
Benchmarking End-To-End Performance of AI-Based Chip Placement Algorithms

Zihai Wang^{1*} Zijie Geng^{1*} Zhaojie Tu^{1*} Jie Wang^{1†} Yuxi Qian¹ Zhexuan Xu¹
Ziyan Liu¹ Siyuan Xu² Zhentao Tang² Shixiong Kai² Mingxuan Yuan²
Jianye Hao^{2,3} Bin Li¹ Feng Wu¹

¹ University of Science and Technology of China ² Noah’s Ark Lab, Huawei ³ Tianjin University
{zhwangx, zijiegeng, tuzj}@mail.ustc.edu.cn jiewangx@ustc.edu.cn

Abstract

Chip placement is a critical step in the Electronic Design Automation (EDA) workflow, which aims to arrange chip modules on the canvas to optimize the performance, power, and area (PPA) metrics of final designs. Recent advances show great potential of AI-based algorithms in chip placement. However, due to the lengthy EDA workflow, evaluations of these algorithms often focus on *intermediate surrogate metrics*, which are computationally efficient but often misalign with the final *end-to-end performance* (i.e., the final design PPA). To address this challenge, we propose to build **ChiPBench**, a comprehensive benchmark specifically designed to evaluate the effectiveness of AI-based algorithms in final design PPA metrics. Specifically, we generate a diverse evaluation dataset from 20 circuits across various domains, such as CPUs, GPUs, and NPUs. We then evaluate six state-of-the-art AI-based chip placement algorithms on the dataset and conduct a thorough analysis of their placement behavior. Extensive experiments show that AI-based chip placement algorithms produce unsatisfactory final PPA results, highlighting the significant influence of often-overlooked factors like regularity and dataflow. We believe ChiPBench will effectively bridge the gap between academia and industry.

1 Introduction

The exponential growth in the scale of integrated circuits (ICs), in accordance with Moore’s law, has posed significant and increasingly complex challenges to chip design [1, 2]. To address the growing complexity and enhance efficiency, numerous electronic design automation (EDA) tools have been developed to assist hardware engineers. As shown in Figure 1, EDA tools automate various critical steps in the chip design workflow, including high-level synthesis, logic synthesis, physical design, testing, and verification [1, 3].

Chip placement is a critical step in the chip design workflow, focused on determining the locations of chip components within the die to optimize the performance, power, and area (PPA) metrics of the final chip designs [4–6]. Traditionally, this process has relied on manual placement by expert designers, requiring significant labor and extensive domain expertise. To improve efficiency, numerous automation methods, particularly AI-based algorithms, have been developed to streamline this task. These methods can be broadly classified into three categories: black-box optimization (BBO) method, analytical methods (gradient-based methods), and reinforcement learning (RL) methods. Black-Box-Optimization (BBO) Methods, such as simulated annealing (SA) [7] and evolutionary algorithms (EA) [5], treat macro placement as a black-box optimization problem, searching the design space for near-optimal solutions without explicitly leveraging gradient information. Analytical methods

*Equal contribution.

†Corresponding author.

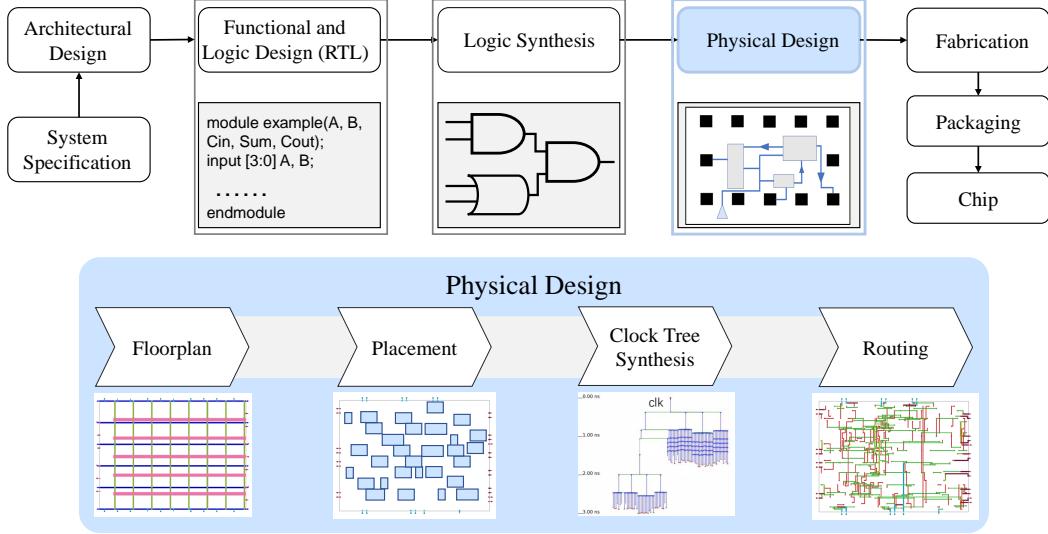


Figure 1: Illustration of the modern chip design workflow.

formulate the placement objective as a differentiable function of module coordinates and employ gradient-based or numerical optimization techniques to efficiently solve for macro positions [8, 9]. Recent research has framed macro placement as a Markov Decision Process (MDP), where macro positions are determined sequentially [10, 11]. Machine Learning, such as reinforcement learning (RL) has thus emerged as a promising approach, iteratively improving placement performance by learning from environmental feedback through trial and error [12–16].

Nevertheless, given the extensive process involved in chip design, these algorithms are typically assessed using *intermediate surrogate metrics*. While computationally efficient, such metrics often fail to closely align with *end-to-end performance* (i.e., the final design PPA). On one hand, obtaining the end-to-end performance of a given chip placement solution requires substantial engineering effort due to the lengthy chip design workflow. In particular, we observed that directly applying existing open-source electronic design automation (EDA) tools to certain widely used chip placement datasets often fails to produce reliable end-to-end performance results. On the other hand, since PPA metrics are influenced by numerous factors that are considered in earlier design stages, a critical gap exists between certain intermediate metrics and the final PPA objectives. Consequently, this gap limits the applicability of existing AI-driven placement algorithms in practical industrial scenarios.

To address this challenge, we propose ChiPBench, a comprehensive benchmark designed for EDA tasks, especially for evaluating AI-based chip placement algorithms in terms of their effectiveness in improving final PPA metrics. Appealing features of ChiPBench include its fully open-source and reproducible characteristics, covering the entire EDA workflow from the source Verilog code, and unifying the evaluation framework of AI-based chip placement methods using end-to-end performance. Thus, ChiPBench can effectively facilitate research in chip placement within the AI community by taking the first step toward a fully reproducible, unified evaluation framework. In terms of the dataset, we have generated 20 circuits from various domains (e.g., CPUs, GPUs, and NPUs). Then, these designs are compiled by executing the workflow from the Verilog source code, preserving sufficient physical implementation kits, which enable evaluations of the placement algorithms regarding their impact on the final PPA. For the evaluated algorithms, we executed *six* state-of-the-art AI-based chip placement algorithms on the aforementioned benchmark and *plugged* the results of each single-point algorithm into the physical implementation workflow to obtain the PPA results. Experimental results reveal that even when a single-point algorithm excels in intermediate metrics, its final PPA results can remain unsatisfactory. Visualization experiments further show weak correlations between some intermediate metrics and final PPA, highlighting the need to focus on optimizing final PPA directly. This indicates that we need to explore proxy metrics that more closely reflect physical realism and end-to-end performance as the objectives and features of AI algorithms. We believe that our benchmark will serve as an effective evaluation framework to bridge the gap between academia and industry.

We summarize our major contributions as follows: (1) Our proposed ChiPBench is a reproducible and unified evaluation framework for existing AI-based chip placement algorithms, utilizing end-to-end performance with fully open-source EDA tools. This can effectively facilitate research in chip placement within the AI community. (2) We construct a new dataset of 20 circuits from various domains, fully generated using an open source EDA pipeline from the source Verilog code. Our specialized procedure addresses missing macros in open-source circuits, enabling the generation of diverse designs while preserving essential physical implementation data for evaluation. (3) We evaluate six state-of-the-art AI-based chip placement algorithms, including the most popular AI-based chip placement methods. (4) Based on our experiments, our analysis reveals that existing AI-based algorithms often produce unsatisfactory final PPA, highlighting the significant influence of often-overlooked factors such as design regularity and dataflow.

2 Related Work

Datasets Some well-known EDA conferences, such as ISPD and ICCAD, host contests addressing EDA challenges and offer benchmarks with processed data for researchers. However, in the early years (e.g., ISPD2005 [17] and ICCAD2004 [18]), the provided datasets used overly simplified Bookshelf formats, which are abstracted versions of the actual design kits. Therefore, we cannot evaluate the final PPA of the placement results on those datasets. Recently, ISPD2015 [19] and ICCAD2015 [20] have offered benchmarks and datasets closer to real-world applications, including necessary netlist, library, and design exchange files, broadening their utility slightly. Nevertheless, they still lack the essential information (e.g., necessary design kits) to run the open-source EDA tools such as OpenROAD [21]. Beyond these conferences, some other datasets have been developed in various directions. For example, the EPFL [22] benchmarks and the larger OpenABC-D [23] dataset concentrated on synthetic netlists, primarily for testing modern logic optimization tools with a focus on logic synthesis. CircuitNet 2.0 [24], on the other hand, shifted the focus towards providing multi-modal data for prediction tasks, enhancing the capability for various prediction tasks through the use of diverse data modalities. Our dataset provides complete files for each case and necessary design kits, such as timing constraints, library files, and LEF files, offering a comprehensive dataset that supports all stages of physical implementation and fosters a more integrated approach to chip design and evaluation.

