
Under review as a conference paper at ICLR 2022

DISTRIBUTION-DRIVEN DISJOINT UNCERTAINTY ES-
TIMATION FOR DEEP LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper redefines prediction intervals (PIs) as the form of a union of disjoint in-
tervals. PIs represent predictive uncertainty in the regression problem. Since pre-
vious PI methods assumed a single continuous PI (one lower and upper bound),
it suffers from performance degradation in the uncertainty estimation when the
conditional density function has multiple modes. This paper demonstrates that
multimodality should be considered in regression uncertainty estimation. To ad-
dress the issue, we propose a novel method that generates a union of disjoint
PIs. Throughout UCI benchmark experiments, our method improves over current
state-of-the-art uncertainty quantification methods, reducing an average PI width
by over 27%. Through qualitative experiments, we visualized that the multi-mode
often exists in real-world datasets and why our method produces high-quality PIs
compared to the previous PI.

1 INTRODUCTION

Deep neural networks (NNs) show remarkable performance in predicting a target for regression
problems. However, the prediction is not enough to make it trustworthy: minimization of objective
functions the NN leads to network outputs which approximate the conditional averages of the target
data with no information about sampling errors and prediction accuracy. Moreover, if the target is
multivalue, NN output can be far from the actual target in the regression problems. Incorporating
the predictive uncertainty into the deterministic approximation generated by NNs improves the re-
liability and credibility of the predictions. This issue is being discussed in various domains such as
autonomous driving (Feng et al., 2018), object detection (He et al., 2019), solar energy forecasting
(Galván et al., 2017), electricity demands and price estimation (Shrivastava & Panigrahi, 2015), and
sensor anomaly detection (Pang et al., 2017).

Prediction interval (PI) represents and quantifies predictive uncertainty in the regression problem.
Pearce et al. (2018); Tagasovska & Lopez-Paz (2019); Salem et al. (2020) have recently provided
competitive performance by generating a PI to estimate predictive uncertainty. PI describes predic-
tive uncertainty for each sample in the form of two values (lower and upper bound) between which a
potential observation falls with a certain probability (e.g., 95% or 99%). PI can provide the amount
of uncertainty for each sample by the width of PI. It also provides the possible range of prediction
by bounds. It is a self-evident principle that high-quality PI should be as narrow as possible while
containing some specified proportion of data points (hereafter referred to as the HQ principle). The
quality of a PI is often evaluated by the metric derived from the HQ principle (Khosravi et al., 2010;
Galván et al., 2017; Pearce et al., 2018; Tagasovska & Lopez-Paz, 2019; Salem et al., 2020).

Previous methods estimate the regression uncertainty with a single continuous PI, but it may suffer
from performance degradation in the regression having multimodality. A toy example in Figure 1 is
a one-dimensional regression example that has two modes. We observe that a single continuous PI
(gray shade) provides unnecessarily large PIs to fill in the gap between the two modes compared to
disjoint PIs (blue shade). This means that a single continuous PI provides low-quality PIs in terms
of the HQ principle. Including intervals that are unlikely to contain future observations makes PIs
less reliable. Note that this issue becomes severe as the distance between modes increases. We qual-
itatively confirmed that multimodality often exists in real-world regression datasets through approx-
imating conditional probability density function. We also confirmed that state-of-the-art methods
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Figure 1: Estimating uncertainty in regression having multimodality. Prediction interval for y with
95% coverage probability is drawn for SQR and DDD (our method). SQR estimates continuous
prediction intervals, while DDD provides disjoint prediction intervals.

generate low-quality PIs on real-world samples with multimodality. This is covered in more detail
in Section 5.4.

Considering multimodality has been successful at handling the underlying stochastic structure in
various fields (Ameijeiras-Alonso et al., 2019; Lerch et al., 2020). Concerning multimodality, var-
ious works such as clustering, multi-object detection (Yoo et al., 2019), missing data reconstruc-
tion (Smieja et al., 2018), multiple-choice learning (Lee et al., 2017), and multi-output prediction
(Guzman-Rivera et al., 2014) have been conducted. However, recent regression uncertainty estima-
tion studies do not consider multimodality in depth.

