO Batch size 16
Learning rate {1e−6, 1e−7} or {1e−6, 5e−7, 1e−7} for SQuAD and DROP

ϵ 1e−3

MeZO-LoRA Batch size 16
Learning rate {1e−4, 5e−5} or {1e−4, 5e−5, 1e−5} for SQuAD and DROP

ϵ 1e−2
(r, α) (8, 16)

FT Batch size 8
Learning rate {1e−5, 5e−5, 8e−5}

Table 5: The hyperparameter grids used for OPT experiments. The learning rate of the LOZO
algorithm refers to α/r.

Experiment Hyperparameters Values

LOZO Batch size 16
Learning rate (k=16) 1e−7

Rank (r) {2, 4}
Interval (ν) {50, 100}

ϵ 1e−3
Weight Decay 0

MeZO Batch size 16
Learning rate {1e−7, 1e−6}

ϵ 1e−3
Weight Decay 0

FT Batch size {8}
Learning rate {1e−6, 1e−7}

FT-LoRA Batch size {8}
Learning rate {1e−4, 1e−5}

(r, α) (8, 16)

Table 6: The hyperparameter grids used for LLaMA experiments. The learning rate of the LOZO
algorithm refers to α/r.

C.3 ABLATION STUDY

In this section, we explore how the choice of rank r and the lazy update interval ν affect the perfor-
mance of our algorithm. We begin by examining the impact of ν and r using the SST-2, COPA and
RTE datasets on the OPT-1.3b model. To illustrate the impact of different values of r and ν on the
convergence rate, we present a plot of loss versus epochs in Figure 4. Also, we list the accuracy and
training loss across different rank r and ν for the three datasets in Table 7.

A small ν value can negatively impact convergence. For datasets where the loss exhibits a signif-
icant decrease during fine-tuning, very small ν values can hinder the model’s convergence, leading
to degraded performance on the test datasets. For example, with a rank of 2 and ν = 1, the final
training loss reaches 0.79, nearly double that of other settings, as shown in Table 7. In addition, as
shown in Figure 4, ν = 1 exhibits different training dynamics compared to larger ν values, where
the training loss either remains unchanged or even increases.

A small ν value may not affect the model’s performance on the test dataset. In contrast, for
datasets where the loss remains stable or decreases only slightly, the performance degradation caused

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

by small ν values is minimal and less noticeable. The COPA dataset serves as a typical example, with
the loss remaining nearly unchanged during training and unaffected by extremely small ν values. As
shown in Table 7, the accuracy with a rank of 2 and ν = 1 is comparable to that of other settings.

A large rank r can moderately slow down the training. The left panel of Figure 4 demonstrates
that a larger rank starts with a higher loss, requiring additional training epochs to reach the same
loss compared to those small rank r.

A small rank r leads to a decline in model performance. When setting the rank to r = 1, it
consistently results in suboptimal performance across all three tasks.
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Figure 4: Left: Loss curves of OPT-1.3B on RTE dataset across different rank r. Right: Loss curves
of OPT-1.3B on SST-2 dataset across different value ν.

SST-2 COPA RTE

r ν Accuracy loss Accuracy loss Accuracy loss

1 50 88.1 0.45 73.0 1.93 56.7 0.68
100 89.0 0.46 74.0 2.18 56.7 0.68

2

1 55.0 0.79 74.0 2.58 50.9 0.70
50 93.0 0.37 74.0 2.04 61.0 0.69
100 92.1 0.37 71.0 2.05 58.1 0.68
200 92.7 0.37 77.0 2.05 62.1 0.67
500 91.7 0.37 75.0 2.05 62.8 0.67

4 50 91.3 0.35 76.0 1.99 57.4 0.69
100 92.0 0.35 75.0 1.97 57.8 0.69

8 50 88.5 0.48 71.0 2.03 55.0 0.71
100 88.9 0.45 73.0 2.03 56.3 0.71

Table 7: Performance and loss across different values of r and ν on SST-2, COPA and RTE datasets.

D MORE EXPERIMENTAL RESULTS

D.1 ROBERTA-LARGE EXPERIMENTS

We present the complete results for RoBERTa-large. As shown in Table 8, our LOZO method and
its variant, LOZO-M, outperform other gradient-free methods on almost all datasets.

D.2 OPT EXPERIMENTS

We have also applied the LOZO-M algorithm to the OPT-13B model, with results presented in Table
9. The numerical results indicate that incorporating the momentum technique further enhances the
performance of LOZO across various tasks, even when applied to large model scales.
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Task SST-2 SST-5 SNLI MNLI RTE TREC
Type sentiment natural language inference topic

Zero-shot 79.0 35.5 50.2 48.8 51.4 32.0

Gradient-free methods: k = 16
MeZO 86.3 (8.0) 40.8 (2.5) 68.5 (4.2) 56.7 (3.4) 58.6 (9.5) 62.4 (10.2)
MeZO-LoRA 88.4 (1.6) 38.9 (2.0) 67.0 (3.3) 56.8 (1.0) 59.7 (4.5) 37.0 (5.1)
LOZO 88.0 (5.8) 41.1 (2.8) 73.4 (4.0) 61.6 (4.6) 61.2 (9.1) 77.9 (7.4)
LOZO-M 88.0 (5.8) 42.9 (1.5) 74.0 (4.0) 62.7 (4.5) 60.2 (8.4) 82.2 (5.2)

