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Abstract

Given the growing concerns over data pri-
vacy and security, fine-tuning pre-trained lan-
guage models (PLMs) in federated learning
(FL) has become the standard practice. How-
ever, this process faces two primary challenges.
Firstly, the utilization of large-scale PLMs in-
troduces excessive communication overheads.
Secondly, the data heterogeneity across FL
clients presents a major obstacle in achiev-
ing the desired fine-tuning performance.To ad-
dress these challenges, we present a parameter-
efficient fine-tuning (PEFT) method with
Model-Contrastive Personalization (FedMCP).
This approach introduces two adapter modules
to the frozen PLM and only aggregates the
global adapter in the federated aggregate phase
while the private adapter stays in clients. The
model-contrastive regularization term and ag-
gregation strategy encourage the global adapter
to learn universal knowledge from all clients
and the private adapter to capture idiosyncratic
knowledge for each individual client. Veri-
fied across a highly heterogeneous cross-silo
dataset, the empirical evaluation shows consid-
erable performance improvement achieved by
FedMCP over state-of-the-art approaches.

1 Introduction

Pre-trained language models (PLMs) have gained
considerable significance across a wide range of
natural language processing (NLP) tasks. Typically,
fine-tuning PLMs on specific datasets is essential to
ensure optimal performance for downstream tasks
in the real world. However, these datasets are often
scattered across different entities (Qu et al., 2021).
Due to the increasing privacy concerns and regula-
tory laws, these entities are unwilling to share their
private datasets for fine-tuning PLMs. For instance,
Rieke et al. showed that data silos are prevalent,
particularly in the healthcare domain, where pa-
tient information is critical for training diagnostic
or treatment recommendation models but is often
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Figure 1: The conceptual illustration of FedAvg (the left
hand) and FedMCP (the right hand). A and B refer to the
adapter and the backbone respectively. The snowflake
icon indicates that the backbone is frozen, while the
other modules are trainable.

isolated within healthcare institutions (Rieke et al.,
2020). To address the above problem, federated
learning (FL) (Kone¢ny et al., 2016; McMahan
et al., 2017) has emerged as a promising solution
by allowing multiple clients to collaboratively train
PLM:s without the need to expose their local private
datasets (Lin et al., 2021).

One of the issues of FL is the limited commu-
nication bandwidth and client-side computing re-
sources. The practice of FL involves regular model
exchanges between the server and clients during
training, which leads to high communication over-
heads. Furthermore, given the limited computing
resources on the client side, fine-tuning the entire
PLMSs can be impractical (Zhang et al., 2023). This
poses a barrier to the deployment of large-scale
models like BERT (Devlin et al., 2018), GPT-2
(Radford et al., 2019a) and T5 (Raffel et al., 2020)
in FL settings (Wu et al., 2022). We address this
issue by applying parameter efficiency approach to
FL.

Another issue is that the global model suffers
from data heterogeneity. In FL, a globally shared
model is trained over decentralized data, e.g., often
through methods such as FedAvg. However, due



to the inherent diversity of clients (Huang et al.,
2021a), known as the non-IID (non-identically dis-
tributed) problem, the global model may not be
optimal for each client. The common strategy for
mitigating the non-IID problem is model person-
alization (Tan et al., 2022), which refers to the
process of tailoring the local model based on the
global model to fit the specific needs and character-
istics of individual clients.

Existing works on personalization primarily fo-
cus on addressing the non-IID scenario, character-
ized by varying label distributions among clients.
In parallel, the heterogeneity of data across differ-
ent clients presents another significant challenge
(Ye et al., 2023). For instance, different organiza-
tions hold textual data in various areas like question
answering, personal blogs, and emails, resulting
in a distinct focus of their data on different tasks,
thereby introducing data heterogeneity.

To address the challenges of limited com-
munication bandwidth and the data heterogene-
ity of FL, we propose a novel personalized FL
method with Model-Contrastive Personalization
(FedMCP), aiming to effectively fine-tune PLMs
and mitigate the data heterogeneity across NLU
tasks under the cross-silo FL setting. Personalized
federated learning primarily adopts two strategies:
(1) training a global model and then personalizing
it by local adaptation steps; (2) customizing a per-
sonalized model for each client by modifying the
global model aggregation process (Tan et al., 2022).
Our method leverages the global model to learn uni-
versal knowledge, while also retaining parts of the
local model to achieve personalization.

