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On Optimal Lifting to SE(2) in Equivariant Neural Networks

Abstract

Equivariant neural networks, such as PDE-GCNNs, often require data as feature maps over
the group. In this paper, we motivate criteria for the optimal lifting of feature maps over R2

to SE(2). We propose three optimality criteria: fast reconstruction property which ensures
that no information is lost during the lifting, spatial locality and orientation locality. The
locality conditions make sure that information is organized in a meaningful manner in the
lifted space. We formulate corresponding losses which we then numerically minimize, and
find that kernels emerge that closely resemble cake wavelets. The results indicate that the
cake wavelets are near optimal under presented criteria, and as such provide an excellent
starting point for any SE(2) equivariant architecture.
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1. Introduction

Group-convolutional neural networks (Cohen and Welling, 2016) separate lifting, convo-
lutional and projection layers. Group convolutional networks operate over G-features maps
which are signals over a group G, which in this work we take to be the 2D roto-translation
group G = SE(2). Inputs, however, are typically feature maps over R2 (images), and hence
a lifting from R2 to SE(2) is required. While this can be done using a form of group
convolution (lifting convolution), some models such as PDE-G-CNNs (Smets et al., 2023)
benefit from the inputs to be already defined over the group. As proven in (G.Bellaard
et al., 2023b) one does not need to train the lifting layer (as it can be accounted for in
the subsequent convection/convolutions layers on the group). Then not training the lifting
layer improves geometric interpretability of the PDE-G-CNNs (G.Bellaard et al. (2023a))
in terms of neuro-geometrical association fields that are defined on the group. A natural
question then arise of what constitutes an optimal linear lifting of feature maps to the
group.

Inspired by wavelet theory, we propose two major criteria that a lifting operation should
have: reconstructability (invertibility) (Duits et al., 2007; Janssen et al., 2018) and locality
(minimal variance) (Antoine and Murenzi, 1996; Antoine et al., 1999). Reconstructability
ensures that no information is lost from lifting. The notion of locality enables weight-
sharing over localized feature patterns, which is the main factor of success behind the
convolution neural network paradigm (LeCun et al., 1998). Since we lift data from R2 to
SE(2) = R2 ⋊ SO(2), we want make sure that information not only remains localized in
space, but also within the additional rotation axis SO(2). In other words, when a kernel is
specific to a certain orientation, its activation can be attributed to that orientation, thus
disentangling orientation information (Franken and Duits, 2009; Cohen and Welling, 2014).

In this work we define an optimization problem based on the criteria of invertibility and
locality and numerically obtain optimal kernels that can be used in lifting convolutions. We
show that such kernels closely resemble cake wavelets (Duits, 2005; Janssen et al., 2018).
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2. Preliminaries

Much of the success of convolutions/cross-correlations in computer vision is attributed to
their translation equivariance. A spatial cross-correlation is given by

(f ⃝⋆ k)(τ ) :=
∑
x∈Z2

f(x) k(x− τ ) ,

with k is the convolutional kernel, f is the input image, and τ is a coordinate in the feature
map. We note that this operation can also be given in terms of group actions via

(f ⃝⋆ k)(τ ) := ⟨f,Lτk⟩ , (1)

that is, via the inner product ⟨f, k⟩ :=
∑

x∈Z2 f(x)k(x), with · denoting complex conjuga-
tion, and Lτ the left regular representation of the translation group on feature maps, i.e.,
(Lτk)(x) := k(x− τ ). Any equivariant bounded linear operator is of the form of (1), and
can be interpreted as a form of template matching (Bekkers, 2020).

The (regular) group convolution paradigm is implemented by the appropriate inner
product, that is, if f and k are feature maps over the group than integration/summation
takes place over the group (⟨f, k⟩ :=

∑
g∈G f(g)k(g)), and the appropriate left regular

representation Lg. For example, when the feature maps are over R2 and one applies an
SE(2) group convolution, and (Lgk)(x) := k(RT

θ (x−τ )), with g = (τ , θ). Thus, the SE(2)
lifting convolution is given by

(f ⃝⋆G k)(τ , θ) =
∑
x∈Z2

f(x)kθ(x− τ ) , (2)

in which with kθ(x) := k(RT
θ x) we denote the base kernel rotated over an angle θ. We will

limit our discussion to the lifting convolution (Eq. 2) and refer to (Bekkers, 2020) for the
group convolution and projection cases.

