
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ENHANCING ZEROTH-ORDER FINE-TUNING FOR LAN-
GUAGE MODELS WITH LOW-RANK STRUCTURES

Anonymous authors
Paper under double-blind review

ABSTRACT

Parameter-efficient fine-tuning (PEFT) significantly reduces memory costs when
adapting large language models (LLMs) for downstream applications. However,
traditional first-order (FO) fine-tuning algorithms incur substantial memory over-
head due to the need to store activation values for back-propagation during gra-
dient computation, particularly in long-context fine-tuning tasks. Zeroth-order
(ZO) algorithms offer a promising alternative by approximating gradients using
finite differences of function values, thus eliminating the need for activation stor-
age. Nevertheless, existing ZO methods struggle to capture the low-rank gradient
structure common in LLM fine-tuning, leading to suboptimal performance. This
paper proposes a low-rank ZO gradient estimator and introduces a novel low-
rank ZO algorithm (LOZO) that effectively captures this structure in LLMs. We
provide convergence guarantees for LOZO by framing it as a subspace optimiza-
tion method. Additionally, its low-rank nature enables LOZO to integrate with
momentum techniques while incurring negligible extra memory costs. Exten-
sive experiments across various model sizes and downstream tasks demonstrate
that LOZO and its momentum-based variant outperform existing ZO methods and
closely approach the performance of FO algorithms.

1 INTRODUCTION

Large language models (LLMs) have demonstrated exceptional performance across a wide range of
domains (Solaiman et al., 2019; Brown, 2020; Achiam et al., 2023). To adapt LLMs for specific
downstream applications, fine-tuning pre-trained models has become the de facto approach (Guru-
rangan et al., 2020; Sanh et al., 2021). Parameter-efficient fine-tuning (PEFT) methods, such as
those proposed by (Hu et al., 2021; Lester et al., 2021), aim to reduce memory consumption by
freezing most pre-trained weights and updating only a subset of parameters. However, even with
these approaches, first-order (FO) optimization algorithms like stochastic gradient descent (SGD)
(Amari, 1993) and Adam (Kingma, 2014) still encounter substantial memory overhead due to the
need to store activation values for back-propagation during gradient computation. This issue be-
comes even more pronounced in applications involving long contexts, where activations account for
the majority of memory usage.

To enhance memory efficiency, a promising alternative is the use of zeroth-order (ZO) algorithms
(Spall, 1992). Unlike FO methods, ZO algorithms do not require direct gradient computation. In-
stead, they approximate gradients using finite differences of function values, eliminating the need for
back-propagation and the storage of activation values, which leads to substantial memory savings.
ZO algorithms have been extensively studied over the past few decades (Duchi et al., 2015; Nesterov
& Spokoiny, 2017; Berahas et al., 2022) and were recently applied to fine-tuning LLMs for the first
time in (Malladi et al., 2023), where the authors adapt the classical ZO stochastic gradient descent
(ZO-SGD) algorithm (Ghadimi & Lan, 2013) to a memory-efficient variant known as the MeZO
algorithm. As demonstrated in (Malladi et al., 2023), the MeZO algorithm can reduce memory costs
to a quarter of those incurred by standard SGD.

However, ZO algorithms still face several challenges when fine-tuning LLMs. A primary concern is
the substantial discrepancy in the matrix rank between estimated ZO gradients and true FO gradients.
Extensive literature reports that FO gradients generated during backpropagation in LLM fine-tuning
exhibit a low-rank structure (Malladi et al., 2023; Zhao et al., 2024a; Hao et al., 2024). In contrast,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

the ZO gradients in MeZO are derived from a perturbation matrix sampled from a Gaussian dis-
tribution, which is nearly full-rank. This discrepancy can result in a performance gap between ZO
and FO algorithms. Another challenge is constructing momentum algorithms using ZO gradients.
Since ZO gradients are typically full-rank, the resulting momentum variable also becomes full-rank,
leading to significant overhead in storing the momentum (Malladi et al., 2023; Zhang et al., 2024;
Chen et al., 2019). This overhead offsets the memory efficiency gained through ZO algorithms.

It is evident that the above challenges arise from the full-rank structure of ZO gradient estimates.
To address these issues, this work presents a novel strategy for the gradient approximation based
on finite differences of function values. Specifically, we propose a low-rank matrix-wise gradient
estimator (LGE) scheme and a new variant of the ZO-SGD algorithm that capitalizes on this ap-
proach. This ensures that our ZO gradient estimator consistently retains a low-rank structure, fluc-
tuating within a low-dimensional subspace across iterations. As a result, our estimator more accu-
rately approximates the low-rank FO gradient employed in LLM fine-tuning, leading to improved
empirical performance. Moreover, the low-rank ZO gradient facilitates the use of low-rank mo-
mentum variables, significantly reducing memory usage compared to conventional ZO momentum
algorithms. Our contributions can be summarized as follows:

• We propose a low-rank ZO gradient estimator. Unlike traditional coordinate-wise or ran-
domized approaches, our approach derives the ZO gradient using a low-rank perturbation
matrix, ensuring that the approximated gradient retains a low-rank structure. Our derived
ZO gradient closely resembles the FO gradient structure in LLM fine-tuning.

• We develop two novel low-rank ZO algorithms for LLM fine-tuning: Low-rank ZO-SGD
(LOZO) and its momentum-based variant LOZO-M. A critical component in these algo-
rithms is the lazy sampling strategy, where the low-rank random perturbation matrix is
sampled over multiple steps, rather than at each iteration. This allows the ZO algorithm
to sufficiently explore a low-rank subspace over a longer period, preventing per-iteration
abrupt changes to model parameters and enhancing fine-tuning performance. Moreover,
LOZO-M incurs negligible additional memory overhead for storing momentum.

• We establish convergence guarantees for LOZO under common assumptions in stochas-
tic ZO optimization. A key insight from our convergence analysis is that LOZO can be
viewed as a subspace optimization method employing a standard ZO gradient estimator.
This method iteratively solve the fine-tuning problem by alternating between different low-
rank subspaces to progressively improve the overall solution.

• We conduct extensive experiments across various model scales (ranging from 350M to
66B) and downstream tasks, including classification, multiple-choice, and generation.
LOZO and LOZO-M outperform zero-shot, ICL, MeZO, and MeZO-LoRA in most tasks,
while maintaining the same storage overhead as MeZO.

1.1 RELATED WORK

Zeroth-order optimization. Zeroth-order (ZO) optimization typically employs finite difference
of function values to approximate gradients. Since it does not require gradient computation, ZO
methods have been widely applied in various machine learning (ML) domains, including adversarial
attack and defense (Ilyas et al., 2018; Zhao et al., 2019; Tu et al., 2019; Zhang et al., 2022b), model-
agnostic contrastive explanations (Dhurandhar et al., 2019), and AutoML (Wang et al., 2022). ZO
algorithms have been derived from FO methods in numerous studies, such as ZO-SGD (Ghadimi &
Lan, 2013; Liu et al., 2019a), ZO-Adam (Chen et al., 2019), and ZO-SVRG (Liu et al., 2018; Ji et al.,
2019), among others (Lian et al., 2016; Liu et al., 2020). Although straightforward, these adaptations
often exhibit high variance and slow convergence because of the dimensionality of the model. To
address this, techniques such as sparse gradient exploitation (Balasubramanian & Ghadimi, 2018;
Cai et al., 2022) and feature reuse in deep neural networks (Chen et al., 2023) have been proposed,
highlighting the potential of ZO optimization in large-scale ML problems.

Memory-efficient fine-tuning. A range of memory-efficient methods have been proposed to en-
hance the accessibility of LLM fine-tuning. For instance, LoRA (Hu et al., 2021) introduces low-
rank perturbations to pre-trained model weights, utilizing only a few trainable parameters while
achieving performance comparable to full fine-tuning. Other approaches (Zhao et al., 2024a; Hao
et al., 2024; Muhamed et al., 2024) compress gradients by projecting them into subspaces, thereby

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

reducing the memory required for storing optimizer states. In contrast to first-order (FO) algorithms,
zeroth-order (ZO) algorithms (Malladi et al., 2023) have gained considerable attention for their ef-
ficiency, as they avoid storing activation values. To accelerate ZO fine-tuning, Gautam et al. (2024)
introduced ZO-SVRG for LLM fine-tuning, while Zhao et al. (2024b) employed ZO methods to
approximate a natural gradient algorithm. Although these approaches improve convergence, they
often incur increased memory costs. To address this trade-off, Liu et al. (2024) proposed incorpo-
rating a sparse mask into ZO iterations to reduce dimensionality and expedite fine-tuning, albeit at
the cost of some accuracy. Li et al. (2024) explored a hybrid approach, combining FO gradients
with ZO estimators in each iteration. Complementing these efforts, Zhang et al. (2024) provide a
comprehensive benchmark of various ZO-based algorithms for LLM fine-tuning.

2 PRELIMINARIES

This section provides an overview of ZO optimization and the commonly used ZO gradient estima-
tors. We also introduce the MeZO algorithm (Malladi et al., 2023) used in LLM fine-tuning.

2.1 ZEROTH-ORDER (ZO) OPTIMIZATION

We consider the following optimization problem:

min
X

f(X) := Eξ[F (X; ξ)], (1)

where X represents the set of trainable parameters with dimension d. For example, in the LLM
fine-tuning process, we can express X = {Xℓ}Lℓ=1, where Xℓ ∈ Rmℓ×nℓ denotes the ℓ-th weight
matrix and L is the number of layers. The function F (X; ξ) is the loss function that depends on a
random variable ξ.

The ZO method estimates gradients using only function evaluations, without requiring direct access
to gradient information. Two commonly employed gradient estimation schemes are the determin-
istic Coordinate-wise Gradient Estimation (CGE) (Lian et al., 2016; Chen et al., 2023) and the
Randomized vector-wise Gradient Estimation (RGE) (Spall, 1992; Duchi et al., 2015; Nesterov &
Spokoiny, 2017). These are formally defined as:

(CGE) ∇̂F (X; ξ) :=

d∑
i=1

F (X + ϵEi; ξ)− F (X − ϵEi; ξ)

2ϵ
Ei, (2)

(RGE) ∇̂F (X; ξ) :=
F (X + ϵZ; ξ)− F (X − ϵZ; ξ)

2ϵ
Z. (3)

The scalar ϵ denotes the perturbation magnitude, which influences the accuracy of the gradient
approximation. Both Ei and Z are of the same dimensions as X . The quantity Ei is a basis
vector/matrix with its i-th element set to one and all other elements set to zero, whereas the elements
of Z are randomly generated, typically sampled independently from a standard normal distribution.
An extension of the RGE method is the q-RGE approach. Here, the RGE is computed q times
independently, and the final gradient estimate is obtained by averaging these estimations.

Utilizing these gradient estimators, the ZO-SGD method is implemented through the following iter-
ative scheme:

Xt+1 = Xt − α∇̂F (Xt; ξt), (4)

where α denotes the step size, also termed the learning rate, and ∇̂F represents the gradient esti-
mated with ZO information.