In this paper, we apply two adapter modules
(Houlsby et al., 2019) to the backbone PLM (re-
ferred to as the backbone) for personalization, a
global adapter for aggregation, facilitating the col-
laboration and knowledge sharing among clients,
and a private adapter designed to be retained lo-
cally on each client, enabling the learning of client-
specific knowledge. Here, we propose a novel
model-contrastive personalization loss that is tai-
lored to the FL parameter-efficient fine-tuning
(PEFT) method. The loss leverages Centered Ker-
nel Alignment (CKA) to quantify similarities be-
tween models. By minimizing the distance be-
tween the client’s global adapter and the aver-
age global adapter, and maximizing the distance
between the client’s global adapter and private
adapter, the model’s ability to achieve a balance be-
tween generalization and personalization. Through

this contrastive loss, we can differentiate the roles
of the two adapters to make the global adapter learn
global knowledge that benefits all clients, and the
private adapter captures the unique knowledge of
each client. Figure 1 shows the conceptual illus-
tration of the widely adopted FedAvg and our pro-
posed FedMCP.

We utilized six datasets from the GLUE bench-
mark (Radford et al., 2019b) to simulate NLU
cross-silo scenarios. The empirical results demon-
strate that our proposed FedMCP outperforms the
existing state-of-the-art personalized FL. methods
with the same settings (with the backbone frozen).
Moreover, FedMCP in PEFT achieves comparable
results to full fine-tuning with reduced communica-
tion costs. Our contributions are three-folded:

* We propose FedMCP, a novel parameter-
efficient personalized FL. method that miti-
gates the data heterogeneity across NLU tasks
in PLMs fine-tuning.

* We compose a dataset of cross-silo FL in NLU
to evaluate model performance across differ-
ent tasks.

* We conducted extensive experiments on the
composed dataset and demonstrated that
FedMCP outperforms the current state-of-the-
art baselines for PEFT in FL.

2 Preliminary

2.1 FL for Text Classification Task

In this paper, our focus is on text classification
tasks, following previous studies (Xu et al., 2023,
Luo et al., 2021), where the model can typically
be decomposed into an encoder and a task-specific
classifier. Consider a supervised setting in which
the ¢-th client is equipped with data distribution
P)i(y on X x ). Given a sample (x,y), the feature
extractor fy : X — Z (parameterized by #) maps
the input z to a feature vector z = fy(z) € R? in
the feature space Z. Subsequently, the classifier
g+ X = Y (parameterized by ¢) maps the feature
z to predict the label g4(2) € ). The parameters
of the classification model are represented by w =
(6,9).

In the FL round ¢, the server broadcasts the cur-
rent model parameters w1 to all clients. Each
client then locally optimizes the following objec-
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Figure 2: Overview of the proposed parameter-effecient FedMCP method. (a) Clients upload the global adapter to
the Server and keep the private adapter locally. The model-contrasive loss is calculated using the average global
adapter, the local global adapter, and the local private adapter. (b) Overview of the model structure, three losses are
generated during training to achieve personalization. (c) The organizational structure of the two adapters within the

backbone.
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where L is the loss function.

2.2 Adapter

The adapter enhances existing pre-trained mod-
els by introducing additional parameters (Houlsby
et al., 2019). These parameters are added after the
attention and feed-forward-network layers of the
Transformer, organized in the form of a fully con-
nected network. This structure allows the adapter
to demonstrate remarkable parameter efficiency,
and often achieving performance comparable to
Full fine-tuning by updating only a small portion
of parameters during fine-tuning.

For a given input s, the down-projection layer
Waown of the adapter layer projects s to a low-
dimensional space of dimension . Subsequently, a
non-linear activation function g(-), such as ReLU,
is applied. The vector is then mapped back to
the hidden layer size of dimension A through an
up-projection, and the computation process of the
adapter can be represented as follows:

S < s+ g(SWdown)Wup (2)

We incorporate adapters into the model, employing
specific learning strategies to enable them to learn
client-specific knowledge from each client.

