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Abstract001

The emergence of large Vision Language Mod-002
els (VLMs) has broadened the scope and capa-003
bilities of single-modal Large Language Mod-004
els (LLMs) by integrating visual modalities,005
thereby unlocking transformative cross-modal006
applications in a variety of real-world scenarios.007
Despite their impressive performance, VLMs008
are prone to significant hallucinations, partic-009
ularly in the form of cross-modal inconsisten-010
cies. Building on the success of Reinforcement011
Learning from Human Feedback (RLHF) in012
aligning LLMs, recent advancements have fo-013
cused on applying direct preference optimiza-014
tion (DPO) on carefully curated datasets to mit-015
igate these issues. Yet, such approaches typ-016
ically introduce preference signals in a brute-017
force manner, neglecting the crucial role of018
visual information in the alignment process. In019
this paper, we introduce RE-ALIGN, a novel020
alignment framework that leverages image re-021
trieval to construct a dual-preference dataset,022
effectively incorporating both textual and vi-023
sual preference signals. We further introduce024
rDPO, an extension of the standard direct pref-025
erence optimization that incorporates an addi-026
tional visual preference objective during fine-027
tuning. Our experimental results demonstrate028
that RE-ALIGN not only mitigates hallucina-029
tions more effectively than previous methods030
but also yields significant performance gains in031
general visual question-answering (VQA) tasks.032
Moreover, we show that RE-ALIGN maintains033
robustness and scalability across a wide range034
of VLM sizes and architectures. This work rep-035
resents a significant step forward in aligning036
multimodal LLMs, paving the way for more037
reliable and effective cross-modal applications.038

1 Introduction039

The recent emergence of powerful Vision Language040

Models (VLMs) (Li et al., 2022, 2023a; Liu et al.,041

2024a; Li et al., 2024b; Meta, 2024; Bai et al.,042

2023; Wang et al., 2024b; Lu et al., 2024; Wu et al.,043

Figure 1: Benchmark performance comparison (min-
max normalized).

2024) has significantly extended the capabilities 044

of Large Language Models (LLMs) (Devlin et al., 045

2018; Radford et al., 2019; Brown et al., 2020; 046

Team et al., 2023; Roziere et al., 2023; Touvron 047

et al., 2023a,b; Raffel et al., 2020; Yang et al., 2024; 048

Team, 2024) into the visual domain, paving the way 049

for innovative real-world applications that integrate 050

multimodal information (Moor et al., 2023; Li et al., 051

2024a; Shao et al., 2024; Xing et al., 2024b; Rana 052

et al., 2023; Kim et al., 2024). Despite their promis- 053

ing performance, VLMs remain susceptible to hal- 054

lucinations—instances where the model produces 055

outputs containing inaccurate or fabricated details 056

about objects, attributes, and the logical relation- 057

ships inherent in the input image (Rohrbach et al., 058

2018; Bai et al., 2024). Several factors contribute 059

to this cross-modal inconsistencies, including the 060

separate low-quality or biased training data, imbal- 061

anced model architectures, and the disjoint pretrain- 062

ing of the vision encoder and LLM-backbone (Cui 063

et al., 2023; Bai et al., 2024; Zhou et al., 2024a). 064

To mitigate the hallucinations in VLMs, the Di- 065

rected Preference Optimization (DPO) techniques 066
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have been widely adopted (Deng et al., 2024;067