In this work, we redefine PI as a union of disjoint PIs due to the limitation of a single continuous PI
in multimodality (Section 3). Since prior PI methods and loss functions do not apply to the union of
disjoint PIs, we propose a new differentiable objective function and NN architecture that produce the
union of disjoint PIs (Section 4). Additionally, we use the ensemble method to boost the performance
for both in- and out-of-distribution regions (Section 5.2). As a result, our method improves over
current state-of-the-art methods, reducing an average PI width by 27% throughout eleven real-world
datasets (Section 5.3). In addition, our method can provide the coverage probability of each disjoint
PI (e.g., 20% chance of being between 1 and 3, 75% chance of being between 5 and 9). This means
that our method gives information about how reliable each interval is (Section 5.5).

2 RELATED WORK

There are two approaches for estimating the predictive uncertainty for regression problems:
Bayesian and non-Bayesian. In the Bayesian approach, NN parameters are considered as a dis-
tribution, and the uncertainty is calculated by marginalizing the parameters (Graves, 2011; Blundell
et al., 2015; Hernández-Lobato & Adams, 2015; Gal et al., 2017; Khan et al., 2018; Wu et al.,
2018; Yao et al., 2019; Izmailov et al., 2020). Though theoretically grounded, an approximation is
needed since calculating the posterior distribution of NN parameters is computationally intractable.
It also requires high computational demand in the inference time. The non-Bayesian approach,
on the other hand, defines the output of NN as parameters to describe the predictive uncertainty.
It is usually less computational than the Bayesian approach. However, since the NN parameters
are fixed, non-Bayesian methods have a limitation in expressing the model uncertainty. Therefore,
the deep ensemble with random initialization is additionally used to deal with model uncertainty.
Several papers in the non-Bayesian branch have recently provided competitive performance (Laksh-
minarayanan et al., 2017; Pearce et al., 2018; Tagasovska & Lopez-Paz, 2019; Salem et al., 2020).
Our paper focuses on the Non-Bayesian approach, especially for the regression problem. There-
fore, we would take a closer look at the non-Bayesian methods by dividing them into PI and non-PI
methods.

As PI methods for non-Bayesian methods, Khosravi et al. (2010) propose the Lower Upper Bound
Estimation (LUBE) method that produces PI for the first time. Followed by that, Pearce et al.
(2018) propose a quality-driven (QD) loss function that is compatible with gradient descent opti-
mization. They also propose an ensemble method for PI with multiple predicted lower and upper
bounds to estimate the model uncertainty. Salem et al. (2020) retrofit the QD loss function and pro-
pose a new ensemble method by fitting the split normal mixture distribution (Wallis, 2014) to the
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PI and averaging the distribution, where they name it as SNM-QD+. It increases the robustness of
the training process compared to the QD method. However, SNM-QD+ has difficulties searching
hyperparameters because the loss function contains various hyperparameters to achieve the advan-
tages. Tagasovska & Lopez-Paz (2019) propose the simultaneous quantile regression (SQR) and the
orthonormal certificates (OC) to estimate data noise and model uncertainty, respectively. However,
this strategy generates PI only by the SQR without an ensemble method, and model uncertainty
from OC is not included in the PI. Therefore, the PI of SQR does not consider the model uncer-
tainty. Aforementioned loss functions and methods can only generate a single continuous PI but not
a union of disjoint PIs.

As non-PI methods, Mean-Variance Estimation (MVE) (Nix & Weigend, 1994) uses a NN with two
output nodes that are considered as a mean and a standard deviation of the conditional probability
distribution. Since NN parameters are fixed, it cannot deal with the model uncertainty. Lakshmi-
narayanan et al. (2017) demonstrate the deep ensemble of multiple MVE with random initialization
improves the performance, especially in out-of-distribution regions. (so-called MVEens). Fort et al.
(2019) shows that ensemble with random initialization may sample different modes in function space
and therefore perform well in exploring model uncertainty.

