2311.15813v1 [cs.CV] 27 Nov 2023

arXiv

FlowZero: Zero-Shot Text-to-Video Synthesis with
LLM-Driven Dynamic Scene Syntax

Yu Lu!

Linchao Zhu? Hehe Fan?

Yi Yang?

'ReLER Lab, University of Technology Sydney
2CCAI, Zhejiang University

aniki.yulu@gmail.com

..standing apart..

..running towards..

..getting closer..

..about to hug.. ..hugging together..

Prompt: A man and a woman running towards each other, and hugging together

. 7
Time

..starting to gallop.. ..is galloping..

SEal X

..continuous towards..

..towards the left.. ..near the left..

o

Prompt: A horse is galloping from right to left in an open field

..starts to crawling.. ..continues crawling..

..into butterfly..

..flap wings..

Prompt: A caterpillar crawls on a branch, transforms into a butterfly, and then flies away

Figure 1. Zero-shot text-to-video generation. We present a new framework for text-to-video generation with exceptional temporal
coherence, featuring realistic object movements, transformations, and background motion within the generated videos.

Abstract

Text-to-video (T2V) generation is a rapidly growing re-
search area that aims to translate the scenes, objects, and
actions within complex video text into a sequence of coher-
ent visual frames. We present FlowZero, a novel frame-
work that combines Large Language Models (LLMs) with

image diffusion models to generate temporally-coherent
videos. FlowZero uses LLMs to understand complex spatio-
temporal dynamics from text, where LLMs can generate
a comprehensive dynamic scene syntax (DSS) containing
scene descriptions, object layouts, and background motion
patterns. These elements in DSS are then used to guide
the image diffusion model for video generation with smooth



object motions and frame-to-frame coherence. Moreover,
FlowZero incorporates an iterative self-refinement process,
enhancing the alignment between the spatio-temporal lay-
outs and the textual prompts for the videos. To enhance
global coherence, we propose enriching the initial noise
of each frame with motion dynamics to control the back-
ground movement and camera motion adaptively. By us-
ing spatio-temporal syntaxes to guide the diffusion process,
FlowZero achieves improvement in zero-shot video synthe-
sis, generating coherent videos with vivid motion. Project
page: https://flowzero-video.github.io/

1. Introduction

In the field of Al-generated content, there has been grow-
ing interest in expanding the generative capabilities of pre-
trained text-to-image (T2I) models to text-to-video (T2V)
generation [5, 9-12, 14, 20, 27, 33]. Recent studies have in-
troduced zero-shot T2V [10, 12, 14], which aims to adapt
image diffusion models for video generation without ad-
ditional training. These methods utilize the ability of im-
age diffusion models, originally trained on static images, to
generate frame sequences from video text prompts. How-
ever, generating coherent dynamic visual scenes in videos
remains challenging due to the succinct and abstract nature
of video text prompts.

Meanwhile, Large Language Models (LLMs) demon-
strated their capability to generate layouts to control visual
modules, especially image generation models [3, 19, 32].
These capabilities indicate a potential for LLMs to un-
derstand complex video prompts and generate fine-grained
spatio-temporal layouts to guide video synthesis. However,
generating spatio-temporal layouts for videos is more intri-
cate, necessitating the LLMs to comprehend and illustrate
how objects move and transform over time.

Furthermore, recent research [10, 12] in zero-shot T2V
proposes utilizing LLMs to break down video text into
frame-level descriptions. These descriptions are crafted to
represent each moment or event within the video, guid-
ing image diffusion models to generate semantic-coherent
videos. However, these frame-level descriptions only cap-
ture the basic temporal semantics of video prompts, lacking
detailed spatio-temporal information necessary for ensur-
ing smooth object motion and consistent frame-to-frame co-
herence in videos. Additionally, representing global back-
ground movement to depict camera motion is crucial for im-
mersive video generation [8, 30], which further complicates
video generation.

In this paper, we introduce FlowZero, a novel frame-
work that integrates LLMs with image diffusion models
to generate temporally-coherent videos from text prompts.
FlowZero utilizes LLMs for comprehensive analysis and
translating the video text prompt into a proposed structured

Dynamic Scene Syntax (DSS). Unlike previous methods
that only provide basic semantic descriptions, the DSS con-
tains scene descriptions, layouts for foreground objects, and
background motion patterns. Foreground layouts contain a
series of bounding boxes that define each frame’s spatial ar-
rangement and track changes in the positions and sizes of
objects. This ensures that the coherent object motion and
transformation align with the textual prompt. Additionally,
FlowZero incorporates an iterative self-refinement process.
This process effectively enhances the alignment between
the generated layouts and the textual descriptions, specifi-
cally addressing inaccuracies such as spatial and temporal
errors. In the self-refinement process, the generated lay-
outs are iteratively compared and adjusted against the text
through a feedback loop, ensuring a high fidelity and coher-
ence of the spatio-temporal layouts.

