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Abstract
The use of target networks is a common practice in deep reinforcement learning for stabilizing
the training; however, theoretical understanding of this technique is still limited. In this paper,
we study the so-called periodic Q-learning algorithm (PQ-learning for short), which resembles
the technique used in deep Q-learning for solving infinite-horizon discounted Markov decision
processes (DMDP) in the tabular setting. PQ-learning maintains two separate Q-value estimates
– the online estimate and target estimate. The online estimate follows the standard Q-learning
update, while the target estimate is updated periodically. In contrast to the standard Q-learning,
PQ-learning enjoys a simple finite time analysis and achieves better sample complexity for finding
an ε-optimal policy. Our result provides a preliminary justification of the effectiveness of utilizing
target estimates or networks in Q-learning algorithms.
Keywords: Reinforcement learning; Q-learning; stochastic optimization; sample complexity

1. Introduction

Reinforcement learning (RL) addresses the optimal control problem for unknown systems through
experiences (Sutton and Barto, 1998). Among many others, Q-learning (Watkins and Dayan, 1992)
is one of the most popular RL algorithms. Recent deep Q-learning (Mnih et al., 2015) has captured
significant attentions in the RL community for outperforming humans in several challenging tasks.
Besides the effective use of deep neural networks as function approximators, the success of deep
Q-learning is also indispensable to the utilization of target networks when calculating target values
at each iteration. Specifically, deep Q-learning maintains two separate networks, the Q-network
that approximates the state-action value function, and the target network that is synchronized with
the Q-network periodically. In practice, using target networks is proven to substantially improve
the performance of Q-learning algorithms (Mnih et al., 2015). However, theoretical understanding
of this technique remains rather limited. Lee and He (2019b) recently explores a family of target-
based temporal-difference learning algorithms for policy evaluation and develops their convergence
analyses. Yang et al. (2019) provides theoretical analysis of the neural fitted Q-iteration under some
simplification.

In this paper, we investigate a simple algorithm, called the periodic Q-learning (PQ-learning),
for finding the optimal policy of infinite-horizon discounted Markov decision process (DMDP) in
the tabular setting (i.e., discrete finite state-space). The algorithm mimics deep Q-learning by main-
taining two separate Q-value estimates – the online estimate and target estimate: the online estimate
takes the standard Q-learning updating rule while freezing the target estimate, and the target esti-
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InitializeQ0(s, a) ∈ [− 1
1−γ ,

1
1−γ ],∀(s, a) ∈ S×A; iteration T ; steps {Nk}T−1k=0 ; stepsizes {βt}∞t=0;

for iteration k = 0, 1, . . . , T − 1 do
for step t = 0, 1, . . . , Nk − 1 do

Obtain sample (s, a) ∼ da(s), s′ ∼ Pa(s, ·) and r(s, a)
Update Qk,t+1(s, a) = Qk,t(s, a)− βt(r(s, a) + γmaxa′∈AQk(s

′, a′)−Qk,t(s, a))

end
Update Qk+1 = Qk,Nk

end
Return QT

Algorithm 1: Periodic Q-Learning (PQ-learning)

mate is updated through a periodic fashion. Formally speaking, consider the DMDP represented
by the tuple (S,A, P, r, γ), where S and A are the finite state and action spaces, r(s, a) ∈ [−1, 1]
is the state-action reward, Pa(s, s′) is the probability of transiting from s to s′ when taking ac-
tion a, and γ ∈ (0, 1) is a discount factor. The objective is to find a deterministic optimal policy,
π∗ : S → A, such that the cumulative discounted rewards over infinite time horizons is maximized,
i.e., π∗ := arg maxπ E

[∑∞
k=0 γ

kr(sk, π(sk))
∣∣π] . For simplicity, throughout, we assume that we

have access to a sequence of i.i.d. random variables {(sk, ak)}∞k=0 from a fixed underlying probabil-
ity distribution, da(s), s ∈ S, a ∈ A, of the state and action pair (s, a).1 The PQ-learning algorithm
is formally presented in Algorithm 1.

Notice that when setting Nk = 1 for all k, PQ-learning reduces to the standard Q-learning. To
the authors’ knowledge, finite-time convergence analysis of the standard Q-learning for DMDPs
can be challenging, and only few results are reported in the literature. In particular, Even-Dar and
Mansour (2003) shows that to achieve an ε-optimal Q-function such that ‖QT − Q∗‖2 ≤ ε with
probability at least 1−δ, the number of samples required by the standard Q-learning algorithm with

linear learning rate isO
(
(|S||A|)

2 ln(1/ε)
1−γ

(1−γ)2ε2 ln
(
|S||A|
δ(1−γ)ε

))
. However, for PQ-learning, we show that the

finite sample analysis can be easily established based on standard tools of analyzing the stochastic
gradient descent and the contraction property of Bellman equation. Our analysis hinges on a key
observation that PQ-learning can be viewed as solving a sequence of mean-squared Bellman error
minimization subproblems through the stochastic gradient descent routine.

As a main result, we prove that to find an ε-optimal Q function such that E[‖QT −Q∗‖∞] ≤ ε,
the number of samples needed for PQ-learning is at most

O
(
|S||A|

ε2(1− γ)4
L

c3
ln

(
1

(1− γ)2ε

))
,

where c and L corresponds to the minimal and maximal probabilities of the state-action distribution
da(s). The most efficient sample complexity can be achieved when the state-action distribution is
uniform. In this case, the sample complexity becomes

O
(
|S|3|A|3

ε2(1− γ)4
ln

(
1

(1− γ)2ε

))
.