3 UNION OF DISJOINT PREDICTION INTERVALS

3.1 PROBLEM SETUP

Consider a dataset {xi, yi}Ni=1 where xi is an input and yi is a target. For each data point {xi, yi},
the disjoint set of PIs that covers the desired given proportion γ ∈ [0, 1] is defined as follows:

PIi =

J(i)⋃
j=1

[Lij , Uij) (1)

where Pr(yi ∈ PIi) ≥ γ and Lij ≤ Uij < Li(j+1) for all j

Lij and Uij is a lower and upper bound of jth PI related with ith data point. J (i) is the number of
disjoint intervals when PI is expressed with the smallest number of disjoint intervals. That is, J (i) is
unique for a given interval. Note J (i) may have a different value for each data point. The previous
methods assume a single continuous PI that is J (i) = 1 for all i.

3.2 PERFORMANCE METRIC: PICP AND MPIW

To measure the quality of PI methods based on the HQ principle, let Prediction Interval Coverage
Probability (PICP ) and Mean Prediction Interval Width (MPIW ) be defined as,

PICP =
c

N
where c =

N∑
i=1

ci and ci =

{
1, if yi ∈ PIi
0, otherwise

(2)

MPIW =
1

N

N∑
i=1

J(i)∑
j=1

(Uij − Lij) (3)

PICP measures the ratio of the target that is captured within PIs while MPIW measures total
length of PIs over the entire samples. According to the HQ principle, PIs should minimize MPIW
subject to PICP ≥ γ (e.g. γ = 0.95 or 0.99). This metric is widely used to compare performance
of PI-related methods (Khosravi et al., 2010; Pearce et al., 2018; Tagasovska & Lopez-Paz, 2019;
Salem et al., 2020).

4 DISTRIBUTION-DRIVEN-DISJOINT METHOD

We propose a learning-based method that generates distribution-driven disjoint (DDD) PIs, and we
call our method as DDD method. The DDD method produces high-quality PIs without the assump-
tion that J (i) = 1. To generate multiple disjoint PIs with a learning-based method, we need to
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formulate a differentiable loss function that reflects the HQ principle. However, this is a challenging
problem because c from (2) is non-differentiable. Pearce et al. (2018); Salem et al. (2020) proposed
a QD and QD+ loss function in the form of constraint optimization by approximating c in a differ-
entiable way. Tagasovska & Lopez-Paz (2019) employed a pinball loss which reflects HQ principle
and differentiable. However, these loss functions have a limitation in that they work for a single
continuous PI which has J (i) = 1.

To derive a new differentiable loss function (so-called DDD loss) for multiple disjoint intervals, we
first approximate the conditional distribution given input, p̂(yi|xi), with a Gaussian mixture model.
Then, we derive the DDD loss by using the cumulative density function of the Gaussian mixture
(why we call our method distribution-driven disjoint). Our DDD method trains NN by minimizing
the DDD loss.

Another major problem is that the optimal number of disjoint prediction intervals J (i)
opt may differ

for each p̂(yi|xi), making it hard to implement [L̂ij , Ûij)
J(i)

j=1 as an output of NN. To deal with the
problem, after producing K intervals regardless of conditional density, the union process removes
the overlapping part. We propose a novel architecture that can implement this in a differentiable
way. Additionally, we employed a simple ensemble method to improve performance for both in-
and out-of-distribution observations.

4.1 DERIVATION OF THE DDD LOSS

In this section we derive the DDD loss, LDDD, that reflects the HQ principle: PIs should minimize
MPIW subject to PICP ≥ γ. LDDD combine LMPIW and LPICP with a Lagrangian, λ,
controlling the importance of width vs. coverage. Each term is defined as:

LDDD = LMPIW + λLPICP (4)

LPICP = max(0, γ − 1

N

N∑
i=1

ĉi)
2, LMPIW =

1

N

N∑
i=1

J(i)∑
j=1

(Ûij − L̂ij) (5)

where ĉi =
J(i)∑
j=1

(Fi(Ûij)− Fi(L̂ij)). (6)

The coverage probability ĉi is an approximation of ci in Equation (2). The function Fi is a cumu-
lative density function of the distribution p̂(yi|xi). Then, the coverage probability ĉi is calculated
from the cumulative density function Fi. LPICP is defined as the mean square error with the target
proportion γ with the max(0, x) operation. The max(0, x) operation is used to minimize the loss
only when the average coverage probability, 1

N

∑
i ĉi, is lower than the given proportion γ. The loss

function LMPIW is naively derived from the definition of MPIW in equation (3).

