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Abstract

Despite the recent successes of large, pretrained neural language models (LLMs),1

comparatively little is known about the representations of linguistic structure they2

learn during pretraining, which can lead to unexpected behaviors in response to3

prompt variation or distribution shift. To better understand these models and be-4

haviors, we introduce a general model analysis framework to study LLMs with5

respect to their representation and use of human-interpretable linguistic properties.6

Our framework, CALM (Competence-based Analysis of Language Models), is7

designed to investigate LLM competence in the context of specific tasks by inter-8

vening on models’ internal representations of different linguistic properties using9

causal probing, and measuring models’ alignment under these interventions with a10

given ground-truth causal model of the task. We also develop a new approach for11

performing causal probing interventions using gradient-based adversarial attacks,12

which can target a broader range of properties and representations than prior tech-13

niques. Finally, we carry out a case study of CALM using these interventions to14

analyze and compare LLM competence across a variety of lexical inference tasks,15

showing that CALM can be used to explain and predict behaviors across these16

tasks.17

1 Introduction18

The rise of large, pretrained neural language models (LLMs) has led to rapid progress in a wide19

variety of natural language processing tasks [7, 12, 17]. However, these models can also be quite20

sensitive to minor changes in input prompts [19, 42, 41] and fail to generalize outside their training or21

fine-tuning distribution [68, 73, 60]. Understanding the means by which these models can perform as22

well as they do while exhibiting such limitations is a key question in the science of LLM interpretation23

and analysis [3], and is likely necessary in enabling robust, trustworthy, and socially-responsible24

LLM-enabled applications [59, 32, 78, 3].25

We approach this question in terms of competence, drawing on the traditional competence-26

performance distinction in linguistic theory (see Section 2) to motivate the study of LLMs in terms27

of their underlying representation of language. We define LLM competence in the context a given28

linguistic task as the alignment between the ground-truth causal structure of the task and the LLM’s29

latent representation of the task’s structure, measured by intervening on the LLM’s representation of30

task-causal or non-causal properties and observing how its behavior changes in response. While such31

representations are not directly observable, we take inspiration from causal probing, which damages32

LLMs’ latent representations of linguistic properties using causal interventions to study how these33

representations contribute to their behavior [18, 31]. We introduce a general framework, CALM (for34

Competence-based Analysis of Language Models), to study the competence of LLMs using causal35

probing and define the first quantitative measure of LLM competence.36

While CALM can be instantiated using a variety of existing causal probing interventions (e.g., [52,37

50, 51, 58, 2]), we develop a new methodology, gradient-based interventions (GBIs), to intervene on38

LLM representations using gradient-based adversarial attacks against structural probes, extending39

causal probing to arbitrarily-encoded representations of relational properties and thereby enabling the40
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Figure 1: Structural causal models (SCMs) of task T ’s data-generating process and how it may
be performed by model M (left), or hypernym prediction task (TH ) and how it is performed by
a competent English speaker (right). Shaded and white nodes denote observed and unobserved
variables, respectively. In CALM, the goal is to determine which representations Zj = zj are
causally implicated in M ’s predictions ŷ.

investigation of new questions in language model interpretation. Finally, we carry out a case study of41

CALM using two well-studied LLMs by implementing interventions as GBIs in order to measure42

and compare these LLMs’ competence across 14 lexical inference tasks, showing that CALM can43

indeed explain and predict important patterns in behavior across these tasks by distinguishing between44

models’ use of causal and spurious properties.45

2 Competence-based Analysis of Language Models46

Linguistic Competence Linguistic competence is generally understood as the ability to utilize one’s47

knowledge of a language in producing and understanding utterances in that language, and is typically48

defined in contrast with linguistic performance, which is speakers’ actual use of their language49

in practice, considered independently of the underlying knowledge that supports it [40]. Given a50

linguistic task, we may understand competence in terms of the underlying linguistic knowledge51

that one draws upon to perform the task. If fluent human speakers rely on (implicit or explicit)52

knowledge of the same set of linguistic properties to perform a given task, then we may understand53

their performance of this task as being causally determined by these properties, and invariant to other54

properties. (See Appendix A.1 for further discussion of linguistic competence.)55

While the study of human competence has a rich history in linguistics [10, 36, 43, 57, 39, 40], there is56

currently no generally accepted framework for studying LLM competence [38, 45]. In order to make57

the study of competence tractable in the context of LLMs, we introduce the CALM (Competence-58

based Analysis of Language Models) framework, which describes an LLM’s competence with respect59

to a given linguistic task in terms of its latent representation of the causal structure of the task.60

Task Structure Formally, given supervised task T ∼ P (X ,Y) where the goal is to correctly predict61

y ∈ Y given x ∈ X , and a collection of latent properties Z = {Zj}mj=1 that are (potentially) involved62

in generating x, we formulate the causal structure of T in terms of the data-generating process63

x ∼ Pr(x|Zc,Ze), y ∼ P (y|Zc) (1)

where Z may be decomposed into Z = Zc ∪ Ze,Zc ∩ Ze = ∅, where Zc contains all properties64

that causally determine y, and Ze are the remaining properties that may be involved in generating x65