Gradient-based methods: k = 16
FT 89.3 (5.3) 44.0 (1.7) 72.7 (5.7) 63.4 (4.3) 61.3 (5.3) 83.7 (4.7)
FT-LoRA 92.7 (0.9) 45.5 (1.4) 71.6 (4.5) 59.4 (4.6) 61.4 (6.9) 75.8 (7.8)

Gradient-free methods: k = 512
MeZO 93.7 (0.4) 53.9 (1.9) 84.8 (1.1) 76.6 (0.8) 76.8 (3.1) 95.0 (0.4)
MeZO-LoRA 91.7 (0.2) 45.1 (1.4) 73.1 (1.1) 65.5 (0.9) 72.7 (0.8) 50.8 (1.9)
LOZO 94.1 (0.7) 53.0 (0.4) 85.4 (0.8) 80.4 (1.0) 79.7 (2.0) 95.5 (0.4)
LOZO-M 94.3 (0.8) 52.6 (0.3) 84.9 (1.1) 80.5 (0.7) 79.7 (1.6) 95.5 (0.5)

Gradient-based methods: k = 512
FT 94.4 (0.6) 55.7 (1.6) 88.3 (0.8) 84.8 (0.7) 82.7 (1.1) 97.2 (0.3)
FT-LoRA 91.9 (2.1) 52.4 (1.2) 84.8 (0.6) 74.8 (3.4) 81.2 (1.6) 96.1 (0.6)

Table 8: Experimental results on RoBERTa-large (350M). All reported numbers are averaged accu-
racy (standard deviation). LOZO and LOZO-M outperforms MeZO and MeZO-LoRA by a consid-
erable margin and approaches FT performance.

In Table 10, we evaluate the minimum memory requirements for two datasets on OPT-13B, set-
ting the per-device batch size to 1 to determine the minimum hardware requirements for running
the model with different optimization algorithms. The results demonstrate that LOZO exhibits the
lowest memory consumption, particularly when compared to FO methods. Notably, the momentum-
enhanced LOZO variant (LOZO-M) incurs minimal additional memory overhead, unlike its coun-
terpart, MeZO-M, which requires significantly more memory.

In Figure 5, we compare the convergence rates of our proposed LOZO algorithm with MeZO on
two additional tasks. We also present a comparison of wall-clock times on GPUs. Despite having
similar computational complexities, LOZO converges faster than MeZO, resulting in reduced wall-
clock time.

Task SST-2 RTE CB WSC COPA SQuAD
LOZO 91.7 70.4 69.6 63.5 89.0 84.9
LOZO-M 92.5 73.6 69.6 64.4 90.0 83.3

Table 9: Comparison of the performance of LOZO and its momentum variant on OPT-13B.

Task RTE MultiRC
Memory Consumed GPUs Memory Consumed GPUs

LOZO 27.0 GB 1× A800 26.9 GB 1× A800
LOZO-M 27.4 GB 1× A800 27.3 GB 1× A800
MeZO 27.4 GB 1× A800 27.3 GB 1× A800
MeZO-M 51.7 GB 1× A800 52.1 GB 1× A800
FT-LoRA 79.0 GB 1× A800 102.4 GB 2× A800
FT 250.0 GB 4× A800 315.2 GB 4× A800

Table 10: Comparison of memory costs for LOZO, MeZO, their momentum variants, and gradient-based
methods on OPT-13B.
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Figure 5: Top: Loss curves with respect to epochs for OPT-13B (SST2) and OPT-30B (Copa). Bottom: Loss
curves with respect to time for the same configurations.

D.3 LLAMA EXPERIMENTS

We conducted experiments on the LLaMA model of varying sizes, comparing our proposed LOZO
algorithm with MeZO and gradient-based algorithms. The results, presented in Table 11, demon-
strate that our algorithm outperforms MeZO on most tasks.

In Table 12, we compare the memory requirements of LOZO, MeZO, and gradient-based methods
with a per-device batch size of 1 for fine-tuning LLaMA-7B and LLaMA-70B models on the Mul-
tiRC dataset. The results demonstrate that as the model scale increases, the memory efficiency gap
between ZO and gradient-based methods widens significantly.

Task LLaMA-7B LLaMA-13B LLaMA-70B
SST-2 WiC COPA SQuAD WG SST-2 WG WG

LOZO 94.8 57.2 85.0 90.3 66.0 93.6 67.6 72.1
MeZO 91.6 56.3 86.0 90.0 64.3 92.1 67.2 72.1
FT-LoRA 95.1 69.4 84.0 91.2 70.9 95.5 76.6 50.4
FT 94.2 72.3 83.0 90.6 64.4 96.4 73.3 -

Table 11: Experimental results on LLaMA models of varying sizes. The superior results achieved by ZO
methods are highlighted in bold. ”WG” refers to the WinoGrande dataset. Due to limited computational
resources, FT was not tested on LLaMA-70B.

Task LLaMA-7B LLaMA-70B
Memory Consumed GPUs Memory Consumed GPUs

LOZO 14.1 GB 1× A800 135.5 GB 2× A800
MeZO 14.3 GB 1× A800 136.0 GB 2× A800
FT-LoRA 32.7 GB 1× A800 187.2 GB 3× A800
FT 281.6 GB 4× A800 640 + GB > 8× A800

Table 12: Comparison of memory costs for LOZO, MeZO, and gradient-based methods on LLaMA models of
varying scales for the MultiRC task with a per-device batch size of 1. Due to limited computational resources,
the results for FT on LLaMA-70B are approximate.
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