3 Method

In this section, we elaborate on the proposed
method FedMCP. By integrating a global adapter
for aggregation and a local private adapter,
FedMCP enables each client to learn both uni-
versal knowledge and unique local knowledge to
each client. During the training process, a model-
contrastive method is used to decrease the distance
between the client’s global adapter and the aver-
age global adapter, while increasing the distance
between the client’s global adapter and its private
adapter. This approach not only minimizes model
drift between the client and the global model but
also enhances the private adapter’s ability to ac-
quire client-specific knowledge, achieving person-
alization for client models.

3.1 Model Architecture

As shown in the right part of Figure 2(b)(c), the full
model consists of a backbone and two additional
adapter modules added to the backbone.

For a given input, the model has two forward
propagations: one through the full model with two
adapters (the red line), and the other through the
backbone without the private adapter (the

). We denote the full model as f;, and the
backbone with global adapter as fs, they gener-
ate representations z; = fi(x) and z9 = fa(x)
respectively. After encoding, the sequence repre-
sentations are input into MLP classifiers g; and g
to obtain classification results.



Figure 2(c) illustrates that the two adapters are
inserted at the same position to the backbone, tak-
ing the output from the previous layer and feeding it
into the two adapters. The outputs of these adapters
are then averaged and used as the input for the next
layer.

3.2 Contrastive Personalization

The client-side loss function during training com-
prises three components: the cross-entropy loss of
the full model, the cross-entropy loss of the back-
bone with the global adapter and the contrastive
loss between two adapters.

Notably, we introduce the two additional losses
mentioned above with the following key considera-
tions:

¢ Distinguishing Local and Global Knowl-
edge: We aim for the client-side model to ef-
fectively distinguish local specific knowledge
and shared knowledge. This distinction pri-
marily stems from the private adapter’s adapt-
ability to local knowledge.

* Enhancing the Representation Power of the
Shared Global Adapter: We seek to improve
the learning ability of the shared adapter. It is
desirable that the sole global adapter can learn
generic knowledge that benefits every client.

The interplay of these three losses facilitates the
local model in capturing both client-specific knowl-
edge and global knowledge shared across clients.

3.2.1 Model-Contrastive Method

Initially introduced by Li et al., 2021a, the MOON
method focuses on model-level contrast to reduce
the differences between local and global models in
FL, aiming to mitigate model drift in non-1ID data
scenarios. However, this approach trains a single
averaged global model, which lacks personalization
and impairs the performance of the global model
on individual clients at heterogeneous local data
distributions.

For personalization within the PEFT frame-
work, beyond the global module’s aggregation,
client-specific customization is also essential. So
FedMCP aims to decrease the distance between the
representation learned by the local global adapter
and the average global adapter, and increase the
distance between the representation learned by the
local global adapter and the local private adapter.
Figure 2(a) describes the model-contrastive pro-
cess.

The distance can be measured by various similar-
ity metrics. Building upon the research conducted
by Kornblith et al., 2019, we employ Central Kernel
Alignment (CKA) to quantify the distance between
the output representations of the average global
adapter, the local global adapter and the private
adapter. CKA assigns a similarity value to feature
structure by comparing the representations trained
on different model architectures. Its score is higher
and more consistent than other similarity metrics
like cosine similarity (Kornblith et al., 2019; Jung
etal., 2023). We examine the effectiveness of using
CKA as a similarity metric in ablation experiments.

We denote d as the sentence length, h as the
model’s hidden layer size, and n as the batch size.
For an input z, the encoder produces an output
z € R"*9xh By taking the average pooling of all
tokens from the encoder’s last layer as the vector
representation of the sequence, the local global
adapter, local private adapter and shared average
global adapter generate three matrices X € R"*",
Y € R™"and Z € R™*",

The CKA similarity metric takes values within
the range [0, 1], where O indicates dissimilarity, and
1 indicates complete similarity. The CKA distance
between the two models is represented as:

HSIC(K, L)

C’KA(X,Y): \/HS[C(K,K)HSIC(L’L)

3)

HSIC(K,L) = tr(KCLC) “)