For LDDD to be differentiable for L̂ij and Ûij , ĉi must be differentiable for L̂ij and Ûij . Therefore,
Fi should be differentiable. We approximate the p(yi|xi) with the mixture density network with
Expecation-Maxmization algorithm (Greff et al., 2017). This is not a distributional assumption
because any distribution can be approximated by the Gaussian mixture model when the number of
the mixture is sufficient (Bishop, 1994; Sung, 2004). When parameters of the Gaussian mixture
distribution are {µi,σi,πi}, an approximated probability distribution p̂(yi|xi) is defined as

f(xi;µ,σ,π) =

K∑
k=1

πk(xi) N (yi |µk(xi), σ
2
k(xi)), (7)

where K is the number of mixture components. K can be considered large enough if increasing K
does not reduce the negative likelihood loss of the mixture density network. Setting K=5 worked
well for our experiment in section 5. For brevity, we refer to µk(xi) as µik, and same abbreviation
applied to σk and πk.
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Algorithm 1 Pseudocode for the DDD Network
1: Definition
2: µi,σi,πi : Input of NN where size(µi) = size(σi) = size(πi) = K.

The means, standard deviations, and weights of the Gaussian mixture p̂(yi|xi).
3: ε

(−)
i , ε

(+)
i : Output of NN where size(ε(−)

i ) = size(ε(+)
i ) = K, ε(−)

i ≥ 0, ε
(+)
i ≥ 0

4: Train
5: L̂ = µ− ε(−) and Û = µ+ ε(+).
6: L̂ = L̂[argsort(L̂)], Û = Û [argsort(L̂)] . ascending order in k-related dimension
7: for i← 1 · · ·N do
8: for k ← 1 · · ·K do
9: Ûik = L̂ik + ReLU(Ûik − L̂ik)

10: L̂i(k+1) = Ûik + ReLU(L̂i(k+1) − Ûik) if k 6= K
11: end for
12: end for
13: Minimize LDDD = 1

N

∑N
i=1

∑K
j=1(Ûik − L̂ik) + λ max(0, γ − 1

N

∑N
i=1 ĉi)

2

where ĉi =
∑K

j=1(Fi(Ûik)− Fi(L̂ik))

4.2 DDD NETWORK ARCHTECTURE

This section describes a neural network architecture that generates distribution-driven-disjoint PIs
(so-called DDD network) as pseudocode in Algorithm 1. The architecture is classified into four
blocks according to the major objectives and explained in detail. All blocks achieve each objective
in a differentiable form.

Input Generation (line 2) Input of the DDD network is [µi,σi,πi] because µi, σi, and πi are
used to compute the loss function. The input xi is converted into [µi,σi,πi] by the mixture density
network. For this, it is necessary to train the mixture density network before training the DDD net-
work. The Neural Expectation-Maximization algorithm (Greff et al., 2017) is used for the training.

Multiple Interval Generation (line 3-5) This block generates K multiple intervals. The last
nodes of NN are squared to ensure that the outputs of NN ([ε(−)

i , ε
(+)
i ]) are positive. The primary

aspect is that this block restricts each interval to include each peak µik of the Gaussian mixture model
(line 5). This aspect contributes to producing well-calibrated PIs because it is self-evident that well-
calibrated PIs should contain more than one peak. If the output of NN is defined as lower bounds
and upper bounds without the restriction, it is experimentally confirmed that it often converges to
low-quality PI.

Union: overlap prevention (line 6-12) This block implements the union process in a differen-
tiable way using sorting and max(0, x) functions (the sorting process does not interfere with back-
propagation). Through this process, K intervals can be converted to J (i) blocks. As a result, the
DDD method provides the union of disjoint PIs.

