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ABSTRACT

Exemplar-free Class Incremental Learning requires the learning agent to incre-
mentally acquire new class information and maintain past knowledge without
having access to samples from previous tasks. Despite the significant performance
achieved by the subspace ensemble of a mixture of experts (MoE) with Gaussian
prototypical networks, a critical gap still exists. As the downstream tasks arrive,
the subspace representation of old classes gets updated, resulting in a prototype
drift and leading to forgetting. To address the forgetting problem, we propose
ProCEED to dynamically realign previous classes’ representation in the latest
subspace to adjust the drifted class prototypes and preserve their decision bound-
aries. Specifically, we compute the inter-subspace angular drifts of the prototype
of previous incremental stages with the current one, holding the local semantic
relationship between the incremental subspaces. The angular drift is then used to
adjust old tasks’ prototypes into the subspace of incremental tasks. Furthermore,
the model inherits combined knowledge from MoE, supporting plasticity without
extra computational burden. Consequently, ProCEED significantly balances the
stability-plasticity dilemma over incoming incremental tasks, allowing the model to
learn continually. The experimental evaluations on challenging benchmark datasets
demonstrate dominant accuracy for ProCEED compared to the state-of-the-art
class-incremental learning methods.

1 INTRODUCTION

Intelligent learning machines should imitate human learning ability to accumulate knowledge while
adapting to dynamically changing environments without the availability of previous information.
However, when a traditional learning model is designed to learn a sequence of tasks from streaming
datasets, the previously learned parameters are overwritten by the current task, and the model suffers
from Catastrophic Forgetting McCloskey & Cohen (1989); French (1999); Kirkpatrick et al. (2017);
Li & Hoiem (2017); Lopez-Paz & Ranzato (2017); Schwarz et al. (2018); Zenke et al. (2017). To
address this issue of forgetting, in recent years, the deep learning community has shifted its attention
towards Class Incremental Learning (CIL), where the primary goal is to learn to classify all previously
seen classes from sequences of tasks Zhu et al. (2022). The forgetting problem can be naively resolved
by rehearsing representative samples from previous tasks. However, rehearsing samples increases the
computational cost linearly with tasks and raises data privacy questions due to the requirement of
continuous access to sensitive data, especially in the medical sector and national security Goswami
et al. (2024).

Exemplar-free class-incremental Learning (EFCIL), a sub-field of CIL, is a challenging learning
paradigm that seeks to mitigate forgetting without storing samples from previous tasks. In the
literature, researchers tend to use 50% of the training samples upfront to learn a strong feature
extractor and freeze it after the first task (known as warm-start learning) Zhu et al. (2022); Hou et al.
(2019b); Petit et al. (2023); Goswami et al. (2024); Ma et al. (2023). Recently, prompt-based methods
have been used in CIL McDonnell et al. (2024); Zhou et al. (2024a), employing linear discriminant
analysis Panos et al. (2023) or a simple nearest class mean (NCM) classifier Janson et al. (2022).
These methods use a transformer pre-trained model (PTM) on large-scale datasets like ImageNet-21k
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Figure 1: Low-dimensional demonstration of feature space drift (using t-SNE) in the embedding of
Task 1’s dataset, D1, while training on Task 2’s dataset, D2. Both tasks contain 5 classes, and the
tasks are observed when the simulation is done on CIFAR100/20 up to the first incremental stage.

Ridnik et al. (2021) and focus on classifier-incremental learning. However, the model possesses
extreme rigidity and requires high computational cost due to using a task-specific expert.

A category of EFCIL focuses on learning task-specific subspace/prompts and prototypes using either
a linear incremental classifier as a classification head or a prototypical network and shows promising
results in mitigating forgetting Snell et al. (2017); Cha et al. (2021); Wang et al. (2022b). Expert
Gate learns task-wise subspace growing with experts to alleviate forgetting, which is limited by
computational cost Aljundi et al. (2017). Wang et al. reduced the memory constraint by training a
fixed number of experts to generate an ensemble of feature representations but with a high penalty,
limiting the plasticity Wang et al. (2022a). Rypeść. et al. uses a fixed number of subspaces to learn
the Gaussian prototype representation for all the classes and uses an optimal expert to be fine-tuned
for the remaining tasks based on statistical measures Rypeść et al. (2023). The major drawbacks with
the current prototypes-based approaches are 1) the growing computational cost with task-specific
experts and 2) overwriting the respective subspace of the fine-tuned expert by new class prototypes
once the new tasks arrive. Figure 1 shows how the task subspace changes incrementally when the
model is trained with current methods in the literature. Since the prototype represents the statistical
representation of features, a drift in the features results in a severe drift in the prototype, making the
model vulnerable to forgetting the previous knowledge.