(cf. [28]). However, there may be an unobserved confounder S that produces spurious correlations66

between y and Ze, which, if leveraged by language model M in the course of predicting ŷ, can lead67

to unexpected failures on T when the spurious association is broken [46]. The structural causal model68

(SCM)1 of this data-generating process is visualized on the left side of both diagrams in Figure 1.69

Internal Representation Our main concern is measuring how attributable an LLM M ’s behavior70

in a given task T is to its representation of various properties Z = {Z1, ..., Zm}, and how these71

properties correspond to the causal structure of the task. If M respects the data-generating process of72

T , then its behavior should be attributable only to causal properties Z ∈ Zc (and not to environmental73

properties Z ∈ Ze), in which case we say that M is competent with respect to T . We study model74

M ’s use of each property Zj ∈ Z by performing causal interventions do(Zj) on its representation of75

Zj in the course of performing task T , and measure the impact that these interventions have on its76

predictions.77

Measuring Competence We evaluate the competence of M with respect to task T ∼ P (X ,Y) by78

measuring its causal alignment with a competence graph GT , which we define as a structural causal79

1An SCM is a directed acyclic graph where each node represents a variable and directed edges indicate
causal dependencies (see [5] for an introduction to SCMs).
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model (SCM) of T with nodes corresponding to each latent variables Zj ∈ Z and an additional node80

for outputs y ∈ Y and directed edges denoting causal dependencies between these variables. That is,81

the set of causal properties Zc defined by GT is the set of all properties Zj ∈ Z such that there is an82

edge or path from Zj to y. To determine the extent to which M ’s behavior is correctly explained by83

the causal dependencies (and lack thereof) in GT , we measure their consistency under interventions84

do(z), where setting z = {zj}mj=1 ∼ val(Z) is a combination of values Zj = zj ∈ val(Zj) taken by85

each corresponding latent variable Zj ∈ Z.86

The alignment of M with GT is measured in terms of the similarity S of their predictions under87

interventions do(z) given input x ∼ P (X ), and can be computed using a given similarity metric88

S : Y,Y → [0, 1] (e.g., equality, n-gram overlap, cosine similarity, etc.) depending on the SCM GT89

and output space Y . That is, we define CT (M |GT ) as M ’s competence with respect to task T as a90

function of its alignment with corresponding task SCM GT under interventions do(z) measured by91

similarity metric S, as follows:92

CT (M |GT ) = Ex,z∼P (X ,val(Z))S
(
M(x|do(z)),GT (x|do(z))

)
(2)

This CT (M |GT ) metric (bounded by [0, 1]) is an adaptation of the Interchange Intervention Accuracy93

(IIA) metric [23, 22] to the context of causal probing, where instance-level interventions are replaced94

with concept-level interventions enabled by the gradient-based intervention methodology we introduce95

in Section 3. (See Appendix C.1 for a detailed comparison of our competence metric with IIA.)96

Causal Probing A key technical challenge in implementing CALM (and causal probing more97

generally) is designing an algorithm to perform causal interventions do(Z) that maximally damage98

the representation of a property Z while otherwise minimally damaging representations of other99

properties Z ′ [50]. For example, amnesic probing [18] uses the INLP algorithm [52] to produce100

interventions gZ that remove all information that is linearly predictive of property Z from a set101

of embedding representations H. However, when such information removal methods are used to102

remove representation of these properties in early LLM layers, models are often able to “recover”103

this representation in later layers [18, 50], which is likely due to models encoding these properties104

nonlinearly. Beyond recoverability, linear information removal methods like INLP also cannot105

account for relational properties between multiple input embeddings (see Appendix A.1). Thus, it106

is important to develop interventions that do not require restrictive assumptions about the structure107

of LLMs’ representations such as linearity [67], a problem which we aim to solve in the following108

section.109

3 Gradient-based Interventions110

Our goal in developing gradient-based interventions (GBIs) as a causal probing technique is to enable111

interventions over arbitrarily-encoded LLM representations. GBIs allow users to flexibly specify112

the class of representations they wish to target, expanding the scope of causal probing to arbitrarily-113

encoded properties. We take inspiration from Kos, Fischer, and Song [29], who developed a technique114

to perturb latent representations using gradient-based adversarial attacks.2 They begin by training115

probe gZ : h 7→ z to predict image class z ∈ Z from latent representations h = fenc(x) of images x,116

where fenc is the encoder of a VAE-GAN [30] trained on an unsupervised image reconstruction task117

(i.e., fdec(fenc(x)) = x̂ ≈ x, for decoder fdec and reconstructed image x̂ approximating x). Next,118

gradient-based attacks like FGSM [24] and PGD [37] are performed against gZ in order to minimally119

manipulate h such that it resembles encoded representations of target image class Z = z′ (where120

z′ ̸= z, the original image class), yielding perturbed representation h′. Finally, h and h′ are each fed121

into the VAE decoder to reconstruct corresponding output images x̂ and x̂′ (respectively), where x̂122

resembles input image class Z = z and x̂′ resembles target class Z = z′.123

We reformulate this approach in the context of causal probing as visualized in Figure 2, treating layers124