1. This assumption can be relaxed to ergodicity conditions. But for simplicity, we focus only on the i.i.d. case.
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Table 1: Comparison of complexities in terms of |S|, |A|, and ε up to logarithmic factors. The no-
tation “−” means that the run-time complexity is the same order as the sample complexity.

Algorithm Sample Complexity Run-time Complexity

PQ-learning (this paper) Õ
(
|S|3|A|3
ε2

)
−

Q-learning (Even-Dar and Mansour, 2003) Õ
(
(|S||A|)

2 ln(1/ε)
1−γ

ε2

)
−

Delayed Q-learning (Strehl et al., 2006) Õ
(
|S||A|
ε4

)
−

Phased Q-learning (Kearns and Singh, 1999) Õ
(
|S||A|
ε2

)
N/A

SPD Q-learning (Lee and He, 2019a) Õ
(
|S|8|A|8
ε2

)
−

Lower bound (Azar et al., 2013) Ω
(
|S||A|
ε2

)
N/A

Compared to the standard Q-learning, PQ-learning is also fairly simple to implement, withO(1)
per-iteration complexity. On the theory side, the sample complexity (also run-time complexity) of
PQ-learning greatly improves that of the standard Q-learning, in terms of the dependence on the
sizes of state and action spaces. Our result, in some sense, sheds light on the effectiveness of
using target estimates or networks commonly observed in practice. Finally, while the current paper
only focuses on the tabular setting, PQ-learning can be extended to incorporate linear function
approximation or neural network approximation (i.e., similar to deep Q-learning). We hope this
work would open the door to further investigation of the theory of deep Q-learning and the design
of more efficient reinforcement learning algorithms with target networks.

Related works. There exists a significant body of Q-learning variations for tabular DMDP in
the literature. Some representative model-free algorithms include phased Q-learning (Kearns and
Singh, 1999), delayed Q-learning (Strehl et al., 2006), fitted Q-learning (Ernst et al., 2005), double
Q-learning (Hasselt, 2010), Zap Q-learning (Devraj and Meyn, 2017), stochastic primal-dual Q-
learning (SPD Q-learning) (Lee and He, 2019a), etc. Besides, there are other sampling algorithms
for tabular DMDP, such as R-MAX (Strehl et al., 2009), empirical QVI (Azar et al., 2013), sublinear
randomized QVI (Sidford et al., 2018), etc. We briefly summarize the computational complexities
of some representative works in Table 1, ignoring the dependence on the logarithmic factors and the
discount factor.2 We can see that PQ-learning is reasonably efficient comparing to several existing
Q-learning variations. For instance, the phased Q-learning (Kearns and Singh, 1999) has lower
sample complexity, but its run-time complexity can be very large. The delayed Q-learning (Strehl
et al., 2006) is efficient in that the complexity scales linearly in |S| and |A|, but the complexity
in terms of ε is much worse than PQ-learning. Note that the sample complexity achieved by PQ-
learning, is by no means optimal, in terms of the dependence on |S|, |A| and the factor 1 − γ,
comparing to the lower bound established in the literature for DMDP under a generative sampling
model (Strehl et al., 2009; Azar et al., 2013). However, we emphasize that the goal of this work is

2. The complexities in Table 1 are obtained after simplifications for convenience of presentations, to provide a rough
overview rather than a detailed comparative analysis since many algorithms operate under different assumptions.
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to understand the convergence and efficiency of target-based Q-learning, rather than establishing an
optimal algorithm that matches the sample complexity lower bound for tabular DMDP.

2. Periodic Q-learning

Recall that the Q-function under policy π is defined as Qπ(s, a) = E
[ ∑∞

k=0 γ
kr(sk, π(sk))

∣∣ s0 =
s, a0 = a, π

]
, s ∈ S, a ∈ A, and the optimal Q-function is defined as Q∗(s, a) = Qπ

∗
(s, a) for all

s ∈ S, a ∈ A. Consider the Bellman operator T : R|S||A| → R|S||A|,

(TQ)(s, a) :=
∑
s′∈S

Pa(s, s
′)

(
r(s, a) + γmax

a′∈A
Q(s′, a′)

)
.

The Bellman operator is known to be a contraction with respect to the max-norm (Puterman, 2014),
and the optimal Q-function, Q∗, is the unique fixed point of this operator. Once Q∗ is known, then
an optimal policy can be retrieved by π∗(s) = arg maxa∈AQ

∗(s, a). Therefore, the MDP can be
solved by finding the optimal Q-function.

For the PQ-learning, at each iteration k, the algorithm can be viewed as approximately comput-
ing the Bellman operator TQk through minimizing the mean-squared loss function

min
Q∈R|S||A|

l(Q;Qk) :=
1

2
Es,a

[(
Es′
[
r(s, a) + γmax

a′∈A
Qk(s

′, a′)

]
−Q(s, a)

)2
]
. (1)

Here Es,a is the expectation taken with respect to the current state-action pair which has the distri-
bution da(s), i.e., P[sk = s, ak = a] = da(s) for any time step k ≥ 0, and Es′ is the expectation
taken with respect to the next state s′ ∼ Pa(s, ·). In particular, PQ-learning approximately solves
the subproblem (1) through Nk steps of stochastic gradient descent:

Qk,t+1 = Qk,t − βt ∇̃Ql(Q;Qk)
∣∣∣
Q=Qk,t

, t = 0, . . . , Nk − 1

where ∇̃Ql(Q;Qk) is a stochastic estimator of the gradient ∇Ql(Q;Qk). Here, Qk can be treated
as the target estimate of the optimal Q-values, and Qk,t is the online estimate. The target estimate
is synchronized with the online estimate after Nk step, i.e., Qk+1 = Qk,Nk . Here, for generality,
we allow the inner steps Nk to vary at every iteration. PQ-learning resembles the original deep
Q-learning (Mnih et al., 2015) when Nk is set to a constant. If Nk = 0 for all k = 0, 1, . . . , T − 1,
then PQ-learning corresponds to the standard Q-learning.