Zhou et al., 2024a; Fang et al., 2024; Zhou et al.,068

2024b; Guo et al., 2024; Chen et al., 2024; Wang069

et al., 2024c; Yu et al., 2024b; Li et al., 2023b;070

Wang et al., 2024a). This involves constructing071

datasets enriched with human preference signals072

specifically targeting hallucinations, and then fine-073

tuning the models using algorithms like Direct074

Preference Optimization (DPO) (Rafailov et al.,075

2024). Existing methods generating the pref-076

erence data by perturbing the ground truth re-077

sponses (Zhou et al., 2024a) and corrupting the078

visual inputs/embeddings (Deng et al., 2024; Amir-079

loo et al., 2024) to generate rejected responses or080

correcting/refining responses to produce chosen re-081

sponses (Chen et al., 2024; Yu et al., 2023a). While082

methods based on response refinement yield the083

most reliable preference signals, they face scal-084

ability challenges due to the significant costs of085

manual correction processes. Conversely, directly086

corrupting input visual information or ground truth087

responses is overly simplistic, as this brute-force088

approach fails to generate plausible and natural hal-089

lucinations in a controlled manner. Moreover, dur-090

ing fine-tuning, directly applying DPO may cause091

the model to overly prioritize language-specific092

preferences, which potentially leads to suboptimal093

performance and an increased propensity for hallu-094

cinations (Wang et al., 2024a).095

In this paper, we propose RE-ALIGN, a novel096

framework that alleviates VLM hallucinations097

by integrating image retrieval with direct prefer-098

ence optimization (DPO). Our method deliberately099

injects controlled hallucinations into chosen re-100

sponses using image retrieval, generating rejected101

responses that offer more plausible and natural pref-102

erence signals regarding hallucinations. Addition-103

ally, by incorporating both the retrieved image and104

the original input image, RE-ALIGN constructs a105

dual preference dataset. This dataset is then lever-106

aged to finetune VLMs with our proposed rDPO107

objective—an extension of DPO that includes an108

additional visual preference optimization objective,109

further enhancing the alignment process with valu-110

able visual preference signals.111

2 Preliminaries112

To mitigate hallucinations in VLMs, we introduce113

an alignment framework based on direct prefer-114

ence optimization (DPO) with image retrieval. In115

this section, we present preliminary definitions and116

notations for VLMs and preference optimization, 117

which serve as the foundation for our proposed 118

framework. 119

Vision Language Models VLMs typically con- 120

sist of three main components: a vision encoder 121

fv(·), a projector fp(·), and an LLM backbone 122

L(·). Given a multimodal input query (x, v), where 123

x is a textual instruction and v is a visual im- 124

age, VLMs generate a corresponding response 125

y = [y1, · · · , ym] autoregressively. Here, each yi 126

represents an output token, and m denotes the total 127

number of tokens in the generated response. 128

Direct Preference Learning Reinforcement 129

Learning from Human Feedback (RLHF) (Chris- 130

tiano et al., 2017; Ziegler et al., 2019) is a key 131

approach for aligning machine learning models 132

with human preferences. Among these techniques, 133

the Direct Preference Optimization (DPO) algo- 134

rithm (Rafailov et al., 2024) stands out for its pop- 135

ularity and for demonstrating superior alignment 136

performance. We represent a VLM with a policy 137

π, which, given an input query (x, v), generates 138

a response y from the distribution π(·|x, v). We 139

denote by π0 the initial VLM model, fine-tuned on 140

instruction-following VQA data by supervised fine- 141

tuning (SFT). Specifically, we define a preference 142

dataset D = {(x, v, yw, yl)}, where for each input, 143

the response yw is preferred to the response yl. The 144

DPO objective is formulated as follows, leveraging 145

the preference dataset D: 146

LDPO = −E(x,v,yw,yl)∼D 147[
log σ

(
β log

πθ(yw|x, v)
π0(yw|x, v)

− β log
πθ(yl|x, v)
π0(yl|x, v)

)]
. 148

Compared to deep RL-based methods like Prox- 149

imal Policy Optimization (PPO) (Schulman et al., 150

2017; Christiano et al., 2017; Ziegler et al., 2019), 151

DPO is more computationally efficient, easier to 152

tune, and thus more widely adopted (Dong et al., 153

2024). 154

Image Retrieval Image retrieval aims to find rel- 155

evant images from large databases – such as vector 156

databases or indexed corpora – based on seman- 157

tic similarity criteria. In this paper, we convert all 158

images into vector representations and utilize the 159

cosine similarity metric to evaluate their proximity 160

to a reference image. The similarity between two 161

images, v1 and v2, is computed as follows: 162

s =

〈
fp(v1)

||fp(v1)||
,

fp(v2)

||fp(v2)||

〉
, 163
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where < ·, · > denotes the inner product in l2 space,164

fp(vi) represents the image embeddings generated165

by the vision encoder fv(·) of VLMs. In this paper,166

we employ the FAISS library (Douze et al., 2024;167

Johnson et al., 2019) for efficient vector searches,168

retrieving the top-k most relevant images.169

3 Methods170

In this paper, we propose RE-ALIGN, a novel171

framework that integrates preference optimization172

with image retrieval to improve cross-modal align-173

ment in VLMs.

Training 
Data

Advanced Models

Pre-trained  
VLMs

Chosen 
Response

Textual 
Instructions

Rejected 
Responses

Preference 
Optimization

Masked 
Response

Retrieval

Figure 2: Illustration of RE-ALIGN framework.

174

As shown in Figure 2, the process begins with175

an advanced VLM generating chosen responses176

from input images from the training set. A se-177

lective masking process is then applied, strategi-178

cally omitting segments associated with objects,179

attributes, or logical relationships identified in the180

image. Next, leveraging the retrieved image from181

the same training dataset and the masked responses,182

the hallucination-prone VLM is prompted to com-183

plete the masked elements, obtaining rejected re-184

sponses. The generated preference pairs (chosen185

vs. rejected) are then used to fine-tune the VLM186

with LrDPO (eq. (1)), a preference objective that187

integrates both visual and textual information to188

penalize hallucinations and reinforce grounded rea-189

soning. Algorithm 1 provides an overview of RE-190

ALIGN, while the detailed process is explained in191

the following subsections.192

3.1 Preference Generation193

Generating high-quality preference data, which194

includes both accurate ground-truth responses195

and controlled hallucinated examples, is cru-196

cial for effective preference optimization in pre-197

trained VLMs. Existing methods construct198

preference data by perturbing ground-truth re-199

sponses (Zhou et al., 2024a), corrupting visual in-200

puts/embeddings (Deng et al., 2024; Amirloo et al.,201

2024) to create rejected responses, or refining re-202

Algorithm 1 Overview of RE-ALIGN

Required:
(1) Unlabeled images {vi} with instructions {xi};
(2) an advanced VLM model V;
(3) caption masking prompt Pm;
(4) masked caption completion prompt Pc;
(5) a text encoder T .
Input: A reference model π0 with vision encoder
fv(·), VLM πθ, hyper-parameter k, τ .