L = 1, ..., l as the encoder and layers L = l + 1, ..., |L| (composed with language modeling head125

fLM) as the decoder, allowing us to target representations of property Z across embeddings hl
i of126

token xi ∈ x in layer l. We train gZ to predict Z from a set of such hl
i, then attack gZ using FGSM127

and PGD to intervene on hl
i (representing the original value Z = z), producing hl′

i (representing128

the counterfactual value Z = z′). Finally, we replace hl
i with hl′

i in the LLMs’ forward pass from129

2Notably, Tucker, Qian, and Levy [66] developed a similar methodology without explicit use of such attacks
(see Section 7).
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Figure 2: Gradient-based Interventions. Input tokens x = (x1, ..., x|x|) are passed through layers
L = 1, ..., l, where embedding hl

i (encoding the value Z = z) is extracted from layer l and given
to gZ as input. Next, the embedding is modified by gradient-based attacks on gZ to encode the
counterfactual value Z = z′, then fed back into subsequent layers L = l + 1, ..., |L| and language
modeling head fLM to obtain the intervened predictions M(x|do(Z = z′)).

layers L = l+ 1, ..., |L|, simulating the intervention do(Z = z′), and observe the impact on its word130

predictions M(x|do(Z = z′)).131

There are several key benefits associated with GBIs relative to existing causal probing interventions132

(e.g., they can be applied to any differentiable probe), as well as some important limitations (e.g.,133

lack of theoretical guarantees), as we discuss in detail in Appendix A.2.134

4 Experiments135

In this work, we begin by examining BERT [16] and RoBERTa [34],3 two language models which136

have been extensively studied in the context of probing [54, 52, 35, 18, 31]. Our primary goal in the137

following experiments is to develop and test an experimental implementation of CALM using GBIs138

in the context of comparatively small, well-studied models and tasks in order to validate whether139

CALM can explain behavioral findings of earlier work in this simplified environment. (We motivate140

this choice in greater detail in Appendix B.1.)141

Tasks We use the collection of 14 lexical inference tasks included in the ConceptNet [61] subset of142

LAMA [48], each of which are formulated as a collection of cloze prompts [33]. For example, the143

LAMA “IsA” task contains ∼2K hypernym prompts corresponding to the “IsA” ConceptNet relation144

(including, e.g., “A laser is a [MASK] which creates coherent light.”, where the task is to predict that145

the [MASK] token should be replaced with “device”, a hypernym of “laser”), with the remaining 13146

LAMA ConceptNet tasks corresponding to other lexical relations such as “PartOf”, “HasProperty”,147

and “CapableOf”. (See Appendix B.2 for additional details.)148

Using these task datasets allow us to test how the representation of each relation is used across149

all other tasks. In the context of a single task Tj , intervening on a model’s representation of the150

task-causal relation Zj allows us to measure the extent to which its predictions are attributable to its151

representation of the causal property Zc = {Zj} (where a large impact indicates competence). On the152

other hand, intervening on the representations of the other 13 lexical relations Zk ∈ Ze allows us (in153

the aggregate) to measure how much the model is performing task Tj by leveraging representations154

of general, non-causal lexical information (where a large impact indicates incompetence).4155

Experimentally Measuring Competence Given LLM M and task T , measuring the competence156

CT (M |GT ) of M given GT requires us to specify an experimental model E = (Z,GT , S), where Z157

is a set of properties, GT is a competence graph for task T , and S is a scoring function that compares158

the predictions of M and GT in order to compute the approximated ĈT . Given that each task Ti is159

defined by a single causal lexical relation Zi (i.e., Zci = {Zi}), we model settings z as a collection160

of values Zj = zj taken by each property Zj in the context of a specific task instance (x,y) ∼ Ti,161

where Zj = 1 if i = j (i.e., where the property Zj is the causal property for the task Ti) or Zj = 0162

otherwise. That is, for each instance (x,y) ∼ Ti, the corresponding setting z is a one-hot vector163

3Specifically, BERT-base-uncased and RoBERTa-base [70].
4Note that the strictest interpretation of this formulation of competence makes the simplifying assumption that

each non-causal property is equally (un)related to the target property, which is not always true; see Appendix B.2.
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Figure 3: Performance (top) and competence (bottom) of BERT (left bars) and RoBERTa (right
bars) for all tasks, using FGSM with ϵ = 0.1. In the competence plot, y-values are the average
competence score and error bars are the maximum and minimum competence score, as measured
over 10 experimental iterations (each with a different randomly-initialized probe gZ).

whose i-th element zi = 1. We may specify GTi in a similar manner: for task Ti ∼ P (X ,Y), outputs164

y ∈ Y are causally dependent on the property Zi, and invariant to other concepts Zj , j ̸= i., meaning165

that the only direct parent node of y in GTi is Zi. Finally, as we are dealing with masked language166

models whose output space Y for each task consists only of single tokens in M ’s vocabulary VM , our167

experimental model can define the scoring function S as the overlap overlap(yi,yj) for top-k token168

predictions yi = {y1, ..., yk} ⊂ VM , where overlap(·, ·) is the size of the intersection of each set of169

predictions divided by the total number of predictions overlap(yi,yj) =
|yi∩yj |

k , and ĈT k denotes170

ĈT as measured using the top-k token predictions yi. (See Appendix C.2 for additional details on171

how we compute competence in each experiment.)172

Probes We implement probes gZ as a 2-layer MLP over each language model’s final hidden layer,173

and train the probe on the task of classifying whether there is a particular relation Z between a174

final-layer [MASK] token in the context of a cloze prompt and the final-layer object token from175

the “unmasked” version of the same prompt. All reported figures are the average of 10 runs of our176

experiment, using different randomly-initialized gZ each time. (See Appendix B.3 for further details.)177

