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ABSTRACT

We propose a novel framework for value function factorization in multi-agent
deep reinforcement learning using graph neural networks (GNNs). In particular,
we consider the team of agents as the set of nodes of a complete directed graph,
whose edge weights are governed by an attention mechanism. Building upon
this underlying graph, we introduce a mixing GNN module, which is responsible
for two tasks: i) factorizing the team state-action value function into individual
per-agent observation-action value functions, and ii) explicit credit assignment to
each agent in terms of fractions of the global team reward. Our approach, which
we call GraphMIX, follows the centralized training and decentralized execution
paradigm, enabling the agents to make their decisions independently once training
is completed. Experimental results on the StarCraft II multi-agent challenge
(SMAC) environment demonstrate the superiority of our proposed approach as
compared to the state-of-the-art.

1 INTRODUCTION

Multi-agent systems are ubiquitous, appearing in many application areas such as autonomous driv-
ing (Zhao et al., 2019; Chu et al., 2020), drone swarms (Zanol et al., 2019), communication sys-
tems (Naderializadeh et al., 2020), multi-robot search and rescue (Malaschuk & Dyumin, 2020), and
smart grid (Xie et al., 2019). In many of the aforementioned domains, instructive feedback is not
available, as there are no ground-truth solutions or decisions available. These phenomena have given
rise to a plethora of literature on multi-agent reinforcement learning (MARL) algorithms, with a
special focus on deep-learning-driven methods over the past few years.

More recently, algorithms with centralized training and decentralized execution have gained interest,
due to their applicability in practical real-world scenarios. In (Lowe et al., 2017; Foerster et al.,
2018), policy gradient algorithms are considered, where the actors, which are responsible for taking
the actions for each agent, are decentralized, while the critic is assumed to be centralized, trained
in conjunction with the actors in an end-to-end manner over the course of training. The authors
in (Sunehag et al., 2018; Rashid et al., 2018) take a different value-based approach to train the agents.
Specifically, they have a value factorization module (linear in the case of VDN (Sunehag et al., 2018)
and a state-based non-linear multi-layer peceptron (MLP) in the case of QMIX (Rashid et al., 2018)),
which is responsible for implicit credit assignment; i.e., how to decompose the global state-action
value function to individual observation-action value functions for different agents.

One of the main drawbacks of the aforementioned algorithms is that they do not explicitly capture
the underlying structure of the team of agents in the environment, which can be modeled using
a graph topology. There have been some attempts to connect MARL with graph representation
learning methods in the literature. As an example, Jiang et al. (2020) propose a MARL algorithm
based on the graph convolutional network (GCN) architecture (Kipf & Welling, 2016). However,
it needs both centralized training and centralized execution (or at the very least, the agents need to
communicate with each other multiple times during the inference phase), and therefore, it does not
allow for decentralized decision making by the agents.

In this paper, we propose an algorithm for centralized training of MARL agents based on graph
neural networks (GNNs) that enables them to be deployed in a distributed manner during execution.
In particular, we consider a directed weighted graph, where each node represents an agent, and there
is a directed edge between any pair of nodes. We use an attention mechanism to dynamically adjust
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the weights of the edges in this graph based on the agents’ observations. Leveraging such a graph
structure, we propose to use a mixing GNN that produces a global state-action value function at its
output given the individual agents’ observation-action value functions at the input. A monotonicity
constraint is enforced on the GNN, ensuring that the individual agent decisions are consistent with
the case where a central entity would be responsible for making the decisions for all the agents.

We also use the mixing GNN as a backbone to derive an effective fraction of global team reward for
each of the agents. We use these reward fractions to minimize per-agent local losses, alongside the
global loss using the global state-action value function. The mixing GNN, the attention mechanism,
and the agent parameters are all trained centrally in an end-to-end fashion, and after training is
completed, each agent can make its decisions in a decentralized manner. We evaluate our proposed
algorithm, which we refer to as GraphMIX, on the StarCraft II multi-agent challenge (SMAC)
environment (Samvelyan et al., 2019) and show that it is able to outperform the state-of-the-art QMIX
algorithm (Rashid et al., 2018) across different maps.