Minimize LDDD (line 13). By training the DDD network to minimize LDDD, the union of dis-
joint PIs becomes high-quality. λ is a hyperparameter that determines how much trade-off between
LPICP and LMPIW . If PICP obtained through training is less than γ, increase λ. This increments
PICP , along with MPIW .

4.3 ENSEMBLE METHOD

Optimizing the several NN models with random initialization and then aggregating them is known
to be effective for the uncertainty estimation in the out-of-distribution region (Lakshminarayanan
et al., 2017). Since then, recent studies (Pearce et al., 2018; Salem et al., 2020) have promoted the
ensemble of PIs.

We train M different mixture density newtork models for p̂(yi|xi) with random initialization fol-
lowed by averaging them, fens(xi) = 1

M

∑
m f (m)(xi), where f (m)(·) is the probability density
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function in equation (7). Then, we can acheive cumulative density function of the ensembled model
from F ens(xi) =

1
M

∑
m F (m)(xi). Finally, we train the DDD network proposed in 4.2 to achieve

estimating the predictive uncertainty. When M models are ensembled, not K but KM intervals are
generated in the multiple interval generation block.

5 EXPERIMENT

5.1 IMPLEMENTATION DETAIL

Dataset We use UCI regression benchmarking datasets (Dua & Graff, 2017). While previous
works use nine datasets (Boston, Energy, Kin8nm, Naval, Power, Protein, Wine, and Yacht) for
evaluation, we add two more datasets that are the Parkinson-Telemonitoring and Bike-Sharing. For
each dataset, the experiment is repeated 20 times with different random seeds except for the Protein
dataset, where it is repeated five times. Each dataset is split into train, valid, and test set with the
ratio of 0.81, 0.09, and 0.1, with random shuffling for each experiment. The target y is standardized
to zero mean and unit variance based on the entire data in each dataset. More specifics about data
pre-processing are provided in the Appendix A.

Methods We compare DDD (ours) with MVE (Lakshminarayanan et al., 2017) and QD+ (Salem
et al., 2020) where the ensemble method of each of them are named DDDens, MVEens, and SNM-
QD+, respectively. SQR (Tagasovska & Lopez-Paz, 2019) participates in the comparison without
an ensemble since Tagasovska & Lopez-Paz (2019) did not propose an ensemble method for its PI
generation. Considering QD+ (Salem et al., 2020) is a retrofit version of QD (Pearce et al., 2018),
QD is not included in the comparison. We build the PI of the MVEens method based on its mean
and standard deviation like Pearce et al. (2018) did.

Hyperparameters While a largerK (the number of mixtures) is preferable in theory (Sung, 2004),
it needs more data and increased model complexity in practice. In our method, K = 5 was sufficient
to apply in the UCI datasets. We experimented with the same hyperparameters for all methods as
follows: All neural networks have two hidden layers with 50 units except for the Protein dataset,
where 100 units are used, with each layer having the rectified linear activation function. We set
γ = 0.95 for the ratio of PIs to be covered. The ensemble size is set to M = 5. Adam optimizer
(Kingma & Ba, 2014) is used for the optimization, and we did not use the dropout (Srivastava et al.,
2014) and the weight decay.

For a fair comparison, hyperparameters should be set to derive near-optimal performance for each
method. The grid search is used for the hyperparameter search on the learning rate for MVEens

and the mixture density network of the DDDens method. For the DDDens network, we search only
on the lambda contained in the loss function (the same learning rate was used as the first phase).
However, in the case of SNM-QD+, it is difficult to optimize because the loss function includes
multiple hyper-parameters. Therefore, we take the quantitative results from Salem et al. (2020) for
the nine existing UCI datasets. For the additional two datasets, we run 300 hyperparameter searches
with the code provided by the paper’s authors.

We set λ so that DDDens has PICP similar to other methods. It is easy to compare the performance
between methods from the perspective of the HQ principle if the PICP is similar. This is because
if PICP is similar, onlyMPIW needs to be compared. Note that, as λ increases, PICP and MPIW
increase, and vice versa.

