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Figure 1: Comparisons with other popular methods in terms of latency-accuracy (left) and
FLOPs-accuracy (right) trade-offs.

Abstract

Enhancing the network architecture of the YOLO framework has been crucial for a
long time. Still, it has focused on CNN-based improvements despite the proven
superiority of attention mechanisms in modeling capabilities. This is because
attention-based models cannot match the speed of CNN-based models. This paper
proposes an attention-centric YOLO framework, namely YOLOv12, that matches
the speed of previous CNN-based ones while harnessing the performance benefits
of attention mechanisms. YOLOv12 surpasses popular real-time object detectors
in accuracy with competitive speed. For example, YOLOv12-N achieves 40.5%
mAP with an inference latency of 1.62 ms on a T4 GPU, outperforming advanced
YOLOv10-N / YOLO11-N by 2.0%/1.1% mAP with a comparable speed. This
advantage extends to other model scales. YOLOv12 also surpasses end-to-end real-
time detectors that improve DETR, such as RT-DETRv2 / RT-DETRv3: YOLOv12-
X beats RT-DETRv2-R101 / RT-DETRv3-R101 while running faster with fewer
computations and parameters. See more comparisons in Figure 1. Source code is
available at https://github.com/sunsmarterjie/yolov12.

Real-time object detection has consistently attracted significant attention due to its low-latency
characteristics, which provide substantial practicality [26, 31, 6, 19]. Among them, the YOLO
series [51, 53, 52, 5, 32, 35, 64, 26, 67, 61, 31] has effectively established an optimal balance between
latency and accuracy, thus dominating the field. Although improvements in YOLO have focused
on areas such as loss functions [10, 80, 47, 46, 79, 38, 54], label assignment [25, 37, 68, 24, 81],
network architecture design has remained a critical research priority [35, 64, 26, 67, 31]. Although
attention-centric models have been proven to possess more substantial modeling capabilities, even in
small models [27, 21, 22, 57], most architectural designs continue to focus primarily on CNNs.
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The primary reason for this situation lies in the inefficiency of the attention mechanism, which comes
from two main factors: quadratic computational complexity and inefficient memory access operations
of the attention mechanism (the latter being the main issue addressed by FlashAttention [16, 15]). As
a result, under a similar computational budget, CNN-based architectures outperform attention-based
ones by a factor of ∼ 3× [41], which significantly limits the adoption of attention in YOLO systems.

This paper aims to tackle these challenges and establish an attention-centric YOLO framework,
YOLOv12. We introduce three key improvements. First, we propose a simple yet efficient Area
Attention module (A2), which preserves a large receptive field while efficiently reducing the compu-
tational complexity of attention, thus improving speed. Moreover, A2 supports flexible input sizes
without constraints in window attention [42, 18] to accommodate window partitioning, allowing
rectangular inference in YOLO. Second, we design Residual Efficient Layer Aggregation Networks
(R-ELAN) to address optimization challenges in the designed attention-based models. Building
on ELAN [64], R-ELAN introduces (i) a block-level residual design with scaling techniques and
(ii) an improved feature aggregation strategy. Third, we refine attention-centric architectures to
better integrate with the YOLO framework. Key modifications include: incorporating FlashAttention
to mitigate memory access issue; using a decoupled projection strategy to construct q, k, and v
during attention computation, thus avoiding redundant feature reorganization; removing positional
encoding for a leaner design; reducing the MLP ratio from 4 to 1.5 to better balance attention and
FFN computation; and decreasing the depth of stacked blocks to facilitate optimization.

Based on the designs outlined above, we develop a new family of real-time detectors with 5 model
scales: YOLOv12-N, S, M, L, and X. We perform extensive experiments on standard object detection
benchmarks following YOLO11 [31] without any additional tricks, demonstrating that YOLOv12
provides significant improvements over previous popular models in terms of latency-accuracy and
FLOPs-accuracy trade-offs across these scales, as illustrated in Figure 1. For example, YOLOv12-N
achieves 40.5% mAP, outperforming YOLOv10-N [61] by 2.0% mAP while maintaining a faster
inference speed, and YOLO11-N [31] by 1.1% mAP with a comparable speed. This advantage
remains consistent across other scale models. Compared to RT-DETRv2-R18 [78], YOLOv12-S is
comparable and 47% faster in latency speed, requiring only 33% of its computations and 46% of its
parameters. Compared to RT-DETRv3-R50 [43], YOLOv12-L is 0.4% mAP better and 15% faster,
requiring only 61% of its computations and 63% of its parameters.

In summary, YOLOv12 contributes by: (i) introducing an attention-centric, efficient YOLO framework
that challenges CNN dominance in the series, and (ii) achieving state-of-the-art results with fast
inference and high accuracy without relying on pre-training or additional training techniques.

1 Related Work

Real-time Object Detectors. The YOLO series [51, 53, 52, 5, 32, 35, 64, 63, 11, 26, 67, 61, 31] has
become the leading framework for real-time object detection. The early YOLO models [51, 53, 52]
established the foundation primarily from a model design perspective. YOLOv4 [5] and YOLOv5 [32]
introduced CSPNet [65], data augmentation, and multi-scale features, while YOLOv6 [35] further
enhanced efficiency with BiC, SimCSPSPPF, etc. YOLOv7 [64] incorporated E-ELAN [66] for
better gradient flow and various bag-of-freebies, while YOLOv8 [26] adopted the efficient C2f
block for feature extraction. Recent versions, YOLOv9 [67], introduced GELAN for architectural
optimization and PGI for training improvements, YOLOv10 [61] applied NMS-free training with dual
assignments, and YOLOv11 [31] optimized speed and accuracy with C3K2 (a variant of GELAN)
and lightweight depthwise separable convolutions. Other developments [73, 62, 75] further enhanced
detection capabilities through improved backbones and head designs Beyond YOLO, RT-DETR [78]
improved end-to-end detectors [9, 83, 45, 36] for real-time use through an efficient encoder and
uncertainty-minimal query selection, with RT-DETRv2 [43] and RT-DETRv3 [69] further refinement
with bag-of-freebies. Recent follow-ups [50, 29] continue to show compromising results.

Efficient Vision Transformers. Reducing the computational cost of global self-attention is the key
to effectively applying vision transformers to downstream tasks. PVT [71] tackles this with multi-
resolution stages and downsampling. Swin Transformer [42] restricts self-attention to local windows
and shifts them to connect non-overlapping regions. Other approaches, like axial self-attention [28]
and criss-cross attention [30], compute attention within horizontal and vertical windows. CSWin
Transformer [18] extends this with self-attention in cross-shaped windows. Furthermore, methods

2



(Ours)
Area attentionCriss-cross attention CSwin attentioninput

Size: 672×608 Size: 672×608 Resize to: 640×640 Resize to: 640×640 Size: 672×608

Swin attention

Rect: Rect: Rect: Rect: 

Figure 2: Comparison of the representative local attention mechanisms with our area attention.
Area attention computes local attention over sequentially placed tokens without requiring input size
constraints, enabling default distortion-free rectangular inference (Rect) in YOLO. Area attention
enjoys efficient implementation, requiring only flatten and a reshape operations.

such as [14, 76] establish local-global relations, enhancing efficiency while reducing the reliance on
global self-attention. Fast-iTPN [57] accelerates downstream task inference with token migration and
gathering. Some methods [56, 70, 33] use linear attention to reduce complexity, but vision mamba
models [82, 41] still struggle to achieve real-time speeds [41]. FlashAttention [16, 15] addresses
high-bandwidth memory bottlenecks by optimizing I/O and reducing memory access for efficiency.

2 Approach

2.1 Efficiency Analysis

The attention mechanism, while highly effective in capturing global dependencies and facilitating
tasks such as natural language processing [7, 17] and computer vision [23, 42], is inherently slower
than CNNs. Two primary factors contribute to this speed discrepancy.

Complexity. First, the computational complexity of the attention operation scales quadratically with
the input sequence length L. Specifically, for an input sequence with length L and feature dimension
d, the computation of the attention matrix requires O(L2d) operations since each token attends to
every other token. In contrast, the complexity of convolution operations in CNNs scales linearly with
respect to the spatial or temporal dimension, i.e., O(kLd), where k is the kernel size and is typically
much smaller than L. As a result, self-attention becomes computationally prohibitive, especially for
significant inputs such as high-resolution images or long sequences.

