
Benchmarking End-To-End Performance of
AI-Based Chip Placement Algorithms

Zhihai Wang1∗ Zijie Geng1∗ Zhaojie Tu1∗ Jie Wang1† Yuxi Qian1 Zhexuan Xu1

Ziyan Liu1 Siyuan Xu2 Zhentao Tang2 Shixiong Kai2 Mingxuan Yuan2

Jianye Hao2,3 Bin Li1 Feng Wu1

1 University of Science and Technology of China 2 Noah’s Ark Lab, Huawei 3 Tianjin University
{zhwangx, zijiegeng, tuzj}@mail.ustc.edu.cn jiewangx@ustc.edu.cn

Abstract

Chip placement is a critical step in the Electronic Design Automation (EDA)
workflow, which aims to arrange chip modules on the canvas to optimize the
performance, power, and area (PPA) metrics of final designs. Recent advances
show great potential of AI-based algorithms in chip placement. However, due to the
lengthy EDA workflow, evaluations of these algorithms often focus on intermediate
surrogate metrics, which are computationally efficient but often misalign with the
final end-to-end performance (i.e., the final design PPA). To address this challenge,
we propose to build ChiPBench, a comprehensive benchmark specifically designed
to evaluate the effectiveness of AI-based algorithms in final design PPA metrics.
Specifically, we generate a diverse evaluation dataset from 20 circuits across various
domains, such as CPUs, GPUs, and NPUs. We then evaluate six state-of-the-art
AI-based chip placement algorithms on the dataset and conduct a thorough analysis
of their placement behavior. Extensive experiments show that AI-based chip
placement algorithms produce unsatisfactory final PPA results, highlighting the
significant influence of often-overlooked factors like regularity and dataflow. We
believe ChiPBench will effectively bridge the gap between academia and industry.

1 Introduction

The exponential growth in the scale of integrated circuits (ICs), in accordance with Moore’s law, has
posed significant and increasingly complex challenges to chip design [1, 2]. To address the growing
complexity and enhance efficiency, numerous electronic design automation (EDA) tools have been
developed to assist hardware engineers . As shown in Figure 1, EDA tools automate various critical
steps in the chip design workflow, including high-level synthesis, logic synthesis, physical design,
testing, and verification [1, 3].

Chip placement is a critical step in the chip design workflow, focused on determining the locations
of chip components within the die to optimize the performance, power, and area (PPA) metrics of
the final chip designs [4–6]. Traditionally, this process has relied on manual placement by expert
designers, requiring significant labor and extensive domain expertise. To improve efficiency, numerous
automation methods, particularly AI-based algorithms, have been developed to streamline this task.
These methods can be broadly classified into three categories: black-box optimization (BBO) method,
analytical methods (gradient-based methods), and reinforcement learning (RL) methods. Black-Box-
Optimization (BBO) Methods, such as simulated annealing (SA) [7] and evolutionary algorithms
(EA) [5], treat macro placement as a black-box optimization problem, searching the design space
for near-optimal solutions without explicitly leveraging gradient information. Analytical methods

∗Equal contribution.
†Corresponding author.



Physical Design

System 

Specification

Architectural 

Design

Functional and 

Logic Design (RTL)

module example(A, B, 

Cin, Sum, Cout);

input [3:0] A, B;

……
endmodule

Logic Synthesis Physical Design

Packaging

Fabrication

Chip

Clock Tree 

Synthesis
RoutingFloorplan Placement

clk

Figure 1: Illustration of the modern chip design workflow.

formulate the placement objective as a differentiable function of module coordinates and employ
gradient-based or numerical optimization techniques to efficiently solve for macro positions [8, 9].
Recent research has framed macro placement as a Markov Decision Process (MDP), where macro
positions are determined sequentially [10, 11]. Machine Learning, such as reinforcement learning
(RL) has thus emerged as a promising approach, iteratively improving placement performance by
learning from environmental feedback through trial and error [12–16].

Nevertheless, given the extensive process involved in chip design, these algorithms are typically
assessed using intermediate surrogate metrics. While computationally efficient, such metrics often
fail to closely align with end-to-end performance (i.e., the final design PPA). On one hand, obtaining
the end-to-end performance of a given chip placement solution requires substantial engineering effort
due to the lengthy chip design workflow. In particular, we observed that directly applying existing
open-source electronic design automation (EDA) tools to certain widely used chip placement datasets
often fails to produce reliable end-to-end performance results. On the other hand, since PPA metrics
are influenced by numerous factors that are considered in earlier design stages, a critical gap exists
between certain intermediate metrics and the final PPA objectives. Consequently, this gap limits the
applicability of existing AI-driven placement algorithms in practical industrial scenarios.

To address this challenge, we propose ChiPBench, a comprehensive benchmark designed for EDA
tasks, especially for evaluating AI-based chip placement algorithms in terms of their effectiveness
in improving final PPA metrics. Appealing features of ChiPBench include its fully open-source
and reproducible characteristics, covering the entire EDA workflow from the source Verilog code,
and unifying the evaluation framework of AI-based chip placement methods using end-to-end
performance. Thus, ChiPBench can effectively facilitate research in chip placement within the
AI community by taking the first step toward a fully reproducible, unified evaluation framework.
In terms of the dataset, we have generated 20 circuits from various domains (e.g., CPUs, GPUs,
and NPUs). Then, these designs are compiled by executing the workflow from the Verilog source
code, preserving sufficient physical implementation kits, which enable evaluations of the placement
algorithms regarding their impact on the final PPA. For the evaluated algorithms, we executed six
state-of-the-art AI-based chip placement algorithms on the aforementioned benchmark and plugged
the results of each single-point algorithm into the physical implementation workflow to obtain the PPA
results. Experimental results reveal that even when a single-point algorithm excels in intermediate
metrics, its final PPA results can remain unsatisfactory. Visualization experiments further show weak
correlations between some intermediate metrics and final PPA, highlighting the need to focus on
optimizing final PPA directly. This indicates that we need to explore proxy metrics that more closely
reflect physical realism and end-to-end performance as the objectives and features of AI algorithms.
We believe that our benchmark will serve as an effective evaluation framework to bridge the gap
between academia and industry.