FlowZero prompts LLMs to predict background mo-
tion patterns to enhance temporal coherence and consis-
tency, which can be used to control global scenes and cam-
era motion in video frames. For instance, consider a text
that describes a horse running from right to left, as shown
in the middle example of Figure 1. The LLMs predict
a corresponding camera motion, making the background
move from left to right, enhancing the video’s immersive-
ness [8, 30]. The background motion pattern includes spe-
cific directions and speeds. We introduce a motion-guided
noise shifting (MNS) technique, shifting the initial noise of
each frame according to the predicted background motion
direction and speed, leading to smoother video synthesis.

FlowZero achieves a significant advancement in zero-
shot text-to-video synthesis, utilizing the spatio-temporal
planning ability of LLMs to generate detailed frame-by-
frame syntax to enhance text-to-video generation. The fu-
sion of these technologies within the FlowZero framework
enables the generation of temporally-coherent, visually ap-
pealing videos directly from textual prompts.

Our contributions are summarised as follows:

* We introduce FlowZero, which uses LLMs to convert
text into Dynamic Scene Syntax, leading to accurate
frame-by-frame video instructions. The framework’s it-
erative self-refinement process ensures better alignment
of spatio-temporal layouts with text prompts, enhancing
video synthesis coherence and fidelity.

* The framework improves the global coherence of videos
with adaptively controlled background motion through
motion-guided noise shifting, increasing the realism of
scene and camera motion.

* Through extensive experiments and evaluations,
we demonstrate FlowZero’s capability to generate
temporally-coherent videos that accurately depict com-
plex motions and transformations as described in textual
prompts.
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Figure 2. Overview of FlowZero. Starting from a video prompt, we first instruct the LLMs (i.e., GPT4) to generate serial frame-by-frame
syntax, including scene descriptions, foreground layouts, and background motion patterns. We employ an iterative self-refinement process
to improve the generated spatio-temporal layouts. This process includes implementing a feedback loop where the LLM autonomously
verifies and rectifies the spatial and temporal errors of the initial layouts. The loop continues until the confidence score C' for the modified
layouts exceeds a predefined threshold A. Next, we perform motion-guided noise shifting (MNS) to obtain the initial noise for each frame ¢
by shifting the first noise with predicted background motion direcction d; and speed s;. Then, a U-Net with cross-attention, gated attention,

and cross-frame attention is used to obtain /N coherent video frames.

2. Related Work

Text-to-Video Generation. Text-to-video (T2V) genera-
tion has evolved from initial variational autoencoders [16,
17] and GANs [4] to advanced diffusion-based tech-
niques [5, 7, 10-12, 14,27, 33], signifying a major advance-
ment in synthesis methods. Although video diffusion mod-
els create high-quality visuals, training T2V models is often
computationally expensive. This has led to the exploration
of alternative approaches that balance efficiency and quality.
Recent advancements [10, 12, 14] have explored leveraging
image diffusion models pre-trained on static images [19] to
sidestep the demanding training process for T2V. For exam-
ple, Text-to-Video Zero [14] uses linear transformations and
attention mechanisms to maintain video coherence. Free-
Bloom [12] and DirecT2V [10], use Large Language Mod-
els (LLMs) to guide image diffusion models with descrip-
tive scene prompts for sequential frames. However, these
approaches struggle to capture the intricate object dynam-
ics and background motion of videos, often leading to less
expressive and coherent video generation. In contrast to
previous methods that only provide semantic descriptions
for each frame, FlowZero utilizes LLMs to reason a more
comprehensive Dynamic Scene Syntax, delivering detailed,
frame-by-frame guidance to enhance the temporal coher-
ence and realism of T2V outputs.