Moreover, attention-based vision transformers often suffer from speed overhead due to their complex
designs (e.g., window partitioning / reverse in some window attentions [42, 18]) and additional
modules (e.g., positional encoding), leading to slower performance compared to CNNs [41]. In
contrast, the design modules in this paper use simple and efficient operations to implement attention,
maximizing speed and efficiency.

Computation. Second, the memory access patterns in attention computations are less efficient than
in CNNs [16, 15]. In self-attention, intermediate maps such as the attention map (QKT ) and the
softmax map (L × L) must be transferred from high-speed GPU SRAM to high-bandwidth GPU
memory (HBM) for further computation. The read/write speed of SRAM is more than 10 times faster,
leading to significant memory access overhead and increased wall clock time.

2.2 Area Attention

A straightforward way to reduce the computational cost of vanilla attention is to use the linear
attention mechanism [56, 70], which reduces the complexity from quadratic to linear. For a visual
feature f with dimensions (n, h, d), where n is the number of tokens, h is the number of heads, and d is
the head size, linear attention reduces the complexity from 2n2hd to 2nhd2, cutting the computational
cost as n > d. However, linear attention faces issues such as global dependency degradation [34],
instability [12], and distribution sensitivity [72]. Furthermore, the low-rank bottleneck [13, 3]
provides limited speed improvements when applied to YOLO.
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Figure 3: The architecture comparison with popular modules including (a): CSPNet [65], (b)
ELAN [66], (c) C3K2 (a case of GELAN) [67, 31], and (d) the proposed R-ELAN (residual efficient
layer aggregation networks).

An alternative approach to effectively reduce complexity is the local attention mechanism (e.g.,
criss-cross attention [30], axial attention [28], and window attention [42, 18]), as shown in Figure 2,
which transforms global attention into local, thus reducing computational costs. However, partitioning
the feature map into windows can introduce overhead or reduce the receptive field, impacting both
speed and accuracy. Furthermore, for window attentions, such as Swin [42] and CSwin [18], they
also suffer from additional constraints on input size to accommodate window partitioning. As shown
in Figure 2, they cannot handle specific rectangular dimensions (native resolutions) commonly seen
in the inference of YOLO (e.g., 672 × 608) and must resize the input to window-friendly sizes (e.g.,
640 × 640), which somehow introduces image distortion and thereby degrades detection performance.

In this study, we propose a simple yet efficient area attention module (A2). The comparison of A2
with other local attentions is illustrated in Figure 2. Specifically, for a feature of size (H,W), we
first perform a flatten operation to obtain a one-dimensional feature with H ×W tokens, which is
then evenly divided into l segments (areas) (so each area contains H×W

l sequentially placed tokens).
Local attention is applied independently within each area (a simple reshape operation enables the
transformation to the original size). This only requires a simple flatten and a reshape operation,
leading to efficient implementation and faster speed. We empirically set the default value of l to 4 (or
8), thus reducing the receptive field to 1

l of the original size while maintaining a large receptive field.
More importantly, A2 eliminates feature size constraints while only requiring the total token count
(H ×W) to be divisible by l. This design inherently supports rectangular inference (see Figure 2),
the standard evaluation protocol in YOLO, thus achieving seamless compatibility with the YOLO
framework. (See more details about A2 and architecture design in the Appendix.)

Regarding the memory access issue, we integrate FlashAttention [16, 15] into area attention to solve it.
FlashAttention is already an infrastructure for many large language models [60, 1, 40] and diffusion
models [55, 49, 4], and can provide similar benefits to YOLO.

2.3 Residual Efficient Layer Aggregation Networks

Efficient layer aggregation networks (ELAN) [64] are designed to improve feature aggregation. As
shown in Figure 3 (b), ELAN splits the output of a transition layer (a convolution 1 × 1, processes
each split through multiple modules, and then concatenates the outputs before applying another
transition layer to align the dimensions. However, as noted in [64], this design can lead to instability.
We argue that this architecture causes gradient blocking and lacks residual connections between
input and output. In addition, incorporating the attention mechanism into the network introduces
additional optimization challenges. Empirically, L- and X-scale models either fail to converge or
remain unstable, even when using Adam or AdamW optimizers.

To address this issue, we propose residual efficient layer aggregation networks (R-ELAN), as shown
in Figure 3 (d). We introduce a residual shortcut from input to output throughout the block, with a
scaling factor (defaulting to 0.01). This design is inspired by the layer scaling [59] used in deep vision
transformers. However, applying layer scaling for each attention area does not solve the optimization
challenge and introduces latency. This highlights that the convergence issue is not solely due to the
attention mechanism but also the ELAN structure, validating the rationale behind R-ELAN design.
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Table 1: Comparison with popular real-time object detectors. All results are obtained using
640 × 640 inputs. †: pre-trained models are required.

Method FLOPs #Param. APval
50:95 APval

50 APval
75 Latency

(G) (M) (%) (%) (%) (ms)
YOLOv8-N [26] 8.7 3.2 37.4 52.6 40.5 1.77
YOLOv10-N [61] 6.7 2.3 38.5 53.8 41.7 1.84
YOLO11-N [31] 6.5 2.6 39.4 55.3 42.8 1.5
YOLOv12-N (Ours) 6.0 2.6 40.5 56.4 43.8 1.62
YOLOv8-S [26] 28.6 11.2 45.0 61.8 48.7 2.33
RT-DETRv2-R18† [44] 60.0 20.0 47.9 64.9 – 4.58
YOLOv9-S [67] 26.4 7.1 46.8 63.4 50.7 –
YOLOv10-S [61] 21.6 7.2 46.3 63.0 50.4 2.49
YOLO11-S [31] 21.5 9.4 46.9 63.9 50.6 2.5
YOLOv12-S (Ours) 19.5 9.1 47.8 64.9 51.3 2.44
YOLOv8-M [26] 78.9 25.9 50.3 67.2 54.7 5.09
RT-DETRv2-R34† [44] 100.0 36.0 49.9 67.5 – 6.32
RT-DETRv3-R18† [44] 60.0 20.0 48.7 – – 4.58
RT-DETRv3-R34† [69] 100.0 36.0 50.1 67.5 – 6.32
YOLOv9-M [67] 76.3 20.0 51.4 68.1 56.1 –
YOLOv10-M [61] 59.1 15.4 51.1 68.1 55.8 4.74
YOLO11-M [31] 68.0 20.1 51.5 68.5 55.7 4.7
YOLOv12-M (Ours) 59.9 19.7 52.5 70.0 57.0 4.30
YOLOv8-L [26] 165.2 43.7 53.0 69.8 57.7 8.06
RT-DETRv2-R50† [44] 136.0 42.0 53.4 71.6 – 6.90
RT-DETRv3-R50† [69] 136.0 42.0 53.4 – – 6.90
YOLOv9-C [67] 102.1 25.3 53.0 70.2 57.8 –
YOLOv10-B [61] 92.0 19.1 52.5 69.6 57.2 5.74
YOLOv10-L [61] 120.3 24.4 53.2 70.1 58.1 7.28
YOLO11-L [31] 86.9 25.3 53.3 70.1 58.2 6.2
D-FINE-L† [50] 91 31 54.0 71.6 58.4 8.07
YOLOv12-L (Ours) 82.6 26.6 53.8 71.1 58.7 5.89
YOLOv8-X [26] 257.8 68.2 54.0 71.0 58.8 12.83
RT-DETRv2-R101† [44] 259.0 76.0 54.3 72.8 – 13.5
RT-DETRv3-R101† [69] 259.0 76.0 54.6 – – 13.5
YOLOv10-X [61] 160.4 29.5 54.4 71.3 59.3 10.70
YOLO11-X [31] 194.9 56.9 54.6 71.6 59.5 11.3
D-FINE-X† [50] 202 62 55.8 73.7 60.2 12.89
YOLOv12-X (Ours) 184.9 59.5 55.4 72.6 60.4 10.47

We also design a new feature aggregation approach, shown in Figure 3 (d). In the original ELAN, the
input is passed through a transition layer, splitting it into two parts. Subsequent blocks process one
part, and both parts are concatenated to produce the output. In contrast, our design uses a transition
layer to adjust channel dimensions and produce a single feature map. This map is processed through
subsequent blocks, followed by concatenation, forming a bottleneck structure. This method retains
the original feature integration capability while reducing computational cost, parameters, and memory
usage.

