Under review as submission to TMLR

Beyond Semantics: The Unreasonable Effectiveness of Rea-
sonless Intermediate Tokens

Anonymous authors
Paper under double-blind review

Abstract

Recent impressive results from large reasoning models have been interpreted as a triumph
of Chain of Thought (CoT), and especially of the process of training on CoTs sampled
from base LLMs in order to help find new reasoning patterns. While these traces certainly
seem to help the model performance, it is not clear how they actually influence model
performance, with some works ascribing semantics to them and others cautioning against
relying on them as transparent and faithful proxies of the model’s internal computational
process. To systematically investigate the role of end-user semantics of derivational traces,
we set up a controlled study where we train transformer models from scratch on formally
verifiable reasoning traces and the solutions they lead to, constraining both intermediate
steps and final outputs to align with those of a formal solver. We notice that, despite
significant improvements over the solution-only baseline, models trained on entirely correct
traces can still produce invalid reasoning traces even when arriving at correct solutions.
More interestingly, our experiments also show that models trained on corrupted traces,
whose intermediate reasoning steps bear no relation to the problem they accompany, achieve
performance largely comparable to those trained on correct traces. In fact, our corrupted
models generalize better on out-of-distribution tasks. We also study the effect of GRPO-
based RL post-training on trace validity, noting that while solution accuracy increase, this
is not accompanied by any improvements in trace validity. Finally, we examine whether
reasoning-trace length reflects inference-time scaling and find that trace length is largely
agnostic to the underlying computational complexity of the problem being solved. These
results challenge the assumption that intermediate tokens or “Chains of Thought” reflect or
induce predictable reasoning behaviors and caution against anthropomorphizing such outputs
or over-interpreting them (despite their mostly seemingly forms) as evidence of human-like
or algorithmic behaviors in language models.

1 Introduction

Recent advances in general planning and problem solving have been spearheaded by so-called “Long Chain-
of-Thought” models, most notably DeepSeek’s R1 (Guo et all|2025). These transformer-based large language
models, following the now-standard teacher-forced pre-training, instruction fine-tuning, and preference
alignment stages, undergo additional training on reasoning tasks. At each step within this additional training,
the model, when presented with a question, generates a sequence of intermediate tokens (colloquially or
perhaps fancifully called a “Chain of Thought” or “reasoning trace”) before producing a specially delimited
answer sequence. A formal system then verifies this answer, and the model’s parameters are updated to
increase the likelihood of generating sequences that result in correct solutions.

While (typically) no optimization pressure is applied to the intermediate tokens (Baker et al., [2025; [Zhou
et al.l 2025, empirically it has been observed that language models perform better on many domains if they
output such tokens first (Nye et al.l |2021} Wei et al., [2022; |Zhang et all 2022; Hsieh et al., [2023; |Gu et al.,
2023; (Guo et al., [2025} [Pfau et al.l |2024; Muennighoff et al., 2025; |Li et al., [2025). While the fact of the
performance increase is well-known, the reasons for it are less clear. Previous work has often framed it in

Under review as submission to TMLR

anthropomorphic terms, claiming that these models are “thinking” before outputting their answers (Nye
et al.l 2021} |Gandhi et al.l 2025} |Guo et al.| [2025; |[Yang et al.| [2025a}; |Zhou et al., |2025; [Bubeck et al.| 2023}
Venhoff et al., [2025).

Famously, DeepSeek’s R1 paper claimed that one of the most impressive observed behaviors of their trained
models was the so-called “aha” moment: along the way to answering some question, the model output the
token “aha”; seeming to indicate that it had come upon a sudden realization. Interpreting these tokens
as meaningful to the end user requires making an additional, often overlooked assumption about how long
CoT models function: that the traces they produce and the traces they were trained on are semantically
meaningful to the end user in the same way. While traces certainly seem to help the LLM performance (and
may well have mechanistic interpretability properties to better understand the performance improvements
(Bogdan et al.| [2025))), it is not clear (beyond anecdotal evidence) that they have end-user interpretability or
semantics.

For R1 and similar large models, this is nearly impossible to check. The intermediate tokens that massive
pre-trained and post-RL’d models produce meander for dozens of pages, are written wholly in ambiguous
and polysemantic natural language, and — perhaps much worse — are the result of long, opaque training
processes on data that we have no access to and cannot compare against. This has caused significant confusion
about their role: some works ascribe semantics to these traces (Marjanovié et al., [2025; |Gandhi et al.,
2025; Muennighoft et al. 2025)); others go further, interpreting certain patterns in the traces as evidence of
deliberation or even deceptive behavior, raising potential safety concerns (Baker et al. 2025 Korbak et al.,
2025 |Chua et al.| |2025} |Greenblatt et al., [2024); while yet another set of works caution against treating these
outputs as faithful indicators of the model’s internal computation (Chen et al.,|2025; |Arcuschin et al., 2025).

To cut through this ambiguity, we present a systematic and controlled study designed to investigate the
role of intermediate tokens’ end-user semantics in transformers. Following previous work that elucidated
important functional aspects of large scale models through controlled small scale experiments (Wang et al.|
2024} [Power et al., [2022; [Zhong et al.l 2023)) and working within a sort of “model organism” paradigm, we
focus on fully controlled, open, and replicable models trained from scratch. Our models (0.5B parameter
Qwen models) are trained from scratch to solve a simple and well-understood shortest path planning problem
in grid-based mazes, on training data that includes formally verifiable reasoning traces generated by the
A* search algorithm. This setup allows us to systematically evaluate the validity of the traces that models
produce at inference time, enabling a clear analysis of the role trace semantics play in model performance.
We implement a variety of maze generation algorithms, letting us thoroughly experiment with the training
data and measure both in and out of distribution performance.

Using this framework, we structure our investigation around a series of core questions. We begin by examining
the most fundamental assumption: the relationship between a correct solution and the validity of the reasoning
trace that precedes it. Specifically, we ask whether the correctness of a generated solution correlates with the
validity of its intermediate tokens. If these tokens are semantically meaningful with respect to the problem,
correct answers should always come from valid traces, and valid traces should always lead to correct answers.
However, our findings reveal that this connection is weaker than that—models often produce correct solutions
despite invalid reasoning traces. We next examine whether the semantic quality of traces used during training
influences model performance. To test this, we train models on deliberately corrupted datasets which swap
reasoning traces between problems, removing any connection to the task at hand. Recognizing that many
state-of-the-art models are post-trained with reinforcement learning from verifiable rewards, we further
investigate whether such techniques (like Group Relative Policy Optimization (GRPO) (Shao et al.l [2024]))
improve trace validity in addition to solution accuracy. Finally, we address the popular notion that longer
traces represent a form of “inference-time scaling” or problem-adaptive computation by analyzing whether
the length of a generated trace correlates with the problem’s underlying computational complexity.