2



We summarize our major contributions as follows: (1) Our proposed ChiPBench is a reproducible and
unified evaluation framework for existing AI-based chip placement algorithms, utilizing end-to-end
performance with fully open-source EDA tools. This can effectively facilitate research in chip
placement within the AI community. (2) We construct a new dataset of 20 circuits from various
domains, fully generated using an open source EDA pipeline from the source Verilog code. Our
specialized procedure addresses missing macros in open-source circuits, enabling the generation
of diverse designs while preserving essential physical implementation data for evaluation. (3) We
evaluate six state-of-the-art AI-based chip placement algorithms, including the most popular AI-
based chip placement methods. (4) Based on our experiments, our analysis reveals that existing
AI-based algorithms often produce unsatisfactory final PPA, highlighting the significant influence of
often-overlooked factors such as design regularity and dataflow.

2 Related Work

Datasets Some well-known EDA conferences, such as ISPD and ICCAD, host contests addressing
EDA challenges and offer benchmarks with processed data for researchers. However, in the early
years (e.g., ISPD2005 [17] and ICCAD2004 [18]), the provided datasets used overly simplified
Bookshelf formats, which are abstracted versions of the actual design kits. Therefore, we cannot
evaluate the final PPA of the placement results on those datasets. Recently, ISPD2015 [19] and
ICCAD2015 [20] have offered benchmarks and datasets closer to real-world applications, including
necessary netlist, library, and design exchange files, broadening their utility slightly. Nevertheless,
they still lack the essential information (e.g., necessary design kits) to run the open-source EDA
tools such as OpenROAD [21]. Beyond these conferences, some other datasets have been developed
in various directions. For example, the EPFL [22] benchmarks and the larger OpenABC-D [23]
dataset concentrated on synthetic netlists, primarily for testing modern logic optimization tools with
a focus on logic synthesis. CircuitNet 2.0 [24], on the other hand, shifted the focus towards providing
multi-modal data for prediction tasks, enhancing the capability for various prediction tasks through
the use of diverse data modalities. Our dataset provides complete files for each case and necessary
design kits, such as timing constraints, library files, and LEF files, offering a comprehensive dataset
that supports all stages of physical implementation and fosters a more integrated approach to chip
design and evaluation.

Placement Algorithms Recent advancements in AI technology within the EDA field have led to a
variety of AI-based chip placement algorithms. (1) Black-Box Optimization methods. Simulated
Annealing [4] provides a probabilistic method for finding a good approximation of the global optimum.
Wire-Mask-Guided Black-Box Optimization [5] uses a wire-mask-guided greedy procedure to
optimize macro placement efficiently. (2) Analytical methods. DREAMPlace [6] uses deep learning
toolkits to achieve over a 30x speedup in placement tasks. AutoDMP [9] leverages DREAMPlace
for the concurrent placement of macros and standard cells, enhancing macro placement quality. (3)
Reinforcement Learning methods. MaskPlace [14] treats chip placement as a visual representation
learning problem, reducing wirelength and ensuring zero overlaps. ChiPFormer [15] employs offline
reinforcement learning, fine-tuning on unseen chips for better efficiency. MaskRegulate [25] uses
RL for placement refinement, enhancing PPA metrics and ensuring design regularity. The evaluation
of these algorithms mainly focuses on intermediate metrics. In contrast, we utilized the end-to-end
performance to evaluate six existing AI-based chip placement algorithms, encompassing a significant
portion of mainstream AI-based placement algorithms.

3 Background on Electronic Design Automation

Electronic Design Automation (EDA) is a suite of software tools vital for designing and developing
electronic systems, primarily integrated circuits (ICs). These tools enable engineers to efficiently
transform innovative concepts into functional products, addressing the complexity and demands of
modern chip design. EDA optimizes the entire design process from schematic capture to fabrication,
reducing time-to-market and enhancing design precision and sophistication. In the chip design
workflow, EDA tools support various functions: they perform simulations to verify circuit behavior,
execute synthesis to convert high-level descriptions to gate-level implementations, and manage
physical layouts to ensure designs can be realized in silicon.

3



Table 1: Statistics of designs in our benchmark.

Id Design #Cells #Nets #Macros #Pins #IOs
1 ariane133 167907 197606 132 979135 495
2 ariane136 171347 201428 136 1000876 495
3 bp_fe 33188 39512 11 185524 2511
4 bp_be 51382 62228 10 293276 3029
5 bp 307055 348278 24 1642427 1198
6 swerv_wrapper 98039 113582 28 573688 1416
7 bp_multi 152287 174170 26 813050 1453
8 vga_lcd 127004 151946 62 706931 198
9 dft68 41974 56217 68 226420 132

10 or1200 26667 32740 36 153379 383
11 mor1kx 68291 81398 78 394210 576
12 ethernet 35172 44964 64 205739 211
13 VeriGPU 71082 85081 12 421857 134
14 isa_npu 427003 548451 15 2406579 93
15 ariane81 153873 180516 81 894420 495
16 bp_fe38 26859 32661 38 154162 2511
17 bp_be12 38393 47030 12 220938 3029
18 bp68 164039 191475 68 887046 1198
19 swerv_wrapper43 95455 110902 43 560088 1416
20 bp_multi57 127553 146710 57 680748 1453

As shown in Figure 1, the EDA design flow includes several key stages [26]: logic synthesis,
floorplanning, placement, Clock Tree Synthesis (CTS), and routing. Logic Synthesis transforms
a high-level circuit description into an optimized gate-level netlist [27–29]. Floorplan involves
deciding the layout of major components within an integrated circuit, positioning blocks and core
components to balance signal integrity, power distribution, and area utilization. Placement involves
assigning specific locations to various circuit components—including macro blocks and standard
cells—within the core area of the chip, following the floorplanning stage. The primary objective of
this stage is to strategically place the components to optimize performance metrics such as delay and
power consumption while ensuring adherence to design rules [11]. Clock Tree Synthesis (CTS)
creates a clock distribution network within an IC to minimize those clock effects, and ensure the
correct timing synchronization for circuit operation. Routing involves creating the physical paths
for electrical connectivity between various components on the IC as per the netlist. This stage
must handle multiple layers of the chip, manage signal integrity, and meet all electrical and timing
constraints [13].