1: D ← ∅ // Init preference dataset
2: N ← |{vi}|
3: for i = 1, · · · , N do
4: yw ← V(xi, vi) // Get preferred response
5: ym ← V(Pm, xi, vi) // Strategic masking
6: sji = sim(fv(vi), fv(vj)),∀i ̸= j
7: // Retrieve top-k similar images
8: sj1i , · · · , sjki ← Topk(s

j
i )

9: yl ← None, vl ← None
10: for t = 1, · · · , k do
11: // Generate candidate hallucinations
12: yc ← V(Pc, ym, vjt)
13: if sim(T (yw), T (yc)) ≥ τ then
14: // Assign rejected response
15: yl ← yc, vl ← vjk

16: if yl is None then
17: continue
18: D ← D ∪ {xi, vi, vl, yw, yl}
19: Update πθ through LrDPO (eq. (1))
20: return πθ

sponses to obtain chosen responses (Chen et al., 203

2024; Yu et al., 2023a). Refinement produces high 204

quality preference data but comes at a high cost, 205

whereas direct corruption is more scalable yet tends 206

to generate unrealistic hallucinations and fails to 207

produce plausible, natural ones in a controlled man- 208

ner. To address these limitations, we introduce a 209

novel image retrieval-based pipeline for preference 210

data construction as shown in Figure 3, which con- 211

sists of three key stages: 212

• Strategical masking: Given an input pair 213

(xi, vi) and its corresponding chosen response 214

yw generated by a pretrained VLM, a strategic 215

masking process removes words or segments 216

associated with objects, attributes, or logical re- 217

lationships inferred from the image, producing 218

the masked response ym. 219

• Image retrieval: All images {vi} in the train- 220

ing set are embedded using the original vision 221

encoder of the pre-trained VLMs, forming the 222
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Figure 3: Illustration of the preference generation process, utilizing the original vision encoder from initial VLMs
and the SentenceTransformer as the text encoder.

knowledge base K. The top-k most similar im-223

ages to vi are then retrieved from K using a224

cosine similarity search.225

• Inducing hallucinations: VLMs are prompted226

to generate a candidate completion ym for the227

masked response conditioned on the instruction228

x and a retrieved image vjt where t ∈ [1, k]229

denotes the rank of images based on their co-230

sine similarity to the input vi. Both the cho-231

sen response yw and the reconstructed response232

yc are embedded using a SentenceTransformer233

model. If the cosine similarity between these234

embeddings falls below 0.95, yc is designated235

as the rejected response yl. Otherwise, the pro-236

cess continues with the next image vjt+1 in the237

similarity-ranked sequence until a suitable can-238

didate is identified or all k retrieved images have239

been examined.240

3.2 Preference Optimization241

The curated preference dataset is subsequently used242

to fine-tune VLMs through direct preference learn-243

ing. We propose retrieval-augmented direct pref-244

erence optimization (rDPO), an extension of DPO245

that integrates an additional visual preference op-246

timization objective. Given a preference dataset247

D = {x, v, vl, yw, yl}, the retrieval-augmented di-248

rect preference optimization objective is formu-249

lated as follows: 250

LvDPO = −E(x,v,vl,yw,yl)∼D 251[
log σ

(
β log

πθ(yw|x, v)
π0(yw|x, v)

− β log
πθ(yw|x, vl)
π0(yw|x, vl)

)]
, 252

where (x, v) denotes the input query of VLMs, 253

(yw, yl) represents the preference responses pair, 254

and vl is the retrieved image for v. The loss func- 255

tion of rDPO is the combination of standard DPO 256

objective and visual preference optimization: 257

LrDPO = LDPO + LvDPO. (1) 258

By incorporating both textual and visual preference 259

signals, our approach allows VLMs to effectively 260

exploit multimodal information during optimiza- 261

tion, in contrast to prior alignment methods that 262

depend exclusively on language-based preferences. 263

In contrast to mDPO (Wang et al., 2024a), which 264

introduces image preference by randomly cropping 265

the original input images, rDPO adopts retrieval- 266

augmented generation to integrate visual prefer- 267

ence signals in a more coherent and semantically 268

meaningful way. 269

4 Experiments 270

We conduct three categories of experiments to em- 271

pirically validate the effectiveness of our proposed 272

method. First, we evaluate the ability of RE-ALIGN 273
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Methods POPEr POPEp POPEa Hallusionq Hallusionf HallusionEasy HallusionHard Hallusiona

LLaVA-v1.5-7B 88.14 87.23 85.10 10.3297 18.2081 41.7582 40.2326 46.3242
w. POVID 88.21 87.16 85.06 10.5495 18.2081 41.5385 40.9302 46.6785
w. CSR (3Iter) 87.83 87.00 85.00 10.1099 18.2081 41.7582 40.6977 46.9442
w. SIMA 88.10 87.10 85.03 10.9890 17.6301 43.0549 40.2326 45.2728
w. RE-ALIGN 88.65 87.43 85.16 11.2088 18.7861 45.5165 41.6279 47.6156

LLaVA-v1.6-
Mistral-7B 88.83 87.93 86.43 13.6264 19.0751 47.4725 33.4884 46.0585

w. STIC 89.03 88.20 86.56 12.9670 17.3410 47.2527 34.1860 46.3242
w. RE-ALIGN 90.55 89.20 87.03 13.8462 19.0751 48.3516 34.8837 46.5899

Table 1: Impact of RE-ALIGN across hallucination benchmarks for VLMs, and comparisons with baselines.