2.4 Architectural Improvements

Many attention-based vision transformers use plain-style architectures [20, 58, 2, 27, 23, 22], while we
retain the hierarchical structure of previous YOLO versions [51, 53, 52, 5, 32, 35, 64, 26, 67, 61, 31]
and we will demonstrate its necessity. We simplify the architecture depth by removing the stacking
of three blocks in the final stage of the backbone that are used most frequently in recent YOLO
versions [26, 67, 61, 31], retaining only a single block. In addition, we retain the first two blocks,
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remove the third block, and replace all C3K2 blocks with R-ELAN blocks in the backbone. We used
convolutions with the 2 and 4 groups in the second and third blocks, respectively.

Several default configurations of the vanilla attention mechanism have also been modified for better
alignment with the YOLO system. These include adjusting the MLP ratio from 4 to 1.5 (or 2 for
N / S /M scale models), removing positional encoding, and adding a separable convolution (7 × 7)
(position perceiver) to enhance the ability of area attention to perceive positional information. The
effectiveness of these changes will be demonstrated in Section 3.5.

Table 2: Comparison of YOLOv12 with previous versions
in speed (GPU, CPU) and memory usage. CUDA results
are measured on T4 /RTX 3080 GPUs, with inference latency
(ms) reported for FP32 and FP16. Memory usage (Mem.) is
measured with the TensorRT model (bs = 1). All results are
obtained using the same hardware.

Model FLOPs
(G)

Mem.
(G)

CUDA CPU mAP(G) FP32 FP16

YOLOv9-T [67] 8.2 0.16 4.0/2.3 2.4/1.5 40.1 –
YOLOv10-N [61] 6.7 0.19 3.0/1.6 1.7/1.0 32.4 38.5
YOLO11-N [31] 6.5 0.20 3.0/1.6 1.5/0.9 32.5 39.5
YOLOv12-N 6.0 0.15 3.0/1.6 1.6/1.0 38.7 40.5

YOLOv9-S [67] 26.4 0.19 7.3/3.7 3.3/1.9 85.6 46.8
YOLOv10-S [61] 21.6 0.23 6.3/2.6 2.6/1.3 70.1 46.3
YOLO11-S [31] 21.5 0.23 6.4/2.7 2.4/1.3 72.1 46.9
YOLOv12-S 19.5 0.18 6.5/2.7 2.5/1.3 83.3 47.8

YOLOv9-M [67] 76.3 0.24 16.7/6.3 5.6/2.7 186.5 51.4
YOLOv10-M [61] 59.1 0.29 13.5/5.3 4.8/2.4 161.5 51.1
YOLO11-M [31] 68.0 0.30 16.2/5.4 4.4/2.2 189.9 51.5
YOLOv12-M 59.9 0.24 14.9/5.2 4.3/2.1 213.2 52.5

YOLOv9-C [67] 102.1 0.29 20.9/7.4 6.2/2.8 272.6 53.0
YOLOv10-L [61] 120.3 0.30 23.8/8.0 7.3/3.4 294.8 53.2
YOLO11-L [31] 86.9 0.32 20.4/6.9 5.9/2.9 237.7 53.3
YOLOv12-L 82.6 0.27 20.6/6.9 6.0/2.9 299.5 53.8

YOLOv9-E [67] 189.0 0.69 48.6/15.5 15.5/6.5 499.7 55.6
YOLOv10-X [61] 160.4 0.40 35.0/10.7 10.4/4.5 410.1 54.4
YOLO11-X [31] 194.9 0.45 40.4/13.5 10.5/4.9 484.0 54.6
YOLOv12-X 184.9 0.37 40.6/13.6 10.5/4.9 524.6 55.4

Previous versions (e.g.,
YOLOv10 [61] and YOLOv11 [31])
adopt a coupled projection strategy
for constructing q, k, and v during
attention calculation, where a single
convolutional layer jointly projects
the input and then splits the output
into the three components. However,
when used alongside the position
perceiver, this coupling results in
redundant reorganization of the v
features, degrading inference effi-
ciency. To mitigate this, we introduce
a decoupled projection strategy that
computes v separately from q and k.
This design eliminates unnecessary
processing on v, leading to an
inference speedup of approximately
10%.

3 Experiment

3.1 Experimental Setup

We validate YOLOv12 on the MS-
COCO 2017 dataset [39]. The
YOLOv12 family consists of 5
variants: YOLOv12-N, YOLOv12-
S, YOLOv12-M, YOLOv12-L, and
YOLOv12-X. All models are trained
for 600 epochs using the SGD optimizer with an initial learning rate of 0.01, consistent with
YOLO11 [31]. A linear learning rate decay schedule is adopted, with a linear warm-up for the first
three epochs. Following the methodology in [61, 78], the latencies of all models are tested on a T4
GPU using TensorRT FP16. See the Appendix for more details and results.

3.2 Comparison with State-of-the-arts
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Figure 4: Accuracy-parameter/CPU latency trade-offs for
YOLOv12.

We compare YOLOv12 with
other detectors in Table 1, us-
ing performance data from their
official reports (some achieve
higher speed in our reproduc-
tion, see Table 2). N-scale:
YOLOv12-N exceeds YOLOv8-
N [67], YOLOv10-N [61], and
YOLO11 [31] by up to 3.1%
mAP, maintaining a similar or
lower computational cost with

1.62 ms/image latency. S-scale: YOLOv12-S (19.5G FLOPs, 9.1M params) achieves 47.8 mAP
at 2.44 ms/image, outperforming YOLOv9-S [67], YOLOv10-S [61], and YOLO11-S [31]. Com-
pared to RT-DETRv2-R18 [44], it offers better speed with lower computational cost. M-scale:
YOLOv12-M (59.9G FLOPs, 19.7M params) achieves 52.5 mAP at 4.30 ms/image, outperforming
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YOLOv9-M [67], YOLOv10 [61], YOLO11 [31], and RT-DETRv2-R34 [44] / RT-DETRv3-R34 [69].
L-scale: YOLOv12-L exceeds YOLOv10-L [61] with 37.7G fewer FLOPs and YOLO11-L [31]
by 0.5% mAP while maintaining a similar efficiency. It also outperforms RT-DETRv2-R50 [44]
/ RT-DETRv3-R50 [69] with fewer FLOPs, parameters, and faster speed. X-scale: YOLOv12-X
exceeds YOLOv10-X [61] and YOLO11-X [31] by up to 1.0% mAP with similar efficiency and
surpasses RT-DETRv2-R101 [43] / RT-DETRv3-R101 [69] with 28.6% fewer FLOPs, 21.7% fewer
parameters, and 22.4% faster speed.

3.3 Speed, Memory, and Efficiency Table 3: Ablation on the proposed area attention. Com-
pared to other methods (cross-cross (CC), Swin, and CSwin
attentions), area attention helps YOLOv12-N/S/X models ob-
tain better accuracy and run faster on GPU (CUDA) and CPU.
CUDA results are measured on T4/RTX 3080. All results
use the same hardware and exclude FlashAttention [16, 15].