Visual Planning with Large Language Models. Ad-
vancements in text-to-image synthesis show that using an
intermediate representation, such as a layout or segmenta-
tion map, greatly improves the alignment between gener-

ated images and their text descriptions [18, 31]. Various
methodologies [3, 19, 29, 32] harness the vast world knowl-
edge embedded in LLMs to craft spatial layouts to guide the
image generation process. This has resulted in the creation
of images with a reasonable spatial arrangement that closely
matches the given textual prompts. For instance, LMD [19]
introduces a novel, training-free approach, guiding a dif-
fusion model with a unique controller to generate images
based on layouts from LLMs. Similarly, LayoutGPT [3]
employs a program-guided strategy, adapting LLMs to cater
to layout-driven visual planning across diverse fields. Dif-
fering from these methods, FlowZero explores the spatio-
temporal planning ability of LLMs for temporally-coherent
video generation.

3. Method

As shown in Figure 2, FlowZero initially leverages LLMs
(e.g., GPT-4) to process a video prompt 7T, generat-
ing frame-to-frame scene descriptions, foreground layouts,
and background motion patterns. Subsequently, a self-
refinement step corrects inconsistencies between the lay-
outs and prompts, such as misaligned movement direc-
tions. The frame synthesis begins with a x1. noise sam-
pled from a Gaussian distribution. Then, we perform a
motion-guided noise shifting (MNS) to shift the noise to ob-
tain initial noises {z%,z%, ..., 2}, encoding background
motion direction and speed into each frame. A modified
U-Net with various attention mechanisms is employed to
synthesize video frames. Finally, through DDIM sampling
and a decoder, the final N video frames {D(z})N |} €



RNXHXWX3 are generated.

3.1. Dynamic Scene Syntax Generation

In this stage, we aim to use the LLMs, i.e., GPT-4 [21] to
convert textual prompts into structured syntaxes for guiding
the generation of temporally-coherent videos. These syn-
taxes include frame-by-frame descriptions, foreground ob-
ject layouts, and background motion patterns.

* Scene Descriptions: Videos often depict a series of con-
tinuous events, such as the sunrise, beginning with the
“lighting in the edge” and gradually “rising from the hori-
zon”. We propose using LLMs to break down the video
text prompt into detailed frame descriptions to depict
these events. Given a video text prompt 7, we instruct
the LLMs to segment this prompt into detailed scene de-
scriptions {71, Tz, ..., Ta }. These descriptions maintain
consistent linguistic structures, ensuring that each prompt
accurately conveys the visual content in a detailed man-
ner. By providing a description for each frame, we can
capture the temporal semantics of the video prompt.
Foreground Layout: While scene descriptions provide
semantic details for each frame, these high-level con-
straints are not sufficient to accurately depict specific ob-
ject motion and transformations. To achieve coherent ob-
ject motion, we prompt LLMs to generate a sequence of
frame-specific layouts { L1, Lo, ..., Ly} that outline the
spatial arrangement of foreground entities in each frame.
These layouts are comprised of bounding boxes that de-
fine the position and size of the prompt-referenced ob-
jects, using the format: object : {x1,y1,x2,y2}. Here,
object represents the category of the object along with
any relevant attributes (for example, “red car”), (x1,y1)
and (z2,y2) denote the coordinates for the top-left and
bottom-right vertices of the bounding box. These layouts
provide more fine-grained conditions to ensure the fore-
ground objects adhere to the visual and spatio-temporal
cues the text provides.

Background Motion: Background motion plays a cru-
cial role in enhancing the global coherence of videos, es-
pecially when dynamic foreground objects are involved.
For example, in a video showing a horse running to the
left, synchronizing the camera motion with the horse’s
direction can create a visually smooth effect, making the
video more immersive and engaging [8, 30]. To effec-
tively simulate this, we first categorize potential back-
ground motion into eight moving directions: {left, right,
up, down, left_up, left_down, right_up, right_down}, and
include a “random” option for non-directional movement.
We also define a motion speed that ranges from O (no
movement) to 1.0 (rapid movement). We use LLMs to
determine the most appropriate background motion direc-
tion and speed for each frame. This helps us align it with
the foreground movements as described in the scene. By

integrating background motions, we ensure global coher-
ence and consistency in video sequences.

Based on previous studies [3, 10, 12, 29, 32], we instruct
LLMs to generate these syntaxes through direct commands.
For example, we use prompts like “describe each frame”
to create descriptions and “generate layouts for each scene”
to generate foreground layouts. We provide an example in
context to enhance the stability and effectiveness of LLMs.