We further note that we will use the term orientation and rotation interchangingly, as
SO(2) is homomorphic to the ring of orientations S1 with the group product θ · θ′ = θ+ θ′

mod 2π. We follow the wavelet theoretic framework by Duits et al. (2007) and further
refer to optimally lifted feature fields over SE(2) as functions over position-orientation
space R2×S1 using the term orientation scores. We finally note, that we will discretize the
rotation axis intoN rotations, and as such, are effectively considering the cyclic permutation
group CN instead of the continuous SO(2).

3. Methodology

We derive optimal kernels by parametrizing them through their Fourier spectrum and mini-
mizing three losses corresponding to reconstructibility and locality in space and orientation.

The Fast Reconstruction Property It is important that during lifting no information
is lost. That is, one should be able to reconstruct the original image using the lifted function.
In this work, we aim for the fast reconstruction property Duits et al. (2007); Janssen et al.
(2018), which requires reconstruction by simply summing over the orientation axis. I.e., for
all f we want f(x) =

∑
θ∈S1(f ⃝⋆G k)(x, θ).
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Due to linearity of both the lifting and the fast reconstruction, we obtain a constraint
on the kernel itself. Namely,

f(x) =
∑
θ∈S1

(f ⃝⋆G k)(x, θ) ⇔ f(x) = (f ⃝⋆
∑
θ∈S1

kθ)(x) ⇔ f(x) = (f ⃝⋆ k̃)(x) ,

where we define k̃[x] :=
∑

θ∈S1 kθ[x] as the sum of the rotated kernels. It is then clear

that this equation only holds when k̃ equals the unit impulse (δ-function). Alternatively,
invoking the Fourier Convolution Theorem, the Fourier transform F(k̃) must be 1 within
the bandlimit of f . Thus, the Fourier spectrum of k̃ should match a disk with a radius
given by the Nyquist frequency N , and this gives the key constraint on the kernel∑

θ∈S1

k̂θ(ω) = 1, ∀ω∈R2 ||ω|| < N , (3)

where k̂θ := F(kθ) is the Fourier transform of kθ. We translate this constraint into the loss

Lrecon =
∑

∥ω∥<N

|1−
∑
θ∈Cn

k̂θ(ω)|2 . (4)

The Orientation Localization Property The fast reconstruction property restricts
the wavelet to sum to a δ−function. However, this does not impose a unique solution. The
trivial solution to the fast reconstruction property would be the kernel that is a δ-function
weighted by 1

|Cn| . Since then each rotated kernel is still a δ-function, the lifting merely
creates copies of the input for each θ, and it results into what we call a trivial lifting. In
the trivial solution, the information is maximally entangled, as any oriented information is
spread evenly over the orientation axis and it is a result of lack of orientation sensitivity of
the δ-function. We address this issue by maximizing sensitivity to oriented patterns.

In order to turn the notion of orientation sensitivity into a measurable quantity asso-
ciated with the kernel k, we again fall back to Fourier theory. We now consider ω as a

random variable under a distribution defined by k̂. Namely we define pk̂(ω) := |k̂(ω)|2∫
R2 |k̂(ω)|2dω

and define k̂ directly in Fourier space.
The kernel pk̂ represents the probability density that a frequency in an input signal f

is picked up by the kernel k when performing the convolution. Note that any frequency
ω = (ωx, ωy) is associated with an orientation through θ(ω) = arg(ωx + iωy) ∈ [−π, π).
Then—following the standard definition of variance—the variance of the orientation θ(ω)
associated with a frequency ω is given by the expected squared distance of θ(ω) relative a
mean orientation θ0, namely,

Lθ-variance =

∫
R2

|θ(ω)− θ0|2pk̂(ω)dω . (5)

In summary, a kernel k is maximally sensitive to a specific orientation axis θ0 if its
variance (Eq. 5) is minimized, that is, if it only responds to features close to that reference
orientation θ0. Since in the group convolution (Eq. 2) the rotations shift this specific
orientation θ0 by rotating the kernel by an amount of θ, we conclude that (f ⃝⋆G k)(x, θ) at
each location x indicates the presence of frequency content centered around an orientation of
θ0− θ. Further, note that the trivial solution produces maximum variance as the frequency
distribution associated with the (band-limited) δ-function is the uniform disk.
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Figure 1: Optimization of the kernel in the Fourier domain.