Methods SQA TextVQA MM-Vet VisWiz LLaVABench MMEP MMEC MMBench Avg. Rank

LLaVA-v1.5-7B 66.02 58.18 31.6 50.03 64.1 1510.28 357.85 64.60 3.375
w. POVID 65.98 58.18 31.8 49.80 67.3 1495.91 356.07 64.34 3.625
w. CSR (3Iter) 65.46 57.86 31.6 47.02 68.3 1525.44 365.35 64.08 3.625
w. SIMA 65.83 58.48 32.0 50.04 66.9 1510.33 371.78 64.60 2.5
w. RE-ALIGN 68.10 58.55 32.1 50.06 67.7 1511.79 367.50 64.69 1.375

LLaVA-v1.6-
Mistral-7B 76.02 63.80 47.6 59.85 80.2 1494.22 323.92 69.33 2.125

w. STIC 76.42 63.50 47.3 54.21 81.0 1504.91 308.21 69.16 2.625
w. RE-ALIGN 76.47 64.08 48.3 57.27 81.8 1512.09 318.93 69.42 1.25

Table 2: Impact of RE-ALIGN across general benchmarks for VLMs, and comparisons with baselines.

to mitigate hallucinations and improve generaliz-274

ability across diverse VQA tasks, demonstrating275

its consistent superiority over baseline approaches276

and achieving state-of-the-art performance. Next,277

we examine RE-ALIGN’s effectiveness in align-278

ing VLMs across various model sizes and archi-279

tectures, including both text-to-image and unified280

models, where it delivers substantial performance281

over vanilla models and existing baselines. Finally,282

we assess the impact of our proposed rDPO ob-283

jective in preference optimization, showing that it284

consistently surpasses standard DPO in aligning285

VLMs and achieving superior results in both hallu-286

ciation mitigation and general tasks.287

4.1 RE-ALIGN for VLMs Alignment288

Datasets We conducted experiments on both289

hallucination detection and general VQA tasks.290

Specifically, we assess our method’s perfor-291

mance in hallucination detection using the292

POPE dataset (Li et al., 2023c) and Hallusion-293

Bench (Guan et al., 2023). For general VQA294

tasks, we leverage a diverse suite of bench-295

marks including ScienceQA (Lu et al., 2022),296

TextVQA (Singh et al., 2019), MM-Vet (Yu297

et al., 2023b), VisWiz (Gurari et al., 2018),298

LLaVABench (Liu, 2023), MME (Fu et al., 2023),299

and MMBench (Liu et al., 2024c).300

Beslines We compare our method with sev- 301

eral widely adopted alignment frameworks for 302

VLMs, including POVID (Zhou et al., 2024a), 303

CSR (Zhou et al., 2024b), SIMA (Wang et al., 304

2024c), STIC (Deng et al., 2024). For more details 305

on these baselines, please refer to the Appendix. 306

Methods POPEr POPEp POPEa

Janus-Pro-1B 85.46 85.03 84.13
w. RE-ALIGN 87.53↑2.07 87.33↑2.30 85.86↑1.73

Janus-Pro-7B 88.41 87.30 85.70
w. RE-ALIGN 89.73↑1.32 88.37↑1.07 86.27↑0.57

LLaVA-v1.5-7B 88.14 87.23 85.10
w. POVID 88.21↑0.07 87.16↓0.07 85.06↓0.04
w. CSR (3Iter) 87.83↓0.31 87.00↓0.23 85.00↓0.10
w. SIMA 88.10↓0.04 87.10↓0.13 85.03↓0.07
w. RE-ALIGN 88.65↑0.51 87.43↑0.20 85.16↑0.06

LLaVA-v1.5-13B 88.07 87.53 85.60
w. CSR (3Iter) 88.38↑0.31 87.90↑0.37 85.46↓0.14
w. SIMA 88.04↓0.03 87.40↓0.13 85.40↓0.20
w. RE-ALIGN 90.03↑1.96 89.20↑1.30 86.20↑0.74