Our findings consistently challenge the prevailing narrative that intermediate tokens constitute a semantically
meaningful reasoning process. First, we observe a pronounced lack of correlation between solution correctness
and trace validity—models frequently produce invalid reasoning traces even when they arrive at correct
solutions. Second, and more strikingly, models trained on corrupted or semantically irrelevant traces achieve
performance comparable to, and often exceeding, that of models trained on correct traces, especially on out-

Under review as submission to TMLR

of-distribution tasks. Third, although post-training with reinforcement learning improves solution accuracy
across both in- and out-of-distribution settings, it does not consistently enhance trace validity. In fact, we
find cases where reinforcement learning decreases trace validity while simultaneously improving solution
accuracy for models trained on correct traces. Moreover, models trained on corrupted traces continue to
outperform their correct-trace counterparts across domains while consistently generating invalid reasoning
traces. Finally, we find that the length of the generated traces is largely agnostic to the difficulty of the
underlying problem, undermining the notion that it reflects problem-adaptive computation.

Together, these results suggest that the effectiveness of intermediate tokens does not arise from their
seemingly interpretable semantic content. By systematically disentangling trace semantics from the underlying
problem, our study demonstrates that if performance is the objective, assuming human-like or algorithmically
interpretable trace semantics are ideal or even achievable is not only unnecessary but potentially misleading.

2 Related Work

Post-Training for Reasoning - Recent progress in improving the reasoning capabilities of Large Language
Models (LLMs) has been driven by methods that train models not only on correct answers, but also on
“reasoning traces” that lead to those answers (Zelikman et all 2022} |Li et al. [2025; Muennighoff et al., [2025;
Lightman et al.| [2023; [Lambert et al., [2024}; [Yuan et al.l 2024} (Guo et al.l 2025} [Sunl 2023} |Guo et al.| 2025}
Arora & Zanette; [Yu et al., [2025)). Whether this is achieved via supervised fine-tuning on trace-augmented
datasets or via reinforcement learning techniques like Group Relative Policy Optimization (GRPO), the end
result is the same: models “think” for varying amounts of time by outputting additional tokens before their
final answers, and performance measures improve. While these papers demonstrated ways to improve final
answer accuracy, they neither evaluate the trace accuracy nor do they explicitly attempt to train on incorrect
or irrelevant traces. Thus, they leave open the question of whether that accuracy increase actually stems
from the additional semantic information in the trace.

These methods are often paired with claims about how and why they work, which lean on anthropomorphic
framings of model “thinking”, which seem to assume that final answer correctness somehow requires inter-
mediate sequence correctness. These claims are even presented alongside evidence that seems to directly
contradict them. The training procedure underlying DeepSeek’s R1-Zero is instructive (Guo et al., 2025)): it
pays attention only to the correctness of the solution, ignoring the content of the traces. Incorrect traces
that happen to lead to correct answers are treated exactly the same as correct ones, and their ablations hint
that rewarding intermediate correctness might even be counterproductive. In this work, we push this idea
further and systematically evaluate how the final performance is affected when explicitly incorrect traces are
rewarded.

Evaluating Traces - Previous work on evaluating the relationship between trace correctness and final
answer correctness has primarily focused on large, pre-trained models, and has gone under the name of
Chain-of-Thought faithfulness. These evaluations have claimed that intermediate steps, despite appearing
coherent, are not reliably correct (Turpin et al.| |2023} [Lanham et al.| [2023; |Chen et al.; [2025; |Chua &
Evans, [2025; |Arcuschin et al.l |2025; Baker et al., |2025). However, the nature of natural language makes
these evaluations questionable. Within the domain of math problems, there is no established ground truth
semantics for what a correct reasoning process looks like in natural language, and so previous work either
relies on messy manual evaluations which typically require the researcher to read in some amount of intent
into the model’s completions, or automated evaluations that use additional (unverified) language models to
noisily pick out potential reasoning errors.

Training Transformers on Traces - Prior efforts have trained models from scratch to mimic search
algorithms like A* Breadth-First Search (BFS), and Monte Carlo Tree Search for tasks in pathfinding,
arithmetic, and general problem-solving (Lehnert et al., 2024; |Gandhi et al.| [2024; [Yang et al., [2022)), as well
as the DPLL procedure for Boolean SAT problems (Pan et al., [2024). However, while these studies train on
traces of formal procedures, they do not explicitly analyze the correctness of the traces generated by the final
model. While some works happen to use semantically invalid traces—such as truncated A* derivations in
Dualformer (Su et al.l 2024)—they do not examine how they affect model performance. By contrast, our

Under review as submission to TMLR

work is the first to rigorously evaluate trace correctness, allowing us to directly investigate the relationship
between generated solutions and the tokens that led to them.

3 Background

In many cases, especially with pre-trained models, it is nearly impossible to formally verify reasoning traces,
due to the ambiguity of natural language and the lack of a clear ground truthE] However, for small, well-scoped
formal domains like the gridworld path planning domain used in (Lehnert et alJ, 2024; [Su et al.; 2024) and
this paper, and by carefully training models from scratch on those domains, we have the ability to check
whether generated traces follow the exact semantics enforced in the training data and causally predict the
final solutions that the model outputs.

Figure 1: Examples of mazes. The left is generated by Wilson’s algorithm and is used for model training. The
right is generated by the Drunkard’s Walk algorithm and used to evaluate models on an out of distribution
task. The goal is represented by a green square and the start state by a yellow square. Black squares represent
impassable walls. Blue squares represent steps along the optimal path (as found by A*). Gray squares
are squares that were explored by A* but are not along the optimal path. White squares are unexplored
traversable squares.

3.1 The Maze Pathfinding Domain

We consider a standard grid-based path-finding domain. The task is to find a legal path between a given start
cell and goal cell in a 30 x 30 grid. Every cell of this grid is either free (traversable) or a wall (impassable).
The agent begins at the start state, and at every state may take one of four actions: go up, down, left, or
right. The transformer is given a full description of this problem (in token format — we follow the formulation
used by (Lehnert et al.; 2024) and (Su et al [2024))) and must output as its final answer a plan, which consists
of a sequence of actions. A plan is considered correct if every action the agent from a free cell to an adjacent
free cell and if it results in the agent’s final position being the goal cell.

In order to understand out of distribution performance, we generate navigation problems using diverse
generation algorithms, resulting in varied structural patterns and exploration dynamics. This enables
systematic out-of-distribution (OOD) evaluation by testing models on maze types unseen during training.
These generation algorithms can be sorted into two major categories: 1) algorithms that do not permit cycles
and sample spanning tree mazes embedded in the 30 x 30 grid and 2) algorithms that permit loops and create

1This in turn induces a Rorschach-test-like behavior in the end users who overload semantics on specific phrases like “aha" or
“let me think".

Under review as submission to TMLR

noisy, less-structured dungeon or cave-like instances. For all algorithms except Searchformer’s (see below),
which has its own start and goal generation loop, we sample a legal (start, goal) pair after maze generation.

Acyclic Maze Generation

1. Wilson’s algorithm: Wilson’s algorithm generates uniform random mazes by performing loop-
erased random walks from unvisited cells until they connect to the current maze (Wilson, |1996).
Each walk removes any loops it creates, ensuring a valid tree structure. This process continues until
all cells are included, producing a uniform sample from the space of all possible spanning trees of a
15 x 15 square lattice graph. As there are two choices for embedding such a maze into a gridworld
(either a (0,0) or (0,1) offset from the top left), we select between them uniformly. We use this same
choice for all algorithms in this category.