The Spatial localization Property Similar to (5), the spatial localization can be mea-
sured with the variance of the kernel with respect to position, which, assuming x0 = 0, is
given by

∫
R2∥x∥2pk(x)dx. We note, however, that locality of a spatial signal corresponds

to smoothness of its frequency spectrum, and as such, we can equivalently quantify spatial
locality through the Fourier parametrization of k by mimizing the total gradient norm using

Lx-variance =

∫
R2

||∇ωx k̂ (ω) ||2dω ≈
∑
ω∈Z2

||∇ωx k̂ (ω) ||2 . (6)

4. Results and Conclusion

Results The result of minimizing the three losses given in Eqs. 4-6 can be seen in Fig.
1. The orientation and spatial localization losses are respectively balanced by λ1 and λ2
respectively, and we note that the ratio λ1/λ2 balances the two types of locality as by
Heisenberg’s uncertainty principle spatial certainty (locality) induces uncertainty in momen-
tum/frequency and thus in orientation. If the optimization is executed without encouraging
spatial localization, the numerical optimization converges to sharp slices in the Fourier do-
main. This result intuitively makes sense: reconstructibilty requires that all rotated copies
sum to one, and thus frequency content need to be distributed, then the orientation variance
is minimized by centering all mass around a preferred orientation. The result is that the
(band-limited) frequency spectrum (the cake) is sliced into equal pieces.

As the spatial localization weight increases, orientation variance has to increase due to
Heisenberg’s uncertainty principle, and this is recognized as a smoothing of the slices. This
gives them the appearance of cake wavelets as proposed in Duits (2005). The λ2 = 0 case
gives precisely the B0 cake wavelet (see Appendix A). As λ2 ≫ λ1, the kernel approaches
the trivial lifting kernel, i.e. the δ-function.

Conclusion If one wishes to lift signals onto the discrete SE(2) group using a predefined
(non-trainable) kernel, then a kernel that is a slice in the Fourier domain provides the
optimal localization in orientation. If one wants to balance this with spatial localization,
cake wavelets appear to be the near-optimal choice under the fast reconstruction property.
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Appendix A. Cake Wavelets

Cake wavelets, introduced by Duits (2005), provide an efficient method for orientation score
transforms, enabling the separation of position-orientation information in signals. They are
defined by a smoothed slice in the Fourier domain. The slices is constructed with a radial
envelop,

g(ρ) := MN (ρ2/t) = e−ρ2/t
N∑
k=0

(ρ2/t)k

k!
(7)

where ρ represents the radial coordinate, where t > 0 is a scaling parameter, and where
N is the order of the power series, and an angular smoothing is performed using B-spline
interpolation:

Bk(θ) = (Bk−1 ∗ B0)(θ) (8)

where ∗ denotes convolution and k is the order of the B-spline. The Fourier transform of
the cake wavelet is given by:

ψ̂cake(ω) = Bk

(
(ϕ mod 2π)− π/2

sθ

)
(MN (ρ))

1
2 , ω = (ρ cosφ, ρ sinφ). (9)

Here, Bk denotes the B-spline of order k, ϕ is the angular coordinate, sθ represents the
angular scale, and ρ is the radial coordinate. The use of radial B-splines in this formulation
ensures that the sum over rotations satisfies the fast reconstruction property.

Typically, the scaling parameter t > 0 is chosen such that the inflection point of radial
function g (where the second order derivative vanishes) is close to the Nyquist frequency N
due to sampling, i.e. for g′′(γ · N ) = 0 we choose t = 2γ2

1+2N with 0 ≪ γ < 1. In practice
γ = 0.7 is a reasonable choice.

Finally, a radial envelope is applied in the spatial domain:

ψcake(x) = F−1
[
ψ̂cake

]
(x) Gσs(x) (10)

where F−1 represents the inverse Fourier transform and Gσs is a Gaussian with standard
deviation σs. This windowing will kill possibly long tails of the cakewavelet if one has a highy
Nyquist frequency (i.e. many samples) and hardly affect the stability of the orientation score
transform Duits (2005).

However, in this paper, we focus on the Fourier transform of the cake-wavelet ψ̂cake. For
analytic descriptions in the spatial domain one has to work with Zernike polynomials as in
Janssen et al. (2018) but here we only need analytic descriptions in the Fourier domain.
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