Model Atten.
Type

Mem.
(G)

CUDA (ms) CPU (ms) APval
50:95FP32 FP16

N

Global 0.21 6.1/2.7 3.1/1.6 66.3 41.7
CC 0.17 4.7/2.3 2.4/1.4 72.9 39.5
Swin 0.16 4.5/2.2 2.2/1.3 39.6 40.2
CSwin 0.16 4.5/2.2 2.2/1.3 39.9 40.3
A2 0.15 4.2/2.0 2.0/1.2 38.7 40.5

S

Global 0.30 12.5/4.8 5.2/2.4 144.3 49.0
CC 0.20 9.5/3.9 3.8/2.1 90.6 46.6
Swin 0.18 9.2/3.8 3.3/1.9 83.4 47.4
CSwin 0.18 9.3/3.8 3.3/1.9 85.6 47.5
A2 0.18 8.7/3.5 3.1/1.8 83.3 47.8

X

Global 0.68 74.2/31.4 26.3/10.8 913.0 56.2
CC 0.40 56.2/23.6 16.6/8.0 572.3 54.7
Swin 0.38 53.4/21.2 15.3/7.6 538.2 55.2
CSwin 0.38 53.5/21.4 15.4/7.6 553.6 55.2
A2 0.37 52.5/21.0 14.7/7.1 524.6 55.4

Table 2 compares the inference speed
of YOLOv9 [67], YOLOv10 [61],
YOLO11 [31], and YOLOv12 on T4
and RTX 3080 GPUs using FP32 and
FP16 precision, as well as CPU (Intel
Core i7-10700K @ 3.80GHz) speed
and peak memory usage. All results
are obtained on the same hardware
to ensure fairness. The results show
that YOLOv12 significantly outper-
forms YOLOv9 in inference speed,
while matching the performance of
YOLOv10 and YOLOv11. YOLOv12
requires less peak memory than the
other models.

Figure 4 compares the speed and effi-
ciency of YOLOv12. We present the
accuracy-parameter trade-off, demon-
strating that it outperforms popular
methods, including YOLOv10, which
has significantly fewer parameters.
This underscores YOLOv12’s ability to achieve higher accuracy with fewer parameters. We also in-
clude the accuracy-latency trade-off for YOLOv12 on a CPU (Intel Core i7-10700K @ 3.80GHz). As
shown, YOLOv12 delivers superior performance and establishes superior boundaries, demonstrating
greater efficiency across various metrics.

3.4 Ablation Studies
Table 4: Ablation on the proposed residual efficient layer
aggregation networks (R-ELAN). RA: Proposed feature
integration; RS: Residual block; SL: Scaling factor for resid-
uals; CS: Convergence status.

Model
scale RA RS SL CS FLOPs

(G)
Param

(M)
Mem.

(G) mAP Lat.

N
% % – " 6.5 2.8 0.20 40.6 1.70
" % – " 6.0 2.6 0.15 40.4 1.62
" " 0.01 " 6.0 2.6 0.15 40.5 1.62

L

% % – % – – – – –
" % – % – – – – –
% " 0.01 " 87.7 27.2 0.31 53.9 6.15
" " 0.1 " 82.6 26.6 0.27 53.7 5.89
" " 0.01 " 82.6 26.6 0.27 53.8 5.89

X

% % – % – – – – –
" % – % – – – – –
% " 0.01 " 197.5 60.8 0.42 55.4 10.47
" " 0.1 " 184.9 59.5 0.37 55.2 10.47
" " 0.01 " 184.9 59.5 0.37 55.4 10.47

We perform ablation experiments to
assess the effectiveness of area atten-
tion (A2) and E-ELAN in Table 3 and
Table 4, respectively.

• Area Attention. In Table 3, eval-
uations are performed on YOLOv12-
N/S/X models, measuring the GPU
(CUDA) and CPU inference speed.
CUDA results are obtained using iden-
tical T4 and RTX 3080 hardware to
ensure fairness, while CPU perfor-
mance is measured on an Intel Core
i7-10700K @ 3.80GHz. Memory us-
age (Mem.) is measured with the Ten-
sorRT model (bs = 1). We compare
the performance with other local atten-
tions and adjust the number of chan-
nels to ensure that all models have
similar parameters and FLOPs. The
results demonstrate significant efficiency and speedup with area attention. For example, with FP32

7



Table 5: Diagnostic studies. To save space, we only show the factor(s) to be diagnosed in each
subtable. The default parameters are (unless otherwise specified) training for 600 epochs from scratch,
using the YOLOv12-N model. All latency (Lat.) results are tested on a T4 GPU

. Model Lat.-DP Lat.

N 1.70 1.62
S 2.70 2.44
M 4.88 4.30
L 6.56 5.89
X 11.39 10.47

(a) Decoupled Projection

Method mAP Lat.

N/A 38.2 1.60
S1 40.1 1.60
S4 39.8 1.68

Ours 40.5 1.62
(b) Hierarchical Design

Ep. mAP (N) mAP (S)

300 39.2 47.0
500 40.3 47.6
600 40.5 47.8
800 41.1 48.1

(c) Training Epoch

kernel mAP Lat.

3 40.1 1.57
5 40.4 1.60
7 40.5 1.62
9 40.6 1.73

(d) Position Perceiver

Pos. mAP Lat.

RPE 40.2 1.77
APE 40.3 1.67

N/A 40.5 1.62
(e) Position Embedding

Model mAP Lat.

YOLOv10 38.5 1.68
YOLO11 39.4 1.49

YOLOv12 40.5 1.62
(f) FA for V10/11

Ratio (L) mAP Lat.

1.5 53.8 5.89
2.0 53.3 5.79
4.0 53.1 5.73

(g) MLP Ratio

FA Lat. (N) Lat. (S)

% 2.00 3.12
" 1.62 2.45

(h) FlashAttention

on RTX 3080, YOLOv12-N achieves a 1.2ms inference (RTX 3080) with a 40.5 mAP, surpassing
the criss-cross (CC) [30], Swin [42], and CSwin [18] attentions, with only 0.15G inference mem-
ory usage. In particular, the Swin and CSwin attentions require a resize operation (to 640 × 640)
during inference, which can cause a performance drop1. Performance gain is consistently observed
across different models and hardware configurations. We do not use FlashAttention [16, 15] in this
experiment because it would significantly reduce the speed difference.

• R-ELAN. In Table 4, evaluations are performed on YOLOv12-N/L/X models, revealing two key
findings: (i) For smaller models such as YOLOv12-N, residual connections provide performance
gain with negligible extra cost. For larger models (YOLOv12-L/X), residual connections are crucial
for stable training, with a minimal scaling factor (0.01) for convergence. (ii) The proposed feature
integration method reduces the complexity of the model (FLOPs and parameters) and the memory
cost while maintaining accuracy, with only a slight (even without) performance drop.

3.5 Diagnosis & Visualization

We diagnose YOLOv12 designs in Tables 5a to 5h, using YOLOv12-N trained from scratch for 600
epochs, unless otherwise stated.

• Decoupled Projection: Table 5a. We compare the Decoupled Projection (DP) strategy to
construct q, k, and v with previous methods (Lat.-DP). DP consistently improves speed by around 10%
in all scale models, as it avoids costly reorganization of the v feature during the A2 implementation,
leading to better efficiency.

• Hierarchical Design: Table 5b. Unlike other detection systems, such as Mask R-CNN [27, 2],
where plain vision transformers produce substantial results, YOLOv12 behaves differently. Using a
plain vision transformer (N/A) causes a significant performance drop, achieving only 38.2% mAP. A
moderate adjustment, such as omitting the first (S1) or fourth stage (S4) while maintaining similar
FLOPs, results in a slight performance degradation of 0.4% mAP and 0.7% mAP, respectively.
Consistent with previous YOLO models, the hierarchical design remains the most effective, providing
the best performance in YOLOv12.

• Training Epochs: Table 5c. We examine how varying the number of training epochs impacts
performance (training from scratch). Although some existing YOLO detectors achieve optimal
results after roughly 500 training epochs [26, 67, 61], YOLOv12 requires a more extended training
period (about 600/800 epochs) to achieve peak performance, keeping the same configuration used in
YOLO11 [31].

• Position Perceiver: Tables 5d. In the attention mechanism, we apply a separable convolution
with a large kernel to the attention value v, adding its output to v@attn. This component, called the

1If we resize the image to 640 × 640 for A2 inference, the speed remains unaffected, but the performance
drops by about 0.2 in general, highlighting the importance of rectangular inference.
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Figure 5: Comparison of heat maps between YOLOv10 [61], YOLO11 [31], and the proposed
YOLOv12. YOLOv12 exhibits clearer object perception than YOLOv10 and YOLO11. All results
use X-scale models. Zoom in to compare details.