LLaVA-v1.6-
Vicuna-7B 88.52 87.63 86.36

w. RE-ALIGN 88.94↑0.42 88.03↑0.40 86.63↑0.27

LLaVA-v1.6-
Vicuna-13B 88.24 87.70 86.43

w. RE-ALIGN 88.79↑0.55 88.10↑0.40 86.60↑0.17

Table 3: Impact of RE-ALIGN across various model
scales on POPE.
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Experimental Setup We sample 11k images307

from the LLaVA-Instruct-150K dataset (Liu et al.,308

2024a) to construct preference data, as illustrated309

in Figure 3. These images are initially used310

to generate QA piars based on image captions311

and simple VQA tasks using GPT-4o mini (Ope-312

nAI, 2024). Furthermore, the images are en-313

coded using clip-vit-large-patch14 (Radford314

et al., 2021a) to construct the knowledge base315

for image retrieval. For rejected responses, we316

use GPT-4o mini to mask the chosen response317

and all-mpnet-base-v2 (Reimers and Gurevych,318

2019) to compute the similarity between the com-319

pleted masked response and the original chosen re-320

sponse. We use LLaVA-v1.5-7B (Liu et al., 2024a)321

and LLaVA-v1.6-Mistral-7B (Li et al., 2024b) as322

our backbone models and perform RE-ALIGN fine-323

tuning for 1 epoch. All evaluations are conducted324

with a temperature setting of 0, and baseline results325

are reproduced using the publicly available model326

weights.327

Results Table 1 shows the performance of RE-328

ALIGN compared to baseline methods on hallucina-329

tion benchmarks. Notably, RE-ALIGN achieves the330

best among the evaluated methods on both POPE331

and HallusionBench for LLaVA-v1.5-7B (Liu et al.,332

2024a) and LLaVA-v1.6-Mistral-7B (Li et al.,333

2024b), highlighting the effectiveness of our ap-334

proach in mitigating hallucinations of VLMs. As335

demonstrated in Table 2, RE-ALIGN can provide336

generally on-par or better performance than the337

vanilla models and baseline alignment methods338

on each evaluated general VQA task, ultimately339

achieving the best overall results. This finding in-340

dicates that RE-ALIGN can enhance hallucination341

mitigation without compromising general perfor-342

mance.343

4.2 Scalability and Generalizability344

Experimental Setup The experimental setup fol-345

lows the same setting as VLMs alignment experi-346

ments, except for the backbone models, where we347

employ a diverse array of VLMs varying in size348

and architecture:349

• Image-to-Text models: the typical archi-350

tecture of VLMs, where a vision encoder351

is integrated with an LLM to enable cross-352

modal understanding. In this section, we353

evaluate RE-ALIGN on LLaVA-v1.5-7B (Liu354

et al., 2024a), LLaVA-v1.5-13B (Liu et al.,355

2024a), LLaVA-v1.6-Vicuna-7B (Li et al.,356

2024b), and LLaVA-v1.6-Vicuna-13B (Li 357

et al., 2024b). 358

• Unified Models: encoder-decoder architec- 359

ture that decouples visual encoding for multi- 360

modal understanding and generation. In this 361

section, we evaluate RE-ALIGN on Janus- 362

Pro-1B (Chen et al., 2025) and Janus-Pro- 363

7B (Chen et al., 2025). 364

Results Table 3 presents the performance of RE- 365

ALIGN using both standard image-to-text and uni- 366

fied VLM backbones across model sizes from 1B 367

to 13B on the POPE benchmark (Li et al., 2023c). 368

In experiments with the LLaVA-v1.5 series (Liu 369

et al., 2024a), none of the baseline approaches con- 370

sistently improve performance for either the 7B or 371

the 13B models, highlighting the limited scalability 372

of these methods. In contrast, RE-ALIGN achieved 373

substantial performance gains, outperforming both 374

the baseline models and the vanilla version—most 375

notably on the LLaVA-v1.5-13B variant. Simi- 376

larly, experiments with the LLaVA-v1.6-Vicuna 377

series (Li et al., 2024b) revealed the same trend, 378

further underscoring RE-ALIGN’s superior scala- 379

bility. For unified vision-language models, espe- 380

cially Janus-Pro, integrating RE-ALIGN yields a 381

significant performance boost. Notably, Janus-Pro- 382

1B experiences the greatest improvement, under- 383

scoring RE-ALIGN’s robustness across different 384

model architectures. However, Janus-Pro-1B, be- 385

ing the smallest among the evaluated VLMs, also 386

exhibits the poorest overall performance on POPE, 387

suggesting a correlation between model size and 388

the propensity for hallucinations. 389

4.3 Effects of rDPO 390

Dataset Due to budget constraints and the need 391

for reproducibility, we have excluded bench- 392

marks that require evaluation by GPT-4 (Achiam 393

et al., 2023). Instead, we focus on the fol- 394

lowing tasks: ScienceQA (Lu et al., 2022), 395

TextVQA (Singh et al., 2019), MM-Vet (Yu 396

et al., 2023b), VisWiz (Gurari et al., 2018), 397

LLaVABench (Liu, 2023), MME (Fu et al., 2023), 398

MMBench (Liu et al., 2024c), and POPE (Li et al., 399

2023c). 400

Experimental Setup The experimental setup fol- 401

lows the same setting as VLMs alignment experi- 402

ments, with the exception of the direct optimization 403

objectives. To further explore the impact of our pro- 404

posed rDPO, we conduct experiments on the same 405

6



Methods SQA TextVQA MM-Vet MMEP MMEC MMBench POPEr POPEp POPEa

LLaVA-v1.5-7B 66.02 58.18 31.6 1510.28 357.85 64.60 88.14 87.23 85.10
w. RE-ALIGN (DPO) 66.26 58.24 30.9 1506.49 357.85 64.52 88.18 87.30 85.23
w. RE-ALIGN (rDPO) 68.10 58.55 32.1 1511.79 367.50 64.69 88.65 87.43 85.16