2 RELATED WORK

A growing focus in the recent deep reinforcement learning literature is on multi-agent coopera-
tion (Lowe et al., 2017; Foerster et al., 2018; Sunehag et al., 2018; Rashid et al., 2018; Papoudakis
et al., 2020). Methods exist on a spectrum from a single unified or centralized agent to independent
and decentralized agents. At one extreme end of this spectrum, a multi-agent reinforcement learning
(MARL) problem might be reduced to a standard deep reinforcement learning problem, with a single
centralized network returning a joint action vector for all agents. At this extreme, issues that arise
are general motivations for the development of MARL. Joint multivariate action and state spaces
exponentially increase in size with the number of agents. This creates difficulties in generalization
to different numbers of agents, parameter memory scalability, and training sample efficiency. At
the other extreme, independent and decentralized agents face difficulty as coordination becomes
more complex. A recent trend that aims to find an effective middle ground is centralized training
and decentralized execution. These methods aim to produce decentralized controllers, and enforce
implicit coordination with a centralized measure of value used only in training. A related trend which
skews more toward a centralized agent studies the impact of communication between agents during
execution (Foerster et al., 2016; Sukhbaatar et al., 2016).

Graph neural networks (GNNs), on the other hand, have gained popularity as a prominent method
to manage structured input data and incorporate neighborhood information (Scarselli et al., 2008;
Kipf & Welling, 2016; Zhou et al., 2018). Similarly to convolutional and recurrent neural networks,
GNNs formalize structured treatment of data that would otherwise be concatenated and treated purely
as vectors in a high dimensional space. Due to the flexibility in modelling structured data, GNNs
have seen widespread application, in areas such as knowledge representation (Park et al., 2019),
natural language processing (Ji et al., 2019), social network analysis (Fan et al., 2019), wireless
communications (Eisen & Ribeiro, 2020), chemistry (Hu* et al., 2020), and physics (Ju et al., 2020).

In MARL, GNN-based architectures have recently been used to improve sample efficiency by adding
invariance to permutation of inputs from multiple agents in multi-agent critics (Liu et al., 2020)
and emphasize observations of neighborhoods in individual agent controllers (Jiang et al., 2020).
Graph structure has also been tied into neural attention modules, especially when using attention
mechanisms to compute graph edge weights (Veličković et al., 2017; Thekumparampil et al., 2018).
These mechanisms gained popularity in sentence translation tasks for handling associations between
structured data components (Vaswani et al., 2017; Devlin et al., 2018), and they have seen use in
general reinforcement learning as well (Zambaldi et al., 2018; Baker et al., 2019; Iqbal & Sha, 2019).

Most related to our work is a branch of value-based MARL methods, which decompose a joint
state-action value function to allow individual agents to be trained from a single global reward.
VDN (Sunehag et al., 2018) initially approximated a joint state-action value function over all agents’
actions as the sum of individual observation-action value functions from each agent. QMIX (Rashid
et al., 2018) observes that the joint state-action value function can more generally be represented by a
monotonic function of individual observation-action value functions. Additionally, QMIX allows the
joint state-action value function to be informed by global information, which is potentially unavailable
to the individual observation-action value functions. The specifics of this factorization continue to be
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analyzed in works such as Son et al. (2019). In this work, we show how to re-visit the analysis of the
joint state-action value function to reflect graphical structure from the multi-agent setting.

3 SYSTEM MODEL

We consider a multi-agent environment, where a team of M agents collaborate with each other to
solve a cooperative task. In particular, we consider a partially-observable Markov decision process
(POMDP), represented by a tuple< M,S, O,Z,A, T,Rg, γ >. At each time step t, the environment
is in global state s(t) ∈ S , with S denoting the global state space, and each agent m ∈ {1, . . . ,M}
receives as observation om(t) = O(st,m) ∈ Z , where Z denotes the per-agent observation space,
and O : S × {1, ...,M} → Z denotes the per-agent observation function.