Placement Algorithms Recent advancements in AI technology within the EDA field have led to a variety of AI-based chip placement algorithms. (1) Black-Box Optimization methods. Simulated Annealing [4] provides a probabilistic method for finding a good approximation of the global optimum. Wire-Mask-Guided Black-Box Optimization [5] uses a wire-mask-guided greedy procedure to optimize macro placement efficiently. (2) Analytical methods. DREAMPlace [6] uses deep learning toolkits to achieve over a 30x speedup in placement tasks. AutoDMP [9] leverages DREAMPlace for the concurrent placement of macros and standard cells, enhancing macro placement quality. (3) Reinforcement Learning methods. MaskPlace [14] treats chip placement as a visual representation learning problem, reducing wirelength and ensuring zero overlaps. ChiPFormer [15] employs offline reinforcement learning, fine-tuning on unseen chips for better efficiency. MaskRegulate [25] uses RL for placement refinement, enhancing PPA metrics and ensuring design regularity. The evaluation of these algorithms mainly focuses on intermediate metrics. In contrast, we utilized the *end-to-end performance* to evaluate six existing AI-based chip placement algorithms, encompassing a significant portion of mainstream AI-based placement algorithms.

3 Background on Electronic Design Automation

Electronic Design Automation (EDA) is a suite of software tools vital for designing and developing electronic systems, primarily integrated circuits (ICs). These tools enable engineers to efficiently transform innovative concepts into functional products, addressing the complexity and demands of modern chip design. EDA optimizes the entire design process from schematic capture to fabrication, reducing time-to-market and enhancing design precision and sophistication. In the chip design workflow, EDA tools support various functions: they perform simulations to verify circuit behavior, execute synthesis to convert high-level descriptions to gate-level implementations, and manage physical layouts to ensure designs can be realized in silicon.

Table 1: Statistics of designs in our benchmark.

Id	Design	#Cells	#Nets	#Macros	#Pins	#IOs
1	ariane133	167907	197606	132	979135	495
2	ariane136	171347	201428	136	1000876	495
3	bp_fe	33188	39512	11	185524	2511
4	bp_be	51382	62228	10	293276	3029
5	bp	307055	348278	24	1642427	1198
6	swerv_wrapper	98039	113582	28	573688	1416
7	bp_multi	152287	174170	26	813050	1453
8	vga_lcd	127004	151946	62	706931	198
9	dft68	41974	56217	68	226420	132
10	or1200	26667	32740	36	153379	383
11	mor1kx	68291	81398	78	394210	576
12	ethernet	35172	44964	64	205739	211
13	VeriGPU	71082	85081	12	421857	134
14	isa_npu	427003	548451	15	2406579	93
15	ariane81	153873	180516	81	894420	495
16	bp_fe38	26859	32661	38	154162	2511
17	bp_be12	38393	47030	12	220938	3029
18	bp68	164039	191475	68	887046	1198
19	swerv_wrapper43	95455	110902	43	560088	1416
20	bp_multi57	127553	146710	57	680748	1453

As shown in Figure 1, the EDA design flow includes several key stages [26]: logic synthesis, floorplanning, placement, Clock Tree Synthesis (CTS), and routing. **Logic Synthesis** transforms a high-level circuit description into an optimized gate-level netlist [27–29]. **Floorplan** involves deciding the layout of major components within an integrated circuit, positioning blocks and core components to balance signal integrity, power distribution, and area utilization. **Placement** involves assigning specific locations to various circuit components—including macro blocks and standard cells—within the core area of the chip, following the floorplanning stage. The primary objective of this stage is to strategically place the components to optimize performance metrics such as delay and power consumption while ensuring adherence to design rules [11]. **Clock Tree Synthesis (CTS)** creates a clock distribution network within an IC to minimize those clock effects, and ensure the correct timing synchronization for circuit operation. **Routing** involves creating the physical paths for electrical connectivity between various components on the IC as per the netlist. This stage must handle multiple layers of the chip, manage signal integrity, and meet all electrical and timing constraints [13].

Chip Placement The placement process typically consists of three key phases: macro placement, global placement, and legalization (also referred to as detailed placement). (1) Macro placement is a critical very large-scale integration (VLSI) physical design problem that targets the arrangement of larger components, such as SRAMs and clock generators—often called macros. This phase significantly impacts the chip’s overall floorplan and essential design parameters like wirelength, power, and area. (2) Following this, the global placement phase addresses the arrangement of the more numerous and smaller standard cells. This phase typically utilizes analytical solvers to secure an optimized configuration that not only minimizes wirelength but also enhances the electrical and timing performance of the chip. (3) Subsequently, legalization phase refines the placement to meet strict design rules. This involves resolving overlaps between cells, aligning them to predefined rows.

4 Dataset

In this section, we first discuss the motivation behind our proposed dataset and provide an overall introduction in Section 4.1. Next, we detail the dataset generation pipeline in Section 4.2, and finally, we present our proposed procedure for creating diverse, macro-rich designs in Section 4.3. Our dataset is publicly available at Hugging Face, enabling open access and facilitating future research.

4.1 Motivation

Due to the oversimplification of datasets in early years, there exists a significant gap between these datasets and real-world applications. For instance, the usually used `Bookslef` format [17, 18] is overly simplified so that placement results given in such format are inapplicable for the subsequent stages to obtain a valid final design. Some later datasets [20] provide the `LEF/DEF` and necessary files for running these stages, but the contained circuits are still limited and they still lack some information for open-source tools like OpenROAD to work. For instance, the library file lacks buffer definitions, which is necessary for the clock tree synthesis phase, and the `LEF` file has incomplete layer definitions, which hinders the routing phase.

To tackle this problem, we present a comprehensive dataset that captures physical implementation information across the EDA flow. Our dataset includes data from a complete EDA design flow, starting from Verilog and encompassing key stages such as logic synthesis, floorplanning, placement, clock tree synthesis, and routing. It comprises both newly generated designs and processed data from existing datasets, thereby ensuring a broad coverage of realistic scenarios. For each stage, the dataset provides intermediate design data for every case, enabling tasks such as logic optimization, chip placement, and routing in the EDA domain. Furthermore, the dataset spans various domains—such as CPUs, GPUs, and NPUs—and covers a diverse range of sizes, from designs with a few thousand cells to those with nearly a million. Detailed statistics for each case are provided in Table 1.

4.2 Dataset Generation Pipeline

Our dataset generation pipeline begins with the collection of Verilog-defined circuit designs as raw data. To process these designs, we use OpenROAD [21], an open-source EDA tool, ensuring full reproducibility of our results and supporting the open-source community. This approach guarantees that all generated data and methodologies are fully open-source and accessible. The pipeline first defines physical implementation parameters, such as timing constraints, cell density, routing layer configurations, and technology choices for the collected Verilog files. Following this, we perform logic synthesis to generate netlists. Using the predefined parameters, we execute subsequent steps in the physical design flow, including floorplanning, placement, CTS, and routing. Intermediate files, such as `LEF/DEF`, are generated at each stage to facilitate various downstream tasks. For example, `DEF` files obtained during the pre-placement stage are used to evaluate and apply subsequent placement algorithms effectively.

4.3 Diverse Design Generation

In a typical synthesis flow, a Verilog file produces a netlist composed exclusively of standard cells. However, if macro blocks (such as memory blocks) are required, they must be explicitly instantiated in the Verilog description, accompanied by the corresponding macro definition files (e.g., `LEF` and `LIB`). Since most open-source circuit repositories lack these files, we developed a specialized procedure to address this limitation and generate diverse design outcomes. Our automated flow enables the partition and hardening of specific modules within a Verilog-defined circuit design into macros, producing a new Verilog file alongside the corresponding definition files. These outputs serve as the foundation for the subsequent dataset generation pipeline, enabling the creation of diverse designs with varying macro counts, shapes, and topological netlist structures. All designs are synthesized and implemented using the NanGate45 open-source technology library, ensuring compatibility with standard EDA tools while maintaining openness and reproducibility.

5 Evaluation

Although commercial EDA tools like Cadence Innovus and IC Compiler are commonly used for PPA evaluation, they are typically closed-source and expensive, making them less suitable for academic research and reproducibility. In contrast, the open-source tool OpenROAD [21] is becoming increasingly mature and provides a more accessible platform for the research community. However, establishing a open-source, end-to-end evaluation flow remains challenging due to various technical obstacles (detailed in the Appendix 6.2). In this work, we bridge this gap by providing an open-source evaluation flow based on OpenROAD. Our flow significantly lowers the barrier to the integrated

assessment of placement algorithms, including macro placement, global placement, and mixed-size placement, and enables reproducible and extensible PPA evaluation for academic use.

5.1 Evaluation Metrics

5.1.1 Final Design PPA Metrics

The primary objective of the EDA workflow is to optimize the final PPA metrics, which represent performance, power, and area—three fundamental dimensions used to assess the quality of a chip. Performance is typically evaluated using worst negative slack (WNS), total negative slack (TNS), and the number of violating paths (NVP). Negative slack indicates timing violations, with WNS identifying the most severe violation, TNS quantifying the total accumulated slack violations, and NVP counting the number of paths failing to meet timing constraints. Area refers to the total footprint of standard cells, while power encompasses the total power consumption of the chip, including internal power, switching power, and leakage power. Optimizing these PPA metrics has been a major focus in the industry and is typically approached through expert-designed heuristics.

5.1.2 Intermediate Surrogate Metrics

Commonly used intermediate surrogate metrics include congestion, wirelength, half perimeter wire length (HPWL), and MacroHPWL. Congestion measures wire density across chip regions, where excessive congestion can create routing challenges. Although not a direct PPA component, effective congestion management is crucial for manufacturability, making it a relevant evaluation metric in this study. It is typically estimated after CTS but before detailed routing to refine macro placement and routing strategies. Wirelength represents the total length of all interconnections, while HPWL estimates it using the sum of the half-perimeters of bounding boxes enclosing all pins in each net. MacroHPWL further simplifies HPWL by considering only macros. Additionally, Regularity, which reflects the consistency and uniformity of component placement, is characterized using the approach from [25].