2. Kruskal’s algorithm: Kruskal’s algorithm, originally proposed for finding a minimum spanning
forest of an undirected edge-weighted graph (Kruskal, |1956)), generates mazes by treating each cell as
a node and randomly removing walls between unconnected regions, using a union—find structure to
avoid cycles. This results in a fully connected maze without loops, though the maze distribution is
not perfectly uniform. The method produces mazes biased towards short local connections and dead
ends.

3. Randomized Depth-First Search algorithm (DFS): The randomized depth-first search (DFS)
or recursive backtracker algorithm generates mazes by carving a path forward until reaching a
dead-end (Tarjanl [1972). When it hits a dead-end (no unvisited neighbors), it backtracks until it
finds a new direction to explore, repeating until all cells are visited and connected into a complete
maze. Depth-first search is biased towards generating mazes with low branching factors and many
long corridors.

Cave Generation

4. Drunkard’s Walk: We implement a version of the “Drunkard’s Walk” algorithm, as described by
(Heard, 2016)), and originally used for procedurally generating dungeons for top-down two-dimensional
video games. Starting from a grid of solid walls, a random walk is performed, carving out the current
cell on every step. The walk continues until a predefined number or percentage of floor tiles has been
dug out. This method allows cycles, producing cave-like structures with open chambers and looping
corridors. The output space includes grid states unreachable by perfect acyclic maze generators.

5. Searchformer style generation (SF-style) We also implement the random generation algorithm
used in the Searchformer paper (Lehnert et al., [2024). Tasks are generated by exhaustive rejection
sampling: first, a random wall density between 30% and 50% is selected. That proportion of cells
is then designated as walls. A start and goal location are sampled, and A* search is executed to
compute an optimal plan. Unsolvable, trivial, or duplicate instances are rejected and resampled.
These mazes may contain loops and are therefore out of distribution relative to the acyclic training
sets.

In our experiments, we train two separate models: one on datasets generated using an acyclic maze-generation
algorithm (Wilson’s) and another on datasets generated using a cave-style algorithm (SF-style).

3.2 The A* Search Algorithm

A* is a classic best-first graph—search procedure that combines the uniform-cost guarantee of Dijkstra’s
algorithm (Dijkstra; [1959) with domain-specific heuristics to focus exploration on promising states, originally
introduced to compute minimum-cost paths in state-space graphs (Hart et al.l [1968]).

The algorithm maintains an open list (a priority queue) keyed by f(n) = g(n) + h(n), where g(n) is the exact
cost from the start and h(n) is a heuristic estimate to the goal, and also maintains a closed list of already
visited nodes. It repeatedly pops the open list node with the smallest f; if this is the goal, it reconstructs the

Under review as submission to TMLR

path that lead to this node and this is returned as the final plan. Otherwise, it generates child nodes (in our
case, traversable neighbor cells) and calculates their g and f values. For each node, it either inserts it into
the open list or — if the node is already in the list — updates its g value if the new value is lower. The popped
node is added to the closed list to prevent re-expansion.

The effectiveness of A* is dependent on the heuristic it is implemented with. For solvable graph search
problems like the ones featured in this paper, any consistent (h(n) < ¢(n,n’) + h(n’) for all neighboring n’)
heuristic will guarantee that the plan returned is not only satisficing but optimal (Pearl, [1984]).

For the maze path planning problems we examine in this paper, we use the very standard Manhattan heuristic
h(n) = |z, — 24| + |yn — yy| which computes the sum of horizontal and vertical displacements between a cell
and the goal. On a 2-D grid with only orthogonal, unit-cost movement, this heuristic is consistent, ensuring
A* returns an optimal path.

Finally, following Searchformer and Stream of Search, we modify the A* implementation to output a linearized
execution trace (Gandhi et all|2024; [Lehnert et al.| [2024). That is, whenever the algorithm creates a child
node and adds it to the open list, it prints create x y cG cH and when it closes a node and adds it to the
closed list, it prints close x y cG cH. Here, ‘x’ and ‘y’ are cell coordinates, ‘G’ in cG represents the exact
cost from the start state to the node (i.e., the g(n) value) and ‘H’ in cH represents the heuristic estimate
from that node to the goal state (i.e., the h(n) value). Similar to Searchformer notation (Lehnert et al.,
2024), we use the prefix “c” to differentiate between the node co-ordinates and its cost estimations in our
human-readable gloss of the token representation. In the next section, we construct an A* validator that
reverses this process — it takes in a linearized trace and attempts to simulate the corresponding open and
closed list operations to check if they are valid with respect to the semantics of this implementation.

4 \Validating Traces and Solutions

reasoning

close 13c0c3

create 14 clc2

create 1 3 c0 c3 & Invalid create (already closed)
create 3 3¢5 c4 <€ Invalid neighbor

Figure 2: Trace validation procedure. Our A* validator runs through the model’s output stream sequentially.
Assuming no parsing errors, it will flag a trace as invalid if at some point it contains an invalid action. The
left bottom corner is (0, 0).

While previous work evaluated the final accuracy of trace-trained models, it did not evaluate the traces
themselves. For large, production ready RL-post-trained models like DeepSeek’s R1, this is practically
impossible. For even a simple query, the model produces dozens of pages of convoluted and meandering
output before arriving at an answer, and this output is all in natural language, making it very easy to read
multiple equally valid interpretations into it.

To truly tell whether the traces that were trained on helped in the expected way, we need a formal way
of validating their correctness. By training models on traces produced by a well-known algorithm with
well-known semantics, it is possible to check whether the model’s emulations of the algorithm’s execution
trace are correct.

We construct a formal verifier for A* traces. The format for these traces follows (Lehnert et al., [2024)), and is
described in more detail in Section [3| Essentially, our verifier consumes the generated trace and simulates the
operations proposed in that trace on open and closed lists. It runs through the generated trace sequentially,
parsing each action x y cA cB sequence as an operation and using it to update its open and closed list.

Under review as submission to TMLR

It marks a trace as valid if it can correctly execute this procedure until it closes the goal node. Errors in
execution can be one of the following:

o Parsing Error: a substring is malformed and does not parse into either a create or a close action
with the correct arguments.

o Invalid Neighbor: the current create action is attempting to create an illegal child, either referencing
a wall cell or a cell that is not adjacent to the last closed node.

e Already Closed: the current create action is attempting to close an already closed node.
e Not in Open List: the current close action is referencing a node that is not in the open list.

e Goal Not Reached: after the entire sequence was processed, the goal node was not in the closed
list, and so the reconstruction step cannot proceed.

5 Evaluating Solution Accuracy vs. Trace Validity

With this verifier in hand, we can now evaluate the correlation between the trace validity and solution
correctness for models trained on a dataset containing correct traces paired with correct plans. To conduct this
analysis, we train transformer models from scratch using a controlled architecture and dataset configuration.
Specifically, we modify the architecture of the Qwen2.5 0.5B (Qwen Team), 2024) to support a vocabulary
of exactly 944 different tokens, reducing the parameter count from 500 million to about 380 million. We
randomly initialize the model, and then train it for 255,000 training steps with a batch size of 8 on two
NVIDIA H100s. The model has a context length of 32,000 tokens to support the long lengths of intermediate
token generation. Our other experiments later in the paper also use this architecture, but train on different
datasets, from solution-only through to irrelevant traces. All code and data will be publicly released.