In this paper, we address these drawbacks by developing a deep mixture of experts (MoE) and
leveraging their subspaces to enhance the plasticity of the learning model without task interference
during inference. Being inspired by Zhou et al. (2024b), the proposed approach realigns the local
semantic relationship between class features in old subspaces into the latest subspace to improve the
model’s generalization ability. A single expert network from MoE is selected to be fine-tuned on the
current task while simultaneously inheriting knowledge from the rest of the experts without these
experts explicitly participating in the optimization. We employ a prototype-based ensemble of deep
Gaussian classifiers during inference, helping the model estimate the non-linear decision boundary
and significantly increasing the model’s plasticity. The main contributions are summarized as:

• Introduce a novel Prototype Consolidation and Ensemble-based Exemplar-Free Deep In-
cremental Learning (ProCEED) that leverages the statistics of deep features subspace to
realign the representation of old tasks into the latest subspace. ProCEED prevents feature
drifts and significantly abridges the stability gap without extra optimization overhead.

• Propose a knowledge distillation technique where a single expert (learning model) inherits
knowledge from previous tasks learned by MoE without optimizing the entire ensemble of
experts on the current task, leading to efficient improvement of the model’s plasticity.

• Leverage the subspace ensemble of MoE during inference, which demonstrates superior
task-agnostic accuracy on challenging benchmark datasets with an equal class distribution
across tasks.

2 RELATED WORKS

Class Incremental Learning (CIL). CIL approaches can be broadly divided into three categories:
rehearsal, regularization, and expansion-based methods. Rehearsal-based methods use representative
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samples from previous tasks during training on downstream tasks and apply knowledge distillation to
preserve previous knowledge while learning new tasks Hou et al. (2019a); Wu et al. (2019); Wang
et al. (2022d); Douillard et al. (2020); Kang et al. (2022). Some of the rehearsal methods mitigated
forgetting by controlling the feature adjustment Kirkpatrick et al. (2017); Smith et al. (2021); Toldo &
Ozay (2022). Despite the improvements in solving the forgetting issue, rehearsal methods are limited
due to the growing computational cost and raise concerns about data privacy.

Exemplar-Free Class Incremental Learning. Despite being challenging, learning the sequential
tasks without storing samples from previous stages makes a learning agent more pragmatic Li &
Hoiem (2016); Yu et al. (2020); Smith et al. (2021); Zhu et al. (2021b); Zhou et al. (2021); Petit et al.
(2023). Zhu et al. (2021c); Smith et al. (2021) combined the regularization with prototype rehearsal
to enhance the model’s plasticity. Prototypes represent the feature space statistics (features mean and
standard deviation of respective classes) used to reminiscence the decision boundaries of the previous
stages without the explicit need for exemplars. Zhou et al. (2021; 2022b) use prototype augmentation
and self-supervision optimization to learn the transferable features for future tasks. Ye & Bors (2020);
Cong et al. (2020) trained a generator to rehearse previous knowledge as exemplars. However, due
to the need for high-quality generated data, this approach also suffered from forgetting. Learning
task-specific prompts with a large pre-trained network as a feature extractor has also received a lot of
attention in the literature Wang et al. (2022c;b); McDonnell et al. (2024); Zhou et al. (2024a)

Dynamic and Ensemble-based Learning involves neural modifications, including expanding,
trimming, or freezing components to suit different incremental tasks Rusu et al. (2016); Yoon et al.
(2018); Hung et al. (2019); Li et al. (2019); Nie et al. (2023); Ramesh & Chaudhari (2022). For
example, Aljundi et al. (2017) used a dedicated network for each task, while van de Ven et al. (2020)
trained separate generative networks for incremental learning stages. The latest CL methods in
the literature used a pre-trained ViT as a features extractor and a prototypical network Snell et al.
(2017) as a classifier head either by adopting cosine similarity Zhou et al. (2024b) or using random
projections McDonnell et al. (2024). Regardless of the massive improvement in accuracy, these
approaches require high computational costs and task identity during the inference, which makes
these algorithms hardly practical Class-Incremental Learning.