Interventions We implement GBIs against gZ using two gradient attack strategies, FGSM [24] and178

PGD [37]. We bound the magnitude of each intervention as follows: where h is the input to gZ and179

h′ is the intervened representation following a GBI, ||h− h′||∞ ≤ ϵ. For all experiments reported in180

our main paper, we use FGSM with ϵ = 0.1. (See Appendix B.4 for more details and PGD results.)181

5 Results182

In Figure 3, we visualize the performance and competence of BERT and RoBERTa across the test183

set of each LAMA ConceptNet task. Performance is measured using (0, 1)-accuracy, competence is184

measured using the experimental competence metric in Equation (3), and both metrics are averaged185

across the top-k predictions of each model for k ∈ [1, 10]. That is, for ground truth (x, y) and n = 10,186

we compute accuracy and competence as follows:187

acc(M) =
1

n

n∑
k=1

1[y ∈ top-k
ŷ

Pr
M
(ŷ|x)] and ĈT (M |GT ) =

1

n

n∑
k=1

ĈT k(M |GT )

To account for stochasticity in initializing and training probes gZ , scores are also averaged over 10188

randomized experiments for each target task where the probe is randomly re-initialized each time189

(resulting in different GBIs).190

Performance While their accuracies on individual tasks vary, BERT and RoBERTa have quite191

similar aggregate performance: BERT outperforms RoBERTa on just over half (8/14) of the tasks,192

achieving essentially equivalent performance when averaged across all tasks (0.3099 versus 0.3094).193

Competence Given our experimental model E with m = 14 tasks, consider a random baseline194

language model R whose predictions always change in response to each intervention, making equal195

use of all properties in each task. R would yield a competence score of C(R|GT ) =
1
m ≈ 0.0714196

for each task. Both BERT and RoBERTa score above this threshold for all tasks, meaning that their197

competence is consistently greater than that of a model (R) that does not distinguish between causal198

and environmental properties. However, RoBERTa is consistently less competent than BERT (on199
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12/14 tasks), and also has lower competence scores averaged across all tasks (0.381 vs. 0.334).200

Furthermore, relative performance and competence are correlated: the Spearman’s Rank correlation201

coefficient between the average difference in accuracy and average difference in performance is a202

moderately strong positive correlation ρ = 0.508 with significance p = 0.064.203

6 Discussion204

Explananda The performance of BERT and RoBERTa on lexical inference tasks such as hypernym205

prediction has been shown to be highly variable under small changes to prompts [27, 53, 21, 19]. Our206

findings offer one possible explanation for such brittle performance: BERT and RoBERTa’s partial207

competence in hypernym prediction indicates that it should be possible to prompt these models in a208

way that will yield high performance, but that its reliance on spurious lexical associations may lead it209

to fail when these correlations are broken – e.g., by substituting singular terms for plurals [53] or210

paraphrasing a prompt [19].211

Future Work While the simplified experimental context considered in this work is a necessary212

first step in empirically validating our theoretical CALM framework, competence metric, and213

GBI methodology, we anticipate a much broader range of future research directions and potential214

applications for CALM. We elaborate several such directions in Appendix D.215

7 Related Work216

Causal Probing Most related to our work is amnesic probing [18], as discussed in Section 2.217

Lasri et al. [31] applied amnesic probing to study the use of grammatical number representations in218

performing an English verb conjugation prompt task. As this experiment involves intervening on the219

representation of a property which is causal with respect to the prompt task, it may be understood as an220

informal instantiation of CALM (albeit without considering environmental properties or measuring221

competence).222

Gradient-based Interventions Tucker, Qian, and Levy [66] developed a similar approach to our223

GBI causal probing methodology (as outlined in Section 2) without explicit use of gradient-based224

adversarial attacks. Their methodology is equivalent to performing a targeted, unconstrained attack225

using standard gradient descent.5 In such attacks, it is standard practice to constrain the magnitude of226

resulting perturbations [24, 37, 29], which we do here in order to minimize the effect of “collateral227

damage” done by such attacks (see Section 4 and Appendix B.4); so failing to impose such constraints228

may result in indiscriminate damage to representations.229

Unsupervised Probing Instead of training supervised probes to predict a pre-determined property230

of interest (as we do here), an alternative approach is to train unsupervised probes such as Sparse231