Iterative Self-Refinement. Due to the complex nature
of reasoning in spatio-temporal dynamics, there may be
discrepancies between the generated spatio-temporal lay-
outs and the textual prompts. As illustrated in Figure 2,
the sun initially moves downward over time, which con-
tradicts the video prompt “sun gradually rises”. Previ-
ous research has shown that LLMs can verify and cor-
rect generated texts or codes [2, 15, 26, 28]. Inspired by
this, we propose an iterative self-refinement process to ad-
dress potential misalignments between the initial spatio-
temporal layouts { L1, Lo, ..., Ly} and the textual prompts
{T1,72,...,Tn}. The initial step of self-refinement in-
volves prompting LLMs to verify spatial and temporal con-
sistency between scene descriptions and layouts and pro-
vide detailed feedback. This feedback includes an analysis
of problems, specific suggestions (e.g., the sun should rise
up instead of going down), and a confidence score ¢ from
1 to 5 to measure the alignment of layouts with descrip-
tions. We found that providing numerically supported anal-
ysis and suggestions enhances the effectiveness of the self-
refinement process. For example, examining and comparing
particular coordinates of the bounding boxes can be partic-
ularly helpful. We include in-context examples that clearly
demonstrate the type of feedback most helpful for generat-
ing specific suggestions. Then, we prompt LLMs again to
correct the layouts in the rectification step to improve spa-
tial and temporal alignment with the textual prompts. This
refinement process consists of multiple iterations, with the
LLM:s verifying and rectifying the layouts based on the pre-
vious iteration, leading to convergence toward an optimal
layout representation. The iterations continue until the con-
fidence score c is higher than a predefined alignment thresh-
old .

3.2. Video Synthesis from Dynamic Scene Syntax

In this section, we seek to generate coherent video frames
based on the generated DSS. As shown in the right part of
Figure 2, beginning with a noise . from standard Gaussian
distribution, we first conduct Motion-guided noise shifting
to obtain initial noises {z}., 22, 23, ..., z}¥ } for each frame.
These noises are obtained by shifting noise z4. to match
the background motion direction and speed predicted in the
DSS generation stage. We will provide detailed informa-
tion on Motion-guided noise shifting below. We employ a



modified U-Net with cross attention, gated attention, and
cross-frame attention mechanisms [10, 12, 14]. The cross-
attention mechanism within the U-Net is designed to input
scene descriptions, enabling the capture of diverse seman-
tics for each frame. Simultaneously, the gated attention [18]
inputs foreground layouts into the U-Net, managing the ar-
rangement of objects across different frames. We then con-
vert the self-attention layer in the U-Net of the image dif-
fusion model into cross-frame attention [10, 12, 14], which
performs attention between the query frame and previous
frames.

Motion-guided Noise Shifting. Previous method [14]
performs a linear transformation on initial noises with fixed
direction and speed to model global motion dynamics in
video frames. In contrast, our approach allows LLMs to
predict the background motion direction and speed adap-
tively for transforming noises, thereby significantly enhanc-
ing the global temporal coherence of videos.

Given the predicted background motion d and speed s,
a straightforward method is directly shifting the noise spa-
tially for each frame. However, this often results in abrupt
changes in low-level visual effects, such as color and light-
ing alterations in the video frames. To address this problem,
we propose a technique to shift the phase of noises in the
frequency domain [13]. This method preserves the ampli-
tude component to maintain low-level visual effects while
modulating the phase component to simulate spatial noise
shifting [6, 22-24], achieves smoother video frames.

Specifically, for each frame ¢, we use the predicted back-
ground motion direction (d;) and speed (s;) to guide the
spatial shift of noise. This is achieved by modulating the
phase component of noise x1. in the frequency domain, T’
means the total diffusion step. The mathematical formula-
tion is as follows:

Ié—v == fil (‘/—'.(Ir}) . 67]"27"'(1.'51')'(dyfy+dzfz)) ,

where F and F~! denote the Discrete Fourier Transform
(DFT) and its inverse, respectively. The frequencies in the
y and x dimensions are represented by f,, and f,.. The direc-
tion multipliers d,, and d, are derived based on the motion
direction d;. For instance, if the direction is “left,” d,, and d,,
would be set to {0,1}. When the background motion direc-
tion remains the same across frames, the index will increase
linearly, resulting in smooth motion effects.

In scenarios with non-directional movements (d =
random), such as “a goldfish swimming in a fish bowl,”
setting a static background for all frames can be unrealistic.
Our method addresses this by adding random disturbances
at the phase components of all frequencies, simulating nat-
ural scene variability, and enhancing video realism.