Gaussian Models in CL. Rehearsal-free CIL methods are vulnerable to recency bias towards the
classes of recent tasks due to the cross-entropy loss during optimization Wu et al. (2019); Masana et al.
(2022a). Rebuffi et al. (2017); Yu et al. (2020) mitigated this issue by employing the nearest class
mean (NCM) classifier with stored class centroids. Rao et al. (2019) modeled the incoming classes
with the Gaussian mixture model (GMM). Goswami et al. (2024) adopted the prototypical-based
Bayes classifier and inferred the classes using the Mahalanobis distance. These methods require 50%
of the samples upfront and require task identity during the inference, which seems unreliable in many
practical applications, e.g., medical imaging. To address such issues, Rypeść et al. (2023) incorporated
a mixture of experts with multivariate Gaussian distributions to learn the Gaussian prototype of input
samples. However, due to the rigid feature-distillation-based regularization, the model focused on
maintaining stability over plasticity and required a large number of experts. Furthermore, there is
heavy semantic drift and recency bias in the subspace of fine-tuned experts, eventually leading to the
problem of forgetting.

3 PROCEED: PROTOTYPE CONSOLIDATION AND DEEP ENSEMBLES OF
EXPERTS

3.1 NOTATIONS AND PROBLEM FORMULATION

In EFCIL, the sequences of T incremental disjoint tasks arrive from the data distribution D =
{Dt}Tt=1. In each stages the data Dt = {Xt,Yt} contains a set of input samples Xt = {xi

t}
Nt
i=1 and

the respective labels Yt = {yit ∈ Ct}
Nt
j=1, where Nt is the number of samples at task t, xi

t represents
the ith sample and Ct is the tth set of labels where Ct ∩ Cl = ∅ (t ̸= l). The model F ◦ Gk consists of
a feature extractor backbone F with parameters θ and an incremental Gaussian classifier head Gk
with parameters Θk where, Θk = (µk,Σk) associated with the kth expert (k = 1, · · · ,K), such that
K < T . At the incremental stage t, we append the linear classifier A with parameters ϕ to F for
the optimization. The overall optimization objective is to minimize the empirical loss L(., .) with
parameters θ and ϕ.
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Figure 2: ProCEED comprises K deep network experts F ◦Gk (here K = 2), sharing the initial layers
F for higher computational performance. F are frozen after the first task. Each expert contains one
Gaussian distribution per class c ∈ C in his unique latent space. In this case, we assume 2 classes for
each task. When the second expert, F2, is trained on task 2, there is severe drift in the subspace of
task 1 in the subspace of task 2. After each incremental training, with semantic guided prototype
consolidation (right), the subspace of task 1 is realigned in the subspace of task 2.

Mathematically,

argmin
θ,ϕ

Nt∑
t

E(xi
t,y

i
t)∼Dt

[
L
(
yit,A(F(xi

t;θ);ϕ)
)]

(1)

We formulate an adaptive knowledge distillation-based regularization loss LKD that allows the
knowledge inheritance from all experts while learning a new task. The distillation loss includes a
combination of feature and logit distillation. Mathematically, LKD loss is defined as follows.

LKD =

K∑
k=1
k ̸=k̂

∥∥∥Fk̂,t(Xt;θ)−Fk,t(Xt;θ)
∥∥∥2
2

︸ ︷︷ ︸
Feature Distillation

+
λ

α

K∑
k=1
k ̸=k̂

LCE

(
A(Fk̂,t(Xt;θ),ϕ),A(F∗

k,t(Xt;θ),ϕ)
)

︸ ︷︷ ︸
Logit Distillation

(2)

Finally, the total loss function for every task t is formulated as a convex combination of the cross-
entropy loss, LCE , on the current task and the adaptive knowledge distillation-based regularization
loss LKD. During optimization, while only one best expert is learning the current task, this expert
inherits knowledge from the other frozen experts.

L(θ,ϕ;Dt) = (1− α)LCE + αLKD, (3)

The hyper-parameter α controls the trade-off between plasticity and adaptability.

3.2 DEEP GAUSSIAN SUBSPACE EXPANSION WITH EXPERTS

We train task-specific experts for tasks t ≤ K. To fine-tune the downstream tasks t > K, we adopt the
expert that ensures less interference in the embedding space among all experts. After the completion
of each incremental training, we remove the linear head and generate the representations of input
samples at task t by forwarding them through each expert. The embedding of the kth expert can be
represented as

fk =

T∑
t=1

Fk(Xt;θ) (4)

The Gaussian mixture distribution for K experts can be written as a linear superposition of the
individual Gaussian distribution of each expert.

p(f) =

K∑
k=1

πkN (fk|Θc
k) (5)
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Figure 3: Demonstration of training and realignment steps of ProCEED for each incremental stage.
Suppose we have two experts and three incremental tasks with data distribution D = {D1,D2,D3},
with two classes in each. The dotted data patterns represent the classes that we only have access to
their prototypes in each training stage. We train T1 and T2 using F1 and F2, respectively. After
training on the second task, we realign the subspace of T1 (denoted by a dashed boundary) with the
subspace of T2. Suppose we fine-tune F2̂ on the task T3; similarly, we align the subspace of T1 and
T2 with the subspace of T3.