Table 1: Performance of Wilson and Searchformer-style Models across maze distributions for models trained
on 500k datapoints. Each cell shows Plan Validity (%) / Trace Validity within valid plans (%). "Wilson
model" is trained on problems generated using Wilson’s algorithm; "SF-style model" is trained on problems
generated using Searchformer-style generation.

Model Type Wilson Kruskal DFS Drunkard SF-style

Wilson Model ~ 79.9 / 97.7 83.2 /97.2 54.0/920 0.0 /- 0.0 /-
SF-style Model 40.8 / 89.0 44.6 /93.0 19.9 /854 62.1 /852 56.2/81.1

We train models on two datasets, each containing 500k problems generated using Wilson’s algorithm and
SF-style generation. FEach datapoint consists of a start and goal state, a maze definition, an A* trace
representing the search process between the given start and goal states, and the corresponding correct plan.
We evaluate these models on testsets generated by Wilson, Kruskal, DFS, Drunkard and SF-Style maze
generation algorithms. Each test dataset consists of 1000 instances. Model performance is measured in terms
of solution accuracy, and we also evaluate trace validity for responses that yield correct solutions. Note that
we do not check for optimality in either the traces or the plans.

As shown in Table[I] the results highlight that the trace validity in a response is not truly a reliable predictor
of plan accuracy: if it were, the trace validity within valid plans would consistently reach 100%E| This
discrepancy is especially pronounced in the SF-style model.

Ideally, if a network has learned an algorithm, this should endow it with the generalization properties of that
algorithm. Following this intuition, we further investigate the relationship between solution correctness and
trace validity by conducting a controlled-length generalization experiment using models trained on problems
generated with Wilson’s algorithm. We define problem difficulty as the number of operations required by the
A* algorithm to solve a given problem, where longer traces indicate greater difficulty.

2In the appendix, we provide a complete breakdown of model responses as confusion matrices.

Under review as submission to TMLR

The training set consists of 50k problems with solution traces ranging from 1000 to 3500 tokens. To balance
the distribution, the dataset was divided into 500-token intervals, with 10k problems in each bin (10001500,
1500-2000, 20002500, 25003000, and 3000-3500).

For evaluation, we design a setup that allows us to probe both easier and harder cases outside the training
distribution, as well as held-out problems from within the training range. We construct four disjoint test sets
designed to probe model performance across varying problem difficulties. The Easier (0-1000 tokens) and
In-distribution held-out (1000-3500 tokens) sets each contain 1000 problems. To obtain higher resolution in
the difficult out-of-distribution regime, we split the harder range (3500-4500 tokens) into two subsets of 500
problems each: Harder-1 (35004000 tokens) and Harder-2 (4000-4500 tokens).

Table 2: Length generalization results for the Wilson Model. Test bins are grouped into easier, in-distribution,
and harder categories based on trace length ranges. "Plan Acc." = Plan Accuracy, "Trace Val. in Val. Plans"
= Trace Validity within valid plans.

Category Plan Acc. (%) Trace Val. in Val. Plans (%)
Easier (0-1000) 72.8 93.2
In-distribution held-out (1000-3500) 67.8 87.9
Harder-1 (3500-4000) 35.0 61.7
Harder-2 (4000-4500) 16.2 51.8

The purpose of actually learning these traces is to gain the benefits of algorithmic generalization. Yet,
as shown in Table [2] the model internalizes the style of the algorithm without acquiring its underlying
mechanisms. This gap is also reflected in the deteriorating correlation between trace validity and solution
correctness as difficulty increases. In particular, trace validity among correct solutions further decreases on
longer traces, suggesting that the correlation is not a fundamental property but rather an artifact of the
training distributionﬂ

6 Training with Traces: Does Meaning Matter?

If plan and trace validity are only loosely connected for models trained on the A* trace dataset, then perhaps
the validity of the trace isn’t as important to the performance increase as previously believed. To test this
empirically, we construct a second training dataset called Swapped, which we build by randomly permuting
reasoning traces between problems.

We construct Swapped datasets from two of the original datasets: the Wilson’s algorithm set and the SF-style
one. These datasets consists of the exact same problems as the original 500k datasets, but problem 1’s trace
will be given to, say, problem 4; problem 4’s will be given to problem 7; and so forth. In other words, while
these traces continue to have the right form and some generic domain information, they no longer have any
connection to the specific problems they are associated with. Training examples consist of a start and goal
state, a maze definition, an A* trace for searching for the shortest path across a totally unrelated maze from
a different start and goal state, and the correct solution plan for the original maze.

For these experiments, we continue to use the same model architecture described in the previous section,
varying only the datasets we train on to see how they affect performance — even when the reasoning traces
are entirely disconnected from the underlying problem.

Table [3| provides accuracy /validity results over a spectrum of training runs.The most basic training run is the
standard solution-only baseline, where the model is trained on just solutions without any derivational traces.
The next baseline, following previous work (Lehnert et al., 2024; |Su et al.l |2024; |Gandhi et al., |2024), is
training the models with A* generated traces, teacher-forcing during training to make it output intermediate
tokens before the final solution. These correspond to the “Normal" models discussed in the previous section.
Finally, we train models on the Swapped datasets where the intermediate trace is completely unrelated to

3In Appendix we also show that the original Searchformer model, as trained by (Lehnert et al., |2024), also exhibits this
disconnect between the trace validity and solution accuracy, even though those authors didn’t seem to have evaluated this.

Under review as submission to TMLR

the problem being solved. Each model is trained on 500K samples and evaluated on tests sets containing
1000 problems each, generated using multiple maze generation algorithms (as described in Section 3).

Table 3: Performance of Solution-only baseline, Wilson-trained model, and Searchformer-style (SF-style)
trained model across maze distributions (final checkpoint shown). Each cell shows Plan Accuracy (%) / Trace
Validity within valid plans (%). For the Solution-only baseline, only Plan Validity is reported.

Model Type Wilson Kruskal DFS Drunkard SF-style
Solution-only (Wilson) 10.0 / - 6.9 /- 0.0/ - 0.1/- 0.0 /-

Normal (Wilson) 79.9 /977 832/97.2 54.0/920 00/00 0.0/0.0
Swapped (Wilson) 83.3 /0.0 85.0 / 0.0 52.6 / 0.0 11.7 / 0.0 0.2 /0.0
Normal (SF-style) 40.8 /89.0 44.6 /93.0 199 /854 62.1 /852 56.2 /811
Swapped (SF-style) 45.8 /0.0 51.0/00 29.0/00 954/00 89.1 /0.0

As seen in Table [3] the swapped models, which we might expect would perform worse than the normal ones,
counterintuitively perform just as well, if not better than the model trained on correct traces and substantially
better than the solution-only baseline! We see that they have 0% trace validity in all cases—as expected given
that they have been trained with well-strutured but problem-irrelevant traces.

The performance difference is particularly striking on out-of-distribution datasets. For Wilson models, while
most of the performance gaps are within a few percentage points-and in-distribution testing results in near
identical performance-the swapped model achieves 11.7% plan accuracy on the Drunkard dataset, whereas
the normal model fails to solve any problem. Similarly, for models trained on SF-style data, the swapped
model performs much better than the normal model across all distributions. In particular, the swapped model
achieves a plan accuracy of 95.4% on Drunkards as compared to the 62.1% accuracy of the normal model.