As we only apply a finite number Nk steps of SGD to solve (1), the SGD subroutine will
return an approximate solution with a certain error bound. Throughout, we denote {εk}Tk=1 as the
approximation errors such that

E[‖Qk+1 −TQk‖22] ≤ εk+1.

As a result, the convergence of PQ-learning depends on the cumulative approximation errors {εk}Tk=1

induced from SGD subroutine, whereas these error terms are determined by the number of inner
steps, the learning rate, and the variance of stochastic gradient. In what follows, we derive the con-
vergences of the outer and inner iterations, and further establish the overall sample complexity for
achieving ε-optimal policy.
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Remark. It is worth pointing out that PQ-learning shares some similarity with fitted Q-iteration
(FQI) (Ernst et al., 2005) algorithms in that both approaches can be viewed as approximating the
Bellman operator at every iteration, but there exist notable differences. FQI usually solves the result-
ing linear regression problem through matrix inversion computation or batch algorithms, requiring
expensive memory and computation cost. On the other hand, PQ-learning solves the subproblems
through the online SGD subroutine, which is much more efficient. By using the SGD steps, PQ-
learning can be naturally interpreted as Q-learning with periodic target update (Algorithm 1), thus
much simpler than the FQI algorithms. As will be shown in the next section, PQ-learning enjoys
a much simpler finite-time convergence and complexity analysis, in stark contrast to many other
online Q-learning algorithms.

3. Main Results

Throughout, we assume that the sampling distribution satisfies that da(s) > 0 for all s ∈ S, a ∈ A.
Throughout the paper, we define the constants c := mins∈S,a∈A da(s) and L := maxs∈S,a∈A da(s),
the nonsingular diagonal matrix D := diag[D1; . . . , D|A|] ∈ R|S||A|×|S||A|, where each Da, a ∈
{1, 2, · · · , |A|} is a diagonal matrix whose diagonal entries consist of the distribution da(s), s ∈ S.
We start by characterizing the outer and inner iteration convergence, respectively.

Proposition 1 (Outer iteration convergence) We have

E[‖QT −Q∗‖∞] ≤
T∑
k=1

γT−k
√
εk + γTE[‖Q0 −Q∗‖∞].

Particularly, if εk = ε for all k ≥ 0, then E[‖QT −Q∗‖∞] ≤
√
ε

1−γ + γTE[‖Q0 −Q∗‖∞].

One can see that the error is essentially decomposed into two terms, one from the approximation
errors induced from SGD procedures and one from the contraction property of solving the subprob-
lems, which can also be viewed as approximately computing the Bellman operators. To further
analyze the approximation error from the SGD procedure, existing convergence results for SGD
can be applied with some modifications.

Proposition 2 (Inner iteration convergence) Suppose that E[‖Qi−TQi−1‖22] ≤ ε, i ∈ {1, 2, . . . , k}
and ε ≤ (1 − γ)2 hold. Suppose the PQ-learning algorithm is run with a step-size rule βt =
β/(λ+ t) with β = 2/c and λ = 16L/(c2). Then,

E[‖TQk −Qk,t‖2D] ≤ 512|S||A|
(1− γ)2

L

c3
· 1

λ+ t
, ∀t ≥ 0.

Proposition 2 ensures that the inner iterate, Qk,t, converges to the solution of the subproblem at the
rate of O(1/t). Combining Proposition 2 with Proposition 1, the overall sample complexity can be
easily derived.

Theorem 3 (Sample Complexity I) Let βt = β/(λ+ t) with β = 2/c and λ = 16L/(c2) and the
maximum number of steps

Nk = N ≥ 2048|S||A|
ε2(1− γ)4

L

c3
.
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PQ-learning achieves an ε-optimal solution, E[‖QT − Q∗‖∞] ≤ ε, with the number of samples at
most

2048|S||A|
ε2(1− γ)4 ln γ−1

L

c3
ln

(
4

(1− γ)ε

)
.

Note that in Theorem 3, the constant c and L depend on |S| and |A|. In particular, c is upper
bounded by 1/(|S||A|), while L is lower bounded by 1/(|S||A|). The upper and lower bounds are
achieved when the state-action distribution is uniform. In other words, the best sample complexity
bound in Theorem 3 is obtained when the state-action distribution is uniform because in this case,
c = L = 1/(|S||A|) according to the definitions of c and L, and the quantity, L

c3
, is minimized.

Accordingly, the sample complexity becomes Õ
(
|S|3|A|3
ε2(1−γ)4

)
. Since the per-iteration (inner iteration)

complexity is O(1), the run-time complexity of PQ-learning has the same order as the sample
complexity.

Although Theorem 3 provides a finite-time convergence analysis of PQ-learning in terms of the
Q-function, it does not reflect convergence of the corresponding policy recovered fromQT , namely,
πQT (s) := arg maxa∈AQT (s, a). In the sequel, we focus on the convergence of the policy πQT .
A policy, πQT , is called the ε-optimal policy if E[‖V πQT − V ∗‖∞] ≤ ε holds. Before proceeding,
we present a simple lemma that characterizes the relationship between the E[‖QT − Q∗‖∞] with
E[‖V πQT − V ∗‖∞].

Lemma 4 If E[‖QT −Q∗‖∞] ≤ ε, then E[‖V πQT − V ∗‖∞] ≤ 2ε
1−γ .