We perform the noise-shifting technique in the frequency
domain has several advantages:

1. Our method allows for easy modification of moving di-
rections by adjusting the direction multipliers, offering
greater flexibility than direct space shifting.

2. Since our technique operates in the frequency domain, it
is more efficient and computationally less intensive than
spatial domain transformations, particularly for handling
high-resolution and long videos.

3. We can simulate realistic motionless scenes by adding
random disturbances to the noises.

4. Experiments
4.1. Implementation Details

We utilize the GLIGEN [18] as the base image diffusion
model, which is pre-trained to generate images adhering
to a layout. We employ GPT-4 [21] to reason Dynamic
Scene Syntax (DSS). In our tests, we generate N = 8 frames
per video, each with a resolution of 512 x 512. However,
our framework allows for generating any desired number of
frames by instructing LLMs and increasing N. We set a
threshold A of self-refinement as 3 and the maximum it-
eration as 5. All experiments are conducted on a single
NVIDIA V100 GPU.

4.2. Comparisons with Baseline Methods

Qualitative Comparison In our qualitative comparative
analysis, we compare videos generated using our FlowZero
with several benchmark methods: zero-shot based methods,
T2V-Z [14], DirecT2V [10], and training-based methods
AnimateDiff [5], VideoFusion [20]. We assess the perfor-
mance in three scenarios: basic object motion rendering,
multiple object motion depiction, and complex object trans-
formations.

In our initial assessment, shown in Figure 3, we analyze
videos generated from prompts featuring basic object mo-
tion. FlowZero effectively demonstrates the ability to depict
smooth object motion, particularly showcasing a butterfly’s
departure from a flower. However, other zero-shot tech-
niques, such as T2V-Z and DirecT2V, only capture temporal
semantics and struggle to model the coherent object mo-
tion. AnimateDiff and VideoFusion were trained on exten-
sive video-text data [1] and exhibit temporal frame coher-
ence. However, they fall short in rendering nuanced motion
details, resulting in slightly stilted animations. In scenar-
ios involving multiple objects with designated movements,
also presented in the right of Figure 3, FlowZero continues
to excel, accurately animating specific objects and motion
defined in the text prompts. Other methods struggle to pre-
cisely replicate the specified objects and movements, often
resulting in a less accurate portrayal. In Figure 4, we com-
pare all methods of generating videos from prompts that
describe complex object transformations. FlowZero distin-
guishes itself by vividly rendering transformations, such as



“A butterfly leaving a flower.”

“Three birds are flying from right to left across the sky.”

Figure 4. Qualitative comparison. Our method can model intricate object transformations representing narrative structures in the video

prompt.

a tranquil volcano erupting. Other methods do not effec-
tively translate these temporal dynamics, leading to less co-
herent visual transformations.

By utilizing LLMs to plan the spatio-temporal syntax as
guidance for the diffusion model, FlowZero surpasses other
methods in text-prompted video generation. Its superior
performance is particularly noticeable in the accurate mo-
tion of multiple objects and intricate object transformations.

Quantitative Comparison As shown in Table 1, we first
compare our methods with other four baseline methods,

i.e., AnimateDiff [5], VideoFusion [20], T2V-Z [14], Di-
recT2V [10] using CLIP score metrics [25]. The CLIP
metrics measure the semantic similarity between the text
and video frames. Our method achieves the highest perfor-
mance by prompting LLMs to deduce more semantics from
both spatial and temporal dimensions.

Due to the complexity of quantitatively evaluating videos
with intricate temporal dynamics, we conducted a user
study to validate the effectiveness of our method. We re-
cruited 20 people from academia and industry to conduct
this survey. We ask users to provide feedback on the se-



Table 1. Quantitative Results. We perform automatic metrics, i.e., CLIP score and user study, to validate the effectiveness.

Automatic Metric User Study

Method Training-Free CLIP Scoret Semantict Temporalt Quality? Rank]
AnimateDiff [5] 0.244 3.15 2.75 2.97 3.42
VideoFusion [20] 0.264 3.38 2.92 3.11 3.17
T2V-Z [14] v 0.245 3.29 2.99 3.03 3.19
DirecT2V [10] v 0.244 3.39 3.29 2.52 2.97
Ours v 0.267 4.57 4.58 4.40 2.00

“Iron man is surfing from left to right”

“Sun gradually rises from the sea”

Figure 5. Ablation studies of the effectiveness of FlowZero. (A) cross-frame attention, (B) scene descriptions, (C) foreground layouts, (1)

motion-guided noise shifting.

mantic accuracy, temporal coherence, and video quality of
the videos generated by five different methods. It is evident
that users prefer our method and achieve better results, sur-
passing even training-based methods, e.g., AnimateDiff [5]
and VideoFusio [20]. Furthermore, our methods achieve
significant improvement over other zero-shot methods, e.g.,
T2V-Zero [14] and DirecT2V [10] on temporal coherence,
which validates the effectiveness of our approach.