2.2 MEMORY-EFFICIENT ZO-SGD (MEZO)

The standard implementation of ZO-SGD incurs substantial memory costs. For example, when con-
structing the gradient estimator using the RGE scheme, the traditional ZO-SGD method requires
memory to store the perturbation matrix Z. To mitigate this memory overhead, the MeZO method
(Malladi et al., 2023) was introduced as a memory-efficient variant of ZO-SGD. Unlike the standard
approach, MeZO avoids storing the entire perturbation matrix Z. Instead, the algorithm performs

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Index

10 5

10 4

10 3

10 2

10 1

100

Lo
g

Si
ng

ul
ar

 V
al

ue

Singular Value of Q Matrix Graident for Layer 10

Step 0
Step 50
Step 100
Step 200
Step 210

0 20 40 60 80 100
Index

10 5

10 4

10 3

10 2

10 1

100

101

Lo
g

Si
ng

ul
ar

 V
al

ue

Singular Value of V Matrix Graident over Step 50

Layer 0
Layer 4
Layer 8
Layer 12
Layer 16

Figure 1: The low-rank structure of the gradients encountered in the fine-tuning of LLMs, demoenstrated using
the OPT-1.3B model with the COPA dataset, where the gradient matrices have dimensions of 2048 × 2048.
For both two figures, we report only the 100 largest singular values. Left: Singular value distribution of the
gradient of the attention Q matrix in layer 10 across different training steps. Right: Singular value distribution
of the gradient of the attention V matrix across different layers at training step 50.

both the perturbation and ZO-SGD updates in place and employs a technique of saving the ran-
dom seed used to generate Z, allowing it to be regenerated when necessary. While this introduces
additional computational costs, it significantly reduces memory usage.

3 LOW-RANK ZEROTH-ORDER GRADIENT ESTIMATOR

LLM gradients exhibit low-rank structures. The low-rank structure of neural networks has been
extensively investigated in previous literature (Li et al., 2018; Larsen et al., 2021). These studies
suggest that loss landscapes exist within an intrinsic dimension, implying that model weights can be
optimized within a low-rank subspace. Furthermore, additional researches (Sagun et al., 2017; Gur-
Ari et al., 2018) have demonstrated that stochastic gradients dynamically converge to a remarkably
small subspace, especially when fine-tuning LLMs (Zhang et al., 2023). Recent work (Zhao et al.,
2024a) also provides theoretical evidence that the gradient matrix becomes low-rank during LLM
training and fine-tuning. Figure 1 investigates the rank of the gradient matrix during LLM fine-
tuning. The left plot demonstrates that the gradient matrix remains low-rank across training steps,
while the right plot shows that this low-rank property persists across different layers.

Existing ZO methods are ineffective at capturing low-rank structures. Commonly used ZO
gradient estimators like CGE and RGE cannot capture the low-rank structure of the true gradients
during LLM fine-tuning. The RGE scheme produces an estimated gradient that is essentially a
projection of the true gradient onto a standard normal random matrix Z, which is almost always full
rank. On the other hand, although the CGE scheme can approximate the full true gradient, it requires
evaluating the loss function d times per iteration, making it impractical for large-scale problems. As
a result, existing ZO algorithms (Ghadimi & Lan, 2013; Liu et al., 2019a; Chen et al., 2019; Liu
et al., 2018; Ji et al., 2019; Balasubramanian & Ghadimi, 2018; Cai et al., 2022; Chen et al., 2023;
Malladi et al., 2023; Zhang et al., 2024), which rely on either CGE or RGE, fail to effectively account
for the low-rank structure inherent in the gradient matrix during LLM fine-tuning.

Low-rank ZO gradient estimator (LGE). To bridge this gap, we propose a matrix-wise ZO gra-
dient estimator, LGE, that preserves the low-rank structure in gradients. In LLM fine-tuning, let
X = {Xℓ}Lℓ=1 represent the model’s weights, where Xℓ ∈ Rmℓ×nℓ is the weight matrix of the ℓ-th
layer. We sample two matrices, Uℓ ∈ Rmℓ×rℓ and Vℓ ∈ Rnℓ×rℓ , from standard normal distributions,
where rℓ ≪ min{mℓ, nℓ}. The LGE for partial gradient of the ℓ-th weight matrix is defined as

∇̂Xℓ
F (X; ξ) :=

F ({Xℓ + ϵUℓV
T
ℓ }Lℓ=1; ξ)− F ({Xℓ − ϵUℓV

T
ℓ }Lℓ=1; ξ)

2ϵ
(UℓV

T
ℓ /rℓ). (5)

The scaling factor 1/rℓ is introduced to ensure that LGE is an unbiased estimator of the true gradient
as ϵ → 0 (see Proposition A.1). Defining U := {Uℓ}Lℓ=1, V := {Vℓ}Lℓ=1, r := {rℓ}Lℓ=1, and
∇̂F (X; ξ) := {∇̂Xℓ

F (X; ξ)}Lℓ=1, we express X± ϵUV T := {Xℓ± ϵUℓV
T
ℓ }Lℓ=1 and UV T /r :=

{UℓV
T
ℓ /rℓ}Lℓ=1. Using these notations, LGE can be written into a more compact form:

(LGE) ∇̂F (X; ξ) :=
F (X + ϵUV T ; ξ)− F (X − ϵUV T ; ξ)

2ϵ
(UV T /r). (6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Using the definition in (5), we observe that the gradient matrix ∇̂Xℓ
F (X; ξ) has a rank of at most

rℓ, effectively capturing the low-rank structure of the FO gradient in LLM fine-tuning.

4 LOW-RANK ZEROTH-ORDER SGD

This section introduces LOZO, a novel low-rank ZO algorithm for LLM fine-tuning. LOZO can
be interpreted as a ZO subspace optimization method that leverages a standard gradient estimator.
Based on this key insight, we establish convergence guarantees for LOZO.

4.1 ALGORITHM DEVELOPMENT

Vanilla recursion. Following the LGE definition (6), we introduce the LGE operator

LGE(X,U ,V , r, ϵ, ξ) :=
F (X + ϵUV T ; ξ)− F (X − ϵUV T ; ξ)

2ϵ
(UV T /r). (7)

To solve problem (1), the vanilla recursion with the LGE scheme is as follows. For any t ≥ 0,
Xt+1 = Xt − α∇̂F (Xt; ξt) where ∇̂F (Xt; ξt) = LGE(Xt,U t,V t, r, ϵ, ξt). (8)

In practice, we only need to store Uℓ and Vℓ for each layer ℓ, and we apply the perturbation (6) and
the update (8) layer by layer, eliminating the need to retain the full gradient estimator UℓV

T
ℓ . Since

rℓ ≪ min{mℓ, nℓ}, the additional memory required for storing Uℓ and Vℓ is negligible. Moreover,
memory costs can be further reduced using the random seed technique (Malladi et al., 2023). Instead
of storing Uℓ and Vℓ directly, only the random seeds sUℓ and sVℓ used to generate them are saved.
Whenever Uℓ and Vℓ are needed, the seeds sUℓ and sVℓ are used to regenerate these matrices, thereby
eliminating the need for their storage. While this approach reduces memory usage, it introduces
additional floating-point operations (flops) due to the regeneration process.

Lazy sampling strategy. In the main recursion (8), the variable Xt is updated within the subspace
spanned by U t and V t at each iteration t. However, if U t and V t are resampled at every iteration,
the subspace will shift too frequently. This limits the algorithm’s ability to adequately explore one
low-rank subspace over a longer period, potentially causing abrupt changes in the model parameters
X at each iteration and degrading fine-tuning performance.

Additionally, ZO methods capture less information about the true gradient compared to FO algo-
rithms, necessitating more iterations to achieve similar performance. In other words, multiple ZO
steps may be required to match the progress of a single FO step. This suggests that maintaining a
low-rank structure in the gradient estimator at each step is insufficient; instead, the cumulative sum
of gradient estimators over several consecutive iterations must also preserve a low-rank structure.

The motivations outlined above lead us to propose a lazy sampling strategy. While U is sampled at
every iteration t, we only sample V every ν iterations, where ν > 0 represents the chosen period
duration. During the iterations t ∈ {kν, . . . , (k + 1)ν − 1} for each period k, the matrix V (k)

remains fixed, thus restricting the model update to the subspace spanned by V (k). This leads to our
proposed LOZO algorithm, whose update rule for any t ≥ 0 is defined as:

Xt+1 = Xt − α∇̂F (Xt; ξt), where ∇̂F (Xt; ξt) = LGE(Xt,U t,V (k), r, ϵ, ξt). (9)

With the lazy sampling strategy, ∇̂F (Xt; ξt) consistently lies within the subspace determined by
V (k) for any t ∈ {kν, . . . , (k + 1)ν − 1}. Therefore, the accumulation of the estimated gradients
over these consecutive ν steps, which can be viewed as a more accurate approximation of the true
gradient in a single FO step, has a rank that does not exceed r. When ν = 1, the LOZO update
rule (9) reduces to the standard recursion (8). LOZO (9) can be implemented in Algorithm 1 with
memory efficiency.

Hyperparameter tuning. The parameter ν, which defines the number of steps over which Xt is
updated within the same subspace, is critical for performance and should be set to a moderate value.
If ν is too small, frequent subspace shifts may lead to abrupt model changes, while a ν that is too
large limits the algorithm to focus on only a few subspaces, potentially reducing generalization. The
parameter r defines the rank of the gradient estimator. Since the true gradient rank is unknown, we
typically set r as a small constant that is significantly less than both mℓ and nℓ to avoid additional
memory overhead. In our experiments, we set rℓ = r through all layers. The typical choices for the
parameters are r = 2, 4, 8 and ν = 50, 100.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1: Low-rank ZO-SGD (LOZO)
Input: parameters X , loss function F (X; ξ), step budget T , perturbation scale ϵ, learning rate

α, sample interval ν and rank {rℓ}.
for t = 0, . . . , T − 1 do

foreach Xℓ ∈X do
Sample Uℓ ∈ Rmℓ×rℓ from the standard normal distribution ;
if t mod ν = 0 then

Sample Vℓ ∈ Rnℓ×rℓ from the standard normal distribution ; // Resample Vℓ

X ← Perturbation(X, ϵ, {Uℓ, Vℓ}) ;
F+ ← F (X; ξ) ;
X ← Perturbation(X,−2ϵ, {Uℓ, Vℓ}) ;
F− ← F (X; ξ) ;
X ← Perturbation(X, ϵ, {Uℓ, Vℓ}); // Reset parameters
c← (F+ − F−)/2ϵ ; // Calculate finite difference
foreach Xl ∈X do

Xℓ ← Xℓ − α · c(UℓV
T
ℓ /rl) ; // Update parameters in place

Function Perturbation(X, ϵ, {Uℓ, Vℓ}):
foreach Xℓ ∈X do

Xℓ ← Xℓ + ϵUℓV
T
ℓ ; // Modify parameters in place

return X ;

4.2 LOZO IS ESSENTIALLY A ZEROTH-ORDER SUBSPACE OPTIMIZATION METHOD

This section offers an in-depth understanding on LOZO, showing that it can be interpreted as a
ZO subspace optimization method. This interpretation provides an insight into why LOZO can
effectively solve problem (1) even with low-rank gradient estimates and a lazy sampling strategy.