LLaVA-v1.6-Mistral-7B 76.02 63.80 47.6 1494.22 323.92 69.33 88.83 87.93 86.43
w. RE-ALIGN (DPO) 76.07 63.88 46.8 1505.85 316.79 69.24 88.93 88.03 86.47
w. RE-ALIGN (rDPO) 76.47 64.08 48.3 1512.09 318.93 69.42 90.55 89.20 87.03

Table 4: Impact of rDPO across general and hallucination benchmarks for VLMs, and comparisons with baselines.

constructed preference dataset using the standard406

DPO (Rafailov et al., 2024) during the one-epoch407

finetuning process.408

Results Table 4 summarizes the performance of409

RE-ALIGN when using both standard DPO and410

rDPO as the direct optimization objectives, evalu-411

ated on general VQA and hallucination tasks with412

LLaVA-v1.5-7B (Liu et al., 2024a) and LLaVA-413

v1.6-Mistral-7B (Li et al., 2024b) as backbones.414

The results indicate that employing rDPO as the415

finetuning objective consistently yields superior416

performance over standard DPO across both task417

categories, highlighting the benefits of incorporat-418

ing visual preference signals during the alignment419

process for VLMs. Notably, even when solely em-420

ploying DPO, RE-ALIGN not only achieves per-421

formance gains over the vanilla models but also422

outperforms the baselines evaluated in the VLM423

alignment experiments on several tasks. This un-424

derscores the effectiveness of our image retrieval-425

based preference data construction.426

5 Discussions427

Discussion with mDPO In this section, we de-428

tail the differences between our proposed rDPO429

and mDPO (Wang et al., 2024a). In mDPO, a430

conditional preference optimization objective is431

introduced to force the model to determine the pref-432

erence label based on visual information:433

LCoDPO = −E(x,v,yw,yl)∼D434 [
log σ

(
β log

πθ(yw|x, v)
π0(yw|x, v)

− β log
πθ(yw|x, vc)
π0(yw|x, vc)

)]
,435

where vc denotes a randomly cropped image of the436

original input image v. Specifically, visual prefer-437

ence signals are generated by randomly masking438

20% of the input visual tokens to encourage the439

model to capture preferences based on visual cues.440

In contrast, RE-ALIGN extends and enhances441

this approach by incorporating a more semantically442

meaningful visual preference pair. Instead of rely- 443

ing solely on random crops, RE-ALIGN retrieves 444

a relevant image from the same dataset that corre- 445

sponds to the original input. This retrieval-based 446

augmentation provides a stronger contrastive sig- 447

nal, improving the model’s ability to discern fine- 448

grained visual details and reducing spurious cor- 449

relations. Moreover, beyond mitigating hallucina- 450

tions in VLMs, RE-ALIGN has been demonstrated 451

that it also significantly enhances performance on 452

general VQA tasks. 453

Figure 4: Performance gains of RE-ALIGN with LLaVA-
v1.6-Mistral-7B as the backbone on ScienceQA with
respect to the size of preference data.