5.2 End-to-End Evaluation Workflow

We present an end-to-end evaluation workflow for various stages of the EDA flow, as illustrated in Figure 2. To evaluate a stage-specific algorithm, the output from the preceding stage serves as its input, and the algorithm’s output is reintegrated into the original design flow. We apply this flow to the macro placement stage in Sec 5.3, and we also evaluate other stages in Appendix E.2. Final PPA metrics provide a comprehensive assessment, avoiding the limitations of isolated stage-specific metrics. This approach facilitates algorithm optimization by ensuring improvements translate into practical chip design enhancements. Our project is open-sourced on GitHub.

5.3 Experimental Setup

We apply the proposed workflow to evaluate six macro placement algorithms: SA, WireMask-EA, AutoDMP, MaskPlace, ChiPFormer, and MaskRegulate, along with the traditional algorithm DREAMPlace and Hier-RTLMP [30], which serves as the baseline. A detailed introduction can be found in Appendix A.

As most of these methods only support the circuit data in a BookShelf format, while the circuits in our used dataset are in a standard LEF/DEF, we start by converting our datasets files to BookShelf format to serve as the input for the placement algorithms. After finishing the macro placement stage, the resulting placement files are then converted back to DEF format and reintroduced into the original flow. Additionally, we perform global placement and detailed placement using OpenROAD’s native Place method, completing the entire placement process. Finally, we execute the subsequent flow to obtain end-to-end evaluation results for comparison with other algorithms.

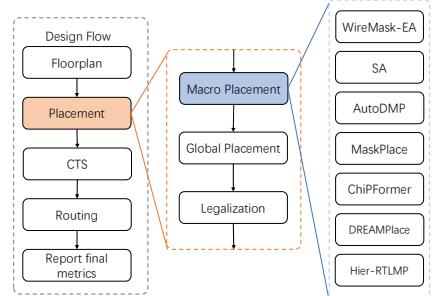


Figure 2: Illustration of our end-to-end evaluation workflow.

Table 2: The normalized evaluation results of AI-based macro placement algorithms. For each benchmark, the metric of each method is normalized by dividing it by the metric of the baseline (Hier-RTLMP). The final table presents the average of these normalized metrics.

Method	Intermediate Metrics						PPA Metrics				
	Placement Metrics			Route Metrics		Timing Performance		Power ↓			
	MacroHPWL ↓	Regularity ↓	HPWL ↓	Congestion ↓	Wirelength ↓	WNS ↓	TNS ↓	NVP ↓	Area ↓		
AI-based	WireMask-EA	0.844	1.277	1.117	1.115	1.115	1.556	11.007	3.337	1.039	1.018
	SA	0.917	1.138	1.085	1.063	1.087	1.424	2.951	1.318	1.026	1.009
	AutoDMP	0.925	1.257	0.892	0.941	0.950	1.282	2.599	1.208	1.021	1.008
	MaskPlace	2.442	1.166	1.184	1.165	1.178	1.805	3.436	1.301	1.036	1.021
	ChiPFormer	0.901	1.357	1.097	1.123	1.119	2.616	7.624	2.162	1.037	1.013
	MaskRegulate	1.472	0.653	1.036	1.011	1.032	1.156	2.213	1.216	1.001	1.000
Traditional	DREAMPlace	1.032	1.255	1.029	1.038	1.041	2.030	7.463	1.682	1.016	1.005
	Hier-RTLMP	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Table 3: The evaluation results of swerv_wrapper under AI-based macro placement algorithms. MacroHPWL(μm), Regularity(μm), and HPWL(μm) serve as metrics during the placement stage. Congestion (%) and Wirelength(μm) are evaluated in the routing stage. WNS (ns), TNS (ns), NVP, Power (nW), and Area(μm^2) are PPA metrics.

Method	Intermediate Metrics						PPA Metrics				
	Placement Metrics			Route Metrics		Timing Performance		Power ↓			
	MacroHPWL ↓	Regularity ↓	HPWL ↓	Congestion ↓	Wirelength ↓	WNS ↑	TNS ↑	NVP ↓	Power ↓	Area ↓	
AI-based	WireMask-EA	92304	16087	5052232	0.445	6203022	-1.120	-1052.140	1791	0.296	235525
	SA	108068	15756	4637819	0.383	5561268	-1.033	-863.393	1485	0.273	230076
	AutoDMP	101651	18086	4214109	0.356	5173002	-0.941	-903.640	1478	0.270	229290
	MaskPlace	282636	14743	4634862	0.378	5484915	-0.768	-582.361	1363	0.271	230706
	ChiPFormer	89999	17512	4718772	0.408	5685641	-1.352	-1496.870	1537	0.277	233285
	MaskRegulate	221155	11265	3991734	0.325	4731291	-0.670	-516.377	1365	0.266	228183
Traditional	DREAMPlace	105719	15149	3965871	0.338	4730011	-0.744	-572.391	1415	0.266	228845
	Hier-RTLMP	118198	16732	3804541	0.326	4550107	-0.660	-613.774	1435	0.265	226536

6 Results and Discussions

6.1 Main Evaluation

We evaluate the AI-based chip placement algorithms, including SA, WireMask-EA, AutoDMP, MaskPlace, ChiPFormer and MaskRegulate, using both intermediate metrics and end-to-end performance. The normalized results for macro placement are in Table 2. The total results from the experiment are detailed in Appendix D; experiments with commercial tools on our dataset and cross-verification between our open-source flow and the commercial toolchain can be found in Appendix E.1. ChiPFormer and WireMask-EA demonstrated a significant reduction in MacroHPWL compared to the baseline algorithm. WireMask-EA achieved the best performance in terms of MacroHPWL. While these AI-based placement algorithms showed good performance on several intermediate metrics, they perform poorly in terms of the PPA metrics compared to traditional algorithm. Although AI-based placement algorithms have achieved significant progress in improving certain intermediate metrics, their impact on enhancing final PPA remains quite limited.

6.2 Detailed Correlation Analysis

In this section, we analyze the correlation between intermediate metrics and final PPA metrics in existing placement algorithms. Specifically, we normalize the metrics for each algorithm on each benchmark and compile them into a dataset for correlation analysis. For normalization, we use the results of Hier-RTLMP as a baseline and express all other methods' metrics as relative ratios with respect to it on the same design. We then compute the Pearson correlation coefficient [31] to quantify the strength of the linear relationship between metric pairs. To ensure consistency, we adjust all values so that lower values indicate better performance across all metrics. The results, presented in Figure 3, reveal key insights into the relationships between intermediate and final PPA metrics.



Figure 3: Correlation Between Metrics

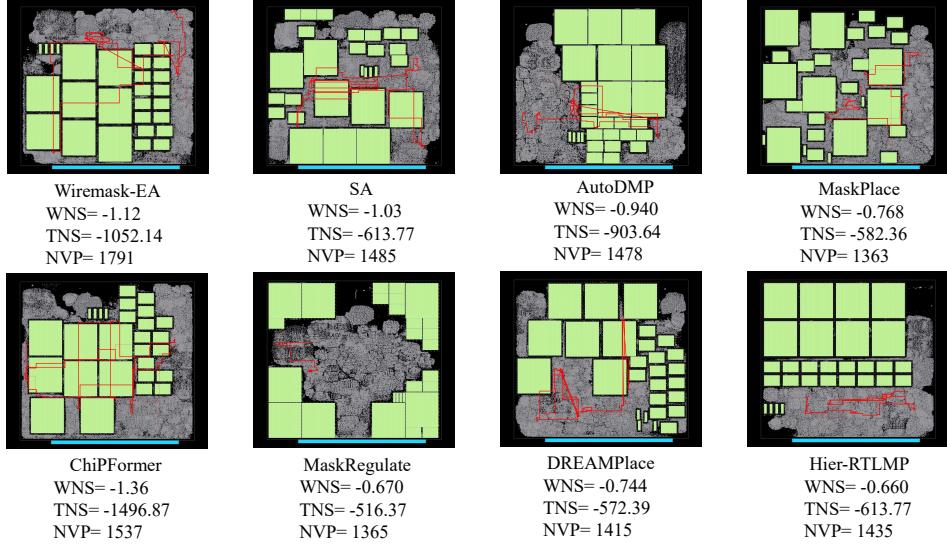


Figure 4: Images of the worst timing path for each method in *swerv_wrapper*. The results show that ChiPFormer, WireMask-EA, and AutoDMP have the worst timing performance, while MaskRegulate achieves the second-best WNS and the best TNS among all algorithms.

First, we observe strong correlations among certain intermediate metrics (e.g., HPWL, congestion, and wirelength) and among specific PPA metrics (e.g., TNS and NVP). This suggests that, in certain scenarios, optimizing one key PPA metric (e.g., TNS) could implicitly improve others (e.g., NVP), as TNS approximates the product of average WNS and NVP, with WNS values exhibiting minimal variation across different placement results.

Second, several intermediate metrics also exhibit moderate correlation with final PPA metrics. In particular, HPWL, congestion, and wirelength have a noticeable influence on power and area. This can be attributed to the fact that, during the CTS stage, timing violations are addressed—often by inserting buffers (a type of standard cell) to correct setup and hold violation paths. A larger HPWL can degrade timing slack predictions, necessitating more aggressive buffer insertion and thereby increasing standard cell area and power consumption. For instance, although the WireMask-EA method achieves the best MacroHPWL results, its weak optimization of HPWL, congestion, and wirelength ultimately leads to suboptimal power and area outcomes. The close interdependence of these PPA metrics underscores the necessity of holistic multi-objective optimization rather than focusing on a single metric in isolation.

However, MacroHPWL is an intermediate metric that exhibits a low correlation with final PPA metrics, indicating that it is oversimplified and not well aligned with end-to-end evaluation criteria. Additionally, timing-related metrics (WNS, TNS, and NVP) exhibit weak correlations with other intermediate metrics, suggesting inconsistencies in how existing proxy metrics translate to timing performance optimization. This discrepancy highlights the need for closer attention to the design of proxy metrics to ensure a consistent and effective optimization process for timing performance.

Finally, because obtaining accurate final PPA metrics is time-consuming and computationally expensive, designing effective intermediate metrics is essential. Better alignment of these metrics with final PPA—particularly timing performance metrics such as WNS, TNS, and NVP—could significantly accelerate design space exploration, facilitating more efficient and reliable optimization.