100 100
Test Set A Test Set
—— Wilson \ —— Wilson
;\; 75 Kruskal 375 \ Kruskal
< —— DFS s —— DFS
g —— Drunkard fry \ — Drunkard
5 —— Searchformer 2 h — Searchformer
g 50 ~ / r_>c 50 \
< \ / — o
c 1%
g 25 \s// g 25
0 25 50 75 100 0 25 50 75 100
% Swapped Traces % Swapped Traces
(a) % of swapped traces vs plan accuracy. (b) % of swapped traces vs trace validity among

valid plans

Figure 3: Effect of increasing percentage of swapped traces in the training dataset (Wilson mazes with 50k
samples).

We also conducted an additional study varying the proportion of swapped traces during training on a 50k
sample Wilson dataset. Instead of fully replacing the trace distribution, we generated training sets where
only a fraction of examples received mismatched traces, allowing us to interpolate between the normal and
fully swapped settings. As shown in Figure we observe a U-shaped performance trend: introducing a
small amount of trace swapping initially reduces plan accuracy, but beyond a certain point, plan accuracy
begins to rise again—eventually matching or even exceeding the normal model-—while trace validity steadily
decreases as we move toward the fully swapped setting (in Figure E| This pattern suggests that what
matters for transformers to improve accuracy with intermediate tokens is not their semantic correctness, but
rather their consistency.

4We also show in Appendix that post-training can further boost these models’ performance without inducing trace
validity!

Under review as submission to TMLR

If intermediate tokens improve accuracy because they teach the model a given reasoning procedure, then we
should expect their influence on performance to worsen as they become disconnected to the problem. However,
we find that this is not always the case — in fact, intermediate token sequences that have almost nothing to do
with the problem at hand can provide a significantly higher performance boost (and which, counterintuitively
might even generalize better) than well-grounded semantically meaningful execution traces, thus throwing
doubt on the seemingly wide-spread intuition that the effectiveness of traces stems from allowing the
transformer to perform relevant, interpretable, algorithmic procedures. Our results suggest that while traces
are helping model accuracy, this boost is unconnected with the expected end-user semantics.

6.1 Does post-training increase the semantic correctness of the intermediate tokens?

Table 4: Performance of Normal and Swapped (Wilson) models across maze distributions for each checkpoint
during GRPO training. Each cell shows Plan Accuracy / Trace Validity within Valid Plans (%).

Checkpoint Model Type Wilson Kruskal DFS Drunkard SF-style
0 Normal 79.9 /971 83.1/956 54.0/874 0.2/0.0 0.0 / -
Swapped 83.3/00 85.0/00 52.6/0.0 11.7 /0.0 0.2/0.0
70 Normal 88.9 /979 89.1 /981 62.3/92.1 0.0/ - 0.0/ -
Swapped 934 /00 935/00 67.1/0.0 144 /0.0 04/0.0
140 Normal 89.6 / 98.2 91.7/98.2 624 /929 0.0 / - 0.0 / -
Swapped 99.5/00 993/00 81.9/0.0 144/0.0 04/0.0

Table 5: Performance of Normal and Swapped (Searchformer) models across maze distributions for each
checkpoint during GRPO training. Each cell shows Plan Accuracy / Trace Validity (%).

Checkpoint Model Type Wilson Kruskal DFS Drunkard SF-style
0 Normal 40.8 / 89.0 44.6 /93.0 199 /854 62.1 /852 56.2/81.1
Swapped 45.8 /0.0 51.0/0.0 29.0/0.0 95.4 / 0.0 89.1 / 0.0
70 Normal 54.2 /72.0 588 /67.7 20.7/68.6 88.0/66.9 82.4/65.3
Swapped 623 /00 675/00 39.4/00 99.6 / 0.0 96.9 / 0.0
140 Normal 63.7 /52.1 688 /499 279 /505 91.2/457 89.1/43.4
Swapped 69.0 /00 755/00 41.6 /0.0 99.2 / 0.0 98.5 / 0.0

Considering that claims anthropomorphizing the relationship between intermediate tokens and the solution
(such as the "aha" moment) (Nye et all|2021} |Gandhi et al., 2025; |Guo et al.l |2025} [Yang et al., 2025a; |Zhou
et al., [2025) originate from models that are post-trained with reinforcement learning methods (like Group
Relative Policy Optimization (GRPO)), we investigate whether such post-training improves the semantic
correctness of the traces.

We use the models described in the previous section (trained on 500k samples for 255k steps) as base models
and further post-train them on separate 10k-sample datasets. Specifically, the Wilson model is post-trained
on a distinct Wilson dataset, and the SF-style model is post-trained on a distinct SF-style dataset. Additional
hyperparameter details are provided in Appendix

As shown in Tables [and [}, GRPO improves solution accuracy across both in- and out-of-distribution
settings but does not consistently enhance trace validity. Notably, in several cases, post-training even
reduces trace validity while simultaneously improving solution accuracy for models trained on correct traces.
For the SF-style normal models (shown in Table , trace validity steadily decreases—from values in the
mid-80% range to the mid-50% range—while their plan accuracy increases substantially across nearly all
distributions. Furthermore, the swapped models continue to outperform their correct-trace counterparts
across all distributions, despite maintaining a consistent trace validity of 0%. Taken together, these results

10

Under review as submission to TMLR

provide further evidence that user-expected semantics of intermediate tokens are not the main driver of
performance improvement.

7 Is the length of Intermediate Tokens a true reflection of Problem Complexity?

Along with the semantics of intermediate tokens, prior work has often anthropomorphized trace length
itself—interpreting longer reasoning traces as evidence that models are “thinking harder” on more complex
problems (Guo et all 2025} (Chen et al.,|2024; |Yang et al., 2025b; Muennighoff et al.| [2025). This interpretation
assumes that models dynamically allocate more computation when faced with difficult inputs, mirroring
problem-adaptive reasoning. Consequently, producing longer reasoning traces has been described as inference-
time scaling. However, such claims are largely unverified: length may instead reflect arbitrary sampling
behavior or artifacts of the training procedure, rather than genuine computational adaptivity. To test this
hypothesis, we investigate whether the length of generated reasoning traces in our controlled maze navigation
setting correlates with the problem difficulty of the underlying problems.

We quantify problem difficulty in our pathfinding domain by measuring the number of operations performed
by the A* search algorithm to generate the optimal plan—that is, the length of the A*-generated trace. This
metric provides a clear and objective measure of relative problem difficulty. We then analyze the lengths of
reasoning traces produced by the Wilson and SF-style models on the same test sets described in previous
sections. Figure [plots the model-generated trace lengths against the corresponding A* ground-truth trace
lengths for both models.

The highly dispersed scatter plots in Figure [f] show that there is no real correlation between model-generated
trace and ground-truth A* trace lengths.If such a correlation existed, the generated trace lengths would
cluster closely around the ground-truth values. In many cases, the model continues generating intermediate
tokens up to the maximum context limit of 32k without ever producing a valid solution.

W oed oo~

.
30000 ° .
]

25000 s o
B

20000 P

gth

| Trace Ley

Mod

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
A* Trace Length A+ Trace Length

(a) Model trained on Wilson data (b) Model trained on SF-style data

Figure 4: Comparison of generated intermediate token length (Y-axis) with ground-truth A* trace length
(X-axis). The dashed line represents y = x.