Equation 5 builds the incremental Gaussian prototypes (respective mean and standard deviation)
and is solved using the expectation-maximization (EM) algorithm Bishop (2006a). When a new
task arrives, the model learns a new subspace using the respective fine-tuned expert backbone with
increasing embedding. The Gaussian prototypes are then memorized in each incremental step that
later, during inference, can represent the task-specific information in the Gaussian classifier after each
incremental step. Suppose we have two experts F1 and F2 available to learn the set of incremental
tasks. We train the first expert F1 on the dataset D1 in the first stage and approximate the mean
prototypes for the classes in D1, denoted as µ1,1 = Concat[µ(1)

1,1, · · · , µ
(|Yt|)
1,1 ]. The former subscript

in µ1,1 is associated with the expert index (first expert) and the latter for the task-specific subspace
index (first-task subspace). In the next incremental task, we train the expert F2 on D2 and extract the
prototypes µ2,2. Since we only have access to D2 at this stage, we can only compute the prototypes
of D2 in the subspace of F2. Thus, we can only use the subspace associated with the expert F2.
During inference, we have access to the drifted prototypes µ2,1 of the old task along with µ2,2 of the
current task in the new embedding subspace of the expert F2. The prototype µ2,1 does not represent
the true distribution of the old task because originally D1 is trained by the expert F1. In other words,
we need a mechanism to inject the representation of true past prototypes µ1,1 in the latest subspace;
otherwise, due to the recency bias, the Gaussian classifier is vulnerable to Catastrophic Forgetting.
To learn the classes of the D3, we need to select the expert (either F1 or F2) that coincides less with
the current task’s features and follow a similar approach by Rypeść et al. (2023). Suppose the expert
F2 is selected to be fine-tuned on D3, similarly, we need to realign the prototypes of D1 and D2 in
the new subspace of F2 learned from D3. For K experts with T incremental tasks, the prototypes of
the Gaussian classifier during inference can be arranged in the following matrix G.

G =


µ1,1 0 · · · 0
µ2,1 µ2,2 · · · 0

...
...

. . .
...

µK,1 µK,2 · · · µK,T

 (6)

3.3 ANGULAR DRIFT COMPENSATION VIA SEMANTIC MAPPING

The matrix G in Equation 6 represents the task-subspace specific prototypes µ of the Gaussian
classifier. However, when we fine-tune an expert i on a new task t, we need to realign the previous
prototypes (µi,1,µi,2, · · · ,µi,t−1) learned from all previous tasks in the new subspace of the fine-
tuned expert. It is important to highlight that the experts do not have access to any samples from
prior tasks. In other words, the entries below the diagonal of the matrix G in Equation 6 need to be
realigned in the new subspace of prototypes of the latest task.
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Without loss of generality, we formulate the above misalignment issue such that given all prototypes
(old o and new n) associated with any expert, the target is to project the old class prototypes onto
the latest subspace to obtain a new realigned prototype µ̂n,o using µo,o, µn,o, and µn,n. Intuitively,
prototypes of similar classes contain similar feature representations to infer the labels of those classes.
For instance, representative features for a ‘dog’ also contain features to represent the ‘fox’. We
take into account that this semantic similarity can be shared among different sub-spaces of various
classes. Therefore, we propose to compute semantic information in the co-occurrence space and
realign the prototypes by projecting them into respective sub-spaces. Specifically, we measure the
cosine similarity between prototypes of previous tasks in both old and new sub-spaces, i.e., µo,o and
µn,o, respectively, and utilize it to project the prototypes in the new embedding space. The classes
with similarity among all classes are calculated using prototypes in the co-occurrences subspace:

Simi,j =
µo,o[i]

∥µo,o[i]∥2
· µn,o[j]

⊤

∥µn,o[j]∥2
, (7)

where the index i represents the ith class prototype. Equation 7 further undergoes the softmax
normalization: Simi,j =

exp(Simi,j)∑
j exp(Simi,j)

. The normalized similarity holds the local relationship
between the old classes subspace and the new subspace in co-occurrence spaces.

Once we obtain the local relationship between the subspace of experts using the normalized cosine
similarity, we inject this similarity information into the prototypes of old classes to realign them in
the new subspace. The transformed prototype of old classes into new subspaces can be measured as a
weighted combination of new and old class prototypes:

µ̂n,o[i] = µn,o[i] +
∑
j

Simi,j × µn,n[j]. (8)

After semantic mapping, the updated prototype matrix G of the Gaussian classifier is updated as the
following:

G =


µ1,1 0 · · · 0
µ̂2,1 µ2,2 · · · 0

... µ̂3,2
. . .