Random coordinate minimization. We begin by revisiting the classical coordinate minimization
algorithm for high-dimensional optimization problems. Consider the unconstrained minimization
problem minx∈Rd{f(x)}, where the dimension d is exceedingly large. A commonly used and effi-
cient method to tackle this problem is the coordinate minimization algorithm. Let I := [e1; · · · ; ed]
be the d-dimensional identity matrix, where ei represents the i-th basis vector. The random coordi-
nate minimization algorithm then iterates as follows:

b⋆k = argmin
b∈R

{f(xk + b · eik)}, where ik ∼ U{1, . . . , d}, (10)

xk+1 = xk + b⋆k · eik , (11)

where x0 is the initialized variable. The coordinate minimization algorithm has strong convergence
guarantees, as demonstrated in studies such as (Hong et al., 2017; Tseng, 2001; Wright, 2015).

Random subspace minimization. Analogous to random coordinate minimization, the random sub-
space minimization approach is to solve optimization problems involving large matrix variables. To
solve problem (1), i.e., minX f(X) = Eξ[F (X; ξ)], we can employ the following recursions

B⋆
k = argmin

B
{f(X(k) +B(V (k))T)}, where V (k) follows a normal distribution, (12)

X(k+1) = X(k) +B⋆
k(V

(k))T . (13)
Here, V is a low-rank matrix and B is a matrix variable with much smaller size than X . For
example, in the ℓ-th layer, the matrix variable Bℓ has dimensions mℓ× rℓ, while Xℓ has dimensions
mℓ×nℓ. The random subspace optimization approach addresses the original problem (1) by solving
a series of subproblems that involve significantly smaller matrix variables, as shown in (12).

ZO subspace optimization method. To solve the k-th subproblem in (12), we apply the standard
ZO-SGD and iterate for ν steps. The result is then used as an inexact solution to (12), followed by
the update step in (13). Specifically, the update rule for the ZO subspace method is given by:

B(k,s+1) = B(k,s) − γ∇̂BF (X̃(k) +B(k,s)(V (k))T ; ξ(k,s)), s = 0, · · · , ν − 1, (14a)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

X̃(k+1) = X̃(k) +B(k,ν)(V (k))T . (14b)

Here, we initialize B(k,0) = 0, the superscript k indicates that the recursion is solving the k-th
subproblem in (12), γ is the step size, and ∇̂BF (X̃(k) +B(k,s)(V (k))T ; ξ(k,s)) is computed using
the RGE scheme. Specifically, we sample U (k,s) from a normal distribution and compute:

∇̂BF (X̃(k) +B(k,s)(V (k))T ; ξ(k,s)) (15)

=
F(X̃(k)+(B(k,s)+ϵU (k,s))(V (k))T ; ξ(k,s))−F (X̃(k)+(B(k,s)−ϵU (k,s))(V (k))T ; ξ(k,s))

2ϵ
U (k,s).

Equivalence between ZO subspace method and LOZO algorithm. The ZO subspace method
(14) is equivalent to the LOZO algorithm (9) when the step size γ = α/r, as will be shown below.
If both algorithms are initialized identically, i.e., X0 = X̃(0), by comparing the update rules for
Xt in LOZO (9) and (6), and for B in the ZO subspace method (14a) and (15), it is straightforward
to see that Xt = X̃(k) + B(k,s)(V (k))T holds when t = kν + s and s ∈ {0, 1, . . . , ν} (see the
detailed derivation in Appendix A.2). Thus, we have Xkν = X̃(k) for any k, which implies the
equivalence between these two methods.

4.3 CONVERGENCE ANALYSIS

Based on the aforementioned interpretation, we can establish convergence guarantees for the LOZO
algorithm. We adopt the following assumptions, which are standard in stochastic optimization.

Assumption 4.1. For any ξ, the function F (X; ξ) is differentiable with respect to X . Furthermore,

• The gradient ∇F (X; ξ) is uniformly L-Lipschitz continuous, i.e., ∀X,Y ,

∥∇F (X; ξ)−∇F (Y ; ξ)∥ ≤ L∥X − Y ∥, ∀ξ, (16)

where ∥X∥ :=
√∑L

ℓ=1 ∥Xℓ∥2F for any X = {Xℓ}Lℓ=1.

• The stochastic gradient is unbiased and has bounded variance, i.e., ∀X ,

E[∇F (X; ξ)] = ∇f(X) and E∥∇F (X; ξ)−∇f(X)∥2 ≤ σ2. (17)

Assumption 4.2. The random matrix V = {Vℓ}Lℓ=1 is drawn from a distribution such that V T
ℓ Vℓ =

nℓI and E[VℓV
T
ℓ] = rℓI for each ℓ.

Remark 4.3. Given that nℓ ≫ rℓ in practice, when each Vℓ is drawn from a standard normal
distribution, it typically holds that V T

ℓ Vℓ ≈ nℓI . However, to rigorously satisfy Assumption 4.2,
each Vℓ should be drawn from a Haar distribution or as a random coordinate matrix (see (Kozak
et al., 2023), Examples 1 and 2 for more details).

The following theorem establishes the convergence rate of the LOZO algorithm, with the detailed
proof provided in Appendix B.

Theorem 4.4. Under Assumptions 4.1 and 4.2, and letting T = Kν, with suitable choices of α and
ϵ, the sequence of the kν-th variables {Xkν} generated by LOZO converges at the following rate:

1

K

K−1∑
k=0

E∥∇f(Xkν)∥2 ≤ O

√∆0Ld̃σ2

T
+

∆0Ldν

T

 , (18)

where ∆0 := f(X0)− f∗, d̃ =
∑L

ℓ=1(mℓn
2
ℓ/rℓ) and d =

∑L
ℓ=1 mℓnℓ.

Difference between LOZO and MeZO-LoRA. Theorem 4.4 implies LOZO solves minX f(X) :=
Eξ[F (X; ξ)] directly even when using low-rank gradient estimates. In contrast, the MeZO-LoRA
approach, which combines MeZO (Malladi et al., 2023) and LoRA (Hu et al., 2021), solves
minA,B f(X +AB) := Eξ[F (X +AB; ξ)]. Notably, MeZO-LoRA can only optimize the low-
rank adapters A and B, without the capability to optimize the full parameter X . This distinction
explains why LOZO outperforms MeZO-LoRA in most of our empirical studies.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.4 LOZO WITH MOMENTUM

Momentum technique requires additional memory overhead. The momentum technique is
widely used in modern deep learning to reduce gradient variance and accelerate the convergence
of training. The ZO-SGD with momentum (ZO-SGD-M) iteration can be expressed as follows:

M t = βM t−1 + (1− β)∇̂F (Xt; ξt), Xt+1 = Xt − αM t, (19)

where M t := {M t
l }Lℓ=1 is the momentum term, β is the momentum coefficient, and ∇̂F (Xt; ξt)

denotes the ZO estimated gradient at iteration t. Compared with the vanilla ZO-SGD, ZO-SGD-
M introduces additional memory overhead since it requires storing the momentum term, which is
proportional to the size of the model.

The LOZO-M algorithm introduces negligible memory overhead. We can integrate the proposed
LOZO algorithm with the momentum technique (LOZO-M) without the memory overhead issue.
To simplify the formulation, we denote the finite difference of function values at iteration t, where
t ∈ {kν, . . . , (k+1)ν − 1}, as ct. The gradient estimator for the LOZO algorithm, as introduced in
(9), can then be represented as ∇̂F (Xt; ξt) = ctU t(V (k)/r)T .

We now introduce LOZO-M, the memory-efficient version of ZO-SGD with momentum. The key
observation is that V (k) remains fixed for t ∈ {kν, . . . , (k + 1)ν − 1}. Consequently, it suffices
to accumulate ctU t instead of the full gradient estimator ∇̂F (Xt; ξt) for updating the momentum,
thereby significantly reducing memory overhead. The update rule is expressed as follows:

N t = βN t−1 + (1− β)ctU t, Xt+1 = Xt − αN t(V (k)/r)T , (20)

where N t(V (k)/r)T corresponds to the original momentum. When updating Xt, we compute
N t(V (k)/r)T layer by layer and discard the result immediately after updating the weights of each
layer. Consequently, compared with the vanilla ZO-SGD-M (19), LOZO-M (20) only requires stor-
ing N t := {N t

ℓ}Lℓ=1. Since rℓ ≪ min(mℓ, nℓ), the additional memory overhead is negligible.

Momentum projection. When V (k) is updated, an additional step is required. Specifically, at
t = (k + 1)ν, the gradient estimator ∇̂F (Xt; ξt) takes the form ctU t(V (k+1)/r)T due to resam-
pling, while the momentum from the previous step is N t−1(V (k)/r)T . Thus, we cannot update the
momentum by simply combining ctU t and N t−1 as per (20). To address this, we project the old
momentum onto the new subspace spanned by V (k+1) before updating N t. We compute:

Ñ t−1 = argmin
N
∥N t−1(V (k))T −N(V (k+1))T ∥.

By doing this, the projected momentum Ñ t−1(V (k+1)/r)T becomes a good approximation of the
momentum from the previous step, taking the same form as the gradient estimator ∇̂F (Xt; ξt).
Therefore, we use Ñ t−1 to replace N t−1 in the momentum update (20) at t = (k + 1)ν. Given
that V T

ℓ Vℓ ≈ nℓI for any ℓ (see Remark 4.3), the solution is Ñ t−1 = N t−1(V (k))T (V (k+1)/n),
where n := {nℓ}Lℓ=1. The detailed LOZO-M algorithm is provided in Algorithm 2.

5 EXPERIMENTS

This section evaluates the performance of our algorithm across multiple tasks, including the Super-
GLUE benchmark (Wang et al., 2019) and other datasets, as detailed in Appendix C.1. We compare
our LOZO and LOZO-M algorithms with MeZO (Malladi et al., 2023) as well as its variants, and
other baselines including zero-shot and in-context learning (ICL) approaches. We also test full fine-
tuning and LoRA using the gradient-based Adam method (Kingma, 2014), referred to as FT and
FT-LoRA, respectively.

Our experiments evaluate the algorithms on language models (LMs) of various scales, including
RoBERTa-large (Liu et al., 2019b) and large autoregressive LMs such as OPT-13B, 30B, and 66B
(Zhang et al., 2022a). We also test LLaMA models (Touvron et al., 2023) of varying scales, with
the results presented in Appendix D.3. For a fair comparison, we conduct a full grid search of the
parameters provided in (Malladi et al., 2023) and select the best results for MeZO and its variants.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.1 MEDIUM-SIZED MASKED LANGUAGE MODELS

We conduct experiments employing RoBERTa-large on tasks including sentiment classification, nat-
ural language inference and topic classification. To mitigate the effects of random variability, all
experimental results reported in this subsection are the means of the outcomes resulted from five
different random seeds.

LOZO outperforms MeZO and MeZO-LoRA on the majority of datasets and achieves perfor-
mance comparable to FT. As shown in Figure 2, our algorithm demonstrates a performance gain on
the three listed datasets, with a particularly significant improvement on the MNLI dataset, surpass-
ing both MeZO and MeZO-LoRA. The performance gap between LOZO and FT is generally less
than 1%, and with a larger k, LOZO can further narrow this gap and even exceed its performance.
We provide the complete results for RoBERTa-large in Appendix D.1.