Upon receiving its observation, each agent m ∈ {1, . . . ,M} takes an action am(t) ∈ A, with A
denoting the per-agent action space. These actions will cause the environment to transition to the next
state s(t+1) ∼ T

(
s′|s(t), {am(t)}Mm=1

)
, with T : S×S×AM → [0, 1] denoting the state transition

function. This transition is accompanied with a global reward rg(t) = Rg
(
s(t), {am(t)}Mm=1

)
, where

Rg : S ×AM → R denotes the global reward function.

In this setting, the goal of the agents at each time step t is to take a joint set of actions {am(t)}Mm=1

so as to maximize the discounted cumulative global reward, defined as
∑∞
t′=t γ

t−t′rg(t
′). In order to

make such decisions, each agent m ∈ {1, . . . ,M} is equipped with a policy πm : A× (Z ×A)∗ →
[0, 1] that determines its action given its observation-action history, where (Z × A)∗ denotes the
set of all possible observation-action histories. In particular, the action of agent m at time step t is
distributed as am(t) ∼ πm (a|τm(t)), where τm(t) =

(
{om(t′)}tt′=1, {am(t′)}t−1t′=1

)
denotes the set

of current and past local observations, as well as past actions of agent m at time step t. Letting π
denote the set of policies of all M agents, its induced joint state-action value function is defined as

Qπ
(
s(t), {am(t)}Mm=1

)
= E

[ ∞∑
t′=t

γt−t
′
rg(t

′)

]
, (1)

where the expectation is taken with respect to the set of future states and actions.

4 GRAPHMIX: GRAPH-BASED VALUE FUNCTION FACTORIZATION

We assume that each agent m ∈ {1, . . . ,M} is equipped with a deep recurrent Q-network (DRQN),
coupled with a policy πm. At each time step t, the agent chooses its action in a decentralized
manner based on its current and past local observations, alongside its past actions. In particular, it
will choose an action am(t) according to the distribution πm (a|τm(t)). This will lead to its local
observation-action value function Qπm(τm(t), am(t)).

Next, we model the team of agents as a (directed) graph, denoted byG = (V, E), where V denotes the
set of M graph nodes, each of which corresponds to an agent. Due to this one-to-one correspondence,
hereafter in this paper, we use “agent” and “node” interchangeably. Moreover, E = V × V denotes
the set of M2 graph edges, implying that the graph is a complete graph. For two agents u, v ∈ V , we
let wuv denote the weight of the edge from node v to node u. These edge weights can possibly be
varying over time, and we will later describe how they are determined.

To train the agents, we borrow the notion of monotonic value function factorization from Rashid et al.
(2018), where the idea is to decompose the global state-action value functionQπ

(
s(t), {am(t)}Mm=1

)
into a set of local observation-action value functions {Qπm(τm(t), am(t))}Mm=1 such that an increase
in the local observation-action value function of each agent leads to a corresponding increase in the
global state-action value function. To be precise, the decomposition can be written as

Qπ
(
s(t), {am(t)}Mm=1

)
= Ψmix

(
Qπ1(τ1(t), a1(t)), . . . , QπM (τM (t), aM (t))

)
, (2)

where the mixing function Ψmix satisfies

∂Ψmix(x1, ..., xM )

∂xm
≥ 0,∀m ∈ {1, . . . ,M}. (3)
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Figure 1: The GraphMIX architecture, comprising individual agents that make their decisions in a
decentralized manner, alongside a mixing GNN that is used for centralized training of the agents.

The monotonicity condition in equation 3 ensures that if each agent takes the action that maximizes
its local observation-action value function, it would also be the best action for the entire team.