Invoking Lemma 4 and Theorem 3, we immediately arrive at the following result.

Theorem 5 (Sample Complexity II) Under the same setting as above, PQ-learning returns an
ε-optimal policy πQT such that E[‖V πQT − V ∗‖∞] ≤ ε, with ε ≤ 1, with the number of samples at
most

8192|S||A|
ε2(1− γ)6 ln γ−1

L

c3
ln

(
8

(1− γ)2ε

)
,

where c and L are constants as defined before.

Similarly, when the state-action distribution is uniform, the sample complexity bound for PQ-
learning to obtain an ε-optimal policy becomes Õ

(
|S|3|A|3
ε2(1−γ)6

)
. It is worth pointing out that the

sample complexity lower bound for solving DMDP under a generative sampling model established
in the literature is Ω

(
|S||A|

ε2(1−γ)3

)
(Azar et al., 2013). Hence, PQ-learning is optimal in terms of

dependence on ε, but not in the dependence on |S|, |A| and the factor 1 − γ. Nonetheless, the
sample complexity greatly improves over the existing results on standard Q-learning as reported in

Table 1, e.g., Õ((|S||A|)
2 ln(1/ε)

1−γ /(ε2)) in (Even-Dar and Mansour, 2003).

4. Technical Proofs

In this section, we provide detailed analysis of the main results described in the previous section.
The characterizations of inner and outer iteration convergences, as stated in Propositions 1 and 2
form the backbone of the main results. Below we present the proofs for these two propositions.
As can be seen, the analysis of PQ-learning is fairly simple and elegant based on the contraction
property and standard arguments of SGD convergence.
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4.1. Proof of Proposition 1

We have

E[‖Qk+1 −Q∗‖∞] ≤E[‖Qk+1 −TQk‖∞] + E[‖(TQk −Q∗‖∞]

≤
√

E[‖Qk+1 −TQk‖22] + E[‖TQk −TQ∗‖∞]

≤√εk+1 + γE[‖Qk −Q∗‖∞],

where the last inequality comes from the contraction property of the Bellman operator T. Therefore,
we have

E[‖Qk+1 −Q∗‖∞] ≤ √εk+1 + γE[‖Qk −Q∗‖∞].

Combining the last inequality over k = 0, 1, . . . , T − 1, the desired result is obtained. �

4.2. Proof of Proposition 2

Proposition 2 describes the convergence of the SGD subroutine when applied to solving the sub-
problem, minQ∈R|S||A| l(Q;Qk). Our proof follows the standard analysis in Bottou et al. (2018,
Theorem 4.7), adapted to the specific problem. Notice that the objective l(Q;Qk) is c-strongly
convex and L-Lipschitz smooth.

Lemma 6 (Strong convexity and Lipschitz continuity) The objective function l(Q;Qk) is c-strongly
convex with c = mins∈S,a∈A da(s) and is Lipschitz continuous with parameterL = maxs∈S,a∈A da(s).

Moreover, we introduce two key lemmas showing that the variance of the stochastic gradient and
target estimates can be properly bounded. Proofs are deferred in Appendix.

Lemma 7 (Boundedness of variance) We have for any Q ∈ R|S||A|,

E[‖∇̃Ql(Q;Qk)‖22|Qk, Q] ≤ 12γ2|S||A|‖Q∗ −Qk‖2∞ + 8‖∇Ql(Q;Qk)‖2D−1 +
18|S||A|
(1− γ)2

.

Lemma 8 (Boundedness of estimate) Suppose E[‖Qi−TQi−1‖22] ≤ ε, ∀i ≤ k and ε ≤ (1−γ)2.
Then

E[‖Qk −Q∗‖2∞] ≤ 8

(1− γ)2
.

Invoking the smoothness and strong convexity conditions, one can easily show that

‖TQk −Qk,t+1‖2D − ‖TQk −Qk,t‖2D
≤− 2βt‖DTQk −DQk,t‖22 + Lβ2t E[‖∇̃Ql(Qk,t;Qk)‖22|Qk,t, Qk]

≤(8Lβ2t − 2cβt)‖TQk −Qk,t‖2D + 12|S||A|γ2Lβ2t ‖Q∗ −Qk‖2∞ +
18|S||A|Lβ2t

(1− γ)2
.

Recall that the step-size satisfies 0 ≤ βt ≤ c
8L , which implies 8Lβ2t − 2βtc ≤ −cβt. Thus,

E[‖TQk −Qk,t+1‖2D] ≤ (1− cβt)E[‖TQk −Qk,t‖2D] + β2t

(
114|S||A|L

(1− γ)2

)
.
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By induction, it follows from the above recursion and βt = β
λ+t that

E[‖TQk −Qk,t‖2D] ≤ v

λ+ t
, ∀t ≥ 0, ∀k ≥ 1

where v = max{λE[‖TQk − Qk,0‖2D], β2C}, and C = 114|S||A|L
(1−γ)2 . Note that the term E[‖TQk −

Qk,0‖2D] can be further bounded as

E[‖TQk −Qk,0‖2D] ≤max
s,a

da(s)E[‖TQk −Qk,0‖22]

≤2L|S||A|E[‖TQk −TQ∗‖2∞] + 2L|S||A|E[‖TQ∗ −Qk‖2∞]

≤2L|S||A|γ2E[‖Qk −Q∗‖2∞] + 2L|S||A|E[‖Q∗ −Qk‖2∞]

≤32L|S||A|
(1− γ)2

,

Combing these facts then leads to the desired result in Proposition 2. �

5. Discussions

In this paper, we introduce PQ-learning and provide its finite-time convergence and complexity
analysis. The algorithm is relevantly simple, intuitive, and efficient. While this paper only focuses
on the tabular case, the algorithm and analysis might be extended to PQ-learning with function
approximations. When linear function approximation is used, a potential challenge arises from the
mismatch between the∞-norm used for the contraction property of the Bellman equation and the
2-norm used for the projection of the Q-function onto the ranges of the feature vectors. Therefore,
the composition of the Bellman operator and the projection operator is no longer a contraction.
However, under certain conditions on the feature matrix, the composite mapping can be proven to
be a contraction and our analysis would still apply. We leave this for future investigation.