LOZO-M consumes similar memory usage to LOZO while delivering superior performance
compared to MeZO and MeZO-Adam. We measure the actual memory consumption during the
training of RoBERTa-large using LOZO, MeZO, and their respective variants to evaluate the mem-
ory efficiency of our methods. As shown in Table 1, the additional memory overhead introduced by
the momentum technique in LOZO is negligible. In contrast, MeZO fails to achieve this efficiency.

Algorithm MNLI SNLI

Accuracy (%) Memory Usage (GB) Accuracy (%) Memory Usage (GB)

LOZO 61.6 2.83 73.4 2.83
LOZO-M 62.7 2.84 74.0 2.84
MeZO 56.7 3.00 68.5 3.00
MeZO-M 58.9 5.89 69.6 5.89
MeZO-Adam 62.6 7.42 72.7 7.42

Table 1: Accuracy and Memory Consumption of LOZO and MeZO with their respective variants.

SNLI MNLI RTE60

65

70

75

80

85

90

Ac
cu

ra
cy

 (%
)

k=512

SNLI MNLI RTE50

55

60

65

70

75

Ac
cu

ra
cy

 (%
)

k=16

MeZO MeZO-LoRA FT-LoRA FT LOZO LOZO-M

Figure 2: The figures illustrate the performance of different algorithms on RoBERTa-large across three tasks
(SNLI, MNLI, and RTE), with the left panel corresponding to k = 512 and the right panel corresponding to
k = 16. Detailed numerical results are provided in Table 8.

Task SST-2 RTE CB BoolQ WSC WiC MultiRC COPA ReCoRD SQuAD DROP
Zero-shot 58.8 59.6 46.4 59.0 38.5 55.0 46.9 80.0 81.0 46.2 14.6
ICL 87.0 62.1 57.1 66.9 39.4 50.5 53.1 87.0 82.3 75.9 29.5

MeZO 91.3 68.2 66.1 68.1 61.5 59.4 59.4 88.0 81.3 81.8 31.3
MeZO-LoRA 89.6 67.9 67.8 73.5 63.5 60.2 61.3 84.1 81.5 82.1 31.3
LOZO 91.7 70.4 69.6 71.9 63.5 60.8 63 89.0 81.3 84.9 30.7

FT 91.8 70.9 84.1 76.9 63.5 70.1 71.1 79.0 74.1 84.9 31.3

Table 2: Experiments on OPT-13B (with 1000 examples). ICL: in-context learning; FT: full fine-tuning with
Adam. The best results are shown in bold except for FT.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5.2 LARGE AUTOREGRESSIVE LANGUAGE MODELS

To further evaluate the effectiveness of LOZO on large language models, we extend our study to the
OPT models (Zhang et al., 2022a) with billions of parameters (13B, 30B and 66B). The results are
presented in Table 2 and Table 3.

Compared to MeZO and MeZO-LoRA, LOZO demonstrates a clear improvement across the
majority of datasets. For instance, LOZO achieves notable performance gains on OPT-30B and
OPT-66B, as presented in Table 3, outperforming MeZO and other baselines in most tasks. Further-
more, the results in Table 2 indicate that LOZO not only surpasses MeZO and MeZO-LoRA but also
approaches the performance exhibited by FT on most cases.

LOZO yields faster convergence rates across different model scales, including 13B, 30B and
66B. As illustrated in Figure 3, the proposed method consistently achieves faster convergence across
various datasets and model scales. For example, in the WIC dataset with the OPT-66B configuration,
the LOZO algorithm requires only half the number of training epochs to achieve the same training
loss as that of the MeZO method, while simultaneously exhibiting smaller loss oscillations.

Task SST-2 RTE BoolQ WSC WiC SQuAD
30B zero-shot 56.7 52.0 39.1 38.5 50.2 46.5
30B ICL 81.9 66.8 66.2 56.7 51.3 78.0
30B MeZO 90.7 64.3 68.2 63.5 56.3 86.1
30B LOZO 92.8 65.3 72.3 64.4 57.2 85.6

66B zero-shot 57.5 67.2 66.8 43.3 50.6 48.1
66B ICL 89.3 65.3 62.8 52.9 54.9 81.3
66B MeZO 92.0 71.5 73.8 64.4 57.8 84.0
66B LOZO 92.5 74.0 74.5 63.5 59.4 85.8

Table 3: Experiments on OPT-30B and OPT-66B on SuperGLUE benchmark. Our results show that LOZO is
superior on most tasks compared to the other baselines. The best results are shown in bold.

0 50 100 150 200 250 300
Epochs

0.6

0.8

1.0

1.2

1.4

Lo
ss

Loss vs Epoch on SQuAD dataset opt-13b

MeZO
LOZO

0 50 100 150 200 250 300
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lo
ss

Loss vs Epoch on SST-2 dataset opt-30b

MeZO
LOZO

0 50 100 150 200 250 300
Epochs

0.65

0.66

0.67

0.68

0.69

0.70

0.71

Lo
ss

Loss vs Epoch on WIC dataset opt-66b

MeZO
LOZO

Figure 3: Left: Loss curves of OPT-13B on SQuAD dataset. Middle: Loss curves of OPT-30B on SST-2
dataset. Right: Loss curves of OPT-66B on WIC dataset.

6 CONCLUSION AND LIMITATIONS

This paper introduces the LOZO and LOZO-M algorithms, which are novel zeroth-order (ZO) meth-
ods for fine-tuning language models. Specifically, the LOZO algorithm employs a gradient estimator
with a low-rank structure, closely mirroring the true gradient in first-order (FO) methods. We further
demonstrate that the LOZO algorithm is equivalent to a ZO subspace method, forming the basis for
our convergence results. By combining LOZO with the commonly used momentum technique, we
develop the LOZO-M algorithm, which incurs almost no additional memory overhead. Both LOZO
and LOZO-M achieve improved performance compared to the vanilla ZO-SGD method.

One limitation of our work is the challenge of designing a method that integrates LOZO with the
Adam optimizer without incurring additional memory costs. Additionally, minor fluctuations in
the loss are observed towards the end of the training process, potentially due to the lazy sampling
strategy. Addressing these issues is left for future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Shun-ichi Amari. Backpropagation and stochastic gradient descent method. Neurocomputing, 5
(4-5):185–196, 1993.

Krishnakumar Balasubramanian and Saeed Ghadimi. Zeroth-order (non)-convex stochastic opti-
mization via conditional gradient and gradient updates. Advances in Neural Information Process-
ing Systems, 31, 2018.

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo Magnini, and
Idan Szpektor. The second pascal recognising textual entailment challenge. In Proceedings of
the second PASCAL challenges workshop on recognising textual entailment, volume 1. Citeseer,
2006.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The fifth pascal recognizing
textual entailment challenge. TAC, 7(8):1, 2009.

Albert S Berahas, Liyuan Cao, Krzysztof Choromanski, and Katya Scheinberg. A theoretical and
empirical comparison of gradient approximations in derivative-free optimization. Foundations of
Computational Mathematics, 22(2):507–560, 2022.

Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. A large anno-
tated corpus for learning natural language inference. arXiv preprint arXiv:1508.05326, 2015.

Tom B Brown. Language models are few-shot learners. arXiv preprint ArXiv:2005.14165, 2020.

HanQin Cai, Daniel McKenzie, Wotao Yin, and Zhenliang Zhang. Zeroth-order regularized opti-
mization (zoro): Approximately sparse gradients and adaptive sampling. SIAM Journal on Opti-
mization, 32(2):687–714, 2022.

Aochuan Chen, Yimeng Zhang, Jinghan Jia, James Diffenderfer, Jiancheng Liu, Konstantinos
Parasyris, Yihua Zhang, Zheng Zhang, Bhavya Kailkhura, and Sijia Liu. Deepzero: Scaling
up zeroth-order optimization for deep model training. arXiv preprint arXiv:2310.02025, 2023.

Xiangyi Chen, Sijia Liu, Kaidi Xu, Xingguo Li, Xue Lin, Mingyi Hong, and David Cox. Zo-adamm:
Zeroth-order adaptive momentum method for black-box optimization. Advances in neural infor-
mation processing systems, 32, 2019.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment
challenge. In Machine learning challenges workshop, pp. 177–190. Springer, 2005.

Marie-Catherine De Marneffe, Mandy Simons, and Judith Tonhauser. The commitmentbank: In-
vestigating projection in naturally occurring discourse. In proceedings of Sinn und Bedeutung,
volume 23, pp. 107–124, 2019.

Amit Dhurandhar, Tejaswini Pedapati, Avinash Balakrishnan, Pin-Yu Chen, Karthikeyan Shan-
mugam, and Ruchir Puri. Model agnostic contrastive explanations for structured data. arXiv
preprint arXiv:1906.00117, 2019.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. arXiv
preprint arXiv:1903.00161, 2019.

John C Duchi, Michael I Jordan, Martin J Wainwright, and Andre Wibisono. Optimal rates for
zero-order convex optimization: The power of two function evaluations. IEEE Transactions on
Information Theory, 61(5):2788–2806, 2015.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tanmay Gautam, Youngsuk Park, Hao Zhou, Parameswaran Raman, and Wooseok Ha. Variance-
reduced zeroth-order methods for fine-tuning language models. arXiv preprint arXiv:2404.08080,
2024.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochas-
tic programming. SIAM journal on optimization, 23(4):2341–2368, 2013.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and William B Dolan. The third pascal rec-
ognizing textual entailment challenge. In Proceedings of the ACL-PASCAL workshop on textual
entailment and paraphrasing, pp. 1–9, 2007.

Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace. arXiv
preprint arXiv:1812.04754, 2018.

Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. Don’t stop pretraining: Adapt language models to domains and tasks. arXiv
preprint arXiv:2004.10964, 2020.

Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient
compressors. arXiv preprint arXiv:2402.03293, 2024.

Mingyi Hong, Xiangfeng Wang, Meisam Razaviyayn, and Zhi-Quan Luo. Iteration complexity
analysis of block coordinate descent methods. Mathematical Programming, 163:85–114, 2017.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adversarial attacks with
limited queries and information. In International conference on machine learning, pp. 2137–
2146. PMLR, 2018.

Kaiyi Ji, Zhe Wang, Yi Zhou, and Yingbin Liang. Improved zeroth-order variance reduced algo-
rithms and analysis for nonconvex optimization. In International conference on machine learning,
pp. 3100–3109. PMLR, 2019.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth, Shyam Upadhyay, and Dan Roth. Look-
ing beyond the surface: A challenge set for reading comprehension over multiple sentences. In
Proceedings of the 2018 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 252–262,
2018.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

David Kozak, Cesare Molinari, Lorenzo Rosasco, Luis Tenorio, and Silvia Villa. Zeroth-order op-
timization with orthogonal random directions. Mathematical Programming, 199(1):1179–1219,
2023.

Brett W Larsen, Stanislav Fort, Nic Becker, and Surya Ganguli. How many degrees of freedom do
we need to train deep networks: a loss landscape perspective. arXiv preprint arXiv:2107.05802,
2021.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In Thir-
teenth international conference on the principles of knowledge representation and reasoning,
2012.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension
of objective landscapes. arXiv preprint arXiv:1804.08838, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zeman Li, Xinwei Zhang, and Meisam Razaviyayn. Addax: Memory-efficient fine-tuning of lan-
guage models with a combination of forward-backward and forward-only passes. In 5th Workshop
on practical ML for limited/low resource settings, 2024.