6.3 Case Study on Performance Metrics

Building on the preceding correlation analysis, this section presents a case study examining how different placement algorithms and intermediate metrics influence timing performance. We focus on the *swerv_wrapper* benchmark. Table 3 summarizes the results, and Figure 4 illustrates variations in worst timing paths across different algorithms.

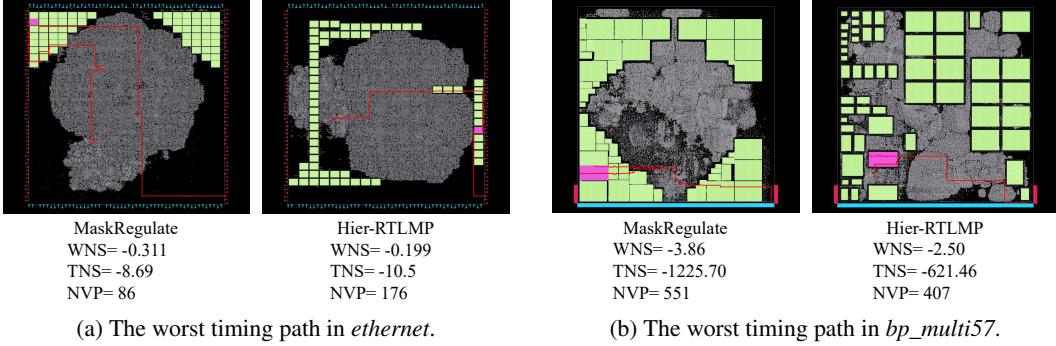


Figure 5: Comparison of MaskRegulate and Hier-RTLMP: Hier-RTLMP achieves better WNS on *ethernet* benchmark and demonstrates superior timing performance on *bp_multi57* benchmark compared to MaskRegulate.

Among all methods, ChiPFormer, WireMask-EA, and AutoDMP achieve the best MacroHPWL scores but exhibit poor timing performance. Their placement results reveal significant macro clustering near the center. While this reduces MacroHPWL by shortening macro-to-macro connections, it pushes standard cells to the periphery and introduces severe routing congestion. Macro clusters consume valuable routing layers, dispersing shared-net standard cells and increasing wirelength. These longer and more complex routing paths result in higher path delays, leading to degraded WNS and TNS. This reflects a clear case of overfitting to MacroHPWL, where optimization of a single intermediate metric fails to translate into improved timing due to physical side effects.

In contrast, the Regularity metric encourages macros to be placed near the boundary, preserving central space for standard-cell clustering and improving routing efficiency. For example, MaskRegulate, which uses Regularity, achieves the best TNS and near-optimal WNS. Its placement enables shorter timing paths and more efficient cell connections. Compared to the traditional Hier-RTLMP algorithm, which also biases peripheral macro placement, RL-based approaches like MaskRegulate demonstrate better adaptability in balancing routability and timing.

Figure 5 offers further insights through two benchmarks. Although MaskRegulate alleviates central congestion via boundary-aware placement, it sometimes overlooks internal dataflow. In certain cases, macro clustering disrupts critical communication paths, resulting in longer wires and degraded slack. In contrast, Hier-RTLMP explicitly considers communication structure and achieves better timing. This underscores the importance of dataflow-aware placement for robust timing optimization in addition to routability improvements.

6.4 Discussion

Our analysis exposes a critical gap in AI-based chip placement: while algorithms excel at optimizing the intermediate metrics, they fail to effectively enhance final PPA due to weak proxy correlations and unintended physical side effects. Given the high computational cost of obtaining final PPA, directly incorporating it into AI optimization is impractical. This highlights the urgent need for more advanced insights to bridge the gap between intermediate indicators and final PPA. We identify three promising research directions: (1) designing intermediate metrics that better align with final PPA by organically integrating factors such as regularity and dataflow; (2) developing feature-based surrogate models to approximate final PPA more efficiently; and (3) leveraging multi-fidelity optimization and learning to balance cost and accuracy in AI-based placement algorithms.

7 Conclusion

This paper presents a comprehensive dataset spanning the full spectrum of the EDA design process and an end-to-end evaluation method, which we used to assess several placement algorithms: SA, WireMask-EA, AutoDMP, MaskPlace, ChiPFormer, and MaskRegulate. Our evaluation revealed inconsistencies between metrics emphasized by mainstream placement algorithms and final PPA. These findings highlight the need for a new perspective in placement algorithm development.

Acknowledgments

The authors would like to thank all the anonymous reviewers for their insightful comments. This work was supported in part by National Key R&D Program of China under contract 2022ZD0119801, National Nature Science Foundations of China grants U23A20388 and 62021001.

References

- [1] Guyue Huang, Jingbo Hu, Yifan He, Jialong Liu, Mingyuan Ma, Zhaoyang Shen, Juejian Wu, Yuanfan Xu, Hengrui Zhang, Kai Zhong, et al. Machine learning for electronic design automation: A survey. *ACM Transactions on Design Automation of Electronic Systems (TODAES)*, 26(5):1–46, 2021.
- [2] Daniela Sánchez Lopera, Lorenzo Servadei, Gamze Naz Kiprit, Souvik Hazra, Robert Wille, and Wolfgang Ecker. A survey of graph neural networks for electronic design automation. In *2021 ACM/IEEE 3rd Workshop on Machine Learning for CAD (MLCAD)*, pages 1–6. IEEE, 2021.
- [3] Daniela Sánchez, Lorenzo Servadei, Gamze Naz Kiprit, Robert Wille, and Wolfgang Ecker. A comprehensive survey on electronic design automation and graph neural networks: Theory and applications. *ACM Transactions on Design Automation of Electronic Systems*, 28(2):1–27, 2023.
- [4] Chung-Kuan Cheng, Andrew B Kahng, Sayak Kundu, Yucheng Wang, and Zhiang Wang. Assessment of reinforcement learning for macro placement. In *Proceedings of the 2023 International Symposium on Physical Design*, pages 158–166, 2023.
- [5] Yunqi Shi, Ke Xue, Lei Song, and Chao Qian. Macro placement by wire-mask-guided black-box optimization. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
- [6] Yibo Lin, Shounak Dhar, Wuxi Li, Haoxing Ren, Brucek Khailany, and David Z Pan. Dreamplace: Deep learning toolkit-enabled gpu acceleration for modern vlsi placement. In *Proceedings of the 56th Annual Design Automation Conference 2019*, pages 1–6, 2019.
- [7] Dhruv Vashisht, Harshit Rampal, Haiguang Liao, Yang Lu, Devika Shanbhag, Elias Fallon, and Levent Burak Kara. Placement in integrated circuits using cyclic reinforcement learning and simulated annealing. *arXiv preprint arXiv:2011.07577*, 2020.
- [8] Peiyu Liao, Siting Liu, Zhitang Chen, Wenlong Lv, Yibo Lin, and Bei Yu. Dreamplace 4.0: Timing-driven global placement with momentum-based net weighting. In *2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)*, pages 939–944. IEEE, 2022.
- [9] Anthony Agnesina, Puranjay Rajvanshi, Tian Yang, Geraldo Pradipta, Austin Jiao, Ben Keller, Brucek Khailany, and Haoxing Ren. Autodmp: Automated dreamplace-based macro placement. In *Proceedings of the 2023 International Symposium on Physical Design*, pages 149–157, 2023.
- [10] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, et al. A graph placement methodology for fast chip design. *Nature*, 594(7862):207–212, 2021.
- [11] Zijie Geng, Jie Wang, Ziyan Liu, Siyuan Xu, Zhentao Tang, Mingxuan Yuan, Jianye HAO, Yongdong Zhang, and Feng Wu. Reinforcement learning within tree search for fast macro placement. In *Forty-first International Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=AJGwSx0RUV>.
- [12] Ruoyu Cheng and Junchi Yan. On joint learning for solving placement and routing in chip design. *Advances in Neural Information Processing Systems*, 34:16508–16519, 2021.
- [13] Ruoyu Cheng, Xianglong Lyu, Yang Li, Junjie Ye, Jianye Hao, and Junchi Yan. The policy-gradient placement and generative routing neural networks for chip design. *Advances in Neural Information Processing Systems*, 35:26350–26362, 2022.

[14] Yao Lai, Yao Mu, and Ping Luo. Maskplace: Fast chip placement via reinforced visual representation learning. *Advances in Neural Information Processing Systems*, 35:24019–24030, 2022.

[15] Yao Lai, Jinxin Liu, Zhentao Tang, Bin Wang, Jianye Hao, and Ping Luo. Chipformer: Transferable chip placement via offline decision transformer. *arXiv preprint arXiv:2306.14744*, 2023.

[16] Zijie Geng, Jie Wang, Ziyan Liu, Siyuan Xu, Zhentao Tang, Shixiong Kai, Mingxuan Yuan, Jianye Hao, and Feng Wu. Lamplace: Learning to optimize cross-stage metrics in macro placement. In *The Thirteenth International Conference on Learning Representations*, 2025.

[17] Gi-Joon Nam, Charles J Alpert, Paul Villarrubia, Bruce Winter, and Mehmet Yildiz. The ispd2005 placement contest and benchmark suite. In *Proceedings of the 2005 international symposium on Physical design*, pages 216–220, 2005.

[18] SN Adya, S Chaturvedi, and IL Markov. Iccad’04 mixed-size placement benchmarks. *GSRC Bookshelf*, 2009.

[19] Ismail S Bustany, David Chinnery, Joseph R Shinnerl, and Vladimir Yutsis. Ispd 2015 benchmarks with fence regions and routing blockages for detailed-routing-driven placement. In *Proceedings of the 2015 Symposium on International Symposium on Physical Design*, pages 157–164, 2015.

[20] Myung-Chul Kim, Jin Hu, Jiajia Li, and Natarajan Viswanathan. Iccad-2015 cad contest in incremental timing-driven placement and benchmark suite. In *2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)*, pages 921–926, 2015. doi: 10.1109/ICCAD.2015.7372671.