...
µ̂K,1 µ̂K,2 · · · µK,T

 (9)

3.4 INFERENCE VIA DEEP SUBSPACE ENSEMBLE

At this point, we have introduced how the Gaussian subspace expands and gets updates in incremental
stages after each training or fine-tuning session. During inference, we compute the latent space
features of input samples f = Fk̂(xt,j ; θ). The logit of task sample xt, which is fine-tuned in expert
k, can be expressed using the log-likelihood expectation of Gaussian mixture distribution.

ln p(f |π,µk,Σk) =

Nt∑
ln {πkN (F(Xt; θ)|Θk)} , (10)

where π is the vector of the mixing coefficients, Θk = (µk,Σk). Here, Σk is the covariance matrix,
and µk is the mean vector, initialized using the K-Means algorithm. For kth expert, the maximum
likelihood estimator (MLE) solution of Equation 10 is derived using the expectation maximization
(EM) algorithm Bishop (2006b) and can be expressed as the following:

lk(f |µk,Σk) = −
1

2

[
ln(|Σk|) +N ln(2π) + (fk − µk)

T (Σk)
−1(fk − µk)

]
(11)

where N is the dimension of latent space feature representation. The softmax values of the maximum-
likelihood probabilities (logits) for each expert, i.e., l̂1k, · · · , l̂

|C|
k , are then computed with the tem-

perature parameter τ , where C is the set of classes seen so far, i.e., softmax(l1k, · · · , l
|C|
k ; τ). For

task-agnostic inference, we compute an average of all experts, and the predicted class c is the one
with the highest expected value E[lck]. Figure 4 also gives a visual explanation for the ensemble
inference process of ProCEED.
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Figure 4: Once training on dataD is complete, during inference, we calculate the latent representation
f = Fk̂(xt,j ; θ) of the test samples from respective tasks. We then compute the log-likelihood of the
features using Equation 10 in each subspace. After softmax-normalization of likelihood probabilities,
we compute the mean of each subspace, and the argument with the highest mean is the task-agnostic
inferred class.

4 EXPERIMENTS

In this section, we experiment with four benchmark datasets and compare the proposed model with
the state-of-the-art (SOTA) methods to validate the incremental learning ability.

4.1 EXPERIMENTAL SETUP

CIL Datasets: We conduct the experiments using CIFAR100 (100 classes) Krizhevsky (2009),
ImageNetSubset100 (100 classes) Deng et al. (2009), TinyImageNet200 (200 classes) Le & Yang
(2015), and DomainNet (345 classes from 6 domains) Peng et al. (2019). These datasets possess
typical CIL benchmarks and out-of-distribution with severe drift in inter-domain distribution allowing
us to assess the robustness of the model against domain drift.

Dataset Split: Each dataset is split into an equal number of classes in each task from the beginning.
This approach is more challenging due to a weaker backbone due to fewer classes in the initial
tasks. We reproduce the results using FACIL Masana et al. (2022b) and PyCIL Zhou et al. (2021)
frameworks.

Compared Baselines: We compare the proposed framework against several CIL approaches Kirk-
patrick et al. (2017); Li & Hoiem (2016); Zhu et al. (2021b); Hou et al. (2019a); Zhou et al. (2022a);
Zhu et al. (2021a); Petit et al. (2023); Rypeść et al. (2023); Magistri et al. (2024); Goswami et al.
(2024). We run the experiments in three exemplar-free learning scenarios: cold-start (classes are split
evenly in all incremental steps), warm-start (initial task contains 50% of the total classes, and the
rest of the classes are split evenly) and the task-aware incremental setting, where task-id is available
during the inference. All baselines are reproduced either from the official implementation or FACIL
Masana et al. (2022b) and PyCIL Zhou et al. (2021) frameworks.

Implementation Details: We evaluate our algorithm based on the FACIL framework Masana et al.
(2022b) for both class and domain incremental learning (CIL and DIL). For all simulations, we
train a ResNet-32 architecture He et al. (2016b) from scratch as a feature-extractor network with
stochastic gradient descent (SGD) and an initial learning rate of 0.05. The hyperparameters α and λ
in Equations 2 and 3 are set to 0.99 and 1, respectively.

Evaluation Metric: We use the average incremental accuracy, At, defined as the average accuracy
across the first t tasks after incremental training on these tasks.

At ≜
1

T

T∑
i=1

Ai. (12)

More details on the evaluation are provided in the Appendix A.5 section.