Auto-Encoders (SAEs; [62, 74, 14]) to automatically learn an overcomplete basis of features that are232

useful for sparsely representing embeddings, which can also be used to control models’ use of these233

learned features [6, 63]. However, as SAEs are unsupervised probes, they yield feature vectors that234

are not inherently interpretable and must be retroactively interpreted, meaning that the task of creating235

a supervised probe training dataset (as required for conventional causal probing) is substituted for the236

task of interpreting learned features [15]. However, given features that can be reliably interpreted as237

representing task-causal or -environmental features, it is also possible to implement CALM using238

unsupervised probes like SAEs.239

8 Conclusion240

In this work, we introduced CALM, a general analysis framework that enables the study of LLMs’241

linguistic competence using causal probing, including the first quantitative measure of linguistic242

competence. We developed the gradient-based intervention (GBI) methodology, a novel approach243

to causal probing that can target a far greater range of representations than previous techniques,244

expanding the scope of causal probing to new questions in LLM interpretability and analysis. Finally,245

we carried out a case study of CALM using GBIs, analyzing BERT and RoBERTa’s competence246

across a collection of lexical inference tasks, finding that even a simple experimental model is247

sufficient to explain and predict their behavior across a variety of lexical inference tasks.248

5I.e., they continue running gradient updates until the targeted probe loss saturates, irrespective of resulting
perturbation magnitude.
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A Additional Context473

A.1 Background and Related Work474

Linguistic Competence There has been significant debate in linguistics and the philosophy of475

language regarding the precise definition and nature of competence [36, 43, 57, 40]. However, the476

formalization of competence provided by CALM is sufficiently general to incorporate most notions477

of competence, which may be flexibly specified by instantiating CALM in different ways. In this478

work, we focus on lexicosemantic competence, the ability to utilize knowledge of word meaning479

relationships in performing tasks such as lexical inference [39, 40].480

Relational Properties Why is it not possible for linear information removal methods such as INLP481

[52] to remove relational properties between multiple input embeddings? Consider a binary relational482

property Z denoting whether a relation Z(i, j) holds between multiple embeddings hi,hj ∈ Rd. In483

INLP, we begin by training linear classifier W ∈ R2d to predict Z from concatenated embeddings484

(hi;hj), where the goal is to train W : (hi;hj) 7→ Z. We may decompose W (hi;hj) = W[0:d]hi +485

W[d+1:2d]hj , where W[0:d] is the first d dimensions of W and W[d+1:2d] are the second d dimensions.486

In this case, there is no interaction between the two inputs hi,hj , meaning there is no way for W to487

take into account any relationship Z between them.488

A.2 Benefits and Limitations of GBIs489

Benefits The key advantage of gradient-based interventions (GBIs) as a causal probing methodology490

is that they may be applied to any differentiable probe. For example, if we are investigating the491

hypothesis that M ’s representation of Z is captured by a linear subspace of representations in a given492

layer (see [67]), then we may train a linear probe and various nonlinear probes on representations493

and observe whether GBIs against the linear probe have a comparable impact to those against the494

nonlinear probes. Alternatively, if we believe that a probe’s architecture should mirror the architecture495

of the model it is probing (as argued by [49]), we may implement probes as such. Finally, where496

previous intervention methodologies for causal probing have focused on nullifying interventions that497

remove the representation of the target property Z [52, 50, 51, 58, 2], GBIs allow one to perform498

targeted interventions that set LLMs’ representations to counterfactual values do(Z = z′), effectively499

simulating the model’s behavior under counterfactual inputs, which may be useful for predicting500

behaviors under various distribution shifts (see Appendix C.1).501

Limitations While GBIs are applicable to a more general range of model representations than502

other interventions, this generality comes with a lack of constraints on probes (gZ); and as a result,503

GBIs cannot provide the strong theoretical constraints on collateral damage as can methods like,504

e.g., INLP [52], which provably preserves distances between embeddings as well as possible while505

completely removing the linear representation of the target property. To minimize collateral damage506

to representations, the magnitude of perturbations should be modulated via constraints on gradient507

attacks against gZ (see Section 4) and experimentally validated to control the damage done to508

representations (see Appendix B.4). Thus, in cases where the structure of representations is believed509

to satisfy strong assumptions (e.g., being restricted to a linear subspace; [67]) or strong upper bounds510

on collateral damage are required, CALM interventions can be implemented with methods like INLP511

rather than GBIs.6512

B Experimental Details513

B.1 Simplified Environment514

As noted in Section 4, our primary goal in our experiments is to validate CALM by testing it in a515

simplified experimental setting consisting of comparatively small, well-studied models and tasks. As516

such, we need models that are just complex enough for CALM to be applicable (i.e., neural language517

models that are capable of performing the tasks we consider at a nontrivial level of performance),518

making BERT and RoBERTa ideal candidates; and in future work plan to scale CALM to more519

6It may also be possible to control for collateral damage by developing GBI strategies that offer more
principled protection against damage to non-targeted properties, such as adding a loss term to penalize damage
to non-targeted probes or leveraging interval bound propagation [25] to place intervened embeddings inside the
adversarial polytope for non-targeted properties. We leave such possibilities to future work.
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complex contexts covering larger, more powerful models as they perform more difficult tasks (see520