Xiangru Lian, Huan Zhang, Cho-Jui Hsieh, Yijun Huang, and Ji Liu. A comprehensive linear
speedup analysis for asynchronous stochastic parallel optimization from zeroth-order to first-
order. Advances in Neural Information Processing Systems, 29, 2016.

Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting, Shiyu Chang, and Lisa Amini. Zeroth-
order stochastic variance reduction for nonconvex optimization. Advances in Neural Information
Processing Systems, 31, 2018.

Sijia Liu, Pin-Yu Chen, Xiangyi Chen, and Mingyi Hong. signsgd via zeroth-order oracle. In
International Conference on Learning Representations, 2019a.

Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O Hero III, and Pramod K
Varshney. A primer on zeroth-order optimization in signal processing and machine learning:
Principals, recent advances, and applications. IEEE Signal Processing Magazine, 37(5):43–54,
2020.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019b.

Yong Liu, Zirui Zhu, Chaoyu Gong, Minhao Cheng, Cho-Jui Hsieh, and Yang You. Sparse
mezo: Less parameters for better performance in zeroth-order llm fine-tuning. arXiv preprint
arXiv:2402.15751, 2024.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information
Processing Systems, 36:53038–53075, 2023.

Aashiq Muhamed, Oscar Li, David Woodruff, Mona Diab, and Virginia Smith. Grass: Compute effi-
cient low-memory llm training with structured sparse gradients. arXiv preprint arXiv:2406.17660,
2024.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527–566, 2017.

Mohammad Taher Pilehvar and Jose Camacho-Collados. Wic: the word-in-context dataset for eval-
uating context-sensitive meaning representations. arXiv preprint arXiv:1808.09121, 2018.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S Gordon. Choice of plausible alternatives:
An evaluation of commonsense causal reasoning. In 2011 AAAI spring symposium series, 2011.

Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical analysis of
the hessian of over-parametrized neural networks. arXiv preprint arXiv:1706.04454, 2017.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid Alyafeai, An-
toine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask prompted training
enables zero-shot task generalization. arXiv preprint arXiv:2110.08207, 2021.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, pp. 1631–1642, 2013.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff Wu, Alec
Radford, Gretchen Krueger, Jong Wook Kim, Sarah Kreps, et al. Release strategies and the social
impacts of language models. arXiv preprint arXiv:1908.09203, 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

James C Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation. IEEE transactions on automatic control, 37(3):332–341, 1992.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Paul Tseng. Convergence of a block coordinate descent method for nondifferentiable minimization.
Journal of optimization theory and applications, 109:475–494, 2001.

Chun-Chen Tu, Paishun Ting, Pin-Yu Chen, Sijia Liu, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh, and
Shin-Ming Cheng. Autozoom: Autoencoder-based zeroth order optimization method for attack-
ing black-box neural networks. In Proceedings of the AAAI conference on artificial intelligence,
volume 33, pp. 742–749, 2019.

Ellen M Voorhees and Dawn M Tice. Building a question answering test collection. In Proceed-
ings of the 23rd annual international ACM SIGIR conference on Research and development in
information retrieval, pp. 200–207, 2000.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. Advances in neural information processing systems, 32, 2019.

Xiaoxing Wang, Wenxuan Guo, Jianlin Su, Xiaokang Yang, and Junchi Yan. Zarts: On zero-order
optimization for neural architecture search. Advances in Neural Information Processing Systems,
35:12868–12880, 2022.

Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv preprint arXiv:1704.05426, 2017.

Stephen J Wright. Coordinate descent algorithms. Mathematical programming, 151(1):3–34, 2015.

Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng Gao, Kevin Duh, and Benjamin Van Durme.
Record: Bridging the gap between human and machine commonsense reading comprehension.
arXiv preprint arXiv:1810.12885, 2018.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022a.

Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu
Chen, Jason D Lee, Wotao Yin, Mingyi Hong, et al. Revisiting zeroth-order optimization for
memory-efficient llm fine-tuning: A benchmark. arXiv preprint arXiv:2402.11592, 2024.

Yimeng Zhang, Yuguang Yao, Jinghan Jia, Jinfeng Yi, Mingyi Hong, Shiyu Chang, and Sijia Liu.
How to robustify black-box ml models? a zeroth-order optimization perspective. arXiv preprint
arXiv:2203.14195, 2022b.

Zhong Zhang, Bang Liu, and Junming Shao. Fine-tuning happens in tiny subspaces: Exploring
intrinsic task-specific subspaces of pre-trained language models. In The 61st Annual Meeting Of
The Association For Computational Linguistics, 2023.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024a.

Pu Zhao, Sijia Liu, Pin-Yu Chen, Nghia Hoang, Kaidi Xu, Bhavya Kailkhura, and Xue Lin. On the
design of black-box adversarial examples by leveraging gradient-free optimization and operator
splitting method. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 121–130, 2019.

Yanjun Zhao, Sizhe Dang, Haishan Ye, Guang Dai, Yi Qian, and Ivor W Tsang. Second-order
fine-tuning without pain for llms: A hessian informed zeroth-order optimizer. arXiv preprint
arXiv:2402.15173, 2024b.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A MORE COMMENTS

A.1 UNBIASENESS OF LGE

In the proposed LOZO algorithm, we employ LGE to approximate the gradient. The following
proposition demonstrates that the LGE scheme is unbiased as ϵ→ 0.
Proposition A.1. If F (X; ξ) is differentiable with respect to X , the LGE in (5) is an unbiased
estimator of∇Xℓ

F (X; ξ) when ϵ→ 0.

Proof. For simplicity, we omit the random variable ξ in this proof. Under the differentiability as-
sumption, for any set of real matrices {∆Xℓ}Lℓ=1 with the same dimensions as X , we have

lim
ϵ→0

F ({Xℓ + ϵ∆Xℓ}Lℓ=1)− F (X)−
∑L

ℓ=1⟨∇Xℓ
F (X), ϵ∆Xℓ⟩

ϵ
= 0.

Now, since ∇̂Xℓ
F (X) from (5) can be written as

F ({Xk + ϵUkV
T
k }Lk=1)− F (X)−

∑L
k=1⟨∇Xk

F (X), ϵUkV
T
k ⟩

2ϵ

−
F ({Xk − ϵUkV

T
k }Lk=1)− F (X)−

∑L
k=1⟨∇Xk

F (X),−ϵUkV
T
k ⟩

2ϵ

+
1

ϵ

L∑
k=1

⟨∇Xk
F (X), ϵUkV

T
k ⟩


UℓV

T
ℓ

rℓ
,

we have

lim
ϵ→0

E
[
∇̂Xℓ

F (X)
]
=

1

rℓ
E

[L∑
k=1

⟨∇Xk
F (X), UkV

T
k ⟩UℓV

T
ℓ

]
.

Since all elements of {Uℓ, Vℓ}Lℓ=1 are i.i.d. Gaussian variables, we can further deduce that

lim
ϵ→0

E
[
∇̂Xℓ

F (X)
]
=

1

rℓ
E
[
⟨∇Xℓ

F (X), UℓV
T
ℓ ⟩UℓV

T
ℓ

]
.

The element at row i and column j of this expression is
1

rℓ
E
[
⟨∇Xℓ

F (X), UℓV
T
ℓ ⟩UℓV

T
ℓ

]
ij

=
1

rℓ
E

[
mℓ∑
p=1

nℓ∑
q=1

∂F (X)

∂[Xℓ]pq

rℓ∑
k=1

[Uℓ]pk[Vℓ]qk ·
rℓ∑
s=1

[Uℓ]is[Vℓ]js

]

=
1

rℓ

∂F (X)

∂[Xℓ]ij
E

[
rℓ∑

k=1

[Uℓ]
2
ik[Vℓ]

2
jk

]
=

∂F (X)

∂[Xℓ]ij
.

(21)

Therefore, we conclude that

lim
ϵ→0

E
[
∇̂Xℓ

F (X)
]
= ∇Xℓ

F (X).

A.2 EQUIVALENCE BEWTWEEN LOZO AND ZO SUBSPACE METHOD

We present the detailed proof of the equivalence between LOZO algorithm (9) and the ZO subspace
method (14). Let Xt be the t-th iteration point of LOZO, and let X̃(k) be the k-th iteration point
of the outer loop in the ZO subspace method (14b). We now show that Xkν = X̃(k) holds if the
initialization of both algorithms is the same, i.e., X0 = X̃(0).

We now introduce Y (k,s) := X̃(k) +B(k,s)(V (k))T . When the step size satisfies γ = α/r, using
the update rules for B from (14a) and (15), we can derive the update rule for Y , which is:

Y (k,s+1)=Y (k,s)− γ
F (Y (k,s)+ ϵU (k,s)(V (k))T)−F (Y (k,s)− ϵU (k,s)(V (k))T)

2ϵ
U (k,s)(V (k))T

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

=Y (k,s)− α · LGE(Y (k,s),U (k,s),V (k), r, ϵ, ξ(k,s)), ∀s ∈ {0, · · · , ν − 1}. (22)

This update rule for Y aligns with that for X in the LOZO algorithm. Thus, once Y (k,0) = X̃(k) =
Xkν , it follows that Y (k,s) = X̃(k)+B(k,s)(V (k))T = Xkν+s for all s ∈ {0, 1, . . . , ν}. Therefore,
Y (k,ν) = X̃(k) + B(k,ν)(V (k))T = X̃(k+1) = X(k+1)ν . Thus, the relation X̃(k) = Xkν holds
for any k, given that X̃(0) = X0.

A.3 DETAILS OF LOZO-M

We present the detailed LOZO-M algorithm in Algorithm 2. Compared to the LOZO algorithm, the
main difference is the addition of the momentum term update.

Algorithm 2: Low-rank ZO-SGD with Momentum (LOZO-M)
Input: parameters X , loss function F (X; ξ), step budget T , perturbation scale ϵ, learning rate

α, momentum parameter β, sample interval ν and rank {rℓ}.
foreach Xℓ ∈X do

Nℓ ← 0 ; // Initialize momentum

for t = 0, . . . , T − 1 do
foreach Xℓ ∈X do

Sample Uℓ ∈ Rmℓ×rℓ from the standard normal distribution;
if t mod ν = 0 then

Mℓ ← NℓV
T
ℓ ;

Sample Vℓ ∈ Rnℓ×rℓ from the standard normal distribution; ; // Resample Vℓ

Nℓ ← 1
nℓ
MℓVℓ; ; // Project momentum onto the new subspace

X ← Perturbation(X, ϵ, {Uℓ, Vℓ});
F+ ← F (X; ξ);
X ← Perturbation(X,−2ϵ, {Uℓ, Vℓ});
F− ← F (X; ξ);
X ← Perturbation(X, ϵ, {Uℓ, Vℓ}); ; // Reset parameters
c← (F+ − F−)/2ϵ ; // Calculate finite difference
foreach Xℓ ∈X do

Nℓ ← βNℓ + (1− β) · cUℓ; ; // Update momentum in place
Xℓ ← Xℓ − α(NℓV

T
ℓ /rℓ); ; // Update parameters in place

Function Perturbation(X, ϵ, {Uℓ, Vℓ}):
foreach Xℓ ∈X do

Xℓ ← Xℓ + ϵUℓV
T
ℓ ; ; // Modify parameters in place

return X;

B CONVERGENCE ANALYSIS

In this section, we present the convergence analysis of the LOZO algorithm and provide a detailed
proof of Theorem 4.4. Without loss of generality, we focus on the case where the number of layers is
L = 1. Consequently, the problem (1) reduces to minX f(X) := Eξ[F (X; ξ)], where X ∈ Rm×n.
To simplify the notation, we define the following terms:

GX,V (B; ξ) := F (X +BV T ; ξ), gX,V (B) := f(X +BV T),

∇̂GX,V (B; ξ) :=
GX,V (B + ϵU)−GX,V (B − ϵU)

2ϵ
U.