Chip Placement The placement process typically consists of three key phases: macro placement,
global placement, and legalization (also referred to as detailed placement). (1) Macro placement is
a critical very large-scale integration (VLSI) physical design problem that targets the arrangement
of larger components, such as SRAMs and clock generators—often called macros. This phase
significantly impacts the chip’s overall floorplan and essential design parameters like wirelength,
power, and area. (2) Following this, the global placement phase addresses the arrangement of the
more numerous and smaller standard cells. This phase typically utilizes analytical solvers to secure
an optimized configuration that not only minimizes wirelength but also enhances the electrical and
timing performance of the chip. (3) Subsequently, legalization phase refines the placement to meet
strict design rules. This involves resolving overlaps between cells, aligning them to predefined rows.

4 Dataset

In this section, we first discuss the motivation behind our proposed dataset and provide an overall
introduction in Section 4.1. Next, we detail the dataset generation pipeline in Section 4.2, and finally,
we present our proposed procedure for creating diverse, macro-rich designs in Section 4.3. Our
dataset is publicly available at Hugging Face, enabling open access and facilitating future research.

4

https://huggingface.co/datasets/MIRA-Lab/ChiPBench-D


4.1 Motivation

Due to the oversimplification of datasets in early years, there exists a significant gap between these
datasets and real-world applications. For instance, the usually used Bookshelf format [17, 18] is
overly simplified so that placement results given in such format are inapplicable for the subsequent
stages to obtain a valid final design. Some later datasets [20] provide the LEF/DEF and necessary
files for running these stages, but the contained circuits are still limited and they still lack some
information for open-source tools like OpenROAD to work. For instance, the library file lacks buffer
definitions, which is necessary for the clock tree synthesis phase, and the LEF file has incomplete
layer definitions, which hinders the routing phase.

To tackle this problem, we present a comprehensive dataset that captures physical implementation
information across the EDA flow. Our dataset includes data from a complete EDA design flow,
starting from Verilog and encompassing key stages such as logic synthesis, floorplanning, placement,
clock tree synthesis, and routing. It comprises both newly generated designs and processed data from
existing datasets, thereby ensuring a broad coverage of realistic scenarios. For each stage, the dataset
provides intermediate design data for every case, enabling tasks such as logic optimization, chip
placement, and routing in the EDA domain. Furthermore, the dataset spans various domains—such
as CPUs, GPUs, and NPUs—and covers a diverse range of sizes, from designs with a few thousand
cells to those with nearly a million. Detailed statistics for each case are provided in Table 1.

4.2 Dataset Generation Pipeline

Our dataset generation pipeline begins with the collection of Verilog-defined circuit designs as raw
data. To process these designs, we use OpenROAD [21], an open-source EDA tool, ensuring full
reproducibility of our results and supporting the open-source community. This approach guarantees
that all generated data and methodologies are fully open-source and accessible. The pipeline first
defines physical implementation parameters, such as timing constraints, cell density, routing layer
configurations, and technology choices for the collected Verilog files. Following this, we perform logic
synthesis to generate netlists. Using the predefined parameters, we execute subsequent steps in the
physical design flow, including floorplanning, placement, CTS, and routing. Intermediate files, such
as LEF/DEF, are generated at each stage to facilitate various downstream tasks. For example, DEF
files obtained during the pre-placement stage are used to evaluate and apply subsequent placement
algorithms effectively.

4.3 Diverse Design Generation

In a typical synthesis flow, a Verilog file produces a netlist composed exclusively of standard cells.
However, if macro blocks (such as memory blocks) are required, they must be explicitly instantiated in
the Verilog description, accompanied by the corresponding macro definition files (e.g., LEF and LIB).
Since most open-source circuit repositories lack these files, we developed a specialized procedure
to address this limitation and generate diverse design outcomes. Our automated flow enables the
partition and hardening of specific modules within a Verilog-defined circuit design into macros,
producing a new Verilog file alongside the corresponding definition files. These outputs serve as the
foundation for the subsequent dataset generation pipeline, enabling the creation of diverse designs
with varying macro counts, shapes, and topological netlist structures. All designs are synthesized
and implemented using the NanGate45 open-source technology library, ensuring compatibility with
standard EDA tools while maintaining openness and reproducibility.

5 Evaluation

Although commercial EDA tools like Cadence Innovus and IC Compiler are commonly used for
PPA evaluation, they are typically closed-source and expensive, making them less suitable for
academic research and reproducibility. In contrast, the open-source tool OpenROAD [21] is becoming
increasingly mature and provides a more accessible platform for the research community. However,
establishing a open-source, end-to-end evaluation flow remains challenging due to various technical
obstacles (detailed in the Appendix 6.2). In this work, we bridge this gap by providing an open-source
evaluation flow based on OpenROAD. Our flow significantly lowers the barrier to the integrated

5



assessment of placement algorithms, including macro placement, global placement, and mixed-size
placement, and enables reproducible and extensible PPA evaluation for academic use.

5.1 Evaluation Metrics

5.1.1 Final Design PPA Metrics

The primary objective of the EDA workflow is to optimize the final PPA metrics, which represent
performance, power, and area—three fundamental dimensions used to assess the quality of a chip.
Performance is typically evaluated using worst negative slack (WNS), total negative slack (TNS),
and the number of violating paths (NVP). Negative slack indicates timing violations, with WNS
identifying the most severe violation, TNS quantifying the total accumulated slack violations, and
NVP counting the number of paths failing to meet timing constraints. Area refers to the total footprint
of standard cells, while power encompasses the total power consumption of the chip, including
internal power, switching power, and leakage power. Optimizing these PPA metrics has been a major
focus in the industry and is typically approached through expert-designed heuristics.

5.1.2 Intermediate Surrogate Metrics

Commonly used intermediate surrogate metrics include congestion, wirelength, half perimeter wire
length (HPWL), and MacroHPWL. Congestion measures wire density across chip regions, where
excessive congestion can create routing challenges. Although not a direct PPA component, effective
congestion management is crucial for manufacturability, making it a relevant evaluation metric in
this study. It is typically estimated after CTS but before detailed routing to refine macro placement
and routing strategies. Wirelength represents the total length of all interconnections, while HPWL
estimates it using the sum of the half-perimeters of bounding boxes enclosing all pins in each net.
MacroHPWL further simplifies HPWL by considering only macros. Additionally, Regularity, which
reflects the consistency and uniformity of component placement, is characterized using the approach
from [25].

5.2 End-to-End Evaluation Workflow

Placement

Floorplan

Routing

Report final 
metrics

Design Flow

CTS

Legalization

Macro Placement

Global Placement

WireMask-EA

SA

DREAMPlace

AutoDMP

MaskPlace

ChiPFormer

Hier-RTLMP

Figure 2: Illustration of our end-to-end evalu-
ation workflow.