Appendix D). This is a common setting in the context of substantial recent interpretability work:521

first, a theoretical framework is developed for interpreting an internal representation or mechanism522

and initially tested in the context of “toy” models or tasks [20, 44, 77, 22], and subsequent work523

scales these frameworks to the context of larger models “in the wild” [69, 13, 71]. We anticipate that524

all of our major contributions (the CALM framework, competence metric, and GBI causal probing525

method) will in principle be scalable to much larger, more recent LLMs (e.g., [75, 4, 65, 64, 26], etc.),526

and predict that the main challenge will be in finding an appropriate probing architecture (see [49]).527

B.2 Tasks528

The full set of LAMA ConceptNet tasks is as follows: IsA, HasA, PartOf, HasSubEvent, MadeOf,529

HasPrerequisite, MotivatedByGoal, AtLocation, CausesDesire, NotDesires, CapableOf, UsedFor,530

ReceivesAction, and HasProperty. We split each task dataset into train, validation, and test sets with531

a random 80%/10%/10% split. Train and validation instances are fed to each model to produce532

embeddings used to train gZ and select hyperparameters, respectively; and test instances are used to533

measure LLMs’ competence with respect to each task by observing how predictions change under534

various interventions. In all experiments, we restrict each model M ’s output space for each task535

T to the subset of vocabulary VM that occurs as a ground-truth answer y∗ for at least one instance536

(x, y∗) ∼ T in the respective task dataset. This lowers the probability of false negatives in evaluation537

(e.g., penalizing the model for predicting ŷ = “mammal” for “a dog is a type of y” instead of y∗ =538

“animal”).539

Experimental Limitation In our experiments, we modeled the 14 LAMA ConceptNet tasks as540

representing fully independent properties, which is not necessarily true – e.g., knowing that a tree is541

made of bark or contains leaves tells us something about whether it is a type of plant. However, in542

the aggregate (with impacts summed across 14 widely-varying lexical relation types in computing543

the final competence score for each task; see Appendix C.2), it may nonetheless be appropriate to544

treat the relations which are not causal with respect to a given task as collectively capturing spurious545

lexical associations.546

B.3 Probes547

We use BERT’s final layer L to encode hl
i embeddings for each such example, where i is the index548

of the [MASK] token or target word in the input prompt xi. To encode the [MASK] token, we issue549

BERT masked prompts (as discussed above) to extract h[MASK], then repeat with the [MASK] token550

filled-in with the target word to encode it as h+ (e.g., “device” in “A laser is a device which creates551

coherent light.”), and concatenate matching embeddings h = (h[MASK];h+) to produce positive552

(y = 1) training instances. We also construct one negative (y = 0) instance, h = (h[MASK];h−), for553

each h[MASK] by sampling an incorrect target word xi corresponding to an answer to a random prompt554

from the same task, feeding it into the cloze prompt in the place of the correct answer, and obtaining555

BERT’s contextualized final-layer embedding of this token (h−). Finally, we train gZ on the set of all556

such (h, y).557

We implement gZ as a multi-layer perceptron with 2 hidden layers, each with a width of 768 (which558

is one half the concatenated input dimension of 1536), using ReLU activations and dropout with559

p = 0.1, training it for 32 epochs using Binary Cross Entropy with Logits Loss7 and the Adam560

optimizer, saving the model from the epoch with the highest validation-set accuracy for use in all561

experiments.562

For all competence results reported in Section 5, we run the same experiment 10 times – each with a563

different random initialization of gZ and shuffled training data – and report each figure as the average564

among all 10 runs.565

7https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
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Figure 4: Competence of BERT (left bars) and RoBERTa (right bars) for all tasks, using PGD
with ϵ = 0.1. Y-values are the average competence score and error bars are the maximum and
minimum competence score, as measured over 10 experimental iterations (each with a different
randomly-initialized probe gZ).

B.4 Interventions566

For instance (h, y), classifier gZ , loss function L, and L∞-bound ϵ ∈ {0.01, 0.03, 0.1, 0.3}8,567

each intervention (gradient attack) gz may be used to produce perturbed representations h′ =568

gz(h, y, fcls,L, ϵ) where ||h − h′||∞ ≤ ϵ. In particular, given h = (h[MASK];h±) ∈ R2d, let569

h′
[MASK] be the first d dimensions of h′ (which also satisfies the L∞-bound with respect to h[MASK],570

||h[MASK] − h′
[MASK]||∞ ≤ ϵ). To measure BERT’s use of internal representations of Z on each571

prompt task, we evaluate its performance when perturbed h′
[MASK] is used to compute masked-word572

predictions, compared to unperturbed h[MASK].573

Our intent in intervening only on the final-layer mask embedding h[MASK] in our experiments is that,574

in the final layer of a masked language model such as BERT or RoBERTa, the only embedding which575

is used to compute masked-word probabilities is that of the [MASK] token. Thus, any representation576

of the property that is used by the model in its final layer must be a part of its representation of the577

[MASK] token, preventing “recoverability” phenomena such as those observed by Elazar et al. [18].578

FGSM We implement Fast Gradient Sign Method (FGSM; [24]) interventions as579

h′ = h+ ϵ · sgn(∇hL(fcls, x, y))

PGD We implement Projected Gradient Descent (PGD; [8, 37]) interventions as h′ = hT where580

ht+1 = ΠN(h)