We further analyze whether the model’s behavior differs between in-distribution and out-of-distribution (OOD)
problems, focusing on the model trained on Wilson-generated data. Because this model was trained exclusively
on Wilson mazes, it approximates A*-like trace lengths when evaluated on similar mazes, producing a visible
alignment between the generated and ground-truth lengths (shown in Figure . However, when evaluated
on SearchFormer-style mazes (Lehnert et all [2024), this correlation disappears entirely (shown in Figure [5b)).
In these OOD settings, the generated trace lengths fluctuate independently of problem complexity. These
results suggest that the apparent problem-adaptive computation observed for Wilson mazes might an artifact
of the training distribution rather than genuine adaptivity.

8 Discussion and Conclusion

In this paper, we conducted a systematic controlled study focused on the end-user semantics of intermediate
traces in transformers. As we don’t have access to any frontier LLM’s training data or even exact training

11

Under review as submission to TMLR

30000

25000

20000

15000

Model Trace Length

10000

D
000 . 2 Sndly oo«
o

500 1000 1500 2000 2500 3000 3500 4000
A* Trace Length A Trace Length

(a) Wilson trace length scatter (b) Searchformer trace length scatter

Figure 5: Comparison of trace length scatter plots for problems generated using Wilson and Searchformer
Algorithms.

procedure, and since the traces these models output are in multiply-interpretable natural language without
a concrete ground truth, we designed a controlled study building on previous smaller model reasoning
work — mainly Searchformer and Stream of Search (Gandhi et al. [2024} [Lehnert et all [2024). Our findings
demonstrate that trace validity in a response is not a reliable predictor of solution correctness. We then found
that trace semantics is not necessary for achieving high task performance by training models on traces that
are not connected to the problem at hand. Our post-training results show that RL with GRPO improves the
performance of the base model, irrespective of the trace validity of the intermediate tokens. Finally, we show
that the trace length generated by the models are agnostic to the computational complexity of the problem,
which challenges the prevailing narrative that derivational traces reflect problem-adaptive computation.

All together, our counter-intuitive results demonstrate ways in which common interpretations of the in-
termediate tokens produced by Large Reasoning Models may be anthropomorphizations or simplifications.
Based on these results, we argue that while the traces certainly seem to help the LLM performance (and
may well have mechanistic interpretability (Bogdan et all [2025)), intermediate tokens do not have end-user
interpretability /semantics and, if the goal is to increase model performance, enforcing trace semantics is
unnecessary (Bhambri et all [2025) and potentially very misleading. Our results raise doubts about both the
fears of deception in reasoning models based on their chains of thought (Greenblatt et al. |2024)), as well as
the earnest pleas to keep chains of thought monitorable for Al safety (Korbak et al., [2025)).

In terms of explaining the role of intermediate tokens in the performance of current reasoning models, our
main contribution is to urge the community to look beyond semantics of the reasoning traces, or their
correlation to problem complexity. Our own speculation is that what is helping is finding the right prompt
augmentation. That is, for a given task prompt T, there exists a prompt augmentation PA which boosts the
LLM’s performance on that task:

3 PAs.t. P(Sol(LLM(T + PA), T)) > P(Sol(LLM(T), T))

Here Sol(y,T') indicates that y solves T'; and LLM(x) is the model’s completion for input x. The central
challenge then is to learn the Skolem function

PA = fo(T,LLM),

that maps each task to an effective augmentation. This can be accomplished through modifying the model
itself to inherently and automatically augment prompts, as is the case in models that first generate long
chains of intermediate tokens before their final answers. Crucially, prompt augmentations have no need to
be human-interpretable. In fact, we see results that back this up in the adversarial prompting literature,
where effective jailbreaks can be effected by augmenting prompts with human-uninterpretable strings
let al., [2023; |Cherepanova & Zou, 2024} [Liu et al., 2024; Hackett et al.l 2025) or modifying them with random
syntactic permutations, capitalizations, and shufflings (Hughes et al.l |2024), as well as the recent work on
using intermediate tokens from the continuous latent space (Hao et al., [2024)).

12

Under review as submission to TMLR

References

Ivan Arcuschin, Jett Janiak, Robert Krzyzanowski, Senthooran Rajamanoharan, Neel Nanda, and Arthur
Conmy. Chain-of-thought reasoning in the wild is not always faithful. arXiv preprint arXiv:2503.08679,
2025.

Daman Arora and Andrea Zanette. Training language models to reason efficiently, 2025. URL hittps://arziv.
org/abs/2502.04463.

Bowen Baker, Joost Huizinga, Leo Gao, Zehao Dou, Melody Y Guan, Aleksander Madry, Wojciech Zaremba,
Jakub Pachocki, and David Farhi. Monitoring reasoning models for misbehavior and the risks of promoting
obfuscation. arXiv preprint arXiv:2503.11926, 2025.

Siddhant Bhambri, Upasana Biswas, and Subbarao Kambhampati. Do cognitively interpretable reasoning
traces improve llm performance?, 2025. URL https://arxiv.org/abs/2508.16695.

Paul C. Bogdan, Uzay Macar, Neel Nanda, and Arthur Conmy. Thought anchors: Which llm reasoning steps
matter?, 2025. URL https://arxiv.org/abs/2506.19143.

Sébastien Bubeck, Varun Chadrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter Lee,
Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence: Early experiments
with gpt-4, 2023.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu, Mengfei
Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=7 on the overthinking of ol-like llms.
arXiv preprint arXiv:2412.21187, 2024.

Yanda Chen, Joe Benton, Ansh Radhakrishnan, Jonathan Uesato, Carson Denison, John Schulman, Arushi
Somani, Peter Hase, Misha Wagner, Fabien Roger, et al. Reasoning models don’t always say what they
think. arXiv preprint arXiv:2505.05410, 2025.

Valeriia Cherepanova and James Zou. Talking nonsense: Probing large language models’ understanding of
adversarial gibberish inputs, 2024. URL https://arxiv.org/abs/2404.17120.

James Chua and Owain Evans. Are deepseek rl and other reasoning models more faithful? In ICLR 2025
Workshop on Foundation Models in the Wild, 2025.

James Chua, Jan Betley, Mia Taylor, and Owain Evans. Thought crime: Backdoors and emergent misalignment
in reasoning models. arXiv preprint arXiv:2506.13206, 2025.

Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1(1):
269-271, 1959. doi: 10.1007/BF01386390.

Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin Liu, Winson Cheng, Archit Sharma, and Noah D
Goodman. Stream of search (sos): Learning to search in language. arXiv preprint arXiv:2404.03683, 2024.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman. Cognitive
behaviors that enable self-improving reasoners, or, four habits of highly effective stars. arXiv preprint
arXiw:2503.01307, 2025.