5.2 EFFECT OF THE ENSEMBLE METHOD

Figure 2 presents qualitative results to confirm the effects of ensemble in in-distribution and out-
of-distribution. It describes uncertainty estimation of three single DDD models and the ensemble
of the three. The blue dotted line means the amount of uncertainty (yticklabels on the right side).
Data points are generated through y = ε1(0.02x

3 + 0.02ε2) + (1 − ε1)(x + 0.02ε2) where ε1 ∼
Bernoulli( 12 ) and ε2 ∼ N(0, 32). Training data points are not included in x < −4 and x > 4 to
demonstrate the effect of DDDens at those out-of-distribution regions. The models used in Figure 2
are the result of adjusting the λ value so that PICP for the validation set is 0.95 ± 0.01. Since the
data points are generated to have homoscedastic noise, the amount of uncertainty in in-distribution
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Figure 2: Qualitative comparison of DDD and DDDens. DDD is trained with the training dataset
(red dots). Gray shade and blue shade represent the estimated prediction intervals of DDD and
DDDens, respectively. The Blue dotted line represents the width of prediction intervals for each
input. DDDens shows better calibration in both in-distribution and out-of-distribution.

is almost constant. In out-of-distribution, the amount of uncertainty increase toward both ends. In
other words, the blue dotted line should have a U shape if high-quality. We can observe that the
ensemble method produces more tight PIs for the in-distribution region (compared to the left side of
#1) and quantifies better the uncertainty for the out-of-distribution region (compared to both sides of
#1 and the left side of #2 and #3). Put simply, the ensemble model has a clearer U shape compared
to other single models.

We quantitatively compared DDDens with a single DDD model on the UCI benchmark datasets.
According to the HQ principle, when PICP is greater than or equal to, and MPIW is smaller,
better performance is achieved. For all datasets, we confirmed that DDDens achieves higher PICP
than DDD while having lower to equal MPIW that implies outperformance of DDDens. The
comparison result is presented in appendix B.

Combining all the experimental results, we can conclude that our ensemble method boosts the per-
formance for both in- and out-of-distribution.

5.3 BENCHMARKING EXPERIMENT

Table 1 compares DDDens, MVEens, SNM-QD+ and SQR on the 11 UCI datasets. For each
datasets, we compare DDDens with the best performance method among MVEens, SNM-QD+ and
SQR and measure how much MPIW is reduced. Improvement means how much DDDens reduces
MPIW. DDDens and the best method for each dataset are marked in bold. It is a better method if the
method has a higher or equal PICP and a smaller MPIW . However, if both PICP and MPIW
are higher or smaller at the same time, comparison is not clear. Therefore, we set the criterion that
the best performance method of each dataset is determined to have the smallest MPIW among
those with a PICP of 0.94 or higher.

DDDens has higher or equal PICP and a smallerMPIW compared to the best performance meth-
ods in 10 out of 11 datasets. This confirms that DDDens provides well-calibrated PIs for predictive
uncertainty estimation compared to the state-of-the-art methods. We can observe minor improve-
ments like 1% or 3%, and dramatic improvements like 72% or 93%. It is reasonable to infer that
datasets with significant improvement have multimodality, and those with low improvement have
unimodality. The reason why DDDens shows better performance and multimodality of the datasets
are discussed in Section 5.4 through a qualitative experiment.

5.4 QUALITATIVE EXPERIMENT

We draw p̂(yi|xi) through the mixture density network for the following reasons: 1. to find out
whether the conditional probability density of samples is multimodal. 2. to ascertain the reason for
the outperformance of DDDens. Each plot in Figure 5 is the sample of the Protein, Parkinson, Kin8,
and Energy dataset. The light blue line denotes the approximated the conditional density p̂(yi|xi).
Note that, although approximated by a Gaussian mixture model, p̂(yi|xi) can express a unimodal
distribution (See Kin8 samples and Power-Plant sample #1).

In the Protein and Parkinson samples, we observe that our mixture model describes a multimodal
distribution. DDD provides multiple disjoint prediction intervals covering the target and does not
contain less plausible regions than SQR and MVE. In other words, even with a much shorter PI,
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Table 1: Quantitative comparison among three different methods.