4.2 SIMULATION RESULTS

Cold-Start Learning: In Table 1, we present a detailed comparison of ProCEED and the state-
of-the-art exemplar-free CL models for CIFAR100, TinyImageNet200, ImageNetSubset100, and
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Table 1: Average incremental task-agnostic accuracy (%) for exemplar-free CL with different
number of incremental tasks evaluated on CIFAR100, TinyImageNet200, ImageNetSubset100, and
DomainNet using a cold-start scenario. The best results are in bold, and the second best is underlined

Approach CIFAR100 TinyImageNet ImageNetSubset DomainNet

T=10 T=20 T=50 T=10 T=20 T=10 T=20 T=12 T=24 T=36

Finetuning 24.44 17.84 7.18 21.28 14.35 26.48 18.15 19.78 15.33 11.93
EWC Kirkpatrick et al. (2017) 31.31 22.74 10.33 21.14 14.55 27.77 18.52 18.94 13.83 11.82
LwF Li & Hoiem (2016) 39.24 29.24 14.24 23.61 17.21 45.02 34.63 19.54 11.66 11.66
LUCIR Hou et al. (2019a) 36.47 22.98 10.71 25.21 17.73 35.07 21.69 20.07 13.56 10.52
IL2A Zhu et al. (2021a) 37.96 40.63 39.98 43.75 30.89 – – 18.54 16.74 15.34
PASS Zhu et al. (2021b) 36.48 41.99 40.54 47.11 34.92 50.56 43.04 25.56 21.45 11.26
SSRE Zhu et al. (2022) 42.25 30.59 30.18 46.34 43.56 42.98 31.66 25.79 20.31 20.45
FeTrIL Petit et al. (2023) 41.55 38.34 34.73 51.57 45.09 44.56 35.37 37.32 31.76 30.14
SEED Rypeść et al. (2023) 60.71 55.25 32.72 46.92 39.39 65.72 63.71 44.64 34.32 30.12
EFC Magistri et al. (2024) 60.56 52.65 29.36 38.85 33.15 60.85 55.34 – – –
FeCAM Goswami et al. (2024) 61.72 58.75 37.55 46.34 40.85 58.03 44.73 – – –
ProCEEDBayesA.8 71.00 58.79 49.62 46.69 47.09 65.32 68.55 46.53 47.59 43.17
ProCEEDMLE 74.56 63.23 53.34 52.00 51.15 72.55 71.46 52.33 51.15 51.34
Joint (Oracle) 79.00 79.52 80.77 67.74 69.34 83.23 84.64 64.08 65.43 69.72

Figure 5: Average incremental accuracy measured after each task in two scenarios: (1) CIFAR100
(left) splits into 20 tasks with 5 classes each, and (2) TinyImageNet (right) splits into 20 tasks with
10 classes each.

DomainNet datasets. We report the average incremental accuracy for different splitting conditions
and domain shifts. In each splitting condition for various datasets, ProCEED produces superior
performance compared to other methods by a significant margin. For CIFAR100 (T = 10 and
T = 50), ProCEED outperforms the second-best method FeCAM Goswami et al. (2024) and
PASS Zhu et al. (2021b), respectively, by 13%. Table 1 shows that the results are coherent when
using CIFAR100, ImageNetSubset100, or TinyImageNet200 datasets for all rehearsal-free methods.
ProCEED consistently achieves the best accuracy (or the second best for T = 10 in TinyImageNet) as
compared to all other methods in the literature. From the result of DomainNet, we can conclude that
ProCEED is robust to distributional shift and possesses more plasticity compared to other methods.
An important observation for DomainNet, for T = 24 and T = 36, is that ProCEED performs
exceptionally higher compared to the second-best methods Rypeść et al. (2023); Petit et al. (2023) by
17.46% and 20.98% points, respectively. Moreover, ProCEED maintains its accuracy regardless of
the increase in the number of tasks. In contrast, the performance of all other approaches decreases
when the number of tasks increases. We also present the joint optimization as an upper bound
for CIL. Furthermore, for equal splits (cold-start scenarios), the detailed accuracy for CIFAR100
and TinyImageNet200 is presented in Figure 5. This figure shows that ProCEED demonstrates
higher knowledge retention from previous tasks even if very little data is provided in the initial task
compared to approaches that only employ parameter or feature-regularized-based distillation. After
20 incremental learning sessions using the CIFAR100 dataset (left graph), ProCEED performs 8.45%
points higher than the second-best FeCAM method Goswami et al. (2024) and 10.42% points higher
than the second-best approach SSRE Zhu et al. (2022) for TinyImageNet200 (right graph).