We present an end-to-end evaluation workflow for
various stages of the EDA flow, as illustrated in Fig-
ure 2. To evaluate a stage-specific algorithm, the
output from the preceding stage serves as its input,
and the algorithm’s output is reintegrated into the
original design flow. We apply this flow to the macro
placement stage in Sec 5.3, and we also evaluate
other stages in Appendix E.2. Final PPA metrics
provide a comprehensive assessment, avoiding the
limitations of isolated stage-specific metrics. This ap-
proach facilitates algorithm optimization by ensuring
improvements translate into practical chip design en-
hancements. Our project is open-sourced on GitHub.

5.3 Experimental Setup

We apply the proposed workflow to evaluate six macro placement algorithms: SA, WireMask-
EA, AutoDMP, MaskPlace, ChiPFormer, and MaskRegulate, along with the traditional algorithm
DREAMPlace and Hier-RTLMP [30], which serves as the baseline. A detailed introduction can be
found in Appendix A.

As most of these methods only support the circuit data in a BookShelf format, while the circuits in
our used dataset are in a standard LEF/DEF, we start by converting our datasets files to BookShelf
format to serve as the input for the placement algorithms. After finishing the macro placement stage,
the resulting placement files are then converted back to DEF format and reintroduced into the original
flow. Additionally, we perform global placement and detailed placement using OpenROAD’s native
Place method, completing the entire placement process. Finally, we execute the subsequent flow to
obtain end-to-end evaluation results for comparison with other algorithms.

6

https://github.com/MIRALab-USTC/ChiPBench


Table 2: The normalized evaluation results of AI-based macro placement algorithms. For each
benchmark, the metric of each method is normalized by dividing it by the metric of the baseline
(Hier-RTLMP). The final table presents the average of these normalized metrics.

Method
Intermediate Metrics PPA Metrics

Placement Metrics Route Metrics Timing Performance Power ↓ Area ↓
MacroHPWL ↓ Regularity ↓ HPWL ↓ Congestion ↓ Wirelength ↓ WNS ↓ TNS ↓ NVP ↓

AI-based

WireMask-EA 0.844 1.277 1.117 1.115 1.115 1.556 11.007 3.337 1.039 1.018
SA 0.917 1.138 1.085 1.063 1.087 1.424 2.951 1.318 1.026 1.009

AutoDMP 0.925 1.257 0.892 0.941 0.950 1.282 2.599 1.208 1.021 1.008
MaskPlace 2.442 1.166 1.184 1.165 1.178 1.805 3.436 1.301 1.036 1.021

ChiPFormer 0.901 1.357 1.097 1.123 1.119 2.616 7.624 2.162 1.037 1.013
MaskRegulate 1.472 0.653 1.036 1.011 1.032 1.156 2.213 1.216 1.001 1.000

Traditional DREAMPlace 1.032 1.255 1.029 1.038 1.041 2.030 7.463 1.682 1.016 1.005
Hier-RTLMP 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 3: The evaluation results of swerv_wrapper under AI-based macro placement algorithms.
MacroHPWL(µm), Regularity(µm), and HPWL(µm) serve as metrics during the placement stage.
Congestion (%) and Wirelength(µm) are evaluated in the routing stage. WNS (ns), TNS (ns), NVP,
Power (nW), and Area(µm2) are PPA metrics.

Method
Intermediate Metrics PPA Metrics

Placement Metrics Route Metrics Timing Performance Power ↓ Area ↓
MacroHPWL ↓ Regularity ↓ HPWL ↓ Congestion ↓ Wirelength ↓ WNS ↑ TNS ↑ NVP ↓

AI-based

WireMask-EA 92304 16087 5052232 0.445 6203022 -1.120 -1052.140 1791 0.296 235525
SA 108068 15756 4637819 0.383 5561268 -1.033 -863.393 1485 0.273 230076

AutoDMP 101651 18086 4214109 0.356 5173002 -0.941 -903.640 1478 0.270 229290
MaskPlace 282636 14743 4634862 0.378 5484915 -0.768 -582.361 1363 0.271 230706

ChiPFormer 89999 17512 4718772 0.408 5685641 -1.352 -1496.870 1537 0.277 233285
MaskRegulate 221155 11265 3991734 0.325 4731291 -0.670 -516.377 1365 0.266 228183

Traditional DREAMPlace 105719 15149 3965871 0.338 4730011 -0.744 -572.391 1415 0.266 228845
Hier-RTLMP 118198 16732 3804541 0.326 4550107 -0.660 -613.774 1435 0.265 226536

6 Results and Discussions

6.1 Main Evaluation

We evaluate the AI-based chip placement algorithms, including SA, WireMask-EA, AutoDMP,
MaskPlace, ChiPFormer and MaskRegulate, using both intermediate metrics and end-to-end per-
formance. The normalized results for macro placement are in Table 2. The total results from the
experiment are detailed in Appendix D; experiments with commercial tools on our dataset and
cross-verification between our open-source flow and the commercial toolchain can be found in
Appendix E.1. ChiPFormer and WireMask-EA demonstrated a significant reduction in MacroHPWL
compared to the baseline algorithm. WireMask-EA achieved the best performance in terms of
MacroHPWL. While these AI-based placement algorithms showed good performance on several
intermediate metrics, they perform poorly in terms of the PPA metrics compared to traditional al-
gorithm. Although AI-based placement algorithms have achieved significant progress in improving
certain intermediate metrics, their impact on enhancing final PPA remains quite limited.