Method bike boston concrete energy kin8 naval

PICP

SQR 0.92±0.01 0.84±0.06 0.88±0.06 0.84±0.04 0.92±0.01 0.95±0.02
MVEens 0.96±0.01 0.95±0.02 0.95±0.03 0.97±0.02 0.98±0.01 1.00±0.01

SNM-QD+ 0.96±0.00 0.95±0.01 0.94±0.01 0.99±0.00 0.97±0.00 1.00±0.00
DDDens 0.96±0.01 0.95±0.03 0.94±0.03 0.98±0.02 0.97±0.01 1.00±0.00

MPIW

SQR 1.38±0.10 0.92±0.26 0.92±0.16 0.11±0.02 0.98±0.05 0.14±0.02
MVEens 1.62±0.07 1.43±0.19 1.08±0.18 0.14±0.01 1.11±0.02 0.09±0.01

SNM-QD+ 1.82±0.1 1.58±0.06 0.99±0.04 0.29±0.01 1.07±0.01 0.09±0.00
DDDens 1.20±0.04 1.21±0.12 0.96±0.07 0.16±0.01 1.03±0.02 0.06±0.01

IMPROVEMENT 26% 15% 3% NA 4% 33%

Method parkinson power protein wine yacht -

PICP

SQR 0.90±0.02 0.94±0.01 0.94±0.00 0.91±0.04 0.82±0.09 -
MVEens 0.99±0.00 0.96±0.01 0.97±0.00 0.95±0.02 0.99±0.02 -

SNM-QD+ 0.97±0.01 0.95±0.00 0.95±0.00 0.94±0.01 0.94±0.01 -
DDDens 0.99±0.01 0.96±0.01 0.95±0.00 0.94±0.02 0.94±0.04 -

MPIW

SQR 1.79±0.13 0.79±0.04 2.25±0.05 2.51±0.51 0.08±0.03 -
MVEens 1.43±0.10 0.84±0.03 2.46±0.07 3.33±0.47 0.15±0.04 -

SNM-QD+ 1.68±0.10 0.80±0.00 2.12±0.01 2.62±0.06 0.12±0.00 -
DDDens 0.40±0.05 0.79±0.02 1.57±0.02 0.18±0.05 0.09±0.01 -

IMPROVEMENT 72% 1% 26% 93% 25% -

Figure 3: Qualitative comparison between DDD, SQR, and MVE. Blue dotted line represents target
value. The solid red lines, blue lines, and black lines are the PIs of DDD, SQR, and MVE repectively.
DDD, SQR, and MVE were configured to have the same PICP for a fair comparision.

DDD can cover future outcomes. This explains the outperformance of DDDens having 26% and
72% improvement. In the Kin8 samples, p̂(yi|xi) is very close to unimodal. In the Power sample
#2, #3, and #4, p̂(yi|xi) are bimodal, but the distance between modes is short so that DDD has a
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union of PIs that looks like a single continuous PI. The length of each PI generated by the three
methods does not differ significantly in Kin8 and Power samples. This explains the reason why
there is a small improvement in Kin8 and Power datasets.

There may be some misspecification because p̂(yi|xi) approximated by the mixture density network
is not ground-truth. Even considering the misspecification, the experimental results are sufficient to
explain that multimodality exists in the real world data and the reason for the outperformance of our
method.

5.5 PIS WITH COVERAGE PROBABILITY

Figure 4: PIs (DDD) with coverage probabil-
ity. Left scale means probability.

This section covers additional advantages of our
method. One advantage of DDD is that it contains
coverage probability for each PI, giving critical in-
formation about how reliable each Pi is. Figure 4
represents the uncertainty estimation in one sam-
ple from the Parkinson dataset. The y-axis of plots
denotes the coverage probability for each PI. Our
method provides three PIs (red line) with close to
0%, 43%, and 54% probability, respectively. We
can neglect the leftmost PI and rely more on the
other two PIs. Another advantage is that we can
presume the number of the mode of each sample.
The information that two distinct PIs are not neg-
ligible implies that the sample has two modes. On
the other hand, the previous single-PI methods do
not provide such information.