Ryan Greenblatt, Carson Denison, Benjamin Wright, Fabien Roger, Monte MacDiarmid, Sam Marks, Johannes
Treutlein, Tim Belonax, Jack Chen, David Duvenaud, Akbir Khan, Julian Michael, Séren Mindermann,
Ethan Perez, Linda Petrini, Jonathan Uesato, Jared Kaplan, Buck Shlegeris, Samuel R. Bowman, and Evan
Hubinger. Alignment faking in large language models, 2024. URL https://arxiv.org/abs/2412.14093.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Minillm: Knowledge distillation of large language models.
arXi preprint arXiv:2306.08543, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

13

https://arxiv.org/abs/2508.16695
https://arxiv.org/abs/2506.19143
https://arxiv.org/abs/2404.17120
https://arxiv.org/abs/2412.14093

Under review as submission to TMLR

William Hackett, Lewis Birch, Stefan Trawicki, Neeraj Suri, and Peter Garraghan. Bypassing prompt injection
and jailbreak detection in llm guardrails, 2025. URL https://arxiv.org/abs/2504.11168.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong Tian.
Training large language models to reason in a continuous latent space, 2024. URL https://arxiv.org/
abs/2412.06769.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination of minimum
cost paths. IEEFE transactions on Systems Science and Cybernetics, 4(2):100-107, 1968.

J.R. Heard. Procedural dungeon generation: A drunkard’s walk in clojurescript, 2016. URL https:
//blog. jrheard.com/procedural-dungeon-generation-drunkards-walk-in-clojurescript.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner, Ranjay
Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outperforming larger language models
with less training data and smaller model sizes. arXiv preprint arXiv:2305.02301, 2023.

John Hughes, Sara Price, Aengus Lynch, Rylan Schaeffer, Fazl Barez, Sanmi Koyejo, Henry Sleight, Erik
Jones, Ethan Perez, and Mrinank Sharma. Best-of-n jailbreaking. arXiv preprint arXiv:2412.03556, 2024.

Tomek Korbak, Mikita Balesni, Elizabeth Barnes, Yoshua Bengio, Joe Benton, Joseph Bloom, Mark Chen,
Alan Cooney, Allan Dafoe, Anca Dragan, et al. Chain of thought monitorability: A new and fragile
opportunity for ai safety. arXiv preprint arXiv:2507.11473, 2025.

Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem.
Proceedings of the American Mathematical society, 7(1):48-50, 1956.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman, Lester
James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. T\" ulu 3: Pushing frontiers in open language
model post-training. arXiv preprint arXiv:2411.15124, 2024.

Tamera Lanham, Anna Chen, Ansh Radhakrishnan, Benoit Steiner, Carson Denison, Danny Hernandez,
Dustin Li, Esin Durmus, Evan Hubinger, Jackson Kernion, et al. Measuring faithfulness in chain-of-thought
reasoning. arXiv preprint arXiw:2307.13702, 2023.

Lucas Lehnert, Sainbayar Sukhbaatar, DiJia Su, Qinging Zheng, Paul Mcvay, Michael Rabbat, and Yuandong
Tian. Beyond a*: Better planning with transformers via search dynamics bootstrapping. arXiv preprint
arXiv:2402.14083, 2024.

Dacheng Li, Shiyi Cao, Tyler Griggs, Shu Liu, Xiangxi Mo, Eric Tang, Sumanth Hegde, Kourosh Hakhamaneshi,
Shishir G Patil, Matei Zaharia, et al. Llms can easily learn to reason from demonstrations structure, not
content, is what matters! arXiv preprint arXiv:2502.0737/, 2025.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth International
Conference on Learning Representations, 2023.

Yue Liu, Xiaoxin He, Miao Xiong, Jinlan Fu, Shumin Deng, and Bryan Hooi. Flipattack: Jailbreak llms via
flipping. OpenReview pre-print, submitted to ICLR 2025, 2024. URL https://openreview.net/forum?
1d=H6UMc5VS70.

Sara Vera Marjanovi¢, Arkil Patel, Vaibhav Adlakha, Milad Aghajohari, Parishad BehnamGhader, Mehar
Bhatia, Aditi Khandelwal, Austin Kraft, Benno Krojer, Xing Han Lu, et al. Deepseek-rl thoughtology:
Let’s think about llm reasoning. arXiv preprint arXiv:2504.07128, 2025.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer,
Percy Liang, Emmanuel Candeés, and Tatsunori Hashimoto. s1: Simple test-time scaling. arXiv preprint
arXiv:2501.19393, 2025.

14

https://arxiv.org/abs/2504.11168
https://arxiv.org/abs/2412.06769
https://arxiv.org/abs/2412.06769
https://blog.jrheard.com/procedural-dungeon-generation-drunkards-walk-in-clojurescript
https://blog.jrheard.com/procedural-dungeon-generation-drunkards-walk-in-clojurescript
https://openreview.net/forum?id=H6UMc5VS70
https://openreview.net/forum?id=H6UMc5VS70

Under review as submission to TMLR

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work: Scratchpads for
intermediate computation with language models. 2021.

Leyan Pan, Vijay Ganesh, Jacob Abernethy, Chris Esposo, and Wenke Lee. Can transformers reason logically?
a study in sat solving. arXiv preprint arXiv:2410.07432, 2024.

Judea Pearl. Heuristics: intelligent search strategies for computer problem solving. Addison-Wesley, 1984.

Jacob Pfau, William Merrill, and Samuel R Bowman. Let’s think dot by dot: Hidden computation in
transformer language models. arXiv preprint arXiv:2404.15758, 2024.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Generalization
beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177, 2022.

Qwen Team. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115, 2024. URL https://arxiv.org/
abs/2412.15115.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang,
YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

DiJia Su, Sainbayar Sukhbaatar, Michael Rabbat, Yuandong Tian, and Qinqging Zheng. Dualformer: Control-
lable fast and slow thinking by learning with randomized reasoning traces. In The Thirteenth International
Conference on Learning Representations, 2024.

Hao Sun. Reinforcement learning in the era of llms: What is essential? what is needed? an rl perspective on
rlhf, prompting, and beyond. arXiv preprint arXiv:2310.06147, 2023.

Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal on computing, 1(2):146-160,
1972.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel Bowman. Language models don’t always say what
they think: Unfaithful explanations in chain-of-thought prompting. Advances in Neural Information
Processing Systems, 36:74952-74965, 2023.

Constantin Venhoff, Ivian Arcuschin, Philip Torr, Arthur Conmy, and Neel Nanda. Understanding reasoning
in thinking language models via steering vectors. In Workshop on Reasoning and Planning for Large
Language Models, 2025. URL https://openreview.net/forum?id=0whVWNOBcz.

Boshi Wang, Xiang Yue, Yu Su, and Huan Sun. Grokked transformers are implicit reasoners: A mechanistic
journey to the edge of generalization. arXiv preprint arXiv:2405.15071, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information
processing systems, 35:24824-24837, 2022.

David Bruce Wilson. Generating random spanning trees more quickly than the cover time. In Proceedings of
the twenty-eighth annual ACM symposium on Theory of computing, pp. 296-303, 1996.

Mengjiao Sherry Yang, Dale Schuurmans, Pieter Abbeel, and Ofir Nachum. Chain of thought imitation with
procedure cloning. Advances in Neural Information Processing Systems, 35:36366-36381, 2022.

Shu Yang, Junchao Wu, Xin Chen, Yunze Xiao, Xinyi Yang, Derek F Wong, and Di Wang. Understanding
aha moments: from external observations to internal mechanisms. arXiv preprint arXiv:2504.02956, 2025a.