[21] Andrew B Kahng and Tom Spyrou. The openroad project: Unleashing hardware innovation. In *Proc. GOMAC*, 2021.

[22] Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. The epfl combinational benchmark suite. In *Proceedings of the 24th International Workshop on Logic & Synthesis (IWLS)*, 2015.

[23] Animesh Basak Chowdhury, Benjamin Tan, Ramesh Karri, and Siddharth Garg. Openabc-d: A large-scale dataset for machine learning guided integrated circuit synthesis. *arXiv preprint arXiv:2110.11292*, 2021.

[24] Xun Jiang, Yuxiang Zhao, Yibo Lin, Runsheng Wang, Ru Huang, et al. Circuitnet 2.0: An advanced dataset for promoting machine learning innovations in realistic chip design environment. In *The Twelfth International Conference on Learning Representations*, 2023.

[25] Ke Xue, Ruo-Tong Chen, Xi Lin, Yunqi Shi, Shixiong Kai, Siyuan Xu, and Chao Qian. Reinforcement learning policy as macro regulator rather than macro placer. *arXiv preprint arXiv:2412.07167*, 2024.

[26] Luciano Lavagno, Igor L Markov, Grant Martin, and Louis K Scheffer. *Electronic design automation for IC implementation, circuit design, and process technology*. CRC Press, 2017.

[27] Zhihai Wang, Jie Wang, Dongsheng Zuo, Ji Yunjie, Xilin Xia, Yuzhe Ma, Jianye HAO, Mingxuan Yuan, Yongdong Zhang, and Feng Wu. A hierarchical adaptive multi-task reinforcement learning framework for multiplier circuit design. In *Forty-first International Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=LGz7GaUSEB>.

[28] Augusto André Souza Berndt, Mateus Fogaça, and Cristina Meinhardt. A review of machine learning in logic synthesis. *Journal of Integrated Circuits and Systems*, 17(3):1–12, 2022.

[29] Xilin Xia, Jie Wang, Wanbo Zhang, Zhihai Wang, Mingxuan Yuan, Jianye Hao, and Feng Wu. High-performance arithmetic circuit optimization via differentiable architecture search. In *The Thirty-ninth Annual Conference on Neural Information Processing Systems*, 2025.

[30] Andrew B Kahng, Ravi Varadarajan, and Zhiang Wang. Hier-rtlmp: A hierarchical automatic macro placer for large-scale complex ip blocks. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, 2023.

[31] Israel Cohen, Yiteng Huang, Jingdong Chen, Jacob Benesty, Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. Pearson correlation coefficient. *Noise reduction in speech processing*, pages 1–4, 2009.

[32] Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by simulated annealing. *science*, 220(4598):671–680, 1983.

[33] Naveed A Sherwani. *Algorithms for VLSI physical design automation*. Springer Science & Business Media, 2012.

[34] Shinn-Ying Ho, Shinn-Jang Ho, Yi-Kuang Lin, and WC-C Chu. An orthogonal simulated annealing algorithm for large floorplanning problems. *IEEE transactions on very large scale integration (VLSI) systems*, 12(8):874–877, 2004.

[35] M Shunmugathammal, C Christopher Columbus, and S Anand. A novel b* tree crossover-based simulated annealing algorithm for combinatorial optimization in vlsi fixed-outline floorplans. *Circuits, Systems, and Signal Processing*, 39:900–918, 2020.

[36] Hiroshi Murata, Kunihiro Fujiyoshi, Shigetoshi Nakatake, and Yoji Kajitani. Vlsi module placement based on rectangle-packing by the sequence-pair. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, 15(12):1518–1524, 1996.

[37] Yun-Chih Chang, Yao-Wen Chang, Guang-Ming Wu, and Shu-Wei Wu. B*-trees: A new representation for non-slicing floorplans. In *Proceedings of the 37th Annual Design Automation Conference*, pages 458–463, 2000.

[38] Andrew B Kahng, Sherief Reda, and Qinke Wang. Aplace: A general analytic placement framework. In *Proceedings of the 2005 international symposium on Physical design*, pages 233–235, 2005.

[39] Natarajan Viswanathan, Gi-Joon Nam, Charles J Alpert, Paul Villarrubia, Haoxing Ren, and Chris Chu. Rql: Global placement via relaxed quadratic spreading and linearization. In *Proceedings of the 44th annual Design Automation Conference*, pages 453–458, 2007.

[40] Natarajan Viswanathan, Min Pan, and Chris Chu. Fastplace 3.0: A fast multilevel quadratic placement algorithm with placement congestion control. In *2007 Asia and South Pacific Design Automation Conference*, pages 135–140. IEEE, 2007.

[41] Peter Spindler, Ulf Schlichtmann, and Frank M Johannes. Kraftwerk2—a fast force-directed quadratic placement approach using an accurate net model. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, 27(8):1398–1411, 2008.

[42] Tung-Chieh Chen, Zhe-Wei Jiang, Tien-Chang Hsu, Hsin-Chen Chen, and Yao-Wen Chang. Ntuplace3: An analytical placer for large-scale mixed-size designs with preplaced blocks and density constraints. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, 27(7):1228–1240, 2008.

[43] Myung-Chul Kim, Natarajan Viswanathan, Charles J Alpert, Igor L Markov, and Shyam Ramji. Maple: Multilevel adaptive placement for mixed-size designs. In *Proceedings of the 2012 ACM international symposium on International Symposium on Physical Design*, pages 193–200, 2012.

[44] Myung-Chul Kim and Igor L Markov. Complx: A competitive primal-dual lagrange optimization for global placement. In *Proceedings of the 49th Annual Design Automation Conference*, pages 747–752, 2012.

[45] Jingwei Lu, Pengwen Chen, Chin-Chih Chang, Lu Sha, Dennis J-H Huang, Chin-Chi Teng, and Chung-Kuan Cheng. eplace: Electrostatics based placement using nesterov’s method. In *Proceedings of the 51st Annual Design Automation Conference*, pages 1–6, 2014.

- [46] Chung-Kuan Cheng, Andrew B Kahng, Ilgweon Kang, and Lutong Wang. Replace: Advancing solution quality and routability validation in global placement. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, 38(9):1717–1730, 2018.
- [47] Yibo Lin, David Z Pan, Haoxing Ren, and Brucek Khailany. Dreamplace 2.0: Open-source gpu-accelerated global and detailed placement for large-scale vlsi designs. In *2020 China Semiconductor Technology International Conference (CSTIC)*, pages 1–4. IEEE, 2020.
- [48] Jiaqi Gu, Zixuan Jiang, Yibo Lin, and David Z Pan. Dreamplace 3.0: Multi-electrostatics based robust vlsi placement with region constraints. In *Proceedings of the 39th International Conference on Computer-Aided Design*, pages 1–9, 2020.
- [49] Synopsys Design Compiler. Synopsys design compiler. *Pages/default.aspx*, 2016.

A Algorithms

AI-based chip placement algorithms can be roughly grouped into three categories: black-box optimization (BBO) methods, analytical methods (gradient-based methods), and reinforcement learning (RL) methods. Each category frames the placement task as an optimization problem but adopts distinct objectives and methodologies. Details are as follows.

A.1 Black-Box-Optimization (BBO) Methods

A straightforward intuition is to view the chip placement task as a black-box-optimization (BBO) problem, where the inner workings of the objective functions are inaccessible, and solutions are evaluated only based on the output metrics.

Simulated Annealing (SA) is a heuristic BBO optimization algorithm favored for its simplicity in implementation. Specifically, the SA algorithm generates solutions by perturbing the solution space and then assessing the resulting representation. Different methods have been developed to effectively map representations to placement solutions [7, 32–35], such as sequence pair [36] and B*-tree [37]. Solutions are probabilistically accepted based on an annealing temperature to escape local optima in pursuit of a global optimum. Due to its simplicity in implementation, the SA algorithm often serves as a strong baseline in previous studies. In this work, we incorporate a specific SA implementation [4] utilizing operations like swaps, shifts, and shuffles, and a cost function that balances wirelength, density, and congestion.

WireMask-EA [5] is a BBO framework that was recently introduced at the NeurIPS 2023 conference, positioning itself as an innovative approach in the intersection of AI and EDA. The framework utilizes a novel concept called wiremask, which plays a crucial role in guiding the mapping process from genotypes to phenotypes in a greedy manner. The wiremask concept was originally introduced by Lai et al. [14], where it is defined as a matrix that predicts the potential increase in Half-Perimeter Wirelength (HPWL) for each subsequent macro placement on the design canvas. By estimating the wirelength increase, the wiremask helps in making informed decisions during the placement process, thereby potentially improving the quality of the layout. Building upon this concept, Shi et al. [5] extended the framework to integrate several types of Black-Box Optimization (BBO) algorithms, including random search (RS), evolutionary algorithm (EA), and Bayesian optimization (BO), demonstrating the versatility of the approach in handling complex optimization tasks in chip design.

A.2 Analytical (Gradient-Based) Methods

Analytical methods formulate the optimization objective as an analytical function of module coordinates. This formulation enables efficient solutions through techniques like quadratic programming [38–44] and direct gradient descent [6, 8, 45–48]. This work focuses on the gradient-based algorithms, which are by far the more mainstream algorithms.

DREAMPlace [8] is a GPU-accelerated framework that leverages differentiable proxies, such as approximate HPWL, as optimization objectives. It was built upon the previous analytical placement algorithms, ePlace [45] and RePIPlace [46], yet significantly speeding up the placement process by using GPUs for acceleration. The series of versions of DREAMPlace introduces diverse differentiable proxies to better align the PPA improvement.

AutoDMP [9] extends DREAMPlace by automating hyperparameter tuning through multi-objective Bayesian optimization. It further accelerates the optimization process and reduces manual tuning efforts. At that time, this work showcased the promising potential of integrating GPU-accelerated algorithms with machine learning techniques for automating VLSI design.