6.2 Detailed Correlation Analysis

Mhpwl Reg hpwl Cong wl wns tns nvp Power Area

Mhpwl

Reg

hpwl

Cong

wl

wns

tns

nvp

Power

Area

1.00 -0.13 0.44 0.40 0.41 -0.08 -0.04 -0.05 0.22 0.31

-0.13 1.00 0.09 0.11 0.10 0.36 0.23 0.21 0.25 0.21

0.44 0.09 1.00 0.94 0.97 0.16 0.14 0.16 0.74 0.78

0.40 0.11 0.94 1.00 0.98 0.26 0.20 0.21 0.73 0.74

0.41 0.10 0.97 0.98 1.00 0.25 0.18 0.20 0.73 0.74

-0.08 0.36 0.16 0.26 0.25 1.00 0.63 0.55 0.43 0.09

-0.04 0.23 0.14 0.20 0.18 0.63 1.00 0.95 0.27 0.14

-0.05 0.21 0.16 0.21 0.20 0.55 0.95 1.00 0.28 0.21

0.22 0.25 0.74 0.73 0.73 0.43 0.27 0.28 1.00 0.55

0.31 0.21 0.78 0.74 0.74 0.09 0.14 0.21 0.55 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 3: Correlation Between Metrics

In this section, we analyze the correlation between interme-
diate metrics and final PPA metrics in existing placement
algorithms. Specifically, we normalize the metrics for
each algorithm on each benchmark and compile them into
a dataset for correlation analysis. For normalization, we
use the results of Hier-RTLMP as a baseline and express
all other methods’ metrics as relative ratios with respect to
it on the same design. We then compute the Pearson corre-
lation coefficient [31] to quantify the strength of the linear
relationship between metric pairs. To ensure consistency,
we adjust all values so that lower values indicate better
performance across all metrics. The results, presented in
Figure 3, reveal key insights into the relationships between
intermediate and final PPA metrics.

7



Wiremask-EA
WNS= -1.12
TNS= -1052.14
NVP= 1791

SA
WNS= -1.03
TNS= -613.77
NVP= 1485

DREAMPlace
WNS= -0.744
TNS= -572.39
NVP= 1415

AutoDMP
WNS= -0.940
TNS= -903.64
NVP= 1478

MaskPlace
WNS= -0.768
TNS= -582.36
NVP= 1363

ChiPFormer
WNS= -1.36
TNS= -1496.87
NVP= 1537

Hier-RTLMP
WNS= -0.660
TNS= -613.77
NVP= 1435

MaskRegulate
WNS= -0.670
TNS= -516.37
NVP= 1365

Figure 4: Images of the worst timing path for each method in swerv_wrapper. The results show that
ChiPFormer, WireMask-EA, and AutoDMP have the worst timing performance, while MaskRegulate
achieves the second-best WNS and the best TNS among all algorithms.

First, we observe strong correlations among certain intermediate metrics (e.g., HPWL, congestion,
and wirelength) and among specific PPA metrics (e.g., TNS and NVP). This suggests that, in certain
scenarios, optimizing one key PPA metric (e.g., TNS) could implicitly improve others (e.g., NVP),
as TNS approximates the product of average WNS and NVP, with WNS values exhibiting minimal
variation across different placement results.

Second, several intermediate metrics also exhibit moderate correlation with final PPA metrics. In
particular, HPWL, congestion, and wirelength have a noticeable influence on power and area. This
can be attributed to the fact that, during the CTS stage, timing violations are addressed—often by
inserting buffers (a type of standard cell) to correct setup and hold violation paths. A larger HPWL
can degrade timing slack predictions, necessitating more aggressive buffer insertion and thereby
increasing standard cell area and power consumption. For instance, although the WireMask-EA
method achieves the best MacroHPWL results, its weak optimization of HPWL, congestion, and
wirelength ultimately leads to suboptimal power and area outcomes. The close interdependence
of these PPA metrics underscores the necessity of holistic multi-objective optimization rather than
focusing on a single metric in isolation.

However, MacroHPWL is an intermediate metric that exhibits a low correlation with final PPA
metrics, indicating that it is oversimplified and not well aligned with end-to-end evaluation criteria.
Additionally, timing-related metrics (WNS, TNS, and NVP) exhibit weak correlations with other
intermediate metrics, suggesting inconsistencies in how existing proxy metrics translate to timing
performance optimization. This discrepancy highlights the need for closer attention to the design of
proxy metrics to ensure a consistent and effective optimization process for timing performance.

Finally, because obtaining accurate final PPA metrics is time-consuming and computationally expen-
sive, designing effective intermediate metrics is essential. Better alignment of these metrics with final
PPA—particularly timing performance metrics such as WNS, TNS, and NVP—could significantly
accelerate design space exploration, facilitating more efficient and reliable optimization.

6.3 Case Study on Performance Metrics

Building on the preceding correlation analysis, this section presents a case study examining how
different placement algorithms and intermediate metrics influence timing performance. We focus on
the swerv_wrapper benchmark. Table 3 summarizes the results, and Figure 4 illustrates variations in
worst timing paths across different algorithms.

8



MaskRegulate
WNS= -0.311
TNS= -8.69
NVP= 86

Hier-RTLMP
WNS= -0.199
TNS= -10.5
NVP= 176

(a) The worst timing path in ethernet.

MaskRegulate
WNS= -3.86
TNS= -1225.70
NVP= 551

Hier-RTLMP
WNS= -2.50
TNS= -621.46
NVP= 407

(b) The worst timing path in bp_multi57.

Figure 5: Comparison of MaskRegulate and Hier-RTLMP: Hier-RTLMP achieves better WNS
on ethernet benchmark and demonstrates superior timing performance on bp_multi57 benchmark
compared to MaskRegulate.

Among all methods, ChiPFormer, WireMask-EA, and AutoDMP achieve the best MacroHPWL scores
but exhibit poor timing performance. Their placement results reveal significant macro clustering near
the center. While this reduces MacroHPWL by shortening macro-to-macro connections, it pushes
standard cells to the periphery and introduces severe routing congestion. Macro clusters consume
valuable routing layers, dispersing shared-net standard cells and increasing wirelength. These longer
and more complex routing paths result in higher path delays, leading to degraded WNS and TNS.
This reflects a clear case of overfitting to MacroHPWL, where optimization of a single intermediate
metric fails to translate into improved timing due to physical side effects.

In contrast, the Regularity metric encourages macros to be placed near the boundary, preserving central
space for standard-cell clustering and improving routing efficiency. For example, MaskRegulate,
which uses Regularity, achieves the best TNS and near-optimal WNS. Its placement enables shorter
timing paths and more efficient cell connections. Compared to the traditional Hier-RTLMP algorithm,
which also biases peripheral macro placement, RL-based approaches like MaskRegulate demonstrate
better adaptability in balancing routability and timing.

Figure 5 offers further insights through two benchmarks. Although MaskRegulate alleviates central
congestion via boundary-aware placement, it sometimes overlooks internal dataflow. In certain cases,
macro clustering disrupts critical communication paths, resulting in longer wires and degraded slack.
In contrast, Hier-RTLMP explicitly considers communication structure and achieves better timing.
This underscores the importance of dataflow-aware placement for robust timing optimization in
addition to routability improvements.