Position Perceiver, preserves the original positions of image pixels, helping the attention mechanism
perceive positional information. While similar to the PSA module [61], we expand the convolution
kernel, improving performance without affecting speed. Increasing the kernel size enhances perfor-
mance but slows processing, with a significant slowdown at 9×9. Therefore, we set the default kernel
size to 7 × 7.

• Position Embedding: Tables 5e. We examine the impact of common positional embeddings
(RPE and APE) on performance. Interestingly, the best results are achieved without any positional
embedding, leading to a cleaner architecture and faster inference.

• FA for V10/11: Tables 5f. This table uses the FlashAttention (FA) for YOLOv10 and YOLO11,
including a few attention blocks. It can be seen that with FA, they also benefit from speed improve-
ments. FA should serve as future infrastructure for the YOLO framework, much like in large language
models.

• MLP Ratio: Tables 5g. In vanilla attention, the MLP ratio within the attention module is
typically set to 4.0. However, YOLOv12 behaves differently. The table shows that varying the
MLP ratio affects model size, so we adjust the feature dimensions for consistency. In particular,
YOLOv12 performs better with an MLP ratio of 1.5, shifting the computational load toward the
attention mechanism and emphasizing the importance of area attention.

• FlashAttention: Tables 5h. This table demonstrates the role of FlashAttention in YOLOv12,
showing a 0.38ms speedup for YOLOv12-N and 0.67 ms for YOLOv12-S without additional costs.

Visualization: Heat Map Comparison. Figure 5 compares the heat maps of YOLOv12 with
YOLOv10 [61] and YOLO11 [31]. These heat maps, extracted from the third stage of the backbones
of X-scale models, highlight the activated regions, reflecting the model’s object perception capability.
As illustrated, YOLOv12 shows more defined object contours and better foreground activation than
YOLOv10 and YOLO11, indicating improved perception. We explain that this improvement comes
from the area attention mechanism, which captures a broader context and enables more precise
foreground activation with its larger receptive field than CNN with its larger receptive field than CNN.
We believe that this characteristic gives YOLOv12 a performance advantage.

4 Conclusion

This study introduces YOLOv12, which integrates an attention-centric design into the YOLO frame-
work, achieving a state-of-the-art latency-accuracy trade-off. We propose a novel network that uses
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area attention to reduce computational complexity and R-ELAN to enhance feature aggregation for
efficient inference. Key refinements to the vanilla attention mechanism further align it with YOLO’s
real-time constraints while maintaining high-speed performance. By combining area attention, R-
ELAN, and architectural optimizations, YOLOv12 significantly improves accuracy and efficiency.
Comprehensive ablation studies validate these innovations. This work challenges CNN-dominated
YOLO designs and advances attention-based real-time object detection.

Limitations. YOLOv12 requires FlashAttention [16, 15], which currently supports Turing, Ampere,
Ada Lovelace, or Hopper GPUs (e.g., T4, Quadro RTX series, RTX20 series, RTX30 series, RTX40
series, RTX A5000/6000, A30/40, A100, H100, etc.).

References
[1] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,

Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

[2] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image trans-
formers. arXiv preprint arXiv:2106.08254, 2021.

[3] Srinadh Bhojanapalli, Chulhee Yun, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar.
Low-rank bottleneck in multi-head attention models. In International conference on machine
learning, pages 864–873. PMLR, 2020.

[4] Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Do-
minik Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion:
Scaling latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

[5] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed
and accuracy of object detection. arXiv preprint arXiv:2004.10934, 2020.

[6] Daniel Bogdoll, Maximilian Nitsche, and J Marius Zöllner. Anomaly detection in autonomous
driving: A survey. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 4488–4499, 2022.

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[8] Alexander Buslaev, Vladimir I Iglovikov, Eugene Khvedchenya, Alex Parinov, Mikhail
Druzhinin, and Alexandr A Kalinin. Albumentations: fast and flexible image augmentations.
Information, 11(2):125, 2020.

[9] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on
computer vision, pages 213–229. Springer, 2020.

[10] Kean Chen, Weiyao Lin, Jianguo Li, John See, Ji Wang, and Junni Zou. Ap-loss for accurate
one-stage object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,
43(11):3782–3798, 2020.

[11] Yuming Chen, Xinbin Yuan, Ruiqi Wu, Jiabao Wang, Qibin Hou, and Ming-Ming Cheng.
Yolo-ms: rethinking multi-scale representation learning for real-time object detection. arXiv
preprint arXiv:2308.05480, 2023.

[12] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking
attention with performers. arXiv preprint arXiv:2009.14794, 2020.

[13] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking
attention with performers. arXiv preprint arXiv:2009.14794, 2020.

10



[14] Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei, Huaxia Xia,
and Chunhua Shen. Twins: Revisiting the design of spatial attention in vision transformers.
Advances in Neural Information Processing Systems, 34:9355–9366, 2021.

[15] Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

[16] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. Advances in Neural Information Processing
Systems, 35:16344–16359, 2022.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 4171–4186,
2019.

[18] Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming Zhang, Nenghai Yu, Lu Yuan, Dong
Chen, and Baining Guo. Cswin transformer: A general vision transformer backbone with
cross-shaped windows. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 12124–12134, 2022.

[19] Douglas Henke Dos Reis, Daniel Welfer, Marco Antonio De Souza Leite Cuadros, and Daniel
Fernando Tello Gamarra. Mobile robot navigation using an object recognition software with
rgbd images and the yolo algorithm. Applied Artificial Intelligence, 33(14):1290–1305, 2019.

[20] Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929, 2020.

[21] Yuxin Fang, Quan Sun, Xinggang Wang, Tiejun Huang, Xinlong Wang, and Yue Cao. Eva-02:
A visual representation for neon genesis. Image and Vision Computing, 149:105171, 2024.

[22] Yuxin Fang, Quan Sun, Xinggang Wang, Tiejun Huang, Xinlong Wang, and Yue Cao. Eva-02:
A visual representation for neon genesis. Image and Vision Computing, 149:105171, 2024.

[23] Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu, Xinggang Wang, Tiejun Huang,
Xinlong Wang, and Yue Cao. Eva: Exploring the limits of masked visual representation
learning at scale. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 19358–19369, 2023.

[24] Chengjian Feng, Yujie Zhong, Yu Gao, Matthew R Scott, and Weilin Huang. Tood: Task-aligned
one-stage object detection. In 2021 IEEE/CVF International Conference on Computer Vision
(ICCV), pages 3490–3499. IEEE Computer Society, 2021.

[25] Zheng Ge, Songtao Liu, Zeming Li, Osamu Yoshie, and Jian Sun. Ota: Optimal transport
assignment for object detection. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 303–312, 2021.

[26] Jocher Glenn. Yolov8. https://github.com/ultralytics/ultralytics/tree/main, 2023.

[27] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 16000–16009, 2022.

[28] Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial attention in
multidimensional transformers. arXiv preprint arXiv:1912.12180, 2019.

[29] Shihua Huang, Zhichao Lu, Xiaodong Cun, Yongjun Yu, Xiao Zhou, and Xi Shen. Deim: Detr
with improved matching for fast convergence. arXiv preprint arXiv:2412.04234, 2024.

[30] Zilong Huang, Xinggang Wang, Lichao Huang, Chang Huang, Yunchao Wei, and Wenyu Liu.
Ccnet: Criss-cross attention for semantic segmentation. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 603–612, 2019.

[31] Glenn Jocher. yolov11. https://github.com/ultralytics, 2024.

11



[32] Glenn Jocher, K Nishimura, T Mineeva, and RJAM Vilariño. yolov5.
https://github.com/ultralytics/yolov5/tree, 2, 2020.

[33] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers
are rnns: Fast autoregressive transformers with linear attention. In International conference on
machine learning, pages 5156–5165. PMLR, 2020.

[34] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers
are rnns: Fast autoregressive transformers with linear attention. In International conference on
machine learning, pages 5156–5165. PMLR, 2020.