With these definitions, the subspace minimization problem (12) can be reformulated as follows:

min
B

gX,V (B) = Eξ[GX,V (B; ξ)]. (23)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

As demonstrated in Section 4.2, our proposed LOZO algorithm is equivalent to solving the subprob-
lem (23) using ZO-SGD with the LGE scheme for ν steps, followed by an update of the weight
matrix. Specifically, by applying the following update rule:

B(k,s+1) = B(k,s) − α

r
∇̂GX̃(k),V (k)(B

(k,s); ξ(k,s)), ∀s ∈ {0, 1, . . . , ν − 1}, (24a)

X̃(k+1) = X̃(k) +B(k,ν)(V (k))T , (24b)

it follows that Xkν = X̃(k) for any k, where Xkν represents the kν-th iteration point of the LOZO
algorithm. For the remainder of the proof, we will use Xkν in place of X̃(k) in (24).

Under Assumption 4.2, the following properties hold, which can be straightforwardly derived:

∥AV T ∥F =
√
tr(AV TV AT) =

√
n∥A∥F ,

∥V ∥2 =
√
∥V TV ∥2 =

√
n,

where A ∈ Rm×n is any matrix. For simplicity, we will not explicitly reference these properties
when they are used.

To construct the convergence result, our analysis is divided into two parts. First, we analyze the
convergence of ZO-SGD (24a) for solving (23) with fixed X and V . Next, we assess the impact of
updating X and resampling V , and establish the global convergence result for LOZO algorithm.

To begin the first part, we introduce some preliminary lemmas. All of these lemmas assume fixed
X and V , so we will omit the subscripts of gX,V (B) and GX,V (B; ξ) when there is no risk of
confusion. The following lemma establishes the desirable properties of the objective function in
(23), which are necessary for the convergence of the iteration given in (24a).

Lemma B.1. Under Assumptions 4.1and 4.2, the following properties hold:

• The function GX,V (B; ξ) is uniformly L̃-smooth with a constant L̃ = nL.

• ∇GX,V (B; ξ) is an unbiased estimator of∇gX,V (B), and its variance is bounded by

E∥∇GX,V (B; ξ)−∇gX,V (B)∥2F ≤ σ̃2,

where σ̃2 = nσ2.

Proof. Given any ξ, since F (X, ξ) is differentiable and X + UV T is a linear function of U , the
function GX,V (U ; ξ) is also differentiable, and we have:

∇GX,V (B, ξ) = ∇F (X +BV T)V.

Thus, it follows that:

∥∇GX,V (B1, ξ)−∇GX,V (B2, ξ)∥F = ∥∇F (X +B1V
T , ξ)V −∇F (X +B2V

T , ξ)V ∥F
≤ ∥∇F (X +B1V

T , ξ)−∇F (X +B2V
T , ξ)∥F ∥V ∥2

≤ L∥(B1 −B2)V
T ∥F ∥V ∥2

≤ nL∥B1 −B2∥F .

The second property holds because

Eξ∥∇GX,V (U ; ξ)−∇gX,V (U)∥2F
= Eξ

∥∥[∇F (X + UV T ; ξ)−∇f(X + UV T)
]
V
∥∥2
F

≤ Eξ

∥∥∇F (X + UV T ; ξ)−∇f(X + UV T)
∥∥2
F
∥V ∥22

≤ σ2∥V ∥22 = nσ2.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

The following lemma, which bounds the second moment of the gradient estimator, is necessary for
proving the convergence of ZO-SGD.

Lemma B.2. For the gradient estimator ∇̂GX,V (B; ξ), the following bound holds:

EU∥∇̂GX,V (B; ξ)∥2F ≤ 6mr∥∇GX,V (B; ξ)∥2F + 64L̃2m3r3ϵ2.

Proof. The triangle inequality provides the following bound:

EU∥∇̂G(B; ξ)∥2F ≤ 2EU∥∇̂G(B; ξ)− ⟨∇G(B; ξ), U⟩U∥2F + 2EU∥⟨∇G(B; ξ), U⟩U∥2F .

To bound the first term, we use Assumption 4.1, leading to the following inequalities:

|G(B + ϵU ; ξ)−G(B; ξ)− ϵ⟨∇G(B; ξ), U⟩| ≤ L̃ϵ2

2
∥U∥2F ,

|G(B − ϵU ; ξ)−G(B; ξ) + ϵ⟨∇G(B; ξ), U⟩| ≤ L̃ϵ2

2
∥U∥2F .

Combining these two inequalities, we obtain:∣∣∣G(B + ϵU ; ξ)−G(B − ϵU ; ξ)

2ϵ
− ⟨∇G(B; ξ), U⟩

∣∣∣ ≤ L̃ϵ

2
∥U∥2F .

Multiplying by U on both sides and taking the expectation with respect to U yields:

EU∥∇̂G(B; ξ)− ⟨∇G(B; ξ), U⟩U∥2F ≤
L̃2ϵ2

4
EU∥U∥6F ≤

L̃2(mr + 4)3ϵ2

4
≤ 32L̃2m3r3ϵ2.

In the final inequality, we use the fact EU∥U∥6F = mr(mr + 2)(mr + 4). The second term can be
calculated directly, giving us:

EU∥⟨∇G(B; ξ), U⟩U∥2F = (mr + 2)∥∇G(B; ξ)∥2F ≤ 3mr∥∇G(B; ξ)∥2F .

Combining these two inequalities completes the proof.

We now introduce the Gaussian smoothing function as follows:

gϵX,V (B) := EU [gX,V (B + ϵU)] =
1

κ

∫
gX,V (B + ϵU)e−

1
2∥U∥2

F dU.

The following lemma outlines several properties of the Gaussian smoothing function.

Lemma B.3 (Section 2 in (Nesterov & Spokoiny, 2017)). For the Gaussian smoothing function
gϵX,V (B), the following properties hold:

• EU,ξ[∇̂GX,V (B; ξ)] = ∇gϵX,V (B).

• gϵX,V (B) is L̃-smooth.

• |gϵX,V (B)− gX,V (B)| ≤ L̃mrϵ2

2 .

• ∥∇gϵX,V (B)−∇gX,V (B)∥2F ≤ L̃2mrϵ2.

Proof. We only prove the last claim. The remaining claims and their proofs can be found in (Nes-
terov & Spokoiny, 2017).

∥∇gϵ(B)−∇g(B)∥2F = ∥EU (∇g(B + ϵU)−∇g(B))∥2F
≤ EU∥∇g(B + ϵU)−∇g(B)∥2F
≤ L̃2ϵ2EU∥U∥2F = L̃2mrϵ2.

In the first inequality, we apply Jensen’s inequality, and the second inequality derives from the L̃-
smoothness of g(B).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Now we are able to establish the convergence for solving problem (23) using the update rule (24a).
The following lemma bounds the expected difference between any Bt and B0.

Lemma B.4. If the step size condition 16L̃2mνα2

r ≤ 1
ν−1 is satisfied, then for any t ≤ ν, the

following inequality holds:

EU,ξ∥Bt −B0∥2F ≤
64mν2α2

r
EU,ξ∥∇g(B0)∥2F +

24mνα2σ̃2

r
+ 264L̃2m3rϵ2ν2α2.

Proof. To simplify the notation, we use E to denote the expectation taken over both U and ξ. By the
triangle inequality, we have the following:

E∥Bt+1 −B0∥2F = E
∥∥∥Bt − α

r
∇̂G(Bt; ξt)−B0

∥∥∥2
F

= E
∥∥∥Bt − α

r
∇gϵ(Bt)−B0

∥∥∥2
F
+

α2

r2
E∥∇̂G(Bt; ξt)−∇gϵ(Bt)∥2F

≤
(
1 +

1

ν − 1

)
E∥Bt −B0∥2F +

να2

r2
E∥∇gϵ(Bν)∥2F +

α2

r2
E∥∇̂G(Bt; ξt)∥2F .

Next, we use Lemmas B.2 and B.3 to bound the last two terms:

E∥Bt+1 −B0∥2F ≤
(
1 +

1

ν − 1

)
E∥Bt −B0∥2F +

2να2

r2
E∥∇g(Bt)∥2F

+
6mα2

r
E∥∇G(Bt; ξt)∥2F + 66L̃2m3rϵ2να2

≤
(
1 +

1

ν − 1

)
E∥Bt −B0∥2F +

8mνα2

r
E∥∇g(Bt)∥2F

+
6mα2σ̃2

r
+ 66L̃2m3rϵ2να2

≤

(
1 +

1

ν − 1
+

16L̃2mνα2

r

)
E∥Bt −B0∥2F +

16mνα2

r
E∥∇g(B0)∥2F

+
6mα2σ̃2

r
+ 66L̃2m3rϵ2να2.

Applying the step size condition 16L̃2mνα2

r ≤ 1
ν−1 , we obtain:

E∥Bt+1 −B0∥2F ≤
(
1 +

2

ν − 1

)
E∥Bt −B0∥2F +

16mνα2

r
E∥∇g(B0)∥2F

+
6mα2σ̃2

r
+ 66L̃2m3rϵ2να2.

By induction, we have:

E∥Bt −B0∥2F ≤
t−1∑
s=0

(
1 +

2

ν − 1

)s(
16mνα2

r
E∥∇g(B0)∥2F +

6mα2σ̃2

r
+ 66L̃2m3rϵ2να2

)
≤ 64mν2α2

r
E∥∇g(B0)∥2F +

24mνα2σ̃2

r
+ 264L̃2m3rϵ2ν2α2.

In the last inequality, we use the fact that
∑t−1

s=0

(
1 + 2

ν−1

)s
≤ 4ν for t ≤ ν.

The following lemma provides a bound on the function value of (23) over ν iteration steps of the
update rule (24a).

Lemma B.5. If the step size satisfies the condition 32L̃mνα ≤ 1, then the following holds:

EU,ξ(gX,V (B
ν)− gX,V (B

0)) ≤

(
−να

4r
+

18L̃mν2α2

r

)
EU,ξ∥∇gX,V (B

0)∥2F

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

+
7L̃mσ̃2να2

r
+ 2L̃mrϵ2,

where L̃ and σ̃2 are defined in Lemma B.1.