6.4 Discussion

Our analysis exposes a critical gap in AI-based chip placement: while algorithms excel at optimizing
the intermediate metrics,they fail to effectively enhance final PPA due to weak proxy correlations
and unintended physical side effects. Given the high computational cost of obtaining final PPA,
directly incorporating it into AI optimization is impractical. This highlights the urgent need for more
advanced insights to bridge the gap between intermediate indicators and final PPA. We identify three
promising research directions: (1) designing intermediate metrics that better align with final PPA by
organically integrating factors such as regularity and dataflow; (2) developing feature-based surrogate
models to approximate final PPA more efficiently; and (3) leveraging multi-fidelity optimization and
learning to balance cost and accuracy in AI-based placement algorithms.

7 Conclusion

This paper presents a comprehensive dataset spanning the full spectrum of the EDA design process
and an end-to-end evaluation method, which we used to assess several placement algorithms: SA,
WireMask-EA, AutoDMP, MaskPlace, ChiPFormer, and MaskRegulate. Our evaluation revealed
inconsistencies between metrics emphasized by mainstream placement algorithms and final PPA.
These findings highlight the need for a new perspective in placement algorithm development.

9



Acknowledgments

The authors would like to thank all the anonymous reviewers for their insightful comments. This
work was supported in part by National Key R&D Program of China under contract 2022ZD0119801,
National Nature Science Foundations of China grants U23A20388 and 62021001.

References
[1] Guyue Huang, Jingbo Hu, Yifan He, Jialong Liu, Mingyuan Ma, Zhaoyang Shen, Juejian Wu,

Yuanfan Xu, Hengrui Zhang, Kai Zhong, et al. Machine learning for electronic design automa-
tion: A survey. ACM Transactions on Design Automation of Electronic Systems (TODAES), 26
(5):1–46, 2021.

[2] Daniela Sánchez Lopera, Lorenzo Servadei, Gamze Naz Kiprit, Souvik Hazra, Robert Wille,
and Wolfgang Ecker. A survey of graph neural networks for electronic design automation. In
2021 ACM/IEEE 3rd Workshop on Machine Learning for CAD (MLCAD), pages 1–6. IEEE,
2021.

[3] Daniela Sánchez, Lorenzo Servadei, Gamze Naz Kiprit, Robert Wille, and Wolfgang Ecker.
A comprehensive survey on electronic design automation and graph neural networks: Theory
and applications. ACM Transactions on Design Automation of Electronic Systems, 28(2):1–27,
2023.

[4] Chung-Kuan Cheng, Andrew B Kahng, Sayak Kundu, Yucheng Wang, and Zhiang Wang.
Assessment of reinforcement learning for macro placement. In Proceedings of the 2023
International Symposium on Physical Design, pages 158–166, 2023.

[5] Yunqi Shi, Ke Xue, Lei Song, and Chao Qian. Macro placement by wire-mask-guided black-box
optimization. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[6] Yibo Lin, Shounak Dhar, Wuxi Li, Haoxing Ren, Brucek Khailany, and David Z Pan. Dream-
place: Deep learning toolkit-enabled gpu acceleration for modern vlsi placement. In Proceedings
of the 56th Annual Design Automation Conference 2019, pages 1–6, 2019.

[7] Dhruv Vashisht, Harshit Rampal, Haiguang Liao, Yang Lu, Devika Shanbhag, Elias Fallon, and
Levent Burak Kara. Placement in integrated circuits using cyclic reinforcement learning and
simulated annealing. arXiv preprint arXiv:2011.07577, 2020.

[8] Peiyu Liao, Siting Liu, Zhitang Chen, Wenlong Lv, Yibo Lin, and Bei Yu. Dreamplace
4.0: Timing-driven global placement with momentum-based net weighting. In 2022 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages 939–944. IEEE, 2022.

[9] Anthony Agnesina, Puranjay Rajvanshi, Tian Yang, Geraldo Pradipta, Austin Jiao, Ben Keller,
Brucek Khailany, and Haoxing Ren. Autodmp: Automated dreamplace-based macro placement.
In Proceedings of the 2023 International Symposium on Physical Design, pages 149–157, 2023.

[10] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen
Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, et al. A graph placement
methodology for fast chip design. Nature, 594(7862):207–212, 2021.

[11] Zijie Geng, Jie Wang, Ziyan Liu, Siyuan Xu, Zhentao Tang, Mingxuan Yuan, Jianye HAO,
Yongdong Zhang, and Feng Wu. Reinforcement learning within tree search for fast macro
placement. In Forty-first International Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=AJGwSx0RUV.

[12] Ruoyu Cheng and Junchi Yan. On joint learning for solving placement and routing in chip
design. Advances in Neural Information Processing Systems, 34:16508–16519, 2021.

[13] Ruoyu Cheng, Xianglong Lyu, Yang Li, Junjie Ye, Jianye Hao, and Junchi Yan. The policy-
gradient placement and generative routing neural networks for chip design. Advances in Neural
Information Processing Systems, 35:26350–26362, 2022.

10

https://openreview.net/forum?id=AJGwSx0RUV
https://openreview.net/forum?id=AJGwSx0RUV


[14] Yao Lai, Yao Mu, and Ping Luo. Maskplace: Fast chip placement via reinforced visual
representation learning. Advances in Neural Information Processing Systems, 35:24019–24030,
2022.

[15] Yao Lai, Jinxin Liu, Zhentao Tang, Bin Wang, Jianye Hao, and Ping Luo. Chipformer:
Transferable chip placement via offline decision transformer. arXiv preprint arXiv:2306.14744,
2023.

[16] Zijie Geng, Jie Wang, Ziyan Liu, Siyuan Xu, Zhentao Tang, Shixiong Kai, Mingxuan Yuan,
Jianye Hao, and Feng Wu. Lamplace: Learning to optimize cross-stage metrics in macro
placement. In The Thirteenth International Conference on Learning Representations, 2025.

[17] Gi-Joon Nam, Charles J Alpert, Paul Villarrubia, Bruce Winter, and Mehmet Yildiz. The
ispd2005 placement contest and benchmark suite. In Proceedings of the 2005 international
symposium on Physical design, pages 216–220, 2005.

[18] SN Adya, S Chaturvedi, and IL Markov. Iccad’04 mixed-size placement benchmarks. GSRC
Bookshelf, 2009.