[35] Chuyi Li, Lulu Li, Yifei Geng, Hongliang Jiang, Meng Cheng, Bo Zhang, Zaidan Ke, Xiaoming
Xu, and Xiangxiang Chu. Yolov6 v3. 0: A full-scale reloading. arXiv preprint arXiv:2301.05586,
2023.

[36] Feng Li, Hao Zhang, Shilong Liu, Jian Guo, Lionel M Ni, and Lei Zhang. Dn-detr: Accelerate
detr training by introducing query denoising. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 13619–13627, 2022.

[37] Shuai Li, Chenhang He, Ruihuang Li, and Lei Zhang. A dual weighting label assignment
scheme for object detection. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 9387–9396, 2022.

[38] Xiang Li, Wenhai Wang, Lijun Wu, Shuo Chen, Xiaolin Hu, Jun Li, Jinhui Tang, and Jian Yang.
Generalized focal loss: Learning qualified and distributed bounding boxes for dense object
detection. Advances in Neural Information Processing Systems, 33:21002–21012, 2020.

[39] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pages 740–755. Springer, 2014.

[40] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

[41] Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye,
Jianbin Jiao, and Yunfan Liu. Vmamba: Visual state space model. Advances in neural
information processing systems, 37:103031–103063, 2025.

[42] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 10012–10022, 2021.

[43] Wenyu Lv, Yian Zhao, Qinyao Chang, Kui Huang, Guanzhong Wang, and Yi Liu. Rt-detrv2:
Improved baseline with bag-of-freebies for real-time detection transformer. arXiv preprint
arXiv:2407.17140, 2024.

[44] Wenyu Lv, Yian Zhao, Qinyao Chang, Kui Huang, Guanzhong Wang, and Yi Liu. Rt-detrv2:
Improved baseline with bag-of-freebies for real-time detection transformer. arXiv preprint
arXiv:2407.17140, 2024.

[45] Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, and
Jingdong Wang. Conditional detr for fast training convergence. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 3651–3660, 2021.

[46] Kemal Oksuz, Baris Can Cam, Emre Akbas, and Sinan Kalkan. A ranking-based, balanced
loss function unifying classification and localisation in object detection. Advances in Neural
Information Processing Systems, 33:15534–15545, 2020.

[47] Kemal Oksuz, Baris Can Cam, Emre Akbas, and Sinan Kalkan. Rank & sort loss for object
detection and instance segmentation. In Proceedings of the IEEE/CVF international conference
on computer vision, pages 3009–3018, 2021.

12



[48] Haodong Ouyang. Deyo: Detr with yolo for end-to-end object detection. arXiv preprint
arXiv:2402.16370, 2024.

[49] William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 4195–4205, 2023.

[50] Yansong Peng, Hebei Li, Peixi Wu, Yueyi Zhang, Xiaoyan Sun, and Feng Wu. D-fine: redefine
regression task in detrs as fine-grained distribution refinement. arXiv preprint arXiv:2410.13842,
2024.

[51] J Redmon. You only look once: Unified, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016.

[52] Joseph Redmon. Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767,
2018.

[53] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 7263–7271, 2017.

[54] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and Silvio
Savarese. Generalized intersection over union: A metric and a loss for bounding box regression.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
658–666, 2019.

[55] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684–10695, 2022.

[56] Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li. Efficient attention:
Attention with linear complexities. In Proceedings of the IEEE/CVF winter conference on
applications of computer vision, pages 3531–3539, 2021.

[57] Yunjie Tian, Lingxi Xie, Jihao Qiu, Jianbin Jiao, Yaowei Wang, Qi Tian, and Qixiang Ye.
Fast-itpn: Integrally pre-trained transformer pyramid network with token migration. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2024.

[58] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, pages 10347–10357. PMLR, 2021.

[59] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Go-
ing deeper with image transformers. In Proceedings of the IEEE/CVF international conference
on computer vision, pages 32–42, 2021.

[60] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[61] Ao Wang, Hui Chen, Lihao Liu, Kai Chen, Zijia Lin, Jungong Han, and Guiguang Ding.
Yolov10: Real-time end-to-end object detection. arXiv preprint arXiv:2405.14458, 2024.

[62] Chengcheng Wang, Wei He, Ying Nie, Jianyuan Guo, Chuanjian Liu, Yunhe Wang, and Kai
Han. Gold-yolo: Efficient object detector via gather-and-distribute mechanism. Advances in
Neural Information Processing Systems, 36:51094–51112, 2023.

[63] Chengcheng Wang, Wei He, Ying Nie, Jianyuan Guo, Chuanjian Liu, Yunhe Wang, and Kai
Han. Gold-yolo: Efficient object detector via gather-and-distribute mechanism. Advances in
Neural Information Processing Systems, 36, 2024.

[64] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Yolov7: Trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 7464–7475, 2023.

13



[65] Chien-Yao Wang, Hong-Yuan Mark Liao, Yueh-Hua Wu, Ping-Yang Chen, Jun-Wei Hsieh, and
I-Hau Yeh. Cspnet: A new backbone that can enhance learning capability of cnn. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition workshops, pages
390–391, 2020.

[66] Chien-Yao Wang, Hong-Yuan Mark Liao, and I-Hau Yeh. Designing network design strategies
through gradient path analysis. arXiv preprint arXiv:2211.04800, 2022.

[67] Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark Liao. Yolov9: Learning what you want to
learn using programmable gradient information. arXiv preprint arXiv:2402.13616, 2024.

[68] Jianfeng Wang, Lin Song, Zeming Li, Hongbin Sun, Jian Sun, and Nanning Zheng. End-to-end
object detection with fully convolutional network. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 15849–15858, 2021.

[69] Shuo Wang, Chunlong Xia, Feng Lv, and Yifeng Shi. Rt-detrv3: Real-time end-to-end object
detection with hierarchical dense positive supervision. In 2025 IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV), pages 1628–1636. IEEE, 2025.

[70] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

[71] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping
Luo, and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction
without convolutions. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 568–578, 2021.

[72] Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and
Vikas Singh. Nyströmformer: A nyström-based algorithm for approximating self-attention. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 14138–14148,
2021.

[73] Xianzhe Xu, Yiqi Jiang, Weihua Chen, Yilun Huang, Yuan Zhang, and Xiuyu Sun. Damo-yolo:
A report on real-time object detection design. arXiv preprint arXiv:2211.15444, 2022.

[74] Xianzhe Xu, Yiqi Jiang, Weihua Chen, Yilun Huang, Yuan Zhang, and Xiuyu Sun. Damo-yolo:
A report on real-time object detection design. arXiv preprint arXiv:2211.15444, 2022.

[75] Zhiqiang Yang, Qiu Guan, Keer Zhao, Jianmin Yang, Xinli Xu, Haixia Long, and Ying Tang.
Multi-branch auxiliary fusion yolo with re-parameterization heterogeneous convolutional for
accurate object detection. arXiv preprint arXiv:2407.04381, 2024.

[76] Qihang Yu, Yingda Xia, Yutong Bai, Yongyi Lu, Alan L Yuille, and Wei Shen. Glance-and-gaze
vision transformer. Advances in Neural Information Processing Systems, 34:12992–13003,
2021.

[77] Hongyi Zhang. mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412,
2017.

[78] Yian Zhao, Wenyu Lv, Shangliang Xu, Jinman Wei, Guanzhong Wang, Qingqing Dang, Yi Liu,
and Jie Chen. Detrs beat yolos on real-time object detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 16965–16974, 2024.

[79] Zhaohui Zheng, Ping Wang, Wei Liu, Jinze Li, Rongguang Ye, and Dongwei Ren. Distance-iou
loss: Faster and better learning for bounding box regression. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pages 12993–13000, 2020.

[80] Dingfu Zhou, Jin Fang, Xibin Song, Chenye Guan, Junbo Yin, Yuchao Dai, and Ruigang Yang.
Iou loss for 2d/3d object detection. In 2019 international conference on 3D vision (3DV), pages
85–94. IEEE, 2019.

[81] Benjin Zhu, Jianfeng Wang, Zhengkai Jiang, Fuhang Zong, Songtao Liu, Zeming Li, and Jian
Sun. Autoassign: Differentiable label assignment for dense object detection. arXiv preprint
arXiv:2007.03496, 2020.