Proof. We continue to use E to denote the expectation taken over both U and ξ. We begin with the
following inequality, which is derived from the L̃-smoothness of gϵ(B):

Egϵ(Bν)− Egϵ(B0) ≤ E⟨∇gϵ(B0), Bν −B0⟩+ L̃

2
E∥Bν −B0∥2F

≤ −α

r

ν−1∑
t=0

E⟨∇gϵ(B0), ∇̂G(Bt; ξt)⟩+ L̃α2

2r2
E
∥∥∥ ν−1∑

t=0

∇̂G(Bt; ξt)
∥∥∥2
F
.

For the first term on the right-hand side, we have:

−α

r

ν−1∑
t=0

E⟨∇gϵ(B0),∇̂G(Bt; ξt)⟩ = −α

r

ν−1∑
t=0

E⟨∇gϵ(B0),∇gϵ(Bt)⟩

= −α

r

ν−1∑
t=0

E⟨∇gϵ(B0),∇gϵ(Bt)−∇gϵ(B0) +∇gϵ(B0)⟩

= −να

r
∥∇gϵ(B0)∥2F −

α

r

ν−1∑
t=0

E⟨∇gϵ(B0),∇gϵ(Bt)−∇gϵ(B0)⟩

≤ −να

2r
E∥∇gϵ(B0)∥2F +

α

2r

ν−1∑
t=0

E∥∇gϵ(Bt)−∇gϵ(B0)∥2F

≤ −να

4r
E∥∇g(B0)∥2F +

L̃2α

2r

ν−1∑
t=0

E∥Bt −B0∥2F +
L̃2mϵ2να

2
.

The first inequality follows from ⟨a, b⟩ ≤ ∥a∥2+∥b∥2

2 , and the final inequality holds due to Lemmas
B.1 and B.3.

For the second term, we have:

L̃α2

2r2
E
∥∥∥ ν−1∑

t=0

∇̂G(Bt; ξt)
∥∥∥2
F
≤ L̃α2

r2
E
∥∥∥ ν−1∑

t=0

∇̂G(Bt; ξt)−∇gϵ(Bt)
∥∥∥2
F
+

L̃να2

r2

ν−1∑
t=0

E∥∇gϵ(Bt)∥2F

=
L̃α2

r2

ν−1∑
t=0

E
∥∥∥∇̂G(Bt; ξt)−∇gϵ(Bt)

∥∥∥2
F
+

L̃να2

r2

ν−1∑
t=0

E∥∇gϵ(Bt)∥2F

≤ L̃α2

r2

ν−1∑
t=0

E∥∇̂G(Bt, ξt)∥2F +
L̃να2

r2

ν−1∑
t=0

E∥∇gϵ(Bt)∥2F

≤ 6L̃mα2

r

ν−1∑
t=0

E∥∇G(Bt; ξt)∥2F + 64L̃3m3rϵ2να2 +
L̃να2

r2

ν−1∑
t=0

E∥∇gϵ(Bt)∥2F

≤ 8L̃mνα2

r

ν−1∑
t=0

E∥∇g(Bt)∥2F +
6L̃mσ̃2να2

r
+ 66L̃3m3rϵ2ν2α2

≤ 16L̃mν2α2

r
E∥∇g(B0)∥2F +

16L̃3mνα2

r

ν−1∑
t=0

E∥Bt −B0∥2F

+
6L̃mσ̃2να2

r
+ 66L̃3m3rϵ2ν2α2.

The first equation holds due to the independence of U t and ξt for each t, while the third and fourth
inequalities follow from Lemmas B.2 and B.3, respectively. Combining the above results and con-

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

sidering the condition 32L̃mνα ≤ 1, we obtain:

E(gϵ(Bν)− gϵ(B0)) ≤

(
−να

4r
+

16L̃mν2α2

r

)
E∥∇g(B0)∥2F +

L̃2α

r

ν−1∑
t=0

E∥Bt −B0∥2F

+
6L̃mσ̃2να2

r
+ 66L̃3m3rϵ2ν2α2 +

L̃2mϵ2να

2
.

Applying Lemma B.4 and again considering the condition 32L̃mνα ≤ 1, we have:

E(gϵ(Bν)− gϵ(B0)) ≤

(
−να

4r
+

18L̃mν2α2

r

)
E∥∇g(B0)∥2F +

7L̃mσ̃2να2

r
+ L̃mrϵ2.

Finally, by applying Lemma B.3 once again, we can complete our proof.

Now we have established the bound for solving the subproblem (23). Next, we investigate the
impact of updating X and resampling V and establish the convergence result for our proposed
LOZO algorithm. This leads to the following theorem.
Theorem B.6 (Theorem 4.4). Under Assumptions 4.1 and 4.2, and assuming the step size α ≤

1
144Lmnν , when applying the proposed LOZO algorithm to solve problem (1), and letting T = Kν,
the following inequality holds:

1

K

K−1∑
k=0

E∥∇f(Xkν)∥2 ≤ 8∆0

Tα
+

56Lmn2σ2α

r
+

16Lmnrϵ2

να
,

where ∆0 := f(X0)− f∗. Furthermore, if we choose

ϵ =

√
∆0ν

16TLmnr
, α =

144Lmnν +

√
56TLmn2σ2

9∆0r

−1

,

then it holds that:

1

K

K−1∑
k=0

E∥∇f(Xkν)∥2 ≤ 16

√
1

T

(
7∆0Lmn2σ2

r

)
+

2592∆0Lmnν

T
.

Proof. Recalling the update rule (24), it follows that

gXkν ,V (k)(Bν) = f(Xkν +B(k,ν)(V (k))T) = f(X(k+1)ν), gXkν ,V (k)(B0) = f(Xkν).

Moreover, note that∇gXkν ,V (k)(B0) = ∇f(Xkν)V (k). By applying Lemma B.5, we obtain:

EU,ξ(f(X
(k+1)ν)− f(Xkν)) ≤

(
−να

4r
+

18L̃mν2α2

r

)
EU,ξ∥∇f(Xkν)V (k)∥2F

+
7L̃mσ̃2να2

r
+ 2L̃mrϵ2.

Taking the expectation over V (k), and noting that EV (k)(V (k))T = I (by Assumption 4.2), V (k) is
independent of Xkν , we have:

E(f(X(k+1)ν)− f(Xkν)) ≤
(
−να

4
+ 18L̃mν2α2

)
E∥∇f(Xkν)∥2F

+
7L̃mσ̃2να2

r
+ 2L̃mrϵ2.

Note that T = Kν. Rearranging the inequality above and summing over K gives:(
1

4
− 18L̃mνα

)
1

K

K∑
k=1

E∥∇f(Xkν)∥2F ≤
∆0

Tα
+

7L̃mσ̃2α

r
+

2L̃mrϵ2

να
.

Considering the step size condition 144L̃mνα ≤ 1, and using L̃ = nL and σ̃2 = nσ2, we complete
the proof.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

C EXPERIMENTAL DETAILS

C.1 DATASETS

For RoBERTa-large, we evaluate the performance on six NLP tasks: SST-2(Socher et al.,
2013), SST-5(Socher et al., 2013), SNLI(Bowman et al., 2015), MNLI(Williams et al., 2017),
RTE(Dagan et al., 2005; Bar-Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009),
TREC(Voorhees & Tice, 2000). We adopt two settings: k = 16 and k = 512, which require 16 and
512 examples per class, respectively, during both the training and validation stages.

For OPT, we conduct experiments on the following datasets: SST-2(Socher et al., 2013), RTE(Dagan
et al., 2005; Bar-Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009), CB(De Marn-
effe et al., 2019), BoolQ(Clark et al., 2019), WSC(Levesque et al., 2012), WIC(Pilehvar &
Camacho-Collados, 2018), MultiRC(Khashabi et al., 2018), COPA(Roemmele et al., 2011),
ReCoRD(Zhang et al., 2018), SQuAD(Rajpurkar et al., 2016), DROP(Dua et al., 2019).

For the LLaMA model, we evaluate its performance on the SST-2, WiC, COPA, SQuAD, and Wino-
Grande datasets.

C.2 HYPERPARAMETERS

In this section, we present the hyperparameter search grids to support the reproducibility of our
experiments using the RoBERTa-large, OPT, and LLaMA models. Both MeZO and LOZO utilize a
constant learning rate schedule, whereas FT and FT-LoRA adopt a linear learning rate schedule.

For MeZO, LOZO, and their respective variants, we conduct 100K training steps, evaluating the
model every 10K steps for the RoBERTa-large model; 20K training steps with evaluations every 4K
steps for the OPT model; and 20K training steps, evaluating every 500 steps for the LLaMA model.
For all gradient-based algorithms, we adhere to the configurations described in (Malladi et al., 2023;
Zhang et al., 2024).

Experiment Hyperparameters Values

LOZO Batch size 64
Learning rate (k=16) 1e−6

Learning rate (k=512) 2e−7
Rank (r) {4, 8}

Interval (ν) {50, 100}
ϵ 1e−3

Weight Decay 0

MeZO Batch size 64
Learning rate {1e−7, 1e−6, 1e−5}

ϵ 1e−3
Weight Decay 0

MeZO-LoRA Batch size 64
Learning rate {1e−5, 5e−5, 1e−4}

ϵ 1e−3
Weight Decay 0.1

(r, α) (8, 16)

FT Batch size {8}
Learning rate {1e−5, 3e−5, 5e−5}

Weight Decay 0

FT-LoRA Batch size {8}
Learning rate {1e−4, 3e−4, 5e−4}

(r, α) (8, 16)

Table 4: The hyperparameter grids used for RoBERTa-large experiments. The learning rate of the
LOZO algorithm refers to α/r. For LOZO-M, we introduce an additional parameter, β1, which is
searched over the range {0.5, 0.7, 0.9}.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Experiment Hyperparameters Values

LOZO Batch size 16
Learning rate {1e−6, 1e−7}

ϵ {1e−3, 1e−4}
Rank (r) {1, 2, 4}

Interval (ν) {50, 100}

MeZO Batch size 16
Learning rate {1e−6, 1e−7} or {1e−6, 5e−7, 1e−7} for SQuAD and DROP

ϵ 1e−3

MeZO-LoRA Batch size 16
Learning rate {1e−4, 5e−5} or {1e−4, 5e−5, 1e−5} for SQuAD and DROP

ϵ 1e−2
(r, α) (8, 16)

FT Batch size 8
Learning rate {1e−5, 5e−5, 8e−5}

Table 5: The hyperparameter grids used for OPT experiments. The learning rate of the LOZO
algorithm refers to α/r.

Experiment Hyperparameters Values

LOZO Batch size 16
Learning rate (k=16) 1e−7

Rank (r) {2, 4}
Interval (ν) {50, 100}

ϵ 1e−3
Weight Decay 0

MeZO Batch size 16
Learning rate {1e−7, 1e−6}

ϵ 1e−3
Weight Decay 0

FT Batch size {8}
Learning rate {1e−6, 1e−7}

FT-LoRA Batch size {8}
Learning rate {1e−4, 1e−5}

(r, α) (8, 16)

Table 6: The hyperparameter grids used for LLaMA experiments. The learning rate of the LOZO
algorithm refers to α/r.

C.3 ABLATION STUDY

In this section, we explore how the choice of rank r and the lazy update interval ν affect the perfor-
mance of our algorithm. We begin by examining the impact of ν and r using the SST-2, COPA and
RTE datasets on the OPT-1.3b model. To illustrate the impact of different values of r and ν on the
convergence rate, we present a plot of loss versus epochs in Figure 4. Also, we list the accuracy and
training loss across different rank r and ν for the three datasets in Table 7.