4.3. Ablation Study

Effectiveness of FlowZero In Figure 5, we conduct a
comprehensive ablation study to validate the effectiveness
of key components in FlowZero. This includes cross-frame
attention, scene descriptions, foreground object layouts, and
background motion for noise shifting. We begin with a
baseline model that employs cross-frame attention to adapt
U-Net, feeding it original video prompts alongside indepen-
dent random noise for each frame. Row #1 of Figure 5
demonstrates that the baseline generates videos with basic
semantics like Ironman and surfing but fails to capture de-

tailed object motion. In row#2, we replace the video prompt
with generated scene descriptions for each frame, similar
to previous methods Free-Bloom [12] and DirecT2V [10].
However, we found that merely using temporal semantics
resulted in a lack of coherent object motion, resulting in in-
consistencies across frames. Instead, in row#3, by adding
the layout to constrain the arrangement of foreground ob-
jects, we can clearly capture the coherent motion of the
main object, such as “from left to right” and “rises”. How-
ever, the video frames still display temporal inconsistency,
such as in color, lighting, and global scene. In row#4, we
experimented with removing the cross-frame attention from
U-Net, which means relying solely on a pure image diffu-
sion model [18]. This modification resulted in a lack of
inconsistencies in the representation of objects and back-
grounds across frames, even though the layouts guide the
object motion. Finally, by utilizing our motion-guided noise
shifting technique in row#5, we can smoothly control the
motion direction and speed in the background, resulting in
a coherent global scene.



“A boat is moving from right to left in the river”

“A plane appears large on the runway but becomes small as it ascends into the sky”
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Figure 6. Analysis of the self-refinement process. The self-refinement mechanism verifies and rectifies spatial and temporal alignment

between layouts and video prompts.

Effectiveness of Self-Refinement Process We present
two examples in Figure 6 to illustrate the effectiveness of
our self-refinement process in correcting spatial and tempo-
ral errors of initial layouts. In the first example, the video
prompt describes “a boat moving in the river.” However, the
initial generated layout incorrectly places the boat above
the river. The boat is correctly positioned within the river
through self-refinement, aligning with the prompt’s spatial
arrangement. The second example describes a plane as-
cending into the sky. Initially, the size of the plane remains
constant across all layouts over time, contradicting the ex-
pectation that it should appear smaller as it ascends. After
refinement, the size of the plane decreases in later frames,
accurately reflecting the prompt’s temporal dynamics.

To quantitatively evaluate the effectiveness of the self-
refinement process, we propose a benchmark comprising
four spatio-temporal layout generation tasks. These tasks
include multiple objects, object movements (left, right,
up, down), size changes (big to small or small to big),
and visibility variations (half or quarter visibility). Each
task includes 20 programmatically generated prompts, as-
sessed using a rule-based metric. For instance, we cal-
culate the change in object area across frames to evaluate
size changes. The results are displayed in Table 2. We
observe LLMs initially struggle to generate precise results
that accurately reflect specific temporal changes, including
object movement, size variation, and visibility. Moreover,
through our self-refinement process, we noted a notable im-
provement in accuracy, particularly in tasks temporal vis-
ibility (from 61% to 78%). The self-refinement mecha-
nism consistently enhances spatial-temporal layout genera-

Table 2. Quantitative analysis of the self-refinement process.

Method Objectst  Movement  Sizef  VisibilityT
w/o self-refine 90% 83% 80% 61%
w/ self-refine 96% 93% 93% 78%

tion, effectively aligning the generated content with specific
temporal requirements. These experiments confirm the ef-
fectiveness of our self-refinement process in improving the
spatial-temporal coherence of the generated scenes.