In this work, we propose to use a graph-based approach for combining the local per-agent observation-
action value functions into the global state-action value function. In particular, we leverage the
aforementioned graph of the agents G to define a mixing GNN architecture, as shown in Figure 1.
In this GNN, each node v ∈ V starts with a scalar feature, which is the corresponding agent’s local
observation-action value function, i.e.,

h0v = Qπv (τv, av), (4)

where we have dropped the dependence on time for brevity. The features are then passed through
one or multiple hidden layer(s), whose number is denoted by L. At the lth layer, l ∈ {1, . . . , L}, the
features of each node v ∈ V are updated as

hlv = ψlcombine,+

(
hl−1v , {hl−1u }u∈V\{v}, {wuv}u∈V\{v}

)
, (5)

where ψlcombine,+(·) denotes a monotonically-increasing (and potentially non-linear) combining
function. This implies that each node uses its own features and the other agents’ features, alongside
its outgoing edge weights to map its input feature (vector) of dimension Fl−1 to an output (vector)
of dimension Fl, with F0 = 1. Note that the function ψlcombine,+(·) is in general a parametrized and
differentiable function, whose parameters are trained in an end-to-end fashion.

At the output of the Lth layer, each node v ∈ V will end up with a feature vector hLv ∈ RFL . We then
define the global state-action value function as

Qπ
(
s, {am}Mm=1

)
= wT+ ψreadout({hLv }v∈V), (6)

where ψreadout :

M︷ ︸︸ ︷
RFL × · · · × RFL → RFL is a graph readout operation (such as average/max

pooling), and w+ ∈ RFL
+ is a non-negative parameter vector that maps the graph embedding

ψreadout({hLv }v∈V) into the global state-action value function. Note that the monotonicity of
ψlcombine,+(·) in equation 5 and the non-negativity of w+ in equation 6 guarantee that the mixing
monotonicity condition in equation 3 is satisfied.

As an additional component, we introduce another weight vector wlocal ∈ RFL that maps the output
feature vector of each node to an effective reward fraction for the corresponding agent, defined as

αv = SoftmaxV
(
wTlocal h

L
v

)
=

exp
(
wTlocal h

L
v

)∑
u∈V exp

(
wTlocal h

L
u

) . (7)

We interpret these values as the effective fraction of the global reward that each agent receives at each
time step. The significance of wlocal lies in the fact that its parameters do not need to be non-negative,
which can improve the expressive power of the mixing GNN beyond monotonic functions.
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Our proposed architecture, which we refer to as GraphMIX, is trained in an end-to-end fashion by
minimizing the aggregate loss

L = Lglobal +
∑
v∈V
Lv,local, (8)

with the global loss defined as

Lglobal =
∑
i∈B

[((
rg + γ max

a′1,...,a
′
M

Qπ
(
s′, {a′m}Mm=1

))
−Qπ

(
s, {am}Mm=1

))2
]
i

, (9)

where B denotes a batch of transitions that are sampled from the experience buffer at each round of
training, and s′ and {a′m}Mm=1 respectively correspond to the environment state and agents’ actions
in the following time step. Moreover, for each node v ∈ V , the local loss is defined as

Lv,local =
∑
i∈B

[((
αvrg + γmax

a′v
Qπv (τ ′v, a

′
v)

)
−Qπv (τv, av)

)2
]
i

, (10)

where τ ′v denotes the observation-action history of the agent corresponding to node v at the following
time step. Note how minimizing the local losses in equation 10 creates a shortcut for backpropagating
gradients to the individual agent networks, compared to the alternative path through the mixing GNN
by minimizing the global loss in equation 9. Moreover, such local updates of the agent networks
maintain the consistency of the global policy and the decentralized agent policies.