Warm-Start Learning: We evaluate ProCEED by initializing the backbone feature extractor with
50% of the total classes in the first task and evenly distributing the remaining classes across subsequent
tasks. Detailed results are presented in Table 2. For CIFAR100, ProCEED outperforms the second-
best methods, SEED Rypeść et al. (2023) and FeTrIL Petit et al. (2023), by 5.43%, 1.33%, and
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Figure 6: Average incremental accuracy measured after each task in two scenarios: (1) DomainNet
(left) splits into 12 tasks, and (2) ImageNet-Subset (right) splits into 10 tasks.

Table 2: Average incremental task-agnostic accuracy (%) for rehearsal-free CL with different number
of incremental tasks evaluated on CIFAR100, TinyImageNet-200, and ImageNetSubset-100 using a
warm-start scenario. The best results are in bold, and the second best is underlined.

Appraoch CIFAR100 TinyImageNet ImageNetSubset

T=6 T=11 T=21 T=6 T=11 T=21 T=6 T=11 T=21

EWC Kirkpatrick et al. (2017) 22.56 21.34 18.67 15.83 12.54 10.32 27.16 22.39 20.43
LwF Li & Hoiem (2016) 43.94 27.45 20.23 23.21 17.55 15.33 44.62 40.45 40.01
DeeSIL Belouadah & Popescu (2018) 55.43 45.32 35.86 41.55 32.34 29.43 65.43 58.49 45.45
PASS* Zhu et al. (2021b) 63.84 61.81 57.43 40.32 35.65 25.65 64.44 61.86 51.35
IL2A Zhu et al. (2021a) 65.21 58.39 50.56 45.23 42.22 37.45 62.42 60.34 55.65
SSRE Zhu et al. (2022) 64.32 64.21 60.64 49.52 45.62 45.54 68.76 65.85 60.43
FeTrIL Petit et al. (2023) 66.45 65.61 61.77 54.34 52.67 52.45 68.54 67.63 66.54
EFC Magistri et al. (2024) 68.85* 62.17 58.54 50.41 48.87 48.32 50.46 48.63 48.64
FeCAM Goswami et al. (2024) 68.45 68.94 60.65 65.39 60.23 55.58 58.56 60.41 59.34
SEED Rypeść et al. (2023) 72.13 69.35 58.03 62.68 61.37 61.45 70.54 65.55 63.42
ProCEEDMLE (ours) 77.54 70.67 66.42 71.44 64.93 61.64 69.23 71.11 66.12

5.22% points for T = 6, 11, and 21, respectively. With a frozen feature extractor, ProCEED
performs comparably to SEED’s best result on TinyImageNet200, with a margin of 1.19% for
T = 21, and shows similar trends on ImageNetSubset200 for T = 6. The results indicate that the
weight-regularization methods, such as EWC and LwF, exhibit poor accuracy, while knowledge-
distillation-based methods, including IL2A, SSRE, EFC, SEED, FeCAM, and ProCEED, achieve
superior average incremental accuracy.

Figure 7: Accuracy of the proposed framework
with variations of drift compensation strategies.
Similarity with angular drift performs the best
among all variations.

Experiments with Pre-trained Weights: Ta-
ble 4 shows a comparison between different
exemplar-free CL methods by using the pre-
trained weights of the ResNet-32 model He
et al. (2016a). We compute the model’s perfor-
mance for CIFAR100, TinyImageNet200, and
ImageNetSubset100. We also report the accu-
racy when replaying all the samples from the
previous task as Joint (Upper bound) for the
pre-trained weights. ProCEED shows better per-
formance than other models for CIFAR100 and
TinyImageNet200. Furthermore, in Table 6, we
compare the proposed ProCEED with SOTA
PTM-based subspace expansion methods Zhou
et al. (2024b); McDonnell et al. (2024) that use
pre-trained ViT trained on ImageNet21K and
we report the accuracy. ProCEED still shows its supremacy for task-aware evaluation.

Ablation Analysis: Table 3 shows the detailed breakdown of the performance of ProCEED on
CIFAR100 using ResNet-32 He et al. (2016a). We evaluate the ProCEED model performance after
ablating various components of the objective function as represented in Equations 2 and 3. The
symbol (✓) indicates that the operation is applied, while (“x”) denotes its absence. Each of the
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Table 3: Demonstration of the impact of individual model’s components on accuracy (%) within our
proposed method, ProCEED, on exemplar-free CIL across 10 tasks of CIFAR100 and TinyImageNet
datasets evaluated using the task-agnostic settings.