Another important issue is the i.i.d. assumption of samples. This assumption is rather restrictive
as in practice the samples are often acquired from past trajectories or experiences. Our current
result can be easily extended to Markovian sampling by applying standard mixing time arguments
in stochastic optimization; see e.g., Duchi et al. (2012); Sun et al. (2018); Dalal et al. (2018). Note
that our analysis of PQ-learning is mainly based on characterizing the cumulative errors from the
SGD subroutines. Combining the existing result of SGD under Markovian samples with our analysis
immediately leads to the finite-time convergence of PQ-learning under Markovian samples, which
we leave for future investigation. Lastly, building on the stochastic optimization framework, various
methods such as the variance reduction techniques and acceleration schemes (Kingma and Ba, 2015;
Allen-Zhu, 2017; Johnson and Zhang, 2013; Defazio et al., 2014a,b) can be applied to replace the
SGD subroutine used in the algorithm, to further improve the convergence or sample efficiency.
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Appendix

1. Matrix representation

In this section, we introduce vector and matrix notations for the matrix representation of the Bellman
operator. To this end, we introduce the following compact notations:

P :=

 P1
...

P|A|

 ∈ R|S|×|S||A|, R :=

 R1
...

R|A|

 ∈ R|S||A|, Q :=

 Q1
...

Q|A|

 ∈ R|S||A|,

Da :=

da(1)
. . .

da(|S|)

 ∈ R|S|×|S|, D :=

D1

. . .
D|A|

 ∈ R|S||A|×|S||A|,

where Qa = Q(·, a) ∈ R|S|, a ∈ A and Ra(s) := E[r(s, a)|s, a]. Note that D is a nonsingular
diagonal matrix with strictly positive diagonal elements. Moreover, for any deterministic policy,
π : S → A, we define the corresponding distribution vector

π(s) := eπ(s) ∈ ∆|S|,

where ∆|S| is the set of all discrete probability distributions over S , and define the matrix

Ππ :=


π(1)T ⊗ eT1
π(2)T ⊗ eT2

...
π(|S|)T ⊗ eT|S|

 ∈ R|S|×|S||A|,

where ej , j ∈ {1, 2, . . . , |A|} is used to denote the j-th basis vector of dimension |A|. Note that Ππ

is a matrix function which depends on the policy π ∈ Θ. With these notations, the Bellman operator
can be compactly written by

TQ = R+ γPΠπQQ,

where πQ(s) := arg maxa∈A e
T
s Qa ∈ A. We note that, for any π ∈ Θ, PΠπ is the state-action pair

transition probability matrix under the deterministic policy π, and ΠπQ is a nonlinear matrix func-
tion which depends on Q. This matrix representation of the Bellman operator plays an important
role in the subsequent developments.

2. Proofs of Technical Lemmas

Throughout the remaining part, we denote by F (Q) := l(Q;Qk) := 1
2‖R + PΠπQk

Qk − Q‖2D.
Given a sample (s, a, s′), define the corresponding stochastic Bellman operator

T̂Qk := γ
∑

j∈S,i∈A
(ei ⊗ ej)(es′)TΠπQk

Qk +R

and the matrix D̂ := (ea ⊗ es)(ea ⊗ es)T . Then, the stochastic gradient is written by

g(Q;Qk) = −(D̂T̂Qk − D̂Q) = −((ea ⊗ es)((es′)TγΠπQk
Qk + (ea ⊗ es)TR− (ea ⊗ es)TQ)).
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2.1. Proof of Lemma 4

We first show that if E[‖QT −Q∗‖∞] ≤ ε, then

E[‖QπQT −Q∗‖∞] ≤ 2γε

1− γ
.

This is because

E[‖QπQT −Q∗‖∞] =E[‖QπQT −TQT + TQT −Q∗‖∞]

≤E[‖QπT −TQT ‖∞] + E[‖TQT −Q∗‖∞]

=E[‖R+ γPΠπQT
QπQT − (R+ γPΠπQT

QT )‖∞] + γε

≤E[γ‖PΠπQT
‖∞‖QπQT −QT ‖∞] + γε

≤γE[‖QπQT −QT ‖∞] + γε

≤γE[‖QπQT −Q∗‖∞] + γE[‖Q∗ −QT ‖∞] + γε

≤γE[‖QπQT −Q∗‖∞] + 2γε,

where the second line is due to the triangle inequality, the second line uses the optimal Bellman
equation,QπQT = R+γPΠπQT

QπQT andQ∗ = TQ∗ and the contraction of the Bellman operator,
the forth line is due to the hypothesis E[‖QT − Q∗‖∞] ≤ ε, the fifth line is due to the Cauchy-
Schwarz inequality, the sixth line is due to the fact that PΠπQT

is a stochastic matrix whose row
sum is one, the seventh line is due to the triangle inequality, and the last line uses the hypothesis
E[‖QT − Q∗‖∞] ≤ ε. The desired result is obtained by rearranging the last inequality. Therefore,
we have