5. Conclusion

In this paper, we have investigated leveraging the spatial-
temporal planning ability of Large Language Models to
guide temporally-coherent text-to-video generation with
image diffusion models. We prompt LLMs to gener-
ate comprehensive Dynamic Scene Syntax, including
scene descriptions, layouts for foreground objects, and
background motion patterns. The foreground layouts
ensure coherent object motions and object transformations
described in the prompt. Furthermore, the introduced
iterative self-refinement can enhance the alignment be-
tween the generated spatio-temporal layouts and the
textual descriptions, specifically addressing inaccuracies
such as spatial and temporal errors. The background
motion can be controlled by motion-guided noise shifting,
leading to smoother video synthesis and a coherent global
scene. We have performed extensive qualitative and
quantitative experiments along with ablation studies to
validate the effectiveness of our FlowZero framework.
These experiments validate that FlowZero can generate
temporally-coherent videos from complex video prompts.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

Max Bain, Arsha Nagrani, Giil Varol, and Andrew Zisser-
man. Frozen in time: A joint video and image encoder
for end-to-end retrieval. In 2021 IEEE/CVF International
Conference on Computer Vision, ICCV 2021, Montreal, QC,
Canada, October 10-17, 2021, pages 1708-1718. 1EEE,
2021. 5

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu, Roberta
Raileanu, Xian Li, Asli Celikyilmaz, and Jason Weston.
Chain-of-verification reduces hallucination in large language
models. arXiv preprint arXiv:2309.11495, 2023. 4

Weixi Feng, Wanrong Zhu, Tsu-Jui Fu, Varun Jampani, Ar-
jun R. Akula, Xuehai He, Sugato Basu, Xin Eric Wang, and
William Yang Wang. Layoutgpt: Compositional visual plan-
ning and generation with large language models. CoRR,
abs/2305.15393,2023. 2, 3, 4

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville,
and Yoshua Bengio. Generative adversarial networks. CoRR,
abs/1406.2661, 2014. 3

Yuwei Guo, Ceyuan Yang, Anyi Rao, Yaohui Wang, Yu
Qiao, Dahua Lin, and Bo Dai. Animatediff: Animate your
personalized text-to-image diffusion models without specific
tuning. CoRR, abs/2307.04725, 2023. 2, 3,5, 6,7

Bruce C Hansen and Robert F Hess. Structural sparseness
and spatial phase alignment in natural scenes. JOSA A, 24
(7):1873-1885, 2007. 5

Yingqing He, Tianyu Yang, Yong Zhang, Ying Shan, and
Qifeng Chen. Latent video diffusion models for high-fidelity
video generation with arbitrary lengths. arXiv preprint
arXiv:2211.13221,2022. 3

Katrin Heimann, Sebo Uithol, Marta Calbi, Maria Alessan-
dra Umilta, Michele Guerra, Joerg Fingerhut, and Vittorio
Gallese. Embodying the camera: An eeg study on the effect
of camera movements on film spectators sensorimotor cortex
activation. PloS one, 14(3):¢0211026, 2019. 2, 4

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang,
Ruigi Gao, Alexey A. Gritsenko, Diederik P. Kingma, Ben
Poole, Mohammad Norouzi, David J. Fleet, and Tim Sali-
mans. Imagen video: High definition video generation with
diffusion models. CoRR, abs/2210.02303, 2022. 2

Susung Hong, Junyoung Seo, Sunghwan Hong, Heeseong
Shin, and Seungryong Kim. Large language models are
frame-level directors for zero-shot text-to-video generation.
CoRR, abs/2305.14330, 2023. 2, 3,4, 5,6, 7

Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and
Jie Tang. Cogvideo: Large-scale pretraining for text-to-video
generation via transformers. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Ki-
gali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.
Hanzhuo Huang, Yufan Feng, Cheng Shi, Lan Xu, Jingyi
Yu, and Sibei Yang. Free-bloom: Zero-shot text-to-video
generator with LLM director and LDM animator. CoRR,
abs/2309.14494, 2023. 2, 3,4, 5,7

(13]

[14]

(15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

(25]

[26]

Bernd Jéhne. Digital image processing. Springer Science &
Business Media, 2005. 5

Levon Khachatryan, Andranik Movsisyan, Vahram Tade-
vosyan, Roberto Henschel, Zhangyang Wang, Shant
Navasardyan, and Humphrey Shi. Text2video-zero: Text-
to-image diffusion models are zero-shot video generators.
CoRR, abs/2303.13439, 2023. 2, 3,5, 6,7

Geunwoo Kim, Pierre Baldi, and Stephen McAleer.
Language models can solve computer tasks. CoRR,
abs/2303.17491, 2023. 4