(
ht + α · sgn(∇hL(fcls, x, y))

)
for iterations t = 0, 1, ..., T , projection operator Π, and L∞-neighborhood N(h) = {h′ : ||h −581

h′|| ≤ ϵ}. This method also introduces two hyperparameters, the number of PGD iterations T582

and step size α. We use hyperparameter grid search over α ∈ {0.001, 0.003, 0.01, 0.03} and583

T ∈ {20, 40, 60, 80, 100}, finding that setting α = ϵ
10 and T = 40 produces the most consistent584

impact on gZ accuracy across all tasks; so we use these values for the results visualized in Figure 4.585

B.5 Compute Budget586

BERT-base-uncased has 110 million parameters, and RoBERTa-base has 125M parameters. As our587

goal is to study the internal representation and use of linguistic properties in existing pre-trained588

models, and we are not directly concerned with training or fine-tuning such models, we use these589

models only for inference (including encoding text inputs, using embeddings to train probes, and590

feeding intervened embeddings back into the language models). The only models we trained were591

probes gZ , which each had 1.77M parameters.592

Each experimental iteration (including encoding text inputs, training probes on all 14 tasks, and593

performing all GBIs) for either BERT or RoBERTa took less than one hour on a single NVIDIA594

GeForce GTX 1080 GPU, meaning that running all 10 iterations across both language models took595

8All reported results use ϵ = 0.1, as greater ϵ resulted in unacceptably high “collateral damage” across target
tasks (e.g., even random perturbations of magnitude ϵ = 0.3 do considerable damage), and lesser values meant
that predictions changed on target tasks consisted of only a few test instances.
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less than 20 hours on a single GPU. Each iteration, probe, and GBI can easily be parallelized across596

GPUs: in our case, running all iterations across both models took less than 3 hours total across 8597

GTX 1080 GPUs.598

C Competence Metric599

C.1 Comparison With IIA600

As noted in Section 2, the CT (M |GT ) metric defined in Equation (2) is an adaptation of the Inter-601

change Intervention Accuracy (IIA) metric [23, 22], which evaluates the faithfulness of a causal602

abstraction like GT as a (potential) explanation of the behavior of a “black box” system like M . In603

our case, this is equivalent to evaluating the competence of M on task T , provided that GT is the604

appropriate SCM for T , as an LLM is competent only to the extent that its behavior is determined by605

a causally invariant representation of the task.9 IIA requires performing interchange interventions606

M(xi|do(zi)), where the part of M ’s intermediate representation of input xi hypothesized to encode607

latent variables Z (taking the values zi when provided input xi) is replaced with that of xj (which,608

in the ideal case, causes M ’s representation to encode the values zj instead of zi), and compute the609

accuracy of GT (xi|do(zj)) in predicting M ’s behavior under these interventions. Thus, given access610

to high-quality interchange interventions over M , IIA measures the extent to which GT correctly611

models M ’s behavior under counterfactuals, and thus its faithfulness as a causal abstraction of M .612

To adapt IIA to the context of causal probing and define CT (M |GT ), we replace instance-level613

interchange interventions with concept-level interventions: instead of swapping M ’s representation of614

variables Z given input xi with that of xj , we intervene on representations at the level of arbitrary con-615

cept settings z that need not correspond to previously sampled x, allowing us to simulate the behavior616

of M under previously-unseen distribution shifts (i.e., settings z representing previously-unseen617

combinations of property values) and therefore make broader predictions about M ’s consistency618

with a given causal model GT under such conditions. As one of the key desiderata in studying LLM619

competence is to predict behavior under distribution shifts where spurious correlations are broken,620

CT is more appropriate than IIA in this setting. However, it also introduces an additional challenge:621

where interchange interventions only require localizing candidate representations – as counterfactual622

representations are obtained merely by “plugging in” values from a different input – computing623

CT instead requires one to both localize representations and directly intervene on them to change624

the encoded value. Previous causal probing intervention strategies (e.g., [52, 50]) have generally625

performed interventions by neutralizing concept representations, not modifying them to encode626

specific counterfactual values; so in order to carry out our study, it is also necessary to develop a627

novel approach to perform such interventions. We develop a solution to this problem, gradient-based628

interventions (GBIs), in Section 3.629

C.2 Experimental Competence Metric630

To compute the expectation in Equation (2) for test set {xi,yi, zi}ni=1 ∼ T × Z, we sum the631

competence score over all samples xi and perform one intervention do(Zj = 0) corresponding to632

each concept Zj ∈ Z.10 As our goal is to measure the extent to which M ’s behavior is attributable633

to an underlying representation of the causal property Zc or environmental property Z ∈ Ze, our634

experimental model defines GT ’s predictions with reference to M ’s original predictions M(xi) = ŷi,635

according to the following principle: if M is competent, then its prediction M(xi) = ŷi is wholly636

attributable to its representation of causal property Zc, so its predictions M(xi|do(Zc)) = ŷi
′ will not637

overlap with its original predictions ŷi (i.e., overlap(ŷi, ŷi
′) = 0); and conversely, a competent M638

will make the same predictions M(xi|do(Zj)) = ŷi
′′ for any Zj ∈ Ze, because its prediction is not639

caused by its representation of these environmental properties (i.e., overlap(ŷi, ŷi
′′) = 1). Motivated640

by this reasoning, our experimental model defines GT (xi|do(Zj = 0)) = M(xi) for environmental641

9For many tasks, there is more than one valid GT (see, e.g., the “price tagging game” constructed by Wu
et al. [71]). In such cases, CT (M |GT ) should be computed with respect to each valid GT and the highest result
should be selected, as conforming to any such GT carries the same implications.