‖V πQT − V ∗‖∞ = max
s∈S
|V πQT (s)− V ∗(s)|

= max
s∈S
|QπQT (s, πQT (s))−max

a∈A
Q∗(s, a)|

≤max
s∈S
|QπQT (s, πT (s))−max

a∈A
QT (s, a)|+ max

s∈S
|max
a∈A

QT (s, a)−max
a∈A

Q∗(s, a)|

= max
s∈S
|QπQT (s, πQT (s))−max

a∈A
QT (s, a)|+ ‖QT −Q∗‖∞. (2)

For any fixed s, we have |QπQT (s, πQT (s)) − maxa∈AQT (s, a)| ≤ maxa∈A |QT (s, a) −
QπQT (s, a)|. By taking the max over s on the right-hand side first and then on the left-hand side, we
obtain maxs∈S |QπQT (s, πQT (s)) −maxa∈AQT (s, a)| ≤ ‖QT −QπQT ‖∞. Using this inequality
and taking the expectation on both sides of the inequality (2), it is further bounded as

E[‖V πQT − V ∗‖∞] ≤E[‖QT −QπQT ‖∞] + E[‖QT −Q∗‖∞]

≤E[‖QT −QπQT ‖∞] + ε

≤E[‖QT −Q∗‖∞] + E[‖Q∗ −QπQT ‖∞] + ε

≤E[‖Q∗ −QπQT ‖∞] + 2ε

≤ 2γε

1− γ
+ 2ε

≤ 2ε

1− γ
.

This completes the proof. �
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2.2. Proof of Lemma 6

Noting that

F (Q) =
1

2
(R+ PΠπQk

Qk)
TD(R+ PΠπQk

Qk) +
1

2
QTDQ− (R+ PΠπQk

Qk)
TDQ,

which is a convex quadratic function. Since F (Q) is twice differentiable, F (Q) is c-strongly
convex if and only if there exists a constant c > 0 such that ∇2

QF (Q) ≥ cI . Moreover, since
the Hessian is ∇2

QF (Q) = D, and D ≥ mins∈S,a∈A da(s)I , F (Q) is c-strongly convex with
c = mins∈S,a∈A da(s).

Moreover, noting that∇F (Q) = −D(R+ PΠπQk
Qk −Q), we have

‖∇F (Q)−∇F (Q′)‖2 =‖D(R+ PΠπQk
Qk −Q)−D(R+ PΠπQk

Qk −Q′)‖2
=‖D(Q−Q′)‖2
≤‖D‖2‖Q−Q′‖2,

where ‖D‖2 =
√
λmax(DD) = maxs∈S,a∈A da(s), which proves the desired result. �

2.3. Proof of Lemma 7

We want to show that

E[‖g(Q;Qk)‖22|Qk, Q] ≤ 12γ2|S||A|‖Q∗ −Qk‖2∞ + 8‖∇F (Q)‖2D−1 +
18|S||A|
(1− γ)2

.

We first have

E[‖g(Q;Qk)‖22|Qk, Q] =E[‖D̂T̂Qk − D̂Q|Qk, Q]

=E[‖D̂T̂Qk − D̂Q− (D̂T̂Q∗ − D̂Q∗) + D̂T̂Q∗ − D̂Q∗‖22|Qk, Q]

≤2E[‖(ea ⊗ es)((es′)TγΠπQk
Qk − (es′)

TγΠπQ∗Q
∗)

− (ea ⊗ es)((ea ⊗ es)TQ− (ea ⊗ es)TQ∗)‖22|Qk] + 2σ2,

where σ2 := E[‖D̂T̂Q∗ − D̂Q∗‖22] and the last inequality is due to ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2.
Now, we further have

E[‖g(Q;Qk)‖22|Qk, Q]

≤2E[‖ea ⊗ es‖22]E[‖(es′)T (γΠπQk
Qk − γΠπQ∗Q

∗)− (ea ⊗ es)T (Q−Q∗)‖22|Qk, Q] + 2σ2

≤2E[‖(es′)T (γΠπQk
Qk − γΠπQ∗Q

∗)− (ea ⊗ es)T (Q−Q∗)‖22|Qk, Q] + 2σ2

≤4γ2E[‖(es′)T (ΠπQk
Qk −ΠπQ∗Q

∗)‖22|Qk] + 4E[‖(ea ⊗ es)T (Q−Q∗)‖22|Q] + 2σ2

=4γ2E[(ΠπQk
Qk −ΠπQ∗Q

∗)T es′(es′)
T (ΠπQk

Qk −ΠπQ∗Q
∗)|Qk, Q]

+ 4E[(Q−Q∗)T (ea ⊗ es)(ea ⊗ es)T (Q−Q∗)|Q] + 2σ2

=4γ2‖ΠπQk
Qk −ΠπQ∗Q

∗‖2E[es′ (es′ )T ] + 4‖Q−Q∗‖2D + 2σ2

≤4γ2|S|‖ΠπQk
Qk −ΠπQ∗Q

∗‖2∞ + 4‖Q−Q∗‖2D + 2σ2,

13



PERIODIC Q-LEARNING

where the first inequality follows from the CauchySchwarz inequality and Holder’s inequality, the
second inequality is due to E[‖ea ⊗ es‖22] ≤ 1, and the third inequality is due to ‖a + b‖2 ≤
2‖a‖2 + 2‖b‖2. Invoking the following inequality

‖ΠπQk
Qk −ΠπQ∗Q

∗‖2∞ ≤ ‖Qk −Q∗‖2∞,

we further bound E[‖g(Q;Qk)‖22|Qk, Q] as

E[‖g(Q;Qk)‖22|Qk, Q] ≤ 4γ2|S|‖Qk −Q∗‖2∞ + 4‖Q−Q∗‖2D + 2σ2.