14



Table 6: Hyperparameters for training the YOLOv12 family on COCO [39].
Hyperparameters N/S/M/L/X-Scale
Training Configuration
Epochs 600
Optimizer SGD
Momentum 0.937
Batch size 32 × 8
Weight decay 5 × 10−4

Warm-up epochs 3
Warm-up momentum 0.8
Warm-up bias learning rate 0.0
Initial learning rate 10−2

Final learning rate 10−4

Learning rate schedule Linear decay

Loss Parameters
Box loss gain 7.5
Class loss gain 0.5
DFL loss gain 1.5

Augmentation Parameters
HSV saturation augmentation 0.7
HSV value augmentation 0.4
HSV hue augmentation 0.015
Translation augmentation 0.1
Scale augmentation 0.5/0.9/0.9/0.9/0.9
Mosaic augmentation 1.0
Mixup augmentation 0.0/0.05/0.15/0.15/0.2
Copy-paste augmentation 0.1/0.15/0.4/0.5/0.6
Close mosaic epochs 10
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Table 7: Detailed performance of YOLOv12 on COCO.
APval

50:95 (%) APval
50 (%) APval

75 (%) APval
small (%) APval

medium (%) APval
large (%)

YOLOv12-N 40.5 56.6 43.7 20.2 45.2 58.2
YOLOv12-S 47.8 64.9 51.5 29.7 53.0 65.3
YOLOv12-M 52.5 69.6 57.0 35.7 58.2 68.9
YOLOv12-L 53.8 71.0 58.6 36.9 59.4 71.0
YOLOv12-X 55.4 72.5 60.3 38.9 60.8 70.9

A More Details

Architecture Details. We present the detailed configuration of the overall YOLOv12 network
architecture in Table 8. For the backbone, we stack only eight blocks. Except for the convolution
layers of downsampling 3 × 3, the remaining components are two A2 blocks configured with 4 and
1 areas, respectively. We apply grouped convolutions to the downsampling layers with IDs 1 and
2 to save computations, using two groups (g = 2) and four groups (g = 4), respectively. For Neck,
we follow the design of YOLOv11, replacing only the first three C3K2 modules with A2 blocks.
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However, we do not enable area attention in these blocks (A2 = False); instead, we retain only the
feature integration design of R-ELAN. The Head design remains unchanged from YOLOv11.

To implement area attention in the A2 block, we use a convolutional layer 1 × 1 with a batch
normalization layer to construct the projections for qk and v. Similarly, we use convolution with Batch
Normalization layers for the output projection and position perceiver, which facilitates optimization.
For the MLP module, we stack two consecutive 1 × 1 convolution layers with a non-linear activation
layer (SiLU function) between them.

Table 8: Network configurations of YOLOv12.
ID Module Route A2 Num.area Dims. Depth Size Stride
BackBone
0 Conv – – – 64 1 3 2
1 Conv 0 – – 128 1 3 2 (g = 2)
2 C3K2 1 - - 256 2 - 1
3 Conv 2 – – 256 1 3 2 (g = 4)
4 C3K2 3 True - 512 2 – –
5 Conv 4 – – 512 1 - 2
6 A2 block 5 True 4 512 4 – –
7 Conv 6 – – 1024 1 3 2
8 A2 block 7 True 1 1024 4 – –
Neck
9 Up 8 – – 1024 1 2 2
10 Concat 9, 6 – – 1024 1 – –
11 A2 block 10 False – 512 2 – –
12 Up 11 – – 512 1 2 2
13 Concat 12, 4 – – 512 1 – –
14 A2 block 13 False – 256 2 – –
15 Conv 14 – – 256 1 3 2
16 Concat 15, 11 – – 256 1 – –
17 A2 block 16 False – 512 2 – –
18 Conv 17 – – 512 1 3 2
19 Concat 18, 8 – – 512 1 – –
20 C3K2 19 – – 1024 2 – –
Head
21 Predict 14, 17, 20 – – – – – –

Training Details. All YOLOv12 models are trained using the default SGD optimizer for 600 epochs.
Following previous works [64, 26, 67, 61], the SGD momentum and weight decay are set to 0.937
and 5 × 10−4, respectively. The initial learning rate is set to 1 × 10−2 and decays linearly to 1 × 10−4

throughout the training process. Data augmentations, including Mosaic [5, 64], Mixup [83], and
copy-paste augmentation [77], are applied to enhance training. Following YOLOv11 [31], we adopt
the Albumentations library [8]. Detailed hyperparameters are presented in Table 6. The N/S/M
models are trained on 4× NVIDIA A6000 GPUs and the L/X models are trained on 8× NVIDIA
A800 GPUs. Following established conventions [26, 67, 61, 31], we report the standard mean average
precision (mAP) on different object scales and IoU thresholds. In addition, we report the average
latency in all images.

Result Details. We report more details of the YOLOv12 results in Table 7 including APval
50:95, APval

50 ,
APval

75 , APval
small, APval

medium, APval
large.

B More Comparisons

Latency Comparison on Various GPUs. Table 9 presents a comparative analysis of inference
speed across different GPUs, evaluating YOLOv9 [67], YOLOv10 [61], YOLOv11 [31], and our
YOLOv12 on RTX 3080, RTX A5000, and RTX A6000 with FP32 and FP16 precision. To ensure
consistency, all results are obtained on the same hardware, and YOLOv9 [67] and YOLOv10 [61]
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Table 9: Comparative analysis of inference speed across different GPUs (RTX 3080, RTX A5000,
and RTX A6000). Inference latency: milliseconds (ms) for FP32 and FP16 precision.

Model Scale FLOPs RTX 3080 A5000 A6000(G)

YOLOv9 [67]

T 8.2 2.4/1.5 2.4/1.5 2.3/1.5
S 26.4 3.7/1.9 3.3/1.9 3.3/1.8
M 76.3 6.3/2.7 5.4/2.4 5.1/2.4
C 102.1 7.4/2.8 6.4/2.6 6.0/2.6
E 189.0 15.5/6.5 14.0/6.1 12.9/5.7

YOLOv10 [61]

N 6.7 1.6/1.0 1.6/1.0 1.6/1.0
S 21.6 2.8/1.3 2.4/1.3 2.4/1.2
M 59.1 5.3/2.4 4.3/2.3 4.2/2.1
B 92.0 6.7/2.8 5.4/2.5 5.1/2.6
X 160.4 10.7/4.5 7.2/3.5 6.8/3.2

YOLOv11 [31]

N 6.5 1.6/0.9 1.6/0.9 1.5/0.9
S 21.5 2.7/1.3 2.3/1.3 2.3/1.3
M 68.0 5.4/2.2 4.4/2.1 4.3/2.0
L 86.9 6.9/2.9 5.7/2.6 5.6/2.5
X 194.9 13.5/4.9 10.4/4.5 8.9/3.9

YOLOv12

N 6.0 1.6/1.0 1.6/1.0 1.6/1.0
S 19.5 2.7/1.3 2.3/1.3 2.3/1.3
M 59.9 5.2/2.1 4.4/2.1 4.3/2.1
L 82.6 6.9/2.9 5.8/2.6 5.7/2.5
X 184.9 13.6/4.9 10.7/4.6 9.5/4.0

Table 10: Comparison of YOLOv12 series with more lightweight or stronger detectors including
DEYO [48], DAMO-YOLO [74], and recent D-FINE [50].