Segment-level Preference Building on the find- 454

ings of (Yu et al., 2024b), we generate preference 455

data by inducing hallucinations at the segment level 456

than at the sentence level (as seen in approaches 457

such as POVID (Zhou et al., 2024a), STIC (Deng 458

et al., 2024), and CSR (Zhou et al., 2024b)), to 459

provide robust supervision signals during the align- 460

ment process. This finer-grained preference model- 461

ing yields clearer and more precise learning signals, 462

enabling the model to better distinguish between 463

subtle hallucinations and ground truth responses. 464

To further investigate these segment-level prefer- 465

ence signals, we expanded the finetuning dataset 466

from 11k to 16k image samples. As illustrated in 467

Figure 4, when using LLaVA-v1.6-Mistral-7B as 468

the backbone with ScienceQA as the case study, 469

RE-ALIGN achieved a significant performance im- 470

provement—from 0.45 to 1.34—demonstrating the 471

7



effectiveness of our approach.472

6 Related Work473

Reinforcement Learning from Human Feedback474

Reinforcement Learning from Human Feedback475

(RLHF) has emerged as a crucial technique for in-476

corporating human preference signals into machine477

learning methods and models (Dong et al., 2024).478

RLHF frameworks can be broadly categorized into479

deep RL-based approaches and direct preference480

learning approaches. In deep RL-based methods, a481

reward model is first constructed, after which Prox-482

imal Policy Optimization (PPO) (Schulman et al.,483

2017; Christiano et al., 2017; Ziegler et al., 2019)484

is employed to optimize the reward signals with485

KL regularization (Ouyang et al., 2022; Touvron486

et al., 2023b). While the direct preference learning487

approaches optimize a designed loss target on the488

offline preference dataset directly, eliminating the489

need for a separate reward model(Rafailov et al.,490

2024; Azar et al., 2024; Tang et al., 2024; Etha-491

yarajh et al., 2024).492

Vision Language Models Large Vision Lan-493

guage Models (VLMs) (Li et al., 2022, 2023a; Liu494

et al., 2024a; Li et al., 2024b; Meta, 2024; Bai et al.,495

2023; Wang et al., 2024b; Lu et al., 2024; Wu et al.,496

2024) extended the understanding and reasoning ca-497

pabilities of Large Language Models (LLMs) (De-498

vlin et al., 2018; Radford et al., 2019; Brown et al.,499

2020; Team et al., 2023; Roziere et al., 2023; Tou-500

vron et al., 2023a,b; Raffel et al., 2020; Yang et al.,501

2024; Team, 2024) into the visual domain. By in-502

tegrating vision encoders, such as CLIP (Radford503

et al., 2021b), image patches are first converted504

into embeddings and then projected to align with505

text embedding space, unlocking unprecedented506

cross-modal applications in the real world, such as507

biomedical imaging (Moor et al., 2023; Li et al.,508

2024a), autonomous systems (Shao et al., 2024;509

Tian et al., 2024; Sima et al., 2023; Xing et al.,510

2024b), and robotics (Rana et al., 2023; Kim et al.,511

2024).512

Alignment of Vision Language Models Cur-513

rent VLMs often suffer from hallucinations, pro-514

ducing inaccurate or misleading information that515

fails to accurately represent the content of the pro-516

vided image (Zhu et al., 2024; Bai et al., 2024).517

Such misalignments can have catastrophic conse-518

quences when these models are deployed in real-519

world scenarios (Xing et al., 2024a). To address520

cross-modality hallucinations, recent research has 521

primarily focused on applying direct preference op- 522

timization (Deng et al., 2024; Zhou et al., 2024a; 523

Fang et al., 2024; Zhou et al., 2024b; Guo et al., 524

2024; Chen et al., 2024; Wang et al., 2024c; Yu 525

et al., 2024b; Li et al., 2023b; Wang et al., 2024a) 526

or contrastive learning (Sarkar et al., 2024) on the 527

curated datasets with preference signals, and utiliz- 528

ing model editing techniques (Liu et al., 2024b; Yu 529

et al., 2024a). 530

7 Conclusion 531

In this paper, a novel framework, RE-ALIGN, for 532

aligning VLMs to mitigate hallucinations is pro- 533

posed. Our approach leverages image retrieval to 534

deliberately induce segment-level hallucinations, 535

thereby generating plausible and natural preference 536

signals in a controlled manner. By integrating the 537

retrieved images, a dual-preference dataset that en- 538

compasses both textual and visual cues is curated. 539

Furthermore, we propose the rDPO objective, an 540

extension of DPO that includes an additional visual 541

preference optimization objective, to enhance the 542

alignment process with valuable visual preference 543

signals. Comprehensive empirical results from a 544

range of general VQA and hallucination bench- 545

marks demonstrate that RE-ALIGN effectively re- 546

duces hallucinations in VLMs while enhancing 547

their overall performance. Moreover, it demon- 548

strates superior scalability across various model 549

architectures and sizes. 550

Limitations 551

Although RE-ALIGN has demonstrated superior 552

performance on both hallucination and general 553

VQA benchmarks, it does not always achieve state- 554

of-the-art results on general tasks; in some cases, 555

its performance is even worse than that of vanilla 556

VLMs. Future research could explore strategies 557

to eliminate this alignment tax or or identify an 558

optimal balance for this trade-off. 559

The potential risks of this work align with the 560

general challenges of RLHF alignment. As more 561

powerful alignment techniques are developed, they 562

may inadvertently empower adversarial approaches 563

that exploit these models, potentially leading to un- 564

fair or discriminatory outputs. Meanwhile, these 565

adversarial strategies can be used to generate neg- 566

ative samples, which can ultimately contribute to 567

the development of more robust and reliable VLMs 568

over time. 569
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A Details of the Evaluated Baselines953

We compare our proposed method with following954

alignment frameworks for VLMs:955

• POVID (Zhou et al., 2024a): constructing 956

preference data by prompting GPT-4V (Ope- 957

nAI, 2023) to generate hallucinations while 958

intentionally injecting noise into image inputs, 959

followed by fine-tuning VLMs using DPO. 960

• CSR (Zhou et al., 2024b): iteratively gener- 961

ates candidate responses and curates prefer- 962

ence data using a self-rewarding mechanism, 963

followed by fine-tuning VLMs via DPO. 964

• SIMA (Wang et al., 2024c): self-generates re- 965

sponses and employs an in-context self-critic 966

mechanism to select response pairs for pref- 967

erence data construction, followed by fine- 968

tuning with DPO. 969

• STIC (Deng et al., 2024): self-generates cho- 970

sen responses and constructs preference data 971

by introducing corrupted images or mislead- 972

ing prompts, followed by fine-tuning with reg- 973

ularized DPO. 974

B Prompts used for Preference Data 975

Construction 976

During the construction of the preference dataset 977

for RE-ALIGN, we employed GPT-4o mini (Ope- 978

nAI, 2024) to mask the chosen response using the 979

following prompt. 980

Strategic Masking

Please mask any words of the segments
related to the objects, attributes, and logical
relationships of the input image in the
following description by replacing them
with [MASK].

981

Then, we instruct the VLMs to produce a candi- 982

date completion for the masked response to gener- 983

ate the final rejected response using the following 984

prompt. 985

Masking Completion

Please complete the following sentence
based on the input image by filling in the
masked segments.