[19] Ismail S Bustany, David Chinnery, Joseph R Shinnerl, and Vladimir Yutsis. Ispd 2015 bench-
marks with fence regions and routing blockages for detailed-routing-driven placement. In
Proceedings of the 2015 Symposium on International Symposium on Physical Design, pages
157–164, 2015.

[20] Myung-Chul Kim, Jin Hu, Jiajia Li, and Natarajan Viswanathan. Iccad-2015 cad contest in
incremental timing-driven placement and benchmark suite. In 2015 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 921–926, 2015. doi: 10.1109/ICCAD.
2015.7372671.

[21] Andrew B Kahng and Tom Spyrou. The openroad project: Unleashing hardware innovation. In
Proc. GOMAC, 2021.

[22] Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. The epfl combinational
benchmark suite. In Proceedings of the 24th International Workshop on Logic & Synthesis
(IWLS), 2015.

[23] Animesh Basak Chowdhury, Benjamin Tan, Ramesh Karri, and Siddharth Garg. Openabc-d:
A large-scale dataset for machine learning guided integrated circuit synthesis. arXiv preprint
arXiv:2110.11292, 2021.

[24] Xun Jiang, Yuxiang Zhao, Yibo Lin, Runsheng Wang, Ru Huang, et al. Circuitnet 2.0: An ad-
vanced dataset for promoting machine learning innovations in realistic chip design environment.
In The Twelfth International Conference on Learning Representations, 2023.

[25] Ke Xue, Ruo-Tong Chen, Xi Lin, Yunqi Shi, Shixiong Kai, Siyuan Xu, and Chao Qian.
Reinforcement learning policy as macro regulator rather than macro placer. arXiv preprint
arXiv:2412.07167, 2024.

[26] Luciano Lavagno, Igor L Markov, Grant Martin, and Louis K Scheffer. Electronic design
automation for IC implementation, circuit design, and process technology. CRC Press, 2017.

[27] Zhihai Wang, Jie Wang, Dongsheng Zuo, Ji Yunjie, Xilin Xia, Yuzhe Ma, Jianye HAO, Mingx-
uan Yuan, Yongdong Zhang, and Feng Wu. A hierarchical adaptive multi-task reinforcement
learning framework for multiplier circuit design. In Forty-first International Conference on
Machine Learning, 2024. URL https://openreview.net/forum?id=LGz7GaUSEB.

[28] Augusto André Souza Berndt, Mateus Fogaça, and Cristina Meinhardt. A review of machine
learning in logic synthesis. Journal of Integrated Circuits and Systems, 17(3):1–12, 2022.

[29] Xilin Xia, Jie Wang, Wanbo Zhang, Zhihai Wang, Mingxuan Yuan, Jianye Hao, and Feng Wu.
High-performance arithmetic circuit optimization via differentiable architecture search. In The
Thirty-ninth Annual Conference on Neural Information Processing Systems, 2025.

11

https://openreview.net/forum?id=LGz7GaUSEB


[30] Andrew B Kahng, Ravi Varadarajan, and Zhiang Wang. Hier-rtlmp: A hierarchical automatic
macro placer for large-scale complex ip blocks. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2023.

[31] Israel Cohen, Yiteng Huang, Jingdong Chen, Jacob Benesty, Jacob Benesty, Jingdong Chen,
Yiteng Huang, and Israel Cohen. Pearson correlation coefficient. Noise reduction in speech
processing, pages 1–4, 2009.

[32] Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by simulated annealing.
science, 220(4598):671–680, 1983.

[33] Naveed A Sherwani. Algorithms for VLSI physical design automation. Springer Science &
Business Media, 2012.

[34] Shinn-Ying Ho, Shinn-Jang Ho, Yi-Kuang Lin, and WC-C Chu. An orthogonal simulated
annealing algorithm for large floorplanning problems. IEEE transactions on very large scale
integration (VLSI) systems, 12(8):874–877, 2004.

[35] M Shunmugathammal, C Christopher Columbus, and S Anand. A novel b* tree crossover-based
simulated annealing algorithm for combinatorial optimization in vlsi fixed-outline floorplans.
Circuits, Systems, and Signal Processing, 39:900–918, 2020.

[36] Hiroshi Murata, Kunihiro Fujiyoshi, Shigetoshi Nakatake, and Yoji Kajitani. Vlsi module
placement based on rectangle-packing by the sequence-pair. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 15(12):1518–1524, 1996.

[37] Yun-Chih Chang, Yao-Wen Chang, Guang-Ming Wu, and Shu-Wei Wu. B*-trees: A new
representation for non-slicing floorplans. In Proceedings of the 37th Annual Design Automation
Conference, pages 458–463, 2000.

[38] Andrew B Kahng, Sherief Reda, and Qinke Wang. Aplace: A general analytic placement
framework. In Proceedings of the 2005 international symposium on Physical design, pages
233–235, 2005.

[39] Natarajan Viswanathan, Gi-Joon Nam, Charles J Alpert, Paul Villarrubia, Haoxing Ren, and
Chris Chu. Rql: Global placement via relaxed quadratic spreading and linearization. In
Proceedings of the 44th annual Design Automation Conference, pages 453–458, 2007.

[40] Natarajan Viswanathan, Min Pan, and Chris Chu. Fastplace 3.0: A fast multilevel quadratic
placement algorithm with placement congestion control. In 2007 Asia and South Pacific Design
Automation Conference, pages 135–140. IEEE, 2007.

[41] Peter Spindler, Ulf Schlichtmann, and Frank M Johannes. Kraftwerk2—a fast force-directed
quadratic placement approach using an accurate net model. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 27(8):1398–1411, 2008.

[42] Tung-Chieh Chen, Zhe-Wei Jiang, Tien-Chang Hsu, Hsin-Chen Chen, and Yao-Wen Chang.
Ntuplace3: An analytical placer for large-scale mixed-size designs with preplaced blocks and
density constraints. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 27(7):1228–1240, 2008.

[43] Myung-Chul Kim, Natarajan Viswanathan, Charles J Alpert, Igor L Markov, and Shyam Ramji.
Maple: Multilevel adaptive placement for mixed-size designs. In Proceedings of the 2012
ACM international symposium on International Symposium on Physical Design, pages 193–200,
2012.

[44] Myung-Chul Kim and Igor L Markov. Complx: A competitive primal-dual lagrange optimization
for global placement. In Proceedings of the 49th Annual Design Automation Conference, pages
747–752, 2012.