A.3 Reinforcement Learning (RL) Methods

As VLSI systems grow in complexity, RL methods are being explored to enhance placement quality. GraphPlace [10] first models macro placement as a RL problem. Subsequently, DeepPR [12] and PR-Net [13] establish a streamlined pipeline encompassing macro placement, cell placement, and routing. However, they treat density as a soft constraint, which may violate non-overlap constraint during

training. Therefore, in this work, we mainly focus on MaskPlace, ChiPFormer and MaskRegulate, which are recent SOTA algorithms with hard non-overlapping constraints.

MaskPlace [14] represents the chip states as pixel-level visual inputs, including a wiremask (recording the HPWL increment for each grid), the viewmask (a global observation of the canvas), and the positionmask (to ensure non-overlapping constraint). Furthermore, it uses dense reward to boost the sample efficiency.

ChiPFormer [15] represents the first offline RL method. It is pretrained on various chips via offline RL and then fine-tuned on unseen chips for better efficiency. As a result, the time for placement is significantly reduced.

MaskRegulate [25] refines chip placements using RL at the adjustment stage, leveraging precise rewards and incorporating regularity as a key metric. It improves PPA metrics and placement quality across various designs.

B Technical details

B.1 Experimental Details

During the dataset generation process, the macro placement stage is considered part of the floorplan phase. After this phase, the power distribution networks (PDNs) are generated, followed by global placement and detailed placement. During this process, we extracted the DEF files from the macro placement stage, converted them into the required formats based on different algorithmic needs, and executed the corresponding placement algorithms. The macro positions generated by each algorithm were written back into the original DEF files for evaluation. After completing the floorplan stage, we proceeded with global placement and subsequent steps to obtain the final PPA.

For the RL method, we utilized the pre-trained reinforcement learning model provided by the project and leveraged its zero-shot capability to accomplish the task. For ChiPFormer, use the default model and perform 100 online iterations to fine-tune the macro layout. For MaskPlace, run 3000 epochs. Other settings use the defaults. For methods such as DREAMPlace, AutoDMP, and MaskRegulate, their output includes the results of the global placement stage. To ensure consistency in results, we extracted only the macro placement distributions generated by these methods for analysis. In the method of ChipFormer and MaskPlace, the experiments were run on an NVIDIA GeForce RTX 2080 Ti, taking one day for all cases. For the other algorithms, we used 32 CPUs (Intel(R) Xeon(R) CPU E5-2667 v4 @ 3.20GHz), with a total time expenditure of two days.

B.2 Encountered Errors

Existing open-source EDA toolchains are typically composed of various open-source tools. However, they have certain limitations and flaws in practical use, including functional restrictions and potential bugs. During the design process, we encountered several issues that required resolution. For instance, when using the OpenROAD flow, integrating DEF files back into the original flow caused parsing errors during post-route STA due to special characters (e.g., “/”) in some component names, leading to inaccurate analysis results. To address this, we replaced the problematic characters to ensure proper parsing. In addition, OpenROAD lacks robust support for the syntax of SDC files. For example, in the ICCAD2015 dataset, some SDC file content caused read failures, necessitating additional handling during the design flow.

We also identified issues with various open-source placement algorithms during practical application, requiring modifications and optimizations to their code. Specifically, we adjusted the canvas initialization code of MaskPlace and ChipFormer to support non-square die shapes. For ChipFormer, we modified the processes for reading and exporting macro positions. Furthermore, we rewrote the benchmark reading code of MaskRegulate, which was originally limited to the ICCAD2015 dataset, to support our datasets. Through these modifications, we are able to effectively evaluate these algorithms.

C Computational Resources

This section summarizes the computational resources. All experiments were executed under the same hardware/software environment to ensure a fair comparison. **Evaluation time** is reported in **minutes** and denotes the wall-clock elapsed time to obtain final PPA after a placement solution is fixed. Concretely, we start the timer when the placement DEF produced by an algorithm is loaded into our backend flow, and stop it after detailed routing and sign-off reports are generated. The time therefore includes global placement, legalization, clock tree synthesis, and routing; it excludes the runtime of the macro/global placer itself, logic synthesis, and any data preparation. Memory usage is reported in **megabytes (MB)**.

Table 4: Evaluation Time (minutes) per Design and Method

Design	WireMask-EA	SA	AutoDMP	MaskPlace	ChiPFormer	MaskRegulate	DREAMPlace
ariane136	116	117	137	135	126	186	93
ariane133	111	141	111	123	131	114	128
bp	202	212	188	227	211	188	192
bp_fe	31	29	90	28	354	76	54
bp_be	177	271	396	229	190	63	397
bp_multi	69	75	100	69	108	84	114
swerv_wrapper	4179	4465	512	4400	431	183	318
vga_lcd	63	51	85	44	51	37	79
dft68	21	24	13	21	24	17	30
or1200	76	15	37	17	40	53	47
ethernet	42	27	33	36	29	74	28
VeriGPU	38	37	33	37	35	116	38
bp_fe38	122	157	137	98	48	327	597
bp_be12	87	94	209	156	83	353	317
swerv_wrapper43	119	252	192	284	183	384	400
bp_multi57	115	96	202	90	91	221	432
ariane81	427	441	508	567	418	221	432

Table 5: Memory Usage (MB) per Design and Method

Design	WireMask-EA	SA	AutoDMP	MaskPlace	ChiPFormer	MaskRegulate	DREAMPlace
ariane136	9007	8419	8866	8926	8933	9063	8603
ariane133	8989	8516	8432	8786	8594	8609	8616
bp	12647	11544	11595	12088	12656	11750	12162
bp_fe	4053	4079	4999	3888	4583	4145	4016
bp_be	5353	5851	5939	5791	5656	4725	5759
bp_multi	7670	7712	7844	7836	7940	7958	7983
swerv_wrapper	35496	12531	7269	15135	7147	7448	7842
vga_lcd	5820	6112	6473	6007	6190	6666	6817
dft68	3581	3441	3161	3676	3350	3326	3181
or1200	3308	500	3491	791	790	3308	3496
ethernet	3723	3630	3559	3741	3575	3691	3699
VeriGPU	5386	5309	5332	5344	5294	5298	5251
bp_fe38	5993	3825	3783	4403	4483	3745	3971
bp_be12	7622	5542	7138	7141	5684	6736	6627
swerv_wrapper43	7855	7083	7060	7232	7671	6989	7720
bp_multi57	8030	7789	7152	8202	9241	9233	7255
ariane81	11472	8908	10069	11433	9083	10057	8718

Table 6: The total results from the experiment. MacroHPWL(μm), Regularity(μm), and HPWL(μm) serve as metrics during the placement stage. Congestion (%) and Wirelength(μm) are evaluated in the routing stage. WNS (ns), TNS (ns), NVP, Power (nW), and Area(μm^2) are PPA metrics.