N —12

where K = XXT, L =YY" and HSIC(-,") is
the HilbertSchmidt Independence Criterion (HSIC)
values, ¢r is a trace in a matrix, C'is a centering ma-
trix C, = I,,—1J, (Jung et al., 2023). Throughout
the training process, we aim to increase the distance
between the clients’ global adapter and clients’ pri-
vate adapter, and decrease the distance between the
average global adapter and clients’ global adapter.
Therefore, we aim to reduce the CKA value of the
former and increase the CKA value of the latter.
The contrastive loss during training is expressed
as:

L.=CKA(X,Y)—CKAY,Z) (5

3.2.2 Learning Effective Global Adapter

While the contrastive loss in the previous section
aims to balance the model’s abilities between gener-
alization and personalization, we introduce a cross-
entropy loss based on the global adapter. This



serves as a regularization mechanism and enables
the global adapter to improve its learning of gener-
alizable knowledge from local data.

The definition of the backbone with the global
adapter’s cross-entropy loss is:

Ly((05, 92); (z,y)) = L((f20 g2)(x);y)  (6)

Where / is the cross-entropy loss. The backbone
with two adapter’s parameters are represented as 0,
and the backbone with global adapter’s parameters
0y are a subset of ,, can be expressed as 0, C 0,;
¢1 and ¢2 denote the classifiers’ parameters for
the full model and backbone with global adapter
respectively.

3.3 Local Training and Global Aggregation

The process of client local training and server
global aggregation is summarized in Algorithm
1.

Overall Objective. Defining the cross-entropy
loss of the local full model with the two adapters
as L., which is formulated as:

La((0%,01); (z,y)) = L((frog)(x)iy) (D)

The overall objective for client ¢-th client during
the ¢-th round of FL is expressed as:

L=1-7)Ly+vLy+ pLe. ®)

The parameters of the client include the full
model parameter 6, and two classifiers parameters
¢1, ¢2. The parameters of the backbone remain
fixed throughout the training period. In the ¢-th
round, all parameters update as follows:

(9a7¢1,¢2) — (9a7¢17¢2) —77V£((9a7¢17¢2)) (9)

Global Aggregation In the aggregation phase,
each client sends the global adapter’s parameter to
the server only to update the global adapter.

4 Experiment

In this section, we conduct extensive experiments
to examine the performance of FedMCP.

4.1 Cross-silo Data Construction

Similar to FedPETuning, we select six datasets
from the GLUE benchmark (Radford et al., 2019b),
namely RTE, MRPC, SST-2, QNLI, QQP and
MNLI. These NLU datasets are widely used in

Algorithm 1 FedMCP

Input: 7T is the communication round; FE is the
number of local epochs; 7 is the learning rate
Server executes:

1: Initialize prototype sets {Cp}7" ;.
2: for eachround ¢ = 1to 7 do

3: for cach client 7 in parallel do
4 LocalUpdate(i, Wit Wit
5: end for
6: Recieve local update parameters W;;l
T W = Wy
8: end for
LocalUpdate:(i, W, W, ):

1: for each local epoch do

2 Compute £ by Eq. (8).

3: Update Wég, Wép by Eq. (9).
4: end for

5: Send Wi to the server

evaluating the performance of natural language pro-
cessing models. Our selection covers tasks like
classification (e.g., sentiment classification in SST-
2), sentence similarity judgment (MRPC, QQP),
and semantic inference tasks (QNLI, MNLI).

Our research marks the first attempt to estab-
lish a federated cross-silo setting across different
natural language understanding tasks. Unlike previ-
ous studies, we adopt a cross-silo division, treating
each of the six datasets as an independent client and
ensuring the privacy of each client’s data during
training.

Data Size Balancing. There are significant size
differences among these six datasets, with the
smallest RTE having less than 3,000 entries and
the largest MNLI having over 400,000. To avoid
the large datasets dominating the process of model
training, for datasets larger than MRPC, we resized
them to match MRPC'’s scale by random sampling.

Partitioning. As GLUE does not release test sets,
we merge the existing training and validation sets,
partitioning each client into training, validation,
and test sets in a 6:2:2 ratio. This dataset will be
made available to encourage research in cross-silo
cross-task federated NLU.