4.1 ATTENTION-BASED EDGE WEIGHTS

To define the edge weights of the graph G, i.e., {wuv}(u,v)∈E , we use an attention mechanism similar
to the one proposed by Li et al. (2020). In particular, the agent observations at each time step are first
encoded using a shared encoder mechanism φ : Z → RF ′ to an F ′-dimensional embedding. Then,
for each pair of nodes u, v ∈ V , the weight of the edge from node v to node u is defined as

wuv = Softmax
(
φ(ou)TWφ(ov)

)
=

exp
(
φ(ou)TWφ(ov)

)∑
u′∈V exp

(
φ(ou′)TWφ(ov)

) , (11)

where W ∈ RF ′×F ′ denotes the attention weight matrix, whose parameters are trained in an end-to-
end fashion alongside the agent and mixing GNN parameters. The softmax operation in equation 11
ensures that the weights of the outgoing edges from each node to the other nodes sum up to unity.

4.2 ISOLATING DEAD AGENTS

Over the course of an episode, the agents in the team might get killed, for example by carelessly
approaching the enemies in the opponent team. Because of that, we isolate the dead agents from
the other nodes in graph G, and we remove them from calculations of the attention weights and
the GNN operations entirely. Specifically, the readout operation in equation 6, the effective reward
fraction calculation in equation 7, and the softmax operation in equation 11 for the edge weights are
constrained to the agents that are still alive in the corresponding time steps.

5 EXPERIMENTAL RESULTS

We evaluate GraphMIX on the StarCraft II multi-agent challenge (SMAC) environment (Samvelyan
et al., 2019), which provides a set of different micromanagement challenges for benchmarking
distributed multi-agent reinforcement learning methods. We specifically consider a set of four maps,
namely 3s_vs_5z, bane_vs_bane, corridor and 6h_vs_8z. These maps have been classified as either
hard or super-hard by Rashid et al. (2018). In each map, the allied team of agents are controlled by
the MARL policy, while the enemy units are controlled by the game’s built-in AI. Table 1 provides
an overview of these maps in terms of team sizes, unit types, and the micromanagement skills to be
learned by the allied agents. Moreover, Figure 2 shows a screenshot of each of the maps.

We use a gated recurrent unit (GRU) for each of the decentralized agents with 64 hidden units.
Each agent uses an ε-greedy policy, where the probability of random actions decays from 100% to
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(a) 3s_vs_5z (b) bane_vs_bane

(c) corridor (d) 6h_vs_8z

Figure 2: Screenshots of the four considered SMAC maps at the beginning of each episode.

Table 1: List of the considered SMAC maps and their corresponding features and required skills that
the allied agents need to learn in order to succeed against the enemy units.

Map name Allied agents Enemy units Micro-trick

3s_vs_5z 3 Stalkers 5 Zealots Kiting
bane_vs_bane 20 Zerglings and 4 Banelings 20 Zerglings and 4 Banelings Positioning

corridor 6 Zealots 24 Zerglings Wall off
6h_vs_8z 6 Hydralisks 8 Zealots Focus fire

5% over 50,000 time steps. The agents are trained over consecutive episodes, where at the end of
each episode, a batch of 32 episodes is randomly sampled from an experience buffer of size 5000
episodes for a round of training. The learning rate is fixed at 5× 10−4. To stabilize training, double
Q-learning is used (Hasselt, 2010; Hasselt et al., 2016), where the target agent Q-network and mixing
GNN parameters are replaced with those of their main counterparts every 200 episodes. Training
is conducted for 2× 106 time steps. Moreover, every 20,000 time steps, training is paused and the
agents are evaluated on a set of 32 test episodes.