Benchmark	Method	Intermediate Metrics					PPA Metrics				
		Placement Metrics		Route Metrics			Timing Performance		Power ↓		
		MacroHPWL ↓	Regularity ↓	HPWL ↓	Congestion ↓	Wirelength ↓	WNS ↑	TNS ↑	NVP ↓	Area ↓	
ariane133	WireMask-EA	242238	114512	6433324	0.264	7651585	-0.211	-189.104	1943	0.351	388201
	SA	1199014	105329	6281435	0.251	7467599	-0.543	-86.418	426	0.346	386449
	AutoDMP	165788	90490	6073392	0.242	7189065	-0.186	-132.132	1693	0.347	385105
	MaskPlace	837745	99161	8414745	0.335	9733581	-0.498	-766.003	2806	0.369	399260
	ChiPFormer	228989	123006	6987169	0.282	8159913	-0.49	-674.917	2772	0.365	391184
	MaskRegulate	649344	42045	6938424	0.271	8087277	-0.077	-17.829	709	0.343	389803
	DREAMPlace	248452	107875	6347837	0.261	7570321	-0.374	-457.43	2397	0.359	386995
	Hier-RTLMP	568103	65804	6561610	0.266	7698115	-0.129	-75.056	1321	0.342	389967
ariane136	WireMask-EA	253664	102336	6078412	0.251	7247980	-0.177	-159.48	1770	0.379	393951
	SA	206782	101659	6587643	0.263	7794513	-0.187	-169.36	1498	0.39	396525
	AutoDMP	178085	110442	6121622	0.246	7302628	-0.188	-166.52	1799	0.38	396119
	MaskPlace	898193	100409	8348492	0.335	9688399	-0.343	-382.742	2258	0.41	409283
	ChiPFormer	301790	120650	6780158	0.278	8029029	-0.282	-253.365	2013	0.396	397091
	MaskRegulate	616012	44090	6908821	0.272	8089823	-0.194	-154.2	1766	0.378	397739
	DREAMPlace	271713	106918	6075063	0.247	7305799	-0.259	-247.105	2001	0.387	394257
	Hier-RTLMP	525799	74380	6392817	0.262	7582918	-0.116	-50.597	1079	0.379	397302
bp	WireMask-EA	23159	17726	8936778	0.461	10430310	-4.818	-72.26	1367	0.508	533310
	SA	28700	15631	8804023	0.442	10290194	-4.451	-74.026	1719	0.501	534082
	AutoDMP	30637	18123	8716770	0.44	10247761	-4.861	-211.311	2627	0.498	536293
	MaskPlace	62427	17401	9081986	0.455	10599862	-4.741	-1316.7	6150	0.501	532615
	ChiPFormer	23948	18854	8787969	0.466	10556917	-4.761	-263.491	955	0.5	532571
	MaskRegulate	46161	8008	8048760	0.418	9475677	-4.371	-35.503	532	0.505	528872
	DREAMPlace	30257	16972	8434472	0.433	9811774	-4.524	-156.102	1670	0.495	528154
	Hier-RTLMP	22621	14169	8010716	0.414	9379330	-4.822	-22458.4	14758	0.488	525713
bp_be	WireMask-EA	12132	4401	3337281	0.617	4192684	-0.603	-48.936	111	0.147	123172
	SA	14069	4008	3326938	0.633	4317839	-0.937	-79.232	111	0.151	122659
	AutoDMP	16220	4496	3720895	0.7	4938884	-0.898	-70.97	220	0.157	126114
	MaskPlace	20794	4140	3422765	0.648	4434133	-0.669	-45.159	111	0.147	123782
	ChiPFormer	12226	5349	3257074	0.61	4145308	-0.836	-67.798	111	0.149	123200
	MaskRegulate	16338	2809	3121381	0.519	3684330	-0.495	-39.754	110	0.142	121308
	DREAMPlace	17167	4942	3388866	0.628	4289216	-0.784	-45.56	111	0.149	124045
	Hier-RTLMP	13575	4333	3146056	0.591	4028731	-0.529	-39.002	110	0.146	122135
bp_fe	WireMask-EA	45868	5343	2617101	0.579	3181490	-0.332	-67.505	539	0.179	74335
	SA	41649	3517	2409585	0.546	3010920	-0.314	-12.508	139	0.176	72022
	AutoDMP	40442	4281	2423670	0.684	3610750	-0.092	-1.657	43	0.168	70595
	MaskPlace	65234	3893	2261692	0.521	2867419	-0.168	-2.73	49	0.17	72112
	ChiPFormer	65234	3893	2261692	0.595	3208864	-0.752	-33.906	257	0.173	72112
	MaskRegulate	45537	3043	2281612	0.55	3021127	-0.232	-13.622	113	0.167	70687
	DREAMPlace	50669	4377	2125704	0.528	2871636	-0.528	-38.339	159	0.168	70523
	Hier-RTLMP	48682	4083	2100584	0.481	2628466	-0.116	-1.007	32	0.167	70658
bp_multi	WireMask-EA	30929	15190	5367993	0.42	6124013	-5.843	-4063.81	10404	0.545	268133
	SA	36422	13761	5127229	0.387	5849303	-5.479	-3280.39	9967	0.538	267251
	AutoDMP	36517	17625	5454418	0.41	6210775	-5.623	-3492.19	9454	0.539	265453
	MaskPlace	134103	15149	5580849	0.437	6384545	-5.436	-4111.42	9676	0.541	269016
	ChiPFormer	28916	17044	5202164	0.407	5938064	-5.605	-4453.74	9779	0.544	266880
	MaskRegulate	44104	8347	4651180	0.37	5398697	-5.453	-2991.5	8089	0.534	260721
	DREAMPlace	39400	16449	5214381	0.409	5971959	-5.622	-3192.49	10119	0.536	267504
	Hier-RTLMP	22785	11794	4724466	0.372	5435399	-5.706	-2926.31	9867	0.535	262623
swerv_wrapper	WireMask-EA	92304	16087	5052232	0.445	6203022	-1.12	-1052.14	1791	0.296	235525
	SA	108068	15756	4637819	0.383	5561268	-1.033	-863.393	1485	0.273	230076
	AutoDMP	101651	18086	4214108	0.356	5173002	-0.941	-903.64	1478	0.27	229290
	MaskPlace	282636	14743	4634862	0.378	5484915	-0.768	-582.361	1363	0.271	230706
	ChiPFormer	89998	17512	4718772	0.408	5685641	-1.352	-1496.87	1537	0.277	233285
	MaskRegulate	221155	11265	3991734	0.325	4731291	-0.67	-51.377	1365	0.266	228183
	DREAMPlace	105719	15149	3965871	0.338	4730011	-0.744	-572.391	1415	0.266	228845
	Hier-RTLMP	118198	16732	3804541	0.326	4550107	-0.66	-613.774	1435	0.265	226536
dft68	WireMask-EA	221950	39095	1346077	0.112	1505776	-0.335	-64.921	278	0.234	87852
	SA	246786	36998	1327568	0.106	1476277	-0.347	-63.158	276	0.226	87679
	AutoDMP	190255	42553	1075304	0.087	1220031	-0.293	-58.685	276	0.223	87624
	MaskPlace	752034	37485	2408871	0.192	2577200	-0.293	-60.844	278	0.247	92363
	ChiPFormer	376737	42956	1452266	0.114	1596730	-0.301	-61.864	276	0.234	87462
	MaskRegulate	336667	29892	1509324	0.116	1628526	-0.31	-64.544	285	0.231	85163
	DREAMPlace	198013	46027	1150751	0.092	1292984	-0.31	-62.484	277	0.225	86322
	Hier-RTLMP	513984	34462	1751899	0.135	1888167	-0.292	-57.656	275	0.237	88779

D More Results

All the results from the experiment are in Tables 6-7.

Table 7: Continuation of the total results from the experiment. MacroHPWL(μm), Regularity(μm), and HPWL(μm) serve as metrics during the placement stage. Congestion (%) and Wirelength(μm) are evaluated in the routing stage. WNS (ns), TNS (ns), NVP, Power (nW), and Area(μm^2) are PPA metrics.

Benchmark	Method	Intermediate Metrics						PPA Metrics			
		Placement Metrics		Route Metrics		Timing Performance			Power ↓	Area ↓	
		MacroHPWL ↓	Regularity ↓	HPWL ↓	Congestion ↓	Wirelength ↓	WNS ↑	TNS ↑	NVP ↓	Power ↓	Area ↓
ethernet	WireMask-EA	33333	23562	1039116	0.356	1339544	-0.225	-11.497	181	0.121	98142
	SA	32535	23021	907604	0.303	1155201	-0.151	-4.9	87	0.119	96782
	AutoDMP	27806	17475	862110	0.285	1086531	-0.161	-2.691	81	0.118	96593
	MaskPlace	44773	18065	941947	0.32	1205506	-0.188	-5.061	105	0.12	97243
	ChiPFormer	34756	18018	905432	0.299	1137392	-0.178	-5.728	91	0.118	96908
	MaskRegulate	38545	8979	872538	0.29	1098309	-0.311	-8.686	86	0.118	96087
	DREAMPlace	27407	15645	876320	0.298	1117049	-0.121	-3.548	90	0.119	96925
vga_lcd	Hier-RTLMP	27959	13597	859203	0.286	1092044	-0.199	-10.524	176	0.118	96157
	WireMask-EA	63144	47858	1651480	0.122	2403183	-1.419	-525.233	3306	0.188	250788
	SA	62127	47979	1617172	0.123	2423446	-2.525	-2513.52	6231	0.187	251728
	AutoDMP	50597	54164	1579406	0.127	2577725	-1.677	-5270.93	14440	0.192	263853
	MaskPlace	116002	43041	1857369	0.136	2676714	-1.451	-209.683	2720	0.191	253809
	ChiPFormer	55335	46957	1573687	0.128	2516897	-1.502	-7975.91	18370	0.193	254257
	MaskRegulate	86314	28023	1619866	0.136	2765299	-1.805	-2229.64	9010	0.185	163340
VeriGPU	DREAMPlace	70247	43622	1481247	0.125	2465370	-1.12	-1458.73	7313	0.189	263523
	Hier-RTLMP	101530	28761	1716574	0.133	2706057	-1.214	-676.131	6430	0.191	260105
	WireMask-EA	2134	6930	1111197	0.179	1587238	-0.462	-63.542	656	0.096	152631
	SA	2070	6480	1133066	0.182	1613611	-0.411	-101.937	1071	0.096	152835
	AutoDMP	2095	5778	1131313	0.183	1623046	-0.508	-70.665	439	0.095	152990
	MaskPlace	2856	5192	1173636	0.188	1661907	-0.623	-150.034	947	0.093	152175
	ChiPFormer	1587	4439	1143320	0.183	1617706	-0.375	-61.958	641	0.095	152899
ariane81	MaskRegulate	2772	4057	1214396	0.188	1710181	-0.436	-75.662	502	0.093	152338
	DREAMPlace	2297	6092	1192232	0.19	1687203	-0.291	-80.186	630	0.096	153476
	Hier-RTLMP	2364	5022	1196418	0.189	1670147	-0.294	-51.109	491	0.094	153084
	WireMask-EA	208944	66638	6263567	0.381	8235930	-0.813	-1942.48	3312	0.197	344495
	SA	199555	54578	5942475	0.332	7374859	-0.325	-404.722	2143	0.193	341581
	AutoDMP	162147	66033	5266932	0.288	6405132	-0.147	-101.844	1402	0.188	339448
	MaskPlace	739756	55947	7069029	0.423	9163711	-0.692	-1438.37	3231	0.203	350442
bp_be12	ChiPFormer	185541	63300	5742238	0.318	6844088	-0.184	-109.88	1449	0.193	343524
	MaskRegulate	436868	38070	5820626	0.326	7255339	-0.148	-103.496	1455	0.191	340730
	DREAMPlace	156297	61184	4559488	0.254	5643862	-0.143	-116.533	1657	0.186	335894
	Hier-RTLMP	330885	53896	5538206	0.323	6980976	-0.298	-397.887	2151	0.189	339853
	WireMask-EA	801604	6488	3693994	0.558	4512177	-1.215	-160.407	343	0.076	91574
	SA	782211	5837	3755117	0.543	4304811	-0.75	-70.518	114	0.076	94456
	AutoDMP	722030	6034	3504039	0.51	4261752	-0.944	-90.002	129	0.074	87899
bp_fe38	MaskPlace	775553	5497	3699082	0.523	4365827	-1.051	-113.241	308	0.075	88779
	ChiPFormer	719018	5912	3800124	0.549	4366388	-0.835	-66.482	114	0.075	93953
	MaskRegulate	848084	3480	3781833	0.537	4465025	-0.758	-72.157	116	0.075	90972
	DREAMPlace	731770	6381	3215579	0.471	3797049	-0.775	-74.772	114	0.074	86949
	Hier-RTLMP	759741	4758	3528859	0.534	4297826	-0.89	-87.346	115	0.075	88026
	WireMask-EA	928352	18728	3404465	0.475	4003637	-1.486	-676.669	1068	0.112	62662
	SA	892633	14572	2935496	0.389	3237419	-1.453	-334.63	587	0.111	59398
bp_mult57	AutoDMP	863228	17699	2957685	0.395	3292141	-1.403	-526.071	781	0.111	59751
	MaskPlace	1074969	17056	3204116	0.454	3652153	-1.358	-494.692	738	0.111	60497
	ChiPFormer	874067	18921	3899590	0.552	4446133	-2.015	-1896.47	1864	0.112	67309
	MaskRegulate	986798	11323	3019194	0.398	3309468	-1.288	-374.213	623	0.111	59552
	DREAMPlace	887412	19321	3213779	0.435	3626122	-1.351	-376.483	613	0.111	61727
	Hier-RTLMP	960487	19504	3289998	0.463	3733979	-1.998	-808.689	1383	0.111	62706
	WireMask-EA	1134797	37830	7065213	0.575	7825719	-3.064	-887.269	566	0.107	212841
swerv_wrapper43	SA	1114175	32659	7598877	0.587	8363004	-1.962	-418.758	353	0.11	216864
	AutoDMP	499382	38144	5956153	0.474	6764802	-2.474	-622.456	412	0.107	205661
	MaskPlace	1128354	32415	8234160	0.633	9012536	-2.043	-461.315	365	0.11	220663
	ChiPFormer	1167727	38451	7753388	0.633	8676775	-2.971	-922.214	689	0.107	218603
	MaskRegulate	887050	23312	8112323	0.616	8809855	-3.858	-125.7	551	0.107	213761
	DREAMPlace	515292	36648	5835798	0.46	6558793	-1.967	-399.415	349	0.105	205736
	Hier-RTLMP	739354	25468	5670985	0.467	6333021	-2.499	-621.463	407	0.105	203747
swerv_wrapper43	WireMask-EA	170470	32345	5445062	0.286	6689880	-0.624	-465.246	1073	0.262	237381
	SA	159134	24460	4422281	0.216	5193274	-0.555	-424.13	1312	0.255	228015
	AutoDMP	134513	30710	4074313	0.198	4777988	-0.656	-487.128	1262	0.255	226496
	MaskPlace	553676	28096	5995283	0.293	6852646	-0.712	-545.3	1508	0.276	240865
	ChiPFormer	169043	32229	4361625	0.219	5135204	-0.638	-487.583	1228	0.256	228100
	MaskRegulate	161152	14528	4332287	0.212	5103448	-0.457	-310.164	954	0.254	227237
	DREAMPlace	155826	33516	4046946	0.205	4814504	-0.568	-430.422	1136	0.26	226821
	Hier-RTLMP	198089	23576	4194027	0.211	4949116	-0.482	-352.959	1222	0.256	225634