4.2 Baselines

In the PEFT scenario, all baseline methods only
fine-tune the added adapter modules. The model
architecture across all methods remains consistent



Methods | MRPC RTE SST-2 QNLI QQP MNLI Avg. | Para.(%) Com.(%)
Full FT FedAvg \ 84.79+120 77.46%150 92.64+050  88.4+057  82.17+123 7394113 83.24+022 \ 100% 100%
local 87.42+029 77.46%083 93.63+1.77 87.09+158 82.51+150 73.37+028  83.58+0.22 - -
FedAvg 87.09+247  78.66+181 93.30+057 84.64+198 83.66+141 7435158  83.62+034 0.58% 0.58%
FedLR 85.13+1.02  74.58+468 92.49+102 88.40+124 80.55+368 72.39+198  82.26+0.95 0.29% 0.29%
FedAP 86.60+270  77.70%125 93.47+123 85.62+123  81.37+177  73.53%214  83.05%0.39 0.29% 0.29%
MOON 86.60+075  78.90%083  92.65+177 85.62+075 81.53+123 73.20%102  83.08%0.86 1.16% 1.16%
FedRep 85.78+049  79.14%190 92.65+085 84.96+232 81.37+214 75.82+198 83.29+1.11 1.16% 1.16%
FedMatch 87.09+084  76.02+081  93.79+173 86.11x126 83.33%082  75.33+125 83.61*071 1.16% 1.16%
FedMCP (ours) | 87.69+0s3 80.58+165 93.52+068 86.54+1.16 83.77+217 76.52+198 84.77+0.60 1.16% 0.58%

Table 1: The performance of FedMCP and baselines on corss-silo datasets under PEFT settings. The average and
standard deviation of accuracy(%) are computed over three times. Bold and underline indicate best and second-best
results, respectively. The Para. denotes the percentage of trainable parameters relative to Full FT. The Com. denotes
the percentage of communication overhead relative to Full FT.

with FedMCP. We compare FedMCP with the fol-
lowing baselines:

(1) Local-only, each client training locally with-
out exchanging gradients with the server; (2) Fe-
dAvg (McMahan et al., 2017), all clients train a sin-
gle global model by averaging the gradients from
all clients in each round; (3) Full Fine-Tuning
(Full FT) FedAvg, all clients train a single global
model and the whole model parameters are updated
and aggregated. (4) Representative PEFT methods,
including Adapter (Houlsby et al., 2019) (FedAP)
and LoRA (Hu et al., 2021) (FedLR). (5) MOON
(Li et al., 2021a), a method that learns a global
model, adopts the contrastive loss to minimize the
distance between the representations learned by the
local models and the global model. (6) Personal-
ized FL methods, including FedRep (Collins et al.,
2021) and FedMatch (Chen et al., 2021). FedRep
achieves personalization by training the classifier
multiple times before updating the local model. In
FedMatch, the authors proposed four methods of
adding private patches, we adopted the Houlsby
Adapter, which is the most effective patch insertion
method on our dataset.

4.3 Experiments Setup

Hyperparameter Settings. We search learning
rates from {1e-3, 5e-4, le-4, 5e-5} and eventually
set it Se-4. For the backbone loss and contrastive
loss, we adjusted coefficients v and u, the opti-
mal hyperparameters were determined to be 0.5
and 0.05, and we report results with these best-
performing parameters.

Other Implementation Details. The experi-
ments use ROBERTa-Base as the model backbone

provided by Huggingface', this choice was inspired
by the research of Zhang et al., 2023, our code is
based on the FedAvg implementation? of FedLab
(Zeng et al., 2023). To accommodate different task
characteristics, we opted not to share classifier pa-
rameters across tasks (Collins et al., 2021). All six
clients participate in training during 25 communi-
cation rounds and each client trains one epoch per
round. Furthermore, the bottleneck size of adapters
was set to 16. All experiments were conducted on
a Tesla V100 GPU with 32G memory, using Adam
as the optimizer and a batch size of 64.

4.4 Results

Table 1 reports the performance of different
methods under the federated cross-silo settings.
FedMCP attains the highest average accuracy
across clients and achieves the best or nearly the
best accuracy on each client.