For later uses, we will bound ‖Q−Q∗‖2D in terms of∇F (Q) = −(DTQk−DQ). To this end,
we first observe

E[‖g(Q;Qk)‖22|Qk, Q] ≤4γ2|S|‖Qk −Q∗‖2∞ + 4‖Q−Q∗‖2D + 2σ2

=4γ2|S|‖Qk −Q∗‖2∞ + 4‖DQ−DQ∗‖2D−1 + 2σ2

=4γ2|S|‖Qk −Q∗‖2∞ + 4‖DQ∗ −DQ−∇F (Q) +∇F (Q)‖2D−1 + 2σ2

≤4γ2|S|‖Qk −Q∗‖2∞ + 8‖DQ∗ −DQ−∇F (Q)‖2D−1 + 8‖∇F (Q)‖2D−1 + 2σ2

=4γ2|S|‖Qk −Q∗‖2∞ + 8‖DQ∗ −DTQk‖2D−1 + 8‖∇F (Q)‖2D−1 + 2σ2

≤4γ2|S|‖Qk −Q∗‖2∞ + 8L‖Q∗ −TQk‖22 + 8‖∇F (Q)‖2D−1 + 2σ2

≤4γ2|S|‖Qk −Q∗‖2∞ + 8L|S||A|‖TQ∗ −TQk‖2∞ + 8‖∇F (Q)‖2D−1 + 2σ2

≤4γ2|S|‖Qk −Q∗‖2∞ + 8|S||A|γ2‖Q∗ −Qk‖2∞ + 8‖∇F (Q)‖2D−1 + 2σ2

≤12γ2|S||A|‖Q∗ −Qk‖2∞ + 8‖∇F (Q)‖2D−1 + 2σ2,

where the fourth line follows from ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2, the eight line comes from the
contraction property of the Bellman operator, and the last line follows after simplifications.

Finally, we will find a bound on σ2. By the definition, we have

σ2 =E[‖D̂T̂Q∗ − D̂Q∗‖22]
=E[‖(ea ⊗ es)((es′)TγΠπQ∗Q

∗ − (ea ⊗ es)TR− (ea ⊗ es)TQ∗)‖22]
≤E[‖(ea ⊗ es)‖22]E[‖(es′)TγΠπQ∗Q

∗ − (ea ⊗ es)TR− (ea ⊗ es)TQ∗‖22]
≤E[‖(es′)TγΠπQ∗Q

∗ − (ea ⊗ es)TR− (ea ⊗ es)TQ∗‖22]
≤3E[‖(es′)TγΠπQ∗Q

∗‖22] + 3E[‖(ea ⊗ es)TR‖22] + 3E[‖(ea ⊗ es)TQ∗‖22]
≤3E[‖(es′)TγΠπQ∗‖

2
2‖Q∗‖22] + 3E[‖(ea ⊗ es)TR‖22] + 3E[‖ea ⊗ es‖22‖Q∗‖22]

≤3|S||A|E[‖(es′)TγΠπQ∗‖
2
2‖Q∗‖2∞] + 3E[‖(ea ⊗ es)TR‖22] + 3|S||A|E[‖ea ⊗ es‖22‖Q∗‖2∞]

≤3|S||A|‖Q∗‖2∞ + 3 + 3|S||A|‖Q∗‖2∞

≤3|S|A| 1

(1− γ)2
+ 3 + 3|S||A| 1

(1− γ)2

≤ 9|S||A|
(1− γ)2

,

where third line is due to the CauchySchwarz inequality and Holder’s inequality, the forth line is
due to E[‖ea ⊗ es‖22] ≤ 1, the fifth line uses ‖a+ b+ c‖2 ≤ 3‖a‖2 + 3‖b‖2 + 3‖c‖2, the sixth line
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follows from the CauchySchwarz inequality again, the eighth line comes from ‖(es′)TγΠπQ∗‖22 ≤
1, ‖(ea ⊗ es)TR‖22 ≤ 1, ‖ea ⊗ es‖22 ≤ 1, the ninth line is due to ‖Q∗‖∞ ≤ 1/(1 − γ), and tenth
line follows after simplifications. Combining the bound σ2 ≤ 9|S||A|/(1 − γ)2 with the previous
result, the desired result follows. This completes the proof. �

2.4. Proof of Lemma 8

We want to show that if E[‖Qi−TQi−1‖22] ≤ ε,∀i ≤ k and ε ≤ (1− γ)2, then E[‖Qk−Q∗‖2∞] ≤
8

(1−γ)2 . We start with the following claim.
Claim: If E[‖Qi −TQi−1‖22] ≤ ε, i ∈ {1, . . . , T} with T ≥ 1, then we have

E[‖QT −Q∗‖2∞] ≤
(

1 + γ2

1− γ2

)
ε

2

1− γ2
+

(
γ2 + 1

2

)T
E[‖Q0 −Q∗‖2∞].