E Additional Experiments and Analyses

E.1 Commercial Baselines and Cross-Verification

To contextualize academic methods against mature commercial EDA tools and to verify the fidelity of our open-source evaluation flow, we conduct two complementary studies.

Commercial baselines. We run Synopsys' commercial placer on six representative designs from our dataset and then evaluate the resulting layouts with our open-source flow to obtain final PPA. The absolute results and their normalization against our baseline are reported in Table 8 and Table 9, respectively. Overall, the commercial tool shows advantages on several timing- and violation-related metrics, underscoring the headroom that remains for open-source and AI-based approaches, particularly in PPA optimization.

Table 8: Evaluation results using a commercial EDA tool (Synopsys).

	MacroHPWL (μm)	Regularity (μm)	HPWL (μm)	Cong.	Wirelength (μm)	WNS (ns)	TNS (ns)	NVP	Power (nW)	Area (μm^2)
ariane133	180241	118308	6077457.9	0.244	7264950	-0.0520	-12.34	402	0.304	387311
ariane136	186767	117957	6130882	0.248	7355342	-0.0686	-21.34	591	0.325	396284
bp	23048	17401	8401960	0.515	944277	-4.12	-72.34	621	0.496	534217
bp_be	18821	3681	3346075	0.607	4150867	-0.849	-41.63	144	0.123	123221
bp_fe	36544	4110	2356003	0.583	3161588	-0.0562	-0.7112	28	0.142	72962
swerv_wrapper	96692	12794	4143879	0.355	4970401	-0.703	-697.8	1500	0.240	229277

Table 9: Normalized results of the commercial tool relative to the open-source baseline.

	MacroHPWL	Regularity	HPWL	Cong.	Wirelength	WNS	TNS	NVP	Power	Area
ariane133	0.317	1.798	0.926	0.919	0.944	0.404	0.164	0.304	0.889	0.993
ariane136	0.355	1.586	0.959	0.947	0.970	0.592	0.422	0.548	0.859	0.997
bp	1.019	1.228	1.049	1.232	0.101	0.855	0.003	0.042	1.016	1.016
bp_be	1.386	0.850	1.064	1.028	1.030	1.606	1.067	1.309	0.846	1.009
bp_fe	0.751	1.007	1.122	1.214	1.203	0.483	0.706	0.875	0.854	1.033
swerv_wrapper	0.818	0.765	1.089	1.091	1.092	1.066	1.137	1.045	0.906	1.012
Avg.	0.774	1.205	1.035	1.072	0.890	0.834	0.583	0.687	0.895	1.010

Cross-verification with a commercial flow. To assess evaluation consistency, we take placements produced by multiple AI algorithms and evaluate them twice: once with the commercial sign-off flow and once with our open-source flow. The comparison in Table 10 shows that the relative ranking of algorithms is preserved across the two flows. This consistency demonstrates that ChiPBench is a reliable and trustworthy framework for differentiating the quality of placement algorithms, which is the core purpose of our benchmark.

Table 10: Comparison of Results Between Commercial EDA Tool Flow and Our Proposed Flow (after Normalized).

Commercial EDA Tool					Our Open-Source Flow				
Algorithm	WNS	TNS	NVP	Power	Algorithm	WNS	TNS	NVP	Power
AutoDMP	1.129	1.041	1.271	1.647	AutoDMP	1.316	1.501	1.120	1.022
WireMask-EA	1.161	1.057	1.014	1.018	WireMask-EA	1.280	1.580	1.039	1.033
ChiPFormer	1.132	1.057	1.014	1.018	ChiPFormer	1.976	3.422	1.243	1.035
DREAMPlace	1.331	1.483	1.276	1.119	DREAMPlace	1.560	2.259	1.037	1.018
MaskPlace	1.355	1.151	1.017	1.030	MaskPlace	1.818	3.425	1.188	1.036
MaskRegulate	0.961	0.813	0.976	1.050	MaskRegulate	0.962	0.935	0.769	1.002
SA	1.291	1.158	0.984	1.030	SA	1.801	1.392	0.716	1.022
Hier-RTLMP	1.000	1.000	1.000	1.000	Hier-RTLMP	1.000	1.000	1.000	1.000

E.2 Evaluation of Other Stages

Beyond placement, our dataset and workflow are stage-agnostic and can be used to benchmark algorithms at other points in the EDA flow. In this section, we evaluate logic synthesis. Specifically, we compare the widely used open-source synthesizer Yosys with a commercial tool (Synopsys Design Compiler, DC) [49], on our dataset.

For each design, we synthesize the RTL with either Yosys or DC under identical technology libraries and timing constraints. The resulting gate-level netlists are then fed into the same open-source backend to ensure fairness—running floorplanning, placement, clock-tree synthesis, and detailed routing—after which we report the final PPA metrics. The results are summarized in Table 11.

From Table 11, the comparison reveals that there is still a significant performance gap between existing open-source synthesis tools and mature commercial solutions. We believe that the proposed evaluation framework and dataset can play a vital role in accelerating the advancement of open-source synthesis tools.

Table 11: Comparison of Results between a commercial tool (Synopsys DC) and open-source tool Yosys. The metrics are WNS (ns), TNS (ns), NVP, Power (nW), and Area(μm^2)

	WNS (Yosys)	WNS (DC)	TNS (Yosys)	TNS (DC)	NVP (Yosys)	NVP (DC)	Power (Yosys)	Power (DC)	Area (Yosys)	Area (DC)
ariane133	-0.129	-0.041	-75.056	-41.344	1321	452	0.342	0.317	38967	386121
ariane136	-0.116	-0.056	-50.597	-34.421	1079	718	0.379	0.325	397302	375192
bp	-4.822	-4.011	-22458.4	-95.1250	14758	511	0.488	0.492	525713	535112
bp_be	-0.529	-0.497	-39.002	-32.510	110	151	0.416	0.395	122135	121221
bp_fe	-0.116	-0.062	-1.007	-0.625	32	26	0.167	0.151	70658	715526
swerv_wrapper	-0.660	-0.813	-613.774	-717.243	1435	1612	0.265	0.241	226536	221256

F License

We include the following licenses for the code and raw data we used in this paper.

- Yosys:ISC
- OpenROAD:BSD-3-Clause
- ariane133:SOLDERPAD HARDWARE
- ariane136:SOLDERPAD HARDWARE
- bp:BSD-3-Clause
- bp_be:BSD-3-Clause
- bp_fe:BSD-3-Clause
- bp_multi:BSD-3-Clause
- swerv_wrapper:Apache

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: This paper presents a comprehensive dataset that spans the entire spectrum of the EDA design process and an end-to-end evaluation method.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations are detailed in Section 6.4

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The dataset generation pipeline is detailed in Section 4.2. The details of the experiment are in Section B.1

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [\[Yes\]](#)

Justification: The code and dataset is publicly accessible.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [\[Yes\]](#)

Justification: The details of the experiment and evaluation are included in Section B.1

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [\[Yes\]](#)

Justification: The analysis of the experiment is in Section 6.2

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer “Yes” if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.

- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [\[Yes\]](#)

Justification: The details of compute resources are included in Section B.1 and Section C.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [\[Yes\]](#)

Justification: We have reviewed and conformed with the CodeofEthics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [\[Yes\]](#)

Justification: The details of broader impacts are included in Section 6.4.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to

generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.

- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work focuses on the physical implementation of chips, with almost no risk of misuse.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The licenses are mentioned in Section F

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: The details of the new dataset are detailed in Section 4.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. **Crowdsourcing and Research with Human Subjects**

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. **Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects**

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. **Declaration of LLM usage**

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorosity, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not involve LLMs.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.