Performance Comparison. Initially, FedAvg
outperforms both FedAP and FedLR due to an
increase in trainable parameters. Moreover, com-
pared to local training, FL algorithms without per-
sonalized adaptation show inferior performance
in cross-silo scenarios, suggesting that personal-
ized algorithms can mitigate the issues of data het-
erogeneity in FL, and help clients learn models
more appropriate for themselves. Furthermore, our
framework is the best among all FL approaches,
which indicates that FedMCP can adapt to the dif-
ferences between various tasks and text corpus do-
mains in FL, exploiting global and private knowl-
edge to effectively personalize for each client. It
is also observed that FedMCP surpasses the perfor-

"https://github.com/huggingface/transformers
Zhttps://github.com/SMILELab-FL/FedPETuning



similarity metric ‘ MRPC RTE SST-2 QNLI QQP MNLI Avg.
Cosine 86.11+057 79.42+116  93.3+1.13 86.27+129  82.35+049  75.65%+1.13  83.85%0.14
CKA 87.69+033 80.58+165 93.52+0068 86.54+1.16 83.77+217 T76.52+198 84.77+0.60

Table 2: Ablation study for using cosine and CKA as similarity metrics. The average and standard deviation of

accuracy(%) are computed over three times.

mance of complete FL fine-tuning while only fine-
tuning 0.58% of the parameters. The performance
of other methods is not significantly different from
federated global fine-tuning, indicating that model
generalizability is constrained by data heterogene-
ity in cross-silo scenarios, and FedMCP plays a
positive role in overcoming these limitations.

Efficiency Comparison. Except for FedAP and
FedLR, all methods have identical model structures
with FedMCP. However, during the federated com-
munication rounds, FedMCP only exchanges to
a single adapter module between the clients and
the server. FedMCP achieves optimal performance
with enhanced communication efficiency compared
to other methods.

4.5 Ablation Studies

There are two key components in FedMCP, i.e.,
backbone loss (BL) and contrastive loss (CL). The
BL helps to learn effective and independent global
adapter, and the CL makes the local adapter to learn
local private knowledge. Here we provide further
discussions to get a better understanding of each
module from the loss function’s components and
the similarity metric of CL.

Loss Function. The loss function is defined in
Eq. (8). Table 3 illustrates the mean and vari-
ance of test accuracies for the six clients. From
these results, we can observe that the overall perfor-
mance of "w/o BL" and "w/o CL" drops 0.64% and
1.27% compared to FedMCP, respectively, which
confirms their contributions to the proposed frame-
work.

CL plays a critical role in enhancing model per-
formance, demonstrating that the incorporation of
a model contrastive loss enables better differentia-
tion between global and local knowledge when one
adapter is aggregated and another remains local for
personalized learning. Additionally, the introduc-
tion of BL improves the global adapter’s ability to
encode global knowledge, facilitating the transfer
of useful knowledge among clients.

Methods | Avg. SD
w/oCL | 83.57 0.68
w/oBL | 84.13 0.73

FedMCP | 84.77 0.60

Table 3: Ablation study for loss function. BL and Cl
represent the backbone loss and contrastive loss, respec-
tively. The average and standard deviation (SD) are
calculated from the individual means and standard devi-
ations of six clients across three experiments.

Similarity Metric. We compare the performance
of CKA and cosine similarity to measure the quality
of similarity metrics in FedMCP. Table 2 presents
the results of two similarity metrics. The model
performance decreases when using cosine for simi-
larity measurement, indicating that model perfor-
mance is compromised when the similarity be-
tween FedMCP models is not accurately measured.
This further suggests that CKA is more effective
at delivering a precise analysis of model similar-
ity. A possible reason is that CKA can convey the
connectivity of richer information representations
more effectively than cosine similarity by assigning
similarity values to feature structures.

5 Related Work

5.1 Personalized Federated Learning

The seminal training schema in FL is FedAvg
(McMahan et al., 2017), which averagely aggre-
gates local models into the global model. However,
in non-IID settings, it is observed that FedAvg en-
counters difficulties with unstable and sluggish con-
vergence, thereby causing performance degrada-
tion. To this end, various personalized techniques
have been developed to mitigate the non-1ID prob-
lem.