10Note that this intervention changes the prediction GT (xi) ̸= GT (xi| do(Zj = 0)) if and only if (xi,yi) ∈
Tj – i.e., where the corresponding (zi)j = 1 – otherwise, (zi)j is already 0, so the intervention has no effect.
Thus, as CT (M |GT ) measures M ’s consistency with GT , then to the extent that M is competent, its prediction
should change under all and only the same interventions as GT .
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Zj ∈ Ze; and for causal property Zc, defines GT (xi|do(Zc = 0)) = {y′ ∈ VM : y′ /∈ M(xi)} (i.e.,642

the set of all tokens y′ in M ’s vocabulary that were not in its original prediction M(xi)). Thus, under643

experimental model E, we approximate CT (M |GT ) by computing it as follows:644

ĈT (M |GT ) =
1

n ·m

n∑
i=1

m∑
j=1

overlap
(
M

(
xi|do(Zj = 0)

)
,GT

(
xi|do(Zj = 0)

))
(3)

Notably, our experimental model E only accounts for the relationship between M ’s intervened and645

non-intervened predictions, independently of ground truth labels – instead, what is being measured is646

M ’s consistency under meaning-preserving interventions do(Zj′) and its mutability under meaning-647

altering interventions do(Zj). However, as we find in Section 5, the resulting competence metric648

CT (M |GT ) is nonetheless useful for predicting M ’s accuracy.649

D Future Work650

D.1 Representation Learning651

The CALM framework, competence measure, and GBI methodology developed in Sections 2 and 3652

are sufficiently general to be directly applied to analyze arbitrary LLMs on any language modeling653

task whose causal structure is already well understood (or, for tasks where this is not the case, we654

may apply the causal graph discovery approach described in Appendix D.4), allowing us to study655

the impact of various model architectures, pre-training regimes, and fine-tuning strategies on the656

representations LLMs learn and use for arbitrary tasks of interest.657

D.2 Multitask Learning658

Are high competence scores on task T correlated with an LLMs’ robustness to meaning-preserving659

transformations (see, e.g., [19]) on tasks T ′ that share several causal properties Zc with task T .660

Through the lens of causally invariant prediction [47, 1, 9], this hypothesis is likely true (however,661

see [55] for appropriate caveats) – if so, this would make it possible to use clusters of related662

tasks to predict LLMs’ robustness (and other behavioral patterns, such as brittleness in the face of663

distribution shifts introduced by spurious dependencies) between related tasks using CALM, given664

an appropriate experimental model. Furthermore, the ability to characterize tasks based on mutual665

(learned) dependency structures could be valuable in transfer learning applications such as guiding666

the selection of auxiliary tasks in multi-task learning [56] or predicting the impact of intermediate667

task fine-tuning on downstream target tasks [11].668

D.3 Task Dependencies669

Another possible application of CALM concerns causal invariance under multi-task applications.670

Existing approaches in invariant representation learning generally require task-specific training [76],671

as the notion of invariance is inherently task-centric (i.e., the properties which are invariant predictors672

of output values vary by task, and different tasks may have opposite notions of which properties are673

causal versus environmental), so applying such approaches to train models to be causally invariant674

with respect to a specific downstream task T is expected to come at the cost of performance on other675

downstream tasks T ′. Therefore, considering the recent rise of open-ended, task-general LLMs [75,676

4, 65, 64, 26], it is important to find alternative approaches for studying models’ causal dependencies677

in a task-general setting to account for applications involving tasks with different (and perhaps678

contradictory) causal structures, such as CALM.679

D.4 Causal Competence Graph Discovery680

One of the key benefits of CALM is that, instead of simply measuring consistency with respect to a681

known, static task description GT , the competence metric in Equation (2) can also be used to discover682

a competence graph G which most faithfully explains a model M ’s behavior in a given task or context683

(see Section 2) by computing C(M |G) “in-the-loop” of existing causal graph discovery algorithms684

like IGSP [72]. Such algorithms can be used both to suggest likely competence graphs based on685

interventional data collected by running CALM experiments, to recommend the experiments that686
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would yield the most useful interventional data for the graph discovery algorithm, and to evaluate687

candidate graphs G using our competence metric, terminating the graph discovery algorithm once a688

competence graph G that offers sufficiently faithful explanations of M ’s behavior has been found. In689

this case, it is still necessary to define the set of properties Z being probed and the scoring function690

S used to compare the predictions of M and G; but no knowledge of the causal dependencies (or691

structural functions F : pa(Zj) 7→ Zj mapping from causal parents pa(Zj) to causal dependents692

Zj ; see [5]) is required.693
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