CIFAR100/10 TinyImageNet200/10
Cov. Matrix Logits Distillation [2] Feature Distillation [2] Drift Compensation

[8] LTAg Acc TAg Acc LTAg Acc TAg Acc

Diag x ✓ x 52.63 63.58 30.47 44.22
Diag ✓ x x 53.44 66.06 35.02 45.04
Diag ✓ ✓ x 54.44 66.60 39.03 46.48
Diag ✓ ✓ ✓ 58.16 64.77 40.15 46.43
Full x ✓ x 60.71 65.63 43.68 47.92
Full ✓ x x 60.37 65.38 46.55 47.37
Full ✓ ✓ x 61.22 67.99 47.12 48.32
Full ✓ ✓ ✓ 67.54 74.56 48.33 52.00

Table 4: Average incremental task-agnostic
(TAg) accuracy (%) at the end of the incre-
mental session with pre-trained ResNet-32.

CIFAR100 TinyImageNet ImageNetSubset
Approach TAg Acc TAg Acc TAg Acc
EWC 45.00 35.00 35.38
LwF 45.71 30.50 50.53
FetrIL 48.53 56.61 50.39
FeCAM 50.34 63.77 55.56
SEED 63.32 55.47 69.44
EFC 62.73 55.73 60.43
ProCEED 68.50 65.33 64.61
Joint 88.90 75.10 75.23

Table 5: Average accuracy of ProCEED com-
pared to the other methods for CIFAR100/10
dataset with a varying number of experts

Approach 5 4 3 2 1
CoSCL 57.33 50.12 40.59 35.31 30.78
SEED 60.61 55.32 45.62 40.32 40.33
ProCEED 74.56 73.27 70.71 68.40 67.13

Table 6: Average task-aware (TAw) and Last
Iterate (LTAw) accuracy (%) of our method
compared to recent methods using 500 exem-
plars on ResNet-32 He et al. (2016a). We
show the number of shared parameters (in
millions) by (Par). The methods with † use a
pre-trained ViT as a feature extractor.

Approach Par Ex. CIFAR100 ImageNetSubset

TAw Acc LTAw Acc TAw Acc LTAw Acc

iCaRL∗ 9.2 ✓ 65.4 56.3 62.6 53.7
DER∗ 9.2 ✓ 73.2 66.2 77.6 71.1
PODNet∗ 6.8 ✓ 67.8 57.6 73.8 62.9
Coil∗ 6.8 ✓ – – 59.8 43.4
WA∗ 6.8 ✓ 69.9 61.5 65.8 56.6
BiC 6.8 ✓ 66.14 55.36 66.43 49.92
FOSTER 6.8 ✓ 67.92 60.24 69.94 63.1
MEMO 5.4 ✓ – – 76.74 70.21
FeCAM 4.7 x 70.99 62.13 78.43 73.09
SEED 3.2 x 86.54 90.32 75.54 69.56
EASE† 88 x 91.56 85.35 76.34 70.39
RanPAC† 88 x 92.20 91.01 77.01 60.34
ProCEED 3.2 x 92.45 88.34 80.27 73.56

components plays a vital role in balancing the stability-plasticity dilemma. By analyzing the results
in Table 3, we notice that applying the subspace realignment preserves the stability of the network
by mitigating the angular feature drift. Furthermore, to compare the effectiveness of the proposed
drift compensation network, we also simulate other realignment methods, such as optimal transport
Courty et al. (2017), Nejjar et al. (2023), meta optimization Finn et al. (2017), to realign the subspace
of the previous tasks. Figure 7 shows that the similarity-based angular drift compensation performs
the best among other variations.

5 CONCLUSIONS

The practicality of real-world learning agents is fulfilled by the ability of their inherent models to learn
incrementally. This paper proposes a Prototype Consolidation and subspace Ensemble Exemplar-free
Deep class-incremental learning (ProCEED) with a CNN-based mixture of experts (MoE). The
proposed ProCEED prevents a drift in the representation of previous tasks by consolidating the
previous knowledge with the current task knowledge. The drift compensation is achieved by mapping
the local semantic relationship between features of previous tasks and the current one, eventually
significantly reducing the forgetting. The model also leverages adaptive knowledge distillation as a
regularizer that seeks to inherit the learned features representation from MoE without causing extra
computational overhead and much fewer parameters. ProCEED demonstrates superior improvement
in accuracy compared to state-of-the-art CIL methods when empirically validated on challenging
benchmark datasets in cold-start, task-agnostic, and exemplar-free settings.

Limitations: The limitations and future directions of the proposed method are summarized as follows:
(1) Estimating the feature covariance drift is still an open question and is a potential future extension,
which would better estimate the exact drift in the representations. (2) Approximating the prototype of
the old task associated with experts, specifically, completing the element above the diagonal elements
in Equation 9, could significantly enhance the model plasticity.
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