FedDF and FedMD (Sattler et al., 2020; Li and
Wang, 2019) use knowledge distillation to train
personalized models. Ditto and pFedMe (Li et al.,
2021b; T Dinh et al., 2020) regularize local mod-
els based on the differences between global and



local models to prevent client overfitting to local
data. Another strategy involves collaboratively
training personalized models for each client, like
MOCHA, FedAMP, and FedFomo,(Huang et al.,
2021b; Zhang et al., 2020; Smith et al., 2017) In
FedATC, clients with different tasks participate in
FL, exchanging useful information learned from
local data through comparison with a common syn-
thetic dataset sampled from clients(Dong et al.,
2022) While this method enables personalization,
employing synthetic datasets for comparison may
raise privacy concerns.

Decomposing the entire network is also a com-
mon approach in personalized FL, reserving per-
sonalized layers for clients. FedPER (Arivazha-
gan et al., 2019) divides the model into shared
base layers and personalized layers, demonstrating
that models customized with individual classifiers
for each client can effectively mitigate the impact
of heterogeneity. CCVR (Luo et al., 2021) notes
that the classifier has a greater bias than other lay-
ers, it uses sample virtual features to calibrate the
classifier and enhance global model performance.
FedETF (Li et al., 2023) also fixes classifier shift,
which employs a synthetic simplex equiangular
tight frame as a classifier. Other studies, like Fed-
BABU and FedRep, also adopt the strategy of di-
viding the network into a head (classifier) and body
(extractor)(Oh et al., 2021; Collins et al., 2021).
However, many methods like CCVR and FedETF,
based on correcting label class drift among clients,
are not applicable in cross-silo federated NLP sce-
narios. Our proposed FedMCP alleviates the is-
sue of data heterogeneity in cross-silo scenarios
through a contrastive approach to personalization.

5.2 Federated Learning for NLP

FL has emerged as a dominant paradigm in privacy-
preserving fields, where many NLP tasks utilize
the FL framework to coordinate training models.
Such as news recommendation (Yi et al., 2021),
question answering (Chen et al., 2021; Dong et al.,
2022), and text summarization (Pan et al., 2023).
Pre-trained foundation models effectively capture
knowledge for downstream tasks, but exchanging
the full gradients of PLMs frequently in FL con-
sumes substantial resources.

Hence, it is imperative to explore suitable FL
methods supported by PLMs under resource con-
straints like communication and parameter adapt-
ability. FedPETuning (Zhang et al., 2023) has con-
ducted a comprehensive investigation into the FL.

performance of the representative PEFT method
for PLMs. Fed-MNMT (Liu et al., 2023) fine-tunes
PLMs with adapters for the federated multilingual
neural machine translation problem, which allevi-
ates the undesirable effect of data discrepancy by
exploring adapter and clustering strategies. Pass-
ban et al., 2022 also focuses on neural machine
translation in FL setting, proposing an effective
technique to reduce the communication bandwidth
by transferring half of the active tensors and ig-
noring the rest. C2A (Kim et al., 2023) notes the
presence of client drift in typical PEFT approaches
in FL scenarios, leading to slow convergence and
performance degradation, and proposes using hy-
pernetworks to generate client-customized adapters.
However, since the client information in C2A in-
cludes label embeddings, C2A cannot be applied
in cross-silo scenarios where clients have different
tasks.

6 Conclusion

In this paper, we introduce a novel framework for
PEFT methods of PLMs in the FL setting. We
propose FedMCP to mitigate the non-IID problem
in cross-silo scenario, which personalizes models
by contrasting representations encoded by clients’
global adapter and private adapter with backbone
frozen. The model-contrastive method and aggre-
gation strategy encourage the global adapter to
learn universal knowledge and mitigate model drift
across clients, and the private adapter to capture
unique knowledge for achieving model personaliza-
tion. Our experimental results show that FedMCP
surpasses other baseline methods including the full
fine-tuning method.

7 Limitation

While we show that FedMCP has performance im-
provements over other baseline methods, the en-
hancements are mostly within the range of 1~3%.
This could be attributed to the already decent re-
sults achieved by the RoBERTa-base model and
the scaled-down datasets, limiting the scope for
further performance gains. We will further explore
FedMCP in other cross-silo federated NLP settings.

Privacy leakage remains a concern in federated
learning frameworks. Zhang et al., 2023 notes that
compared to Full FT in FL, federated PEFT effec-
tively defends against data reconstruction attacks.
We suspect this is because clients do not share all
model parameters. Our approach also retains part



of the model locally and mitigates privacy leakage
to some extent.
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