A small ν value can negatively impact convergence. For datasets where the loss exhibits a signif-
icant decrease during fine-tuning, very small ν values can hinder the model’s convergence, leading
to degraded performance on the test datasets. For example, with a rank of 2 and ν = 1, the final
training loss reaches 0.79, nearly double that of other settings, as shown in Table 7. In addition, as
shown in Figure 4, ν = 1 exhibits different training dynamics compared to larger ν values, where
the training loss either remains unchanged or even increases.

A small ν value may not affect the model’s performance on the test dataset. In contrast, for
datasets where the loss remains stable or decreases only slightly, the performance degradation caused

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

by small ν values is minimal and less noticeable. The COPA dataset serves as a typical example, with
the loss remaining nearly unchanged during training and unaffected by extremely small ν values. As
shown in Table 7, the accuracy with a rank of 2 and ν = 1 is comparable to that of other settings.

A large rank r can moderately slow down the training. The left panel of Figure 4 demonstrates
that a larger rank starts with a higher loss, requiring additional training epochs to reach the same
loss compared to those small rank r.

A small rank r leads to a decline in model performance. When setting the rank to r = 1, it
consistently results in suboptimal performance across all three tasks.

0 50 100 150 200 250 300
Epochs

0.67

0.68

0.69

0.70

0.71

0.72

0.73

L
os

s

Loss vs Epoch on RTE dataset opt-1.3b across different r

r = 2

r = 4

r = 8

r = 1

0 50 100 150 200 250 300
Epochs

0.2

0.4

0.6

0.8

L
os

s

Loss vs Epoch on SST-2 dataset opt-1.3b across different ν

ν = 1

ν = 50

ν = 100

ν = 200

ν = 500

Figure 4: Left: Loss curves of OPT-1.3B on RTE dataset across different rank r. Right: Loss curves
of OPT-1.3B on SST-2 dataset across different value ν.

SST-2 COPA RTE

r ν Accuracy loss Accuracy loss Accuracy loss

1 50 88.1 0.45 73.0 1.93 56.7 0.68
100 89.0 0.46 74.0 2.18 56.7 0.68

2

1 55.0 0.79 74.0 2.58 50.9 0.70
50 93.0 0.37 74.0 2.04 61.0 0.69
100 92.1 0.37 71.0 2.05 58.1 0.68
200 92.7 0.37 77.0 2.05 62.1 0.67
500 91.7 0.37 75.0 2.05 62.8 0.67

4 50 91.3 0.35 76.0 1.99 57.4 0.69
100 92.0 0.35 75.0 1.97 57.8 0.69

8 50 88.5 0.48 71.0 2.03 55.0 0.71
100 88.9 0.45 73.0 2.03 56.3 0.71

Table 7: Performance and loss across different values of r and ν on SST-2, COPA and RTE datasets.

D MORE EXPERIMENTAL RESULTS

D.1 ROBERTA-LARGE EXPERIMENTS

We present the complete results for RoBERTa-large. As shown in Table 8, our LOZO method and
its variant, LOZO-M, outperform other gradient-free methods on almost all datasets.

D.2 OPT EXPERIMENTS

We have also applied the LOZO-M algorithm to the OPT-13B model, with results presented in Table
9. The numerical results indicate that incorporating the momentum technique further enhances the
performance of LOZO across various tasks, even when applied to large model scales.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Task SST-2 SST-5 SNLI MNLI RTE TREC
Type sentiment natural language inference topic

Zero-shot 79.0 35.5 50.2 48.8 51.4 32.0

Gradient-free methods: k = 16
MeZO 86.3 (8.0) 40.8 (2.5) 68.5 (4.2) 56.7 (3.4) 58.6 (9.5) 62.4 (10.2)
MeZO-LoRA 88.4 (1.6) 38.9 (2.0) 67.0 (3.3) 56.8 (1.0) 59.7 (4.5) 37.0 (5.1)
LOZO 88.0 (5.8) 41.1 (2.8) 73.4 (4.0) 61.6 (4.6) 61.2 (9.1) 77.9 (7.4)
LOZO-M 88.0 (5.8) 42.9 (1.5) 74.0 (4.0) 62.7 (4.5) 60.2 (8.4) 82.2 (5.2)

Gradient-based methods: k = 16
FT 89.3 (5.3) 44.0 (1.7) 72.7 (5.7) 63.4 (4.3) 61.3 (5.3) 83.7 (4.7)
FT-LoRA 92.7 (0.9) 45.5 (1.4) 71.6 (4.5) 59.4 (4.6) 61.4 (6.9) 75.8 (7.8)

Gradient-free methods: k = 512
MeZO 93.7 (0.4) 53.9 (1.9) 84.8 (1.1) 76.6 (0.8) 76.8 (3.1) 95.0 (0.4)
MeZO-LoRA 91.7 (0.2) 45.1 (1.4) 73.1 (1.1) 65.5 (0.9) 72.7 (0.8) 50.8 (1.9)
LOZO 94.1 (0.7) 53.0 (0.4) 85.4 (0.8) 80.4 (1.0) 79.7 (2.0) 95.5 (0.4)
LOZO-M 94.3 (0.8) 52.6 (0.3) 84.9 (1.1) 80.5 (0.7) 79.7 (1.6) 95.5 (0.5)

Gradient-based methods: k = 512
FT 94.4 (0.6) 55.7 (1.6) 88.3 (0.8) 84.8 (0.7) 82.7 (1.1) 97.2 (0.3)
FT-LoRA 91.9 (2.1) 52.4 (1.2) 84.8 (0.6) 74.8 (3.4) 81.2 (1.6) 96.1 (0.6)

Table 8: Experimental results on RoBERTa-large (350M). All reported numbers are averaged accu-
racy (standard deviation). LOZO and LOZO-M outperforms MeZO and MeZO-LoRA by a consid-
erable margin and approaches FT performance.

In Table 10, we evaluate the minimum memory requirements for two datasets on OPT-13B, set-
ting the per-device batch size to 1 to determine the minimum hardware requirements for running
the model with different optimization algorithms. The results demonstrate that LOZO exhibits the
lowest memory consumption, particularly when compared to FO methods. Notably, the momentum-
enhanced LOZO variant (LOZO-M) incurs minimal additional memory overhead, unlike its coun-
terpart, MeZO-M, which requires significantly more memory.

In Figure 5, we compare the convergence rates of our proposed LOZO algorithm with MeZO on
two additional tasks. We also present a comparison of wall-clock times on GPUs. Despite having
similar computational complexities, LOZO converges faster than MeZO, resulting in reduced wall-
clock time.

Task SST-2 RTE CB WSC COPA SQuAD
LOZO 91.7 70.4 69.6 63.5 89.0 84.9
LOZO-M 92.5 73.6 69.6 64.4 90.0 83.3

Table 9: Comparison of the performance of LOZO and its momentum variant on OPT-13B.

Task RTE MultiRC
Memory Consumed GPUs Memory Consumed GPUs

LOZO 27.0 GB 1× A800 26.9 GB 1× A800
LOZO-M 27.4 GB 1× A800 27.3 GB 1× A800
MeZO 27.4 GB 1× A800 27.3 GB 1× A800
MeZO-M 51.7 GB 1× A800 52.1 GB 1× A800
FT-LoRA 79.0 GB 1× A800 102.4 GB 2× A800
FT 250.0 GB 4× A800 315.2 GB 4× A800

Table 10: Comparison of memory costs for LOZO, MeZO, their momentum variants, and gradient-based
methods on OPT-13B.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lo
ss

Loss vs Epochs on SST2 dataset opt-13b

MeZO
LOZO

0 200 400 600 800 1000
Epochs

1.6

1.8

2.0

2.2

2.4

2.6

Lo
ss

Loss vs Epochs on Copa dataset opt-30b

MeZO
LOZO

0 2500 5000 7500 10000 12500 15000 17500
times

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lo
ss

Loss vs times on SST2 dataset opt-13b

MeZO
LOZO

0 2000 4000 6000 8000 10000
times

1.6

1.8

2.0

2.2

2.4

2.6

Lo
ss

Loss vs times on Copa dataset opt-30b

MeZO
LOZO

Figure 5: Top: Loss curves with respect to epochs for OPT-13B (SST2) and OPT-30B (Copa). Bottom: Loss
curves with respect to time for the same configurations.

D.3 LLAMA EXPERIMENTS

We conducted experiments on the LLaMA model of varying sizes, comparing our proposed LOZO
algorithm with MeZO and gradient-based algorithms. The results, presented in Table 11, demon-
strate that our algorithm outperforms MeZO on most tasks.

In Table 12, we compare the memory requirements of LOZO, MeZO, and gradient-based methods
with a per-device batch size of 1 for fine-tuning LLaMA-7B and LLaMA-70B models on the Mul-
tiRC dataset. The results demonstrate that as the model scale increases, the memory efficiency gap
between ZO and gradient-based methods widens significantly.

Task LLaMA-7B LLaMA-13B LLaMA-70B
SST-2 WiC COPA SQuAD WG SST-2 WG WG

LOZO 94.8 57.2 85.0 90.3 66.0 93.6 67.6 72.1
MeZO 91.6 56.3 86.0 90.0 64.3 92.1 67.2 72.1
FT-LoRA 95.1 69.4 84.0 91.2 70.9 95.5 76.6 50.4
FT 94.2 72.3 83.0 90.6 64.4 96.4 73.3 -

Table 11: Experimental results on LLaMA models of varying sizes. The superior results achieved by ZO
methods are highlighted in bold. ”WG” refers to the WinoGrande dataset. Due to limited computational
resources, FT was not tested on LLaMA-70B.

Task LLaMA-7B LLaMA-70B
Memory Consumed GPUs Memory Consumed GPUs

LOZO 14.1 GB 1× A800 135.5 GB 2× A800
MeZO 14.3 GB 1× A800 136.0 GB 2× A800
FT-LoRA 32.7 GB 1× A800 187.2 GB 3× A800
FT 281.6 GB 4× A800 640 + GB > 8× A800

Table 12: Comparison of memory costs for LOZO, MeZO, and gradient-based methods on LLaMA models of
varying scales for the MultiRC task with a per-device batch size of 1. Due to limited computational resources,
the results for FT on LLaMA-70B are approximate.

26

	Introduction
	Related Work

	Preliminaries
	Zeroth-Order (ZO) Optimization
	Memory-efficient ZO-SGD (MeZO)

	Low-rank zeroth-order gradient estimator
	Low-rank zeroth-order SGD
	Algorithm development
	LOZO is essentially a zeroth-order subspace optimization method
	Convergence analysis
	LOZO with Momentum

	Experiments
	Medium-sized masked language models
	Large autoregressive language models

	Conclusion and Limitations
	More Comments
	Unbiaseness of LGE
	Equivalence bewtween LOZO and ZO subspace method
	Details of LOZO-M

	Convergence Analysis
	Experimental details
	Datasets
	Hyperparameters
	Ablation study

	More Experimental results
	Roberta-Large Experiments
	OPT Experiments
	Llama Experiments