This is because

E[‖QT −Q∗‖2∞] =E[‖QT −TQT−1 + TQT−1 −Q∗‖2∞]

≤E[(‖QT −TQT−1‖∞ + ‖TQT−1 −Q∗‖∞)2]

≤E[(1 + δ−1)‖QT −TQT−1‖2∞ + (1 + δ)‖TQT−1 −Q∗‖2∞]

=(1 + δ−1)E[‖QT −TQT−1‖22] + (1 + δ)E[‖TQT−1 −TQ∗‖2∞]

≤(1 + δ−1)ε+ (1 + δ)γ2E[‖QT−1 −Q∗‖2∞],

where the second line is due to the triangle inequality, the third line is due to the fact that ‖a +
b‖22 ≤ (1 + δ)‖a‖22 + (1 + δ−1)‖b‖22 for any δ > 0, and the last line is due to the hypothesis,
E[‖Qi −TQi−1‖22] ≤ ε, i ∈ {1, . . . , T}. Note that we can choose δ > 0 such that (1 + δ)γ2 < 1

or equivalently, δ < 1−γ2
γ2

. Simply choosing δ = 1−γ2
2γ2

yields

E[‖QT −Q∗‖2∞] ≤
(

1 +
2γ2

1− γ2

)
ε+

γ2 + 1

2
E[‖QT−1 −Q∗‖2∞].

By the induction argument in T , we get

E[‖QT −Q∗‖2∞] ≤
(

1 +
2γ2

1− γ2

)
ε

T∑
k=1

(
γ2 + 1

2

)k
+

(
γ2 + 1

2

)T
E[‖Q0 −Q∗‖2∞]

≤
(

1 +
2γ2

1− γ2

)
ε
∞∑
k=1

(
γ2 + 1

2

)k
+

(
γ2 + 1

2

)T
E[‖Q0 −Q∗‖2∞]

=

(
1 + γ2

1− γ2

)
ε

2

1− γ2
+

(
γ2 + 1

2

)T
E[‖Q0 −Q∗‖2∞],

which proves the claim. As an immediate result,

E[‖Qk −Q∗‖2∞] ≤
(

1 + γ2

1− γ2

)
ε

2

1− γ2
+

(
γ2 + 1

2

)k
E[‖Q0 −Q∗‖2∞]
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≤
(

1 + γ2

1− γ2

)
ε

2

1− γ2
+

4

(1− γ)2

≤ 2

(1− γ)2
ε

2

1− γ2
+

4

(1− γ)2

≤ 4

1− γ2
+

4

(1− γ)2
,

≤ 8

(1− γ)2
, (3)

where the first line comes from the claim, the second inequality is due to E[‖Q0 − Q∗‖2∞] ≤
1/((1− γ)2) and (γ2 + 1)/2 < 1, the third line comes from 1+γ2

1−γ2 ≤
2

(1−γ)2 , the fourth line follows
from the hypothesis ε ≤ (1−γ)2, and the last line follows after simplifications. For the case k = 0,
the bound is also valid since E[‖Q0 −Q∗‖2∞] ≤ 4

(1−γ)2 . Taking the total expectation on both sides
and combining it with (3), we arrive at the desired conclusion. �

3. Proof of Theorem 3

The main line of the proof is to balance the inner and outer iteration numbers to achieve E[‖QT −
Q∗‖∞] ≤ ε.

First of all, we define numbers ξi > 0, i ∈ {1, 2, . . . , T} as those satisfying E[‖Qi−TQi−1‖∞] ≤√
ξi, i ∈ {1, 2, . . . , T} through the previous inner iterations. By Proposition 1, we first have

E[‖QT −Q∗‖∞] ≤
T∑
k=1

γT−k
√
ξk + γTE[‖Q0 −Q∗‖∞] ≤

T∑
k=1

γT−k
√
ξk +

2γT

1− γ
,

where the last inequality is due to E[‖Q0−Q∗‖∞] ≤ 2/(1−γ) and E[‖Qi−TQi−1‖∞] ≤
√
ξi, i ∈

{1, 2, . . . , T}. Moreover, by Proposition 2, a constant Nk = N implies that ξi can be uniformly
bounded by a constant ξ. Letting ξi = ξ, the last inequality can be bounded as

E[‖QT −Q∗‖∞] ≤
√
ξ

1− γ
+

2γT

1− γ
.

To achieve E[‖QT −Q∗‖∞] ≤ ε, it suffices to ensure

Inner iteration :

√
ξ

1− γ
≤ 1

2
ε,

Outer iteration :
2γT

1− γ
≤ 1

2
ε.

By rearranging terms and taking the logarithm on both sides of the second inequality, it follows that
the second inequality is equivalent to

T ≥ ln

(
1− γ

4
ε

)
/ ln γ = ln

(
4

(1− γ)ε

)
/ ln γ−1.

The first inequality is equivalent to ξ ≤ ε2(1−γ)2
4 , which is ensured if

E[‖Qi −TQi−1‖∞] ≤
√
ε2(1− γ)2

4
, ∀i ∈ {1, 2, . . . , T}. (4)
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The square of the left-hand side of the above inequality is bounded by

E[‖Qi −TQi−1‖∞]2 ≤E[‖Qi −TQi−1‖2]2

≤E[‖Qi −TQi−1‖22]
≤c−1E[‖Qi −TQi−1‖2D]

≤ 1

λ+N

512|S||A|
(1− γ)2

L

c3
,

where the second line is due to the Jensen’s inequality and the last line is due to Theorem 3. There-
fore, a sufficient condition to ensure (4) is 1

λ+N
512|S||A|
(1−γ)2

L
c3
≤ ε2(1−γ)2

4 . The last inequality is implied
by

2048|S||A|
ε2(1− γ)4

L

c3
≤ N.

In summary, if the total number of inner iteration N is greater than or equal to 2048|S||A|
ε2(1−γ)4

L
c3

, then

the first inequality
√
ξ

1−γ ≤
1
2ε holds. By combining the total number of inner iterations and

outer iterations, the total number of samples that are required to achieve E[‖QT − Q∗‖∞] ≤ ε

is 2048|S||A|
ε2(1−γ)4 ln γ−1

L
c3

ln
(

4
(1−γ)ε

)
. This completes the proof. �
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