6 CONCLUSION

This paper proposes a novel method that generates disjoint PIs and demonstrates the need for disjoint
PIs to estimate the predictive uncertainty of the regression problems. We confirm that the ensem-
ble method improves performance for estimating uncertainty in both in- and out-of distribution.
Through the UCI benchmarking datasets, we have shown quantitatively that the DDD method out-
performs state-of-the-art methods. The DDD method improves over current state-of-the-art meth-
ods, reducing an average PI width by over 27%. Additionally, by approximating the conditional
density function, we showed that multimodality often exists in real-world data, and we qualitatively
explained why DDD generates well-calibrated PIs compared to previous methods. Our method also
provides coverage probability corresponding to each PI that is simple but informative summariza-
tion of the conditional probability of the target. We can conclude that our method can provide
well-calibrated and informative PIs for predictive uncertainty estimation in various fields.
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SUPPLEMENTARY MATERIALS

A DATA PRE-PROCESSING

We use the same dataset and pre-processing implemented in SNM-QD+ Salem et al. (2020) 1. We
add two more datasets that are the Parkinson-Telemonitoring and Bike-Sharing from UCI datasets:

Parkinson Telemonitoring2: "subject id" is excluded
Seoul Bike Sharing Demand 3: "date", "seasons", "holiday", and "functioning day" are excluded.

B QUANTITATIVE COMPARISON BETWEEN DDD AND DDDens

Table 2 compares DDDens with a single DDD model on the UCI benchmark datasets. DDDens has
higher PICP and lower or equal MPIW over DDD throughout all datasets except for the Yacht.
In the Yacht dataset, DDDens has similar MPIW and much higher PICP , so it can be considered
that DDDens is high-quality. This result implies that the ensemble method improves performance in
terms of the HQ principle.

Table 2: Quantitative comparison between DDD and DDDens.

Method bike boston concrete energy kin8 naval

PICP DDD 0.94±0.01 0.92±0.03 0.90±0.05 0,89±0.04 0.94±0.01 0.97±0.00
DDDens 0.96±0.01 0.95±0.03 0.94±0.03 0.98±0.02 0.97±0.01 1.00±0.00

MPIW DDD 1.23±0.07 1.30±0.26 1.00±0.18 0.12±0.02 1.07±0.05 0.06±0.02
DDDens 1.20±0.04 1.21±0.12 0.96±0.07 0.16±0.01 1.03±0.02 0.06±0.01

Method parkinson power protein wine yacht -

PICP DDD 0.95±0.01 0.95±0.01 0.94±0.00 0.94±0.02 0.86±0.07 -
DDDens 0.99±0.01 0.96±0.01 0.95±0.00 0.94±0.02 0.94±0.04 -

MPIW DDD 0.43±0.13 0.80±0.02 1.64±0.04 0.26±0.22 0.08±0.02 -
DDDens 0.40±0.05 0.79±0.02 1.57±0.02 0.18±0.05 0.09±0.01 -

1The code from the author is available at https://github.com/tarik/pi-snm-qde .
2https://archive.ics.uci.edu/ml/datasets/parkinsons+telemonitoring
3https://archive.ics.uci.edu/ml/datasets/Seoul+Bike+Sharing+Demand
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C MORE MULTIMODAL SAMPLES

We draw p̂(yi|xi) through the mixture density network in the same way as Section 5.4. The Bike
Sharing dataset shows clear multimodality and DDD produce high-quality PIs compared to MVE
and SQR. The Wine dataset has a discretized outcome because it is for the regression problem of
guessing the grade of wine. DDD generates very short intervals for each grade position compared
to others. For datasets with discretized outcomes like the Wine samples, it is much more helpful to
obtain the coverage probability for each PI than the total width of PIs (e.g., grade 1 with a probability
of 20%, grade 2 with a probability of 45%, and grade 3 with a probability of 30%).

Figure 5: Qualitative comparison between DDD, SQR, and MVE. Blue dotted line represents target
value. The solid red lines, blue lines, and black lines are the PIs of DDD, SQR, and MVE repectively.
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