The observation encoder for the attention mechanism in equation 11 is implemented using a single-
layer mapping followed by a non-linearity; i.e., φ(ov) = σ(Bov),∀v ∈ V , where σ(·) denotes
a non-linearity and B ∈ RF ′×dim(Z) denotes the encoding matrix, with dim(Z) representing the
dimensionality of the observation space. We use the exponential linear unit (ELU) as the non-
linearity and set F ′ = 128. Moreover, for the mixing GNN, we use a graph convolutional network
(GCN) (Kipf & Welling, 2016) as also used by Li et al. (2020). Since the attention mechanism
described in Section 4.1 leads to an effective outgoing degree of one for each graph node, the
combining operation in equation 5 can be simplified as

hlv = σ

(
Al+

∑
u∈V

wuvh
l−1
u

)
,∀v ∈ V,∀l ∈ {1, . . . , L}, (12)
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Figure 3: Comparison of the mean training return and median test win rate achieved by GraphMIX
and QMIX (Rashid et al., 2018) on the four SMAC maps under study.

where σ(·) denotes a non-linearity, and Al+ ∈ RFl×Fl−1

+ is a trainable non-negative weight matrix
that is trained in an end-to-end manner. We also use ELU as the non-linearity in equation 12, and use
a single hidden layer for the GCN with 32 nodes per hidden layer and average pooling readout at
the output. To evaluate the performance of GraphMIX against QMIX (Rashid et al., 2018), we use a
similar MLP-based architecture for the mixing network in QMIX; i.e., an MLP with a single hidden
layer, 32 neurons per hidden layer, and ELU non-linearity.

Furthermore, similar to QMIX, we use a hypernetwork architecture to determine the parameters of
the mixing GNN via the global environment state during training. In particular, each of the mixing
GNN parameters (A1

+, w+, and wlocal) is the reshaped output of a neural network with a single hidden
layer of size 64 and ELU non-linearity, which takes the global state as the input. The non-negativity
constraint for the parameters of the mixing GNN in GraphMIX and the mixing MLP in QMIX is
satisfied by taking the absolute value of the parameters after each gradient descent iteration.

Figure 3 shows the average training returns and median test win rates achieved by GraphMIX and
compares it with those of QMIX over the four aforementioned SMAC maps. The solid curves on
the left (resp., right) column show the mean (resp., median) across five training runs with different
random seeds, with the shaded areas representing the standard deviation (resp., 25-75 percentiles).
As the figure demonstrates, GraphMIX is able to considerably outperform QMIX in terms of the
sample complexity (in 3s_vs_5z), reduced variance (in bane_vs_bane), and the final average training
return (corridor and 6h_vs_8z) and test win rate (corridor).
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Figure 4: Trade-off between the average attention received by an agent from its (alive) team-mates,
the effective fraction of global reward allocated to that agent, and the agent’s median distance to the
enemy units. Each point represents an alive agent in a single time step within a batch of transitions
sampled from the experience buffer while training GraphMIX.

Moreover, Figure 4 illustrates the trade-off between the average received attention of each agent
from its team-mates, its effective fraction of the global team reward, and its median distance to the
enemy units. As the figure demonstrates, GraphMIX learns an adaptive underlying attention and
credit assignment mechanism that dynamically adjusts itself to different environment conditions. Of
particular interest is the trend happening in the bane_vs_bane scenario. It appears that, as opposed
to other maps, the vast majority of agents in this map receive little attention from their team-mates.
This implies that in this map, little coordination might be required between the agents to defeat
the enemy units, which is consistent with the observation by Rashid et al. (2018) that independent
Q-learning (Tan, 1993) easily succeeds in this map. This sheds light on how our proposed approach
can automatically adapt the coordination between agents in different settings.

6 CONCLUSION

We introduced GraphMIX, a novel approach to decompose joint state-action value functions in multi-
agent deep reinforcement learning using a graph neural network formulation under the centralized
training and decentralized execution paradigm. Our proposed method allows for a more explicit
representation of agent-to-agent relationships by leveraging an attention-based graph topology that
models the dynamics between the agents as the episodes progress. To build upon the factorized
state-action value function’s implicit assignment of global reward, we define additional per-agent loss
terms derived from the output node embeddings of the graph neural network, which explicitly divide
the global reward to individual agents. Experiments in the StarCraft Multi-Agent Challenge (SMAC)
environment show improved performance over the state of the art in multiple settings.
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