Wenkai Yang, Shuming Ma, Yankai Lin, and Furu Wei. Towards thinking-optimal scaling of test-time compute
for llm reasoning. arXiv preprint arXiv:2502.18080, 2025b.

15

https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://openreview.net/forum?id=OwhVWNOBcz

Under review as submission to TMLR

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu,
Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale. arXiv
preprint arXiv:2508.14476, 2025.

Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning Ding, Kaiyan Zhang, Bowen Zhou, Zhiyuan Liu, and
Hao Peng. Free process rewards without process labels. arXiv preprint arXiv:2412.01981, 2024.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with reasoning.
Advances in Neural Information Processing Systems, 35:15476-15488, 2022.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in large
language models. arXiv preprint arXiv:2210.05493, 2022.

Zigian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The clock and the pizza: Two stories

in mechanistic explanation of neural networks. Advances in neural information processing systems, 36:
27223-27250, 2023.

Hengguang Zhou, Xirui Li, Ruochen Wang, Minhao Cheng, Tianyi Zhou, and Cho-Jui Hsieh. R1-zero’s" aha
moment" in visual reasoning on a 2b non-sft model. arXiv preprint arXiv:2503.05132, 2025.

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J. Zico Kolter, and Matt Fredrikson. Universal and
transferable adversarial attacks on aligned language models, 2023. URL https://arxiv.org/abs/2307.
15043l

16

https://arxiv.org/abs/2307.15043
https://arxiv.org/abs/2307.15043

Under review as submission to TMLR

A Appendix

A.1 Additional experiment details

For all our experiments, we trained the Qwen-2.5-0.5B decoder only models. We used a custom tokenizer
with domain specific vocabulary which reduced the model parameters to around 380M. We optimized with
AdamW (51=0.9, 52=0.999) and applied a weight decay of 0.1528, a peak learning rate of 2.2758e-4, and 100
warm-up steps, all under bfl6 precision. We train the models for 95k training steps. All randomness was
controlled with fixed seeds. The training dataset size is 50k datapoints unless specified otherwise.

For GRPO, we use 16 as the sample size, 256 as the batch size and 0.01 as the entropy coefficient for both
the models.

A.2 Breakdown of responses as confusion matrices

Wilson Kruskal DFS SF-Style Drunkard
S
ng 183 23 157 12 455 5 1000 0 1000 0
- O
E § 18 776 36 795 68 472 0 0 0 0
Incorrect Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect Correct
Plan Plan Plan Plan Plan Plan Plan Plan Plan Plan

Figure 6: Plan validity versus trace validity for models trained on correct A* traces on 500k 30x30 Wilson
magzes, measured across various maze problem distributions.

Wilson Kruskal DFS SF-Style Drunkard
o
TEE 691 62 660 50 848 41 558 128 496 100
§§ 8 239 13 277 0 111 13 301 1 403
Incorrect Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect Correct
Plan Plan Plan Plan Plan Plan Plan Plan Plan Plan

Figure 7: Plan validity versus trace validity for models trained on correct A* traces on 500k 30x30 Searchformer-
style mazes, measured across various maze problem distributions.

We provide a detailed breakdown of model responses trained on mazes generated by Wilson’s and SF-style
generation. In section 4, we had provided the Plan accuracy and trace validity within responses that led to
the valid plan. Here we present these results as confusion matrices in Figures [TO DOJ, with each domain
represented by a separate matrix. These results break down the correlation between model accuracy and
trace validity. As can be seen from the results, trace accuracy is not a perfect predictor of plan accuracy. In
fact, as can be seen from the diagonal entries, the model can produce valid traces and then continue on to
produce an incorrect plan or produce invalid traces and yet end up at a correct plan.

A.3 Validating Traces and Solutions of Searchformer Models

Along with our own trained models, we have also evaluated models trained by (Lehnert et al., [2024). These
models have an encoder-decoder architecture and are trained on A* generated traces on 30x30 mazes ﬂ The
mazes are generated by their random generation method as described in Section 3. We see that across model

5We found that the dataset used to train the models had <1% of instances with incorrect traces. Therefore we created our
own A* implementation to ensure complete correctness of the traces within our generated datasets.

17

Under review as submission to TMLR

sizes (from 15M to 175M parameters) there are a significant number of instances where the model produces a
correct plan but the trace that it outputs is invalid. This is in line with the results of our models and provide
further evidence that trace accuracy is not a perfect predictor of plan accuracy.

15M 45M 175M
JSo
=X 4116 1692 5748 609 4203 1763
==
o
S8 140 452 10 33 98 335
>
Incorrect Correct Incorrect Correct Incorrect Correct
Plan Plan Plan Plan Plan Plan

Figure 8: Plan validity versus trace validity for models trained on correct A* traces on 30x30 mazes, measured
across varying model sizes and averaged over five runs (6400 responses per run).

A.4 GRPO on Models Trained with Varying Proportions of Swapped Traces

Table 6: Performance of 50k Wilson models with varying proportions of swapped traces. Each cell shows
Plan Accuracy (%) / Trace Validity within valid plans (%).

Model / Checkpoint Wilson Kruskal DFS Searchformer
Quarter-swap

0 64.7 / 84.9 679 /88.2 44.5/73.5 0.3 /0.0

70 80.3 /93.0 829 /934 475 /81.3 0.3 /0.0

140 82.5 /919 86.7/925 51.6/79.9 0.2 /0.0
Half-swap

0 61.8 /81.2 56.7 /77.0 42.0/71.7 0.3 /0.0

70 80.9 /80.7 76.5/77.0 56.2/67.4 0.3 /0.0

140 87.9 /736 87.5/70.4 64.9/57.0 0.2 /0.0
Three-quarter-swap

0 60.0 / 30.3 58.0/31.2 41.6 /28.4 0.2 /0.0

70 88.3 /15.7 88.7 /178 63.5/13.2 0.2 /0.0

140 91.2 /132 916 /134 64.0/9.38 0.2 /0.0

We additionally observe that models trained on swapped or partially-swapped datasets can benefit from
further refinement using post-training methods such as GRPO. We find that GRPO yields measurable gains
in plan validity across distributions with these models, while trace validity reduces in most cases. In other
words, GRPO improves the solutions themselves but does not induce the model to produce more meaningful
or correct intermediate traces. This effect is consistent across the swap-spectrum checkpoints reported in
Table [6] where plan accuracy continues to increase after GRPO despite trace validity remaining flat or
decreasing. These results suggest that, even when models are trained on mixed- or noisy-trace data—which
may occur in practice when traces are scraped from the wild or generated using STAR-like bootstrapping
procedures [Zelikman et al.| (2022)—post-training optimization can still reliably boost performance, without
requiring alignment between the traces and problem at hand.

18

	Introduction
	Related Work
	Background
	The Maze Pathfinding Domain
	The A* Search Algorithm

	Validating Traces and Solutions
	Evaluating Solution Accuracy vs. Trace Validity
	Training with Traces: Does Meaning Matter?
	Does post-training increase the semantic correctness of the intermediate tokens?

	Is the length of Intermediate Tokens a true reflection of Problem Complexity?
	Discussion and Conclusion
	Appendix
	Additional experiment details
	Breakdown of responses as confusion matrices
	Validating Traces and Solutions of Searchformer Models
	GRPO on Models Trained with Varying Proportions of Swapped Traces