Yitong Li, Martin Rengiang Min, Dinghan Shen, David E.
Carlson, and Lawrence Carin. Video generation from text.
CoRR, abs/1710.00421, 2017. 3

Yitong Li, Zhe Gan, Yelong Shen, Jingjing Liu, Yu Cheng,
Yuexin Wu, Lawrence Carin, David E. Carlson, and Jianfeng
Gao. Storygan: A sequential conditional GAN for story visu-
alization. In IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2019, Long Beach, CA, USA, June
16-20, 2019, pages 6329-6338. Computer Vision Founda-
tion / IEEE, 2019. 3

Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu,
Jianwei Yang, Jianfeng Gao, Chunyuan Li, and Yong Jae
Lee. GLIGEN: open-set grounded text-to-image generation.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-
24, 2023, pages 22511-22521. IEEE, 2023. 3, 5,7

Long Lian, Boyi Li, Adam Yala, and Trevor Darrell. Llm-
grounded diffusion: Enhancing prompt understanding of
text-to-image diffusion models with large language models.
CoRR, abs/2305.13655, 2023. 2,3

Zhengxiong Luo, Dayou Chen, Yingya Zhang, Yan Huang,
Liang Wang, Yujun Shen, Deli Zhao, Jingren Zhou, and Tie-
niu Tan. Videofusion: Decomposed diffusion models for
high-quality video generation. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2023, Van-
couver, BC, Canada, June 17-24, 2023, pages 10209-10218.
IEEE, 2023. 2,5, 6,7

OpenAl. GPT-4 technical report. CoRR, abs/2303.08774,
2023. 4,5

A Oppenheim, Jae Lim, Gary Kopec, and SC Pohlig. Phase
in speech and pictures. In ICASSP’79. IEEE International
Conference on Acoustics, Speech, and Signal Processing,
pages 632-637. IEEE, 1979. 5

Alan V Oppenheim and Jae S Lim. The importance of phase
in signals. Proceedings of the IEEE, 69(5):529-541, 1981.
Leon N Piotrowski and Fergus W Campbell. A demon-
stration of the visual importance and flexibility of spatial-
frequency amplitude and phase. Perception, 11(3):337-346,
1982. 5

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748-8763. PMLR, 2021. 6

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R
Narasimhan, and Shunyu Yao. Reflexion: Language agents



(27]

(28]

[29]

(30]

(31]

(32]

(33]

with verbal reinforcement learning. In Thirty-seventh Con-
ference on Neural Information Processing Systems, 2023. 4
Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An,
Songyang Zhang, Qiyuan Hu, Harry Yang, Oron Ashual,
Oran Gafni, Devi Parikh, Sonal Gupta, and Yaniv Taigman.
Make-a-video: Text-to-video generation without text-video
data. In The Eleventh International Conference on Learn-
ing Representations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net, 2023. 2, 3

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He,
Kang Liu, and Jun Zhao. Large language models are bet-
ter reasoners with self-verification, 2023. 4

Jinheng Xie, Kai Ye, Yudong Li, Yuexiang Li,
Kevin Qinghong Lin, Yefeng Zheng, Linlin Shen, and
Mike Zheng Shou. Visorgpt: Learning visual prior via
generative pre-training. CoRR, abs/2305.13777,2023. 3, 4

Mehmet Burak Yilmaz, Elen Lotman, Andres Karjus, and
Pia Tikka. An embodiment of the cinematographer: emo-
tional and perceptual responses to different camera move-
ment techniques. Frontiers in Neuroscience, 17, 2023. 2,
4

Lvmin Zhang and Maneesh Agrawala. Adding condi-
tional control to text-to-image diffusion models. CoRR,
abs/2302.05543, 2023. 3

Tianjun Zhang, Yi Zhang, Vibhav Vineet, Neel Joshi, and
Xin Wang. Controllable text-to-image generation with GPT-
4. CoRR, abs/2305.18583,2023. 2, 3, 4

Daquan Zhou, Weimin Wang, Hanshu Yan, Weiwei Lv,
Yizhe Zhu, and Jiashi Feng.  Magicvideo: Efficient
video generation with latent diffusion models. CoRR,
abs/2211.11018, 2022. 2, 3



	. Introduction
	. Related Work
	. Method
	. Dynamic Scene Syntax Generation
	. Video Synthesis from Dynamic Scene Syntax

	. Experiments
	. Implementation Details
	. Comparisons with Baseline Methods
	. Ablation Study

	. Conclusion