Model #Param. (M) FLOPs (G) APval
50:95 Latency (ms)

DEYO-tiny [48] 4.0 8.0 37.6 2.01
YOLOv12-N (Ours) 2.6 6.0 40.5 1.62
DAMO-YOLO-T [74] 8.5 18.1 42.0 2.21
DAMO-YOLO-S [74] 16.3 37.8 46.0 3.18
DEYO-S [48] 14.0 26.0 45.8 3.34
YOLOv12-S (Ours) 9.1 19.5 47.8 2.44
DAMO-YOLO-M [74] 28.2 61.8 49.2 4.57
DAMO-YOLO-L [74] 42.1 97.3 50.8 6.48
DEYO-M [48] 33.0 78.0 50.7 7.14
YOLOv12-M (Ours) 19.7 59.9 52.5 4.30
YOLOv7 [64] 36.9 104.7 51.2 17.03
D-FINE-L [50] 31 91 54.0 8.07
YOLOv12-L (Ours) 26.6 82.6 53.8 5.89
D-FINE-X [50] 62 202 55.8 12.89
YOLOv12-X (Ours) 59.5 184.9 55.4 10.47

are evaluated using the integrated codebase of Ultralytics [31]. Across all tested models, FP16
inference is significantly faster than FP32, often reducing latency by more than 50%. The inference
speed generally improves as we move from RTX 3080 to A6000. N-Scale: YOLOv12-N achieves
similar latencies (1.6 ms for FP32 and 1.0-1.1 ms for FP16), matching or slightly outperforming
their YOLOv10 and YOLOv11 counterparts. S-Scale: YOLOv12-S maintains lower latency than
YOLOv9-S and YOLOv10-S while achieving superior FLOPs efficiency. M/L-Scale: YOLOv12-M
and YOLOv12-L demonstrate competitive speed, with FP16 latencies close to their counterparts,
while offering improved accuracy. X-Scale: YOLOv12-X achieves 13.6 ms (FP32) and 4.9 ms (FP16)
on RTX 3080, matching YOLOv11-X and YOLOv10-X in efficiency.
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Comparison with Other Detectors. Table 10 presents a comparison with other lightweight and state-
of-the-art real-time object detectors, such as DAMO-YOLO [74], YOLOv7 [64], DEYO [48], and
D-FINE [50]. N-scale: YOLOv12-N achieves 40.5% mAP, surpassing DEYO-tiny while requiring
lower computational cost (6.0G FLOPs vs. 8.0G) and achieving faster inference (1.62ms vs. 2.01ms).
S-scale: YOLOv12-S (9.1M parameters, 19.5G FLOPs) achieves 47.8% mAP, outperforming DAMO-
YOLO-S and DEYO-S with a better balance between accuracy and efficiency. M-scale: YOLOv12-M
(19.7M parameters, 59.9G FLOPs) achieves 52.5% mAP, outperforming DAMO-YOLO-M and
DEYO-M while being more efficient. L-scale: YOLOv12-L achieves 53.8% mAP with 82.6G FLOPs,
surpassing DAMO-YOLO-L and YOLOv7 while maintaining a faster inference speed. X-scale:
YOLOv12-X (59.5M parameters, 184.9G FLOPs) achieves 55.4% mAP, surpassing D-FINE-X while
being more computationally efficient and faster.

C Contributions & Broader Impact

Contributions. This work effectively incorporates attention-centric architectures as the core backbone
of the YOLO system, achieving state-of-the-art performance. To this end, we make three key
contributions:

1. Area Attention Module (A2). We propose a simple yet efficient Area Attention module that
maintains a large receptive field while reducing the computational complexity of attention,
significantly improving inference speed.

2. Residual Efficient Layer Aggregation Networks (R-ELAN). To address optimization
challenges in attention-based models, especially at scale, we design R-ELAN. It builds on
ELAN [64] and introduces: (i) a block-level residual design with scaling techniques and (ii)
an improved feature aggregation strategy.

3. Optimization for YOLO Integration. We refine attention-centric architectures to better
integrate with the YOLO framework. Key modifications include: incorporating FlashAt-
tention to mitigate memory access issue; using a decoupled projection strategy to construct
q, k, and v during attention computation, thus avoiding redundant feature reorganization;
removing positional encoding for a leaner design; reducing the MLP ratio from 4 to 1.5 to
better balance attention and FFN computation; and decreasing the depth of stacked blocks
to facilitate optimization.

Broader Impact. This study breaks the dominance of CNN architectures in YOLO systems by
utilizing the proposed attention mechanism to achieve one of the most advanced YOLO object
detectors. It opens up new follow-up research directions, such as transferring other successful
techniques from attention mechanisms to further enhance this framework, unlocking greater potential.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction provide a comprehensive overview of the
background and motivation of this study, effectively outlining its main contributions point-
by-point, thus accurately reflecting the paper’s scope and significance.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and essential assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
• The claims made should match theoretical and experimental results, and reflect how

much the results can be expected to generalize to other settings.
• It is fine to include aspirational goals as motivation, as long as it is clear that these

goals are not attained by the paper.
2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We primarily focused on discussing the limitations associated with this study
in section 4.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
• The authors should reflect on the scope of the claims made, e.g., if the approach was

only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
• The authors should reflect on the factors that influence the performance of the approach.

For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.
• The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.
• If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.
• While the authors might fear that complete honesty about limitations might be used by

reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The paper includes the full set of assumptions and correct proofs for each
theoretical result, which mainly focuses on the receptive field and the complexity of some
attentions.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.
• Inversely, any informal proof provided in the core of the paper should be complemented

by formal proofs provided in appendix or supplemental material.
• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All information regarding the key contribution of this paper is reproducible
and the code will be open-sourced.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
• While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All code, data, and models are open sources with detailed reproducible
instructions.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
• The instructions should contain the exact command and environment needed to run to

reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
• At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies detailed experimental configurations in Section 3.1 and
more details are provided in Appendix, providing readers with essential information to
comprehend the results. Following established conventions in the field of real-time object
detection, the evaluation protocol encompasses standard practices commonly found in the
relevant literature, ensuring readers can refer to established methodologies.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We did not include an analysis of the statistical significance of the experiments
mainly due to the prohibitively expensive training cost of YOLO models and our limited
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seeds used in our experiments to facilitate the reproducibility of our findings. We would
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the experiment results are likely to remain consistent across different trials. Consequently,
reporting error bars or other information about statistical significance is not a common
practice in studies developing YOLO models.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
• The factors of variability that the error bars are capturing should be clearly stated (for

example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
• The method for calculating the error bars should be explained (closed form formula,

call to a library function, bootstrap, etc.)
• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
• For asymmetric distributions, the authors should be careful not to show in tables or

figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
• If error bars are reported in tables or plots, The authors should explain in the text how

they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The N/S/M scale models are trained on a 4 × A6000 GPU server and L/X
models are trained on a 8 × A800 GPU server.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: After carefully reviewing the referenced document, we certify that the research
conducted in the paper conforms, in every respect, with the NeurIPS Code of Ethics.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper primarily focuses on real-time object detection using publicly
available datasets that have undergone thorough validation without societal impact.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
• The conference expects that many papers will be foundational research and not tied

to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
• The authors should consider possible harms that could arise when the technology is

being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
• If there are negative societal impacts, the authors could also discuss possible mitigation

strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The proposed models are real-time object detection models trained on a
benchmark dataset MSCOCO. This dataset has been extensively used in the computer vision
community and has undergone comprehensive safety risk assessments.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
• Datasets that have been scraped from the Internet could pose safety risks. The authors

should describe how they avoided releasing unsafe images.
• We recognize that providing effective safeguards is challenging, and many papers do

not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
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Justification: In the paper, we specified the datasets and code sources used (e.g., ultralytics),
and provided appropriate citations in the reference section. Additionally, we ensured
transparency by including the sources of any modified code files, making the changes
traceable.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
• For existing datasets that are re-packaged, both the original license and the license of

the derived asset (if it has changed) should be provided.
• If this information is not available online, the authors are encouraged to reach out to

the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have included the code, along with detailed usage instructions, in the
Appendix. After the review process is completed, we will make the code publicly available
to the community.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
• The paper should discuss whether and how consent was obtained from people whose

asset is used.
• At submission time, remember to anonymize your assets (if applicable). You can either

create an anonymized URL or include an anonymized zip file.
14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This study does not involve any crowdsourcing experiments or research with
human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,

or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing experiments or research with human subjects were involved
in this study. All experiments were conducted using code and GPU servers.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
• We recognize that the procedures for this may vary significantly between institutions

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
• For initial submissions, do not include any information that would break anonymity (if

applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: This study focuses on the real-time object detection field and does not involve
any usage of LLMs.
Guidelines:
• The answer NA means that the core method development in this research does not

involve LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)

for what should or should not be described.
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