986

C Examples of Preference Pair 987

Table 5 and 6 provide examples of the constructed 988

preference data for the VQA and image captioning, 989

12



and each data sample contains textual instruction,990

input image, retrieved image, chosen response, and991

rejected response.992

Figure 5: Example preference pair for VQA generated
using RE-ALIGN.

D Response Examples993

Figure 7 presents example responses from both the994

original LLaVA-v1.5-7B model and RE-ALIGN as995

evaluated on LLaVABench. Notably, the original996

model’s response exhibits server object hallucina-997

tions, while RE-ALIGN delivers a clearer and more998

accurate description of the image.999

E Licenses1000

The LLaVA-Instruct-150K dataset (Liu et al.,1001

2024a) which is used to construct preference data1002

is released under CC BY 4.0 license and it should1003

abide by the policy of OpenAI1.1004

For the hallucination benchmarks, POPE (Li1005

et al., 2023c) and HallusionBench (Guan et al.,1006

2023) are released under MIT and BSD-3-Clause1007

licenses.1008

For the general VQA benchmarks, Sci-1009

enceQA (Lu et al., 2022), TextVQA (Singh et al.,1010

2019), MM-Vet (Yu et al., 2023b), VisWiz (Gu-1011

rari et al., 2018), LLaVABench (Liu, 2023), and1012

MMBench (Liu et al., 2024c) are released under1013

MIT, CC BY 4.0, Apache-2.0, CC BY 4.0, Apache-1014

2.0, and Apache-2.0 licenses respectively. While1015

MME (Fu et al., 2023) was released without an1016

accompanying license.1017

1https://openai.com/policies/terms-of-use

F Experimental Cost 1018

The cost for curation the preference dataset by us- 1019

ing GPT-4o mini (OpenAI, 2024) cost approxi- 1020

mately $90 in total.The evaluation of Hallusion- 1021

Bench and LLaVABench using GPT-4 (Achiam 1022

et al., 2023) incurred an approximate total cost of 1023

$30. 1024

G Computational Cost 1025

All finetuning and evaluation experiments were 1026

executed on four NVIDIA A6000ada GPUs. Table 1027

5 details the time required for RE-ALIGN to fine- 1028

tune each model. 1029

Models Required Time

Janus-Pro-1B 50 min
Janus-Pro-7B 93 min
LLaVA-v1.5-7B 35 min
LLaVA-v1.5-13B 45 min
LLaVA-v1.6-Mistral-7B 30 min
LLaVA-v1.6-Vicuna-7B 46 min
LLaVA-v1.6- Vicuna-13B 72 min

Table 5: Time required for finetuning VLMs with RE-
ALIGN.

H Hyperparameter Setting 1030

For all the experiments, we finetuning VLMs 1031

with RE-ALIGN for 1 epoch. We deploy LoRA 1032

finetuning with lora_r=128, lora_alpha=256, 1033

target_module=all, and hyperparameters as pre- 1034

sented in Table 6. 1035

Hyperparameter Setting

β 0.1
Learning rate 1e-5
weight_decay 0.0
warmup_ratio 0.03
lr_scheduler_type cosine
mm_projector_lr 2e-5
mm_projector_type mlp2x_gelu
gradient_accumulation_steps 8
per_device_train_batch_size 1
bf16 True
Optimizer AdamW

Table 6: Hypeterparameter setting for finetuning.

I Social Impacts 1036

Our proposed novel alignment framework for 1037

VLMs, RE-ALIGN, not only significantly miti- 1038

gates the hallucinations of VLMs but also ele- 1039
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Figure 6: Example preference pair for image captioning generated using RE-ALIGN.

Figure 7: Example responses generated by LLaVA-v1.5-7B and RE-ALIGN.

vates their generalization capabilities across di-1040

verse multimodal tasks. These advancements hold1041

far-reaching societal implications, particularly in1042

advancing the development of trustworthy, ethi-1043

cally aligned AI systems capable of reliable real-1044

world deployment. To elucidate these implications,1045

we provide a comprehensive overview of potential1046

transformative outcomes:1047

• Enhancing trustworthiness: RE-ALIGN1048

significantly enhances the reliability of AI-1049

generated content by reducing hallucinated1050

outputs and improving factual grounding.1051

This ensures that users and regulatory bodies1052

can place increased confidence in AI-driven1053

decisions and recommendations.1054

• Safety-critical applications: By reducing er- 1055

ratic outputs and improving contextual aware- 1056

ness, RE-ALIGN enables safer deployment of 1057

VLMs in high-stakes domains such as health- 1058

care diagnostics, autonomous vehicles, and 1059

disaster response systems, where error mar- 1060

gins are near-zero and algorithmic trust is 1061

paramount. 1062

• Democratizing access to robust AI: Our 1063

method can democratize access to advanced 1064

mutimodal AI models under low-resource 1065

or data-scarce settings, which empowers re- 1066

searchers and practitioners with limited com- 1067

putational resources to participate in cutting- 1068

edge AI development, ultimately contributing 1069

to a more equitable and diverse AI ecosystem. 1070
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