[45] Jingwei Lu, Pengwen Chen, Chin-Chih Chang, Lu Sha, Dennis J-H Huang, Chin-Chi Teng,
and Chung-Kuan Cheng. eplace: Electrostatics based placement using nesterov’s method. In
Proceedings of the 51st Annual Design Automation Conference, pages 1–6, 2014.

12



[46] Chung-Kuan Cheng, Andrew B Kahng, Ilgweon Kang, and Lutong Wang. Replace: Advancing
solution quality and routability validation in global placement. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 38(9):1717–1730, 2018.

[47] Yibo Lin, David Z Pan, Haoxing Ren, and Brucek Khailany. Dreamplace 2.0: Open-source
gpu-accelerated global and detailed placement for large-scale vlsi designs. In 2020 China
Semiconductor Technology International Conference (CSTIC), pages 1–4. IEEE, 2020.

[48] Jiaqi Gu, Zixuan Jiang, Yibo Lin, and David Z Pan. Dreamplace 3.0: Multi-electrostatics
based robust vlsi placement with region constraints. In Proceedings of the 39th International
Conference on Computer-Aided Design, pages 1–9, 2020.

[49] Synopsys Design Compiler. Synopsys design compiler. Pages/default. aspx, 2016.

13



A Algorithms

AI-based chip placement algorithms can be roughly grouped into three categories: black-box opti-
mization (BBO) methods, analytical methods (gradient-based methods), and reinforcement learning
(RL) methods. Each category frames the placement task as an optimization problem but adopts
distinct objectives and methodologies. Details are as follows.

A.1 Black-Box-Optimization (BBO) Methods

A straightforward intuition is to view the chip placement task as a black-box-optimization (BBO)
problem, where the inner workings of the objective functions are inaccessible, and solutions are
evaluated only based on the output metrics.

Simulated Annealing (SA) is a heuristic BBO optimization algorithm favored for its simplicity in
implementation. Specifically, the SA algorithm generates solutions by perturbing the solution space
and then assessing the resulting representation. Different methods have been developed to effectively
map representations to placement solutions [7, 32–35], such as sequence pair [36] and B∗-tree [37].
Solutions are probabilistically accepted based on an annealing temperature to escape local optima in
pursuit of a global optimum. Due to its simplicity in implementation, the SA algorithm often serves
as a strong baseline in previous studies. In this work, we incorporate a specific SA implementation [4]
utilizing operations like swaps, shifts, and shuffles, and a cost function that balances wirelength,
density, and congestion.

WireMask-EA [5] is a BBO framework that was recently introduced at the NeurIPS 2023 conference,
positioning itself as an innovative approach in the intersection of AI and EDA. The framework utilizes
a novel concept called wiremask, which plays a crucial role in guiding the mapping process from
genotypes to phenotypes in a greedy manner. The wiremask concept was originally introduced by
Lai et al. [14], where it is defined as a matrix that predicts the potential increase in Half-Perimeter
Wirelength (HPWL) for each subsequent macro placement on the design canvas. By estimating
the wirelength increase, the wiremask helps in making informed decisions during the placement
process, thereby potentially improving the quality of the layout. Building upon this concept, Shi
et al. [5] extended the framework to integrate several types of Black-Box Optimization (BBO)
algorithms, including random search (RS), evolutionary algorithm (EA), and Bayesian optimization
(BO), demonstrating the versatility of the approach in handling complex optimization tasks in chip
design.

A.2 Analytical (Gradient-Based) Methods

Analytical methods formulate the optimization objective as an analytical function of module co-
ordinates. This formulation enables efficient solutions through techniques like quadratic program-
ming [38–44] and direct gradient descent [6, 8, 45–48]. This work focuses on the gradient-based
algorithms, which are by far the more mainstream algorithms.

DREAMPlace [8] is a GPU-accelerated framework that leverages differentiable proxies, such as
approximate HPWL, as optimization objectives. It was built upon the previous analytical placement
algorithms, ePlace [45] and RePlAce [46], yet significantly speeding up the placement process by
using GPUs for acceleration. The series of versions of DREAMPlace introduces diverse differentiable
proxies to better align the PPA improvement.

AutoDMP [9] extends DREAMPlace by automating hyperparameter tuning through multi-objective
Bayesian optimization. It further accelerates the optimization process and reduces manual tuning
efforts. At that time, this work showcased the promising potential of integrating GPU-accelerated
algorithms with machine learning techniques for automating VLSI design.

A.3 Reinforcement Learning (RL) Methods

As VLSI systems grow in complexity, RL methods are being explored to enhance placement quality.
GraphPlace [10] first models macro placement as a RL problem. Subsequently, DeepPR [12] and PR-
Net [13] establish a streamlined pipeline encompassing macro placement, cell placement, and routing.
However, they treat density as a soft constraint, which may violate non-overlap constraint during

14



training. Therefore, in this work, we mainly focus on MaskPlace , ChiPFormer and MaskRegulate,
which are recent SOTA algorithms with hard non-overlapping constraints.

MaskPlace [14] represents the chip states as pixel-level visual inputs, including a wiremask (recording
the HPWL increment for each grid), the viewmask (a global observation of the canvas), and the
positionmask (to ensure non-overlapping constraint). Furthermore, it uses dense reward to boost the
sample efficiency.

ChiPFormer [15] represents the first offline RL method. It is pretrained on various chips via offline
RL and then fine-tuned on unseen chips for better efficiency. As a result, the time for placement is
significantly reduced.

MaskRegulate [25] refines chip placements using RL at the adjustment stage, leveraging precise
rewards and incorporating regularity as a key metric. It improves PPA metrics and placement quality
across various designs.

B Technical details

B.1 Experimental Details

During the dataset generation process, the macro placement stage is considered part of the floorplan
phase. After this phase, the power distribution networks (PDNs) are generated, followed by global
placement and detailed placement. During this process, we extracted the DEF files from the macro
placement stage, converted them into the required formats based on different algorithmic needs, and
executed the corresponding placement algorithms.The macro positions generated by each algorithm
were written back into the original DEF files for evaluation. After completing the floorplan stage, we
proceeded with global placement and subsequent steps to obtain the final PPA.

For the RL method, we utilized the pre-trained reinforcement learning model provided by the project
and leveraged its zero-shot capability to accomplish the task. For ChiPFormer, use the default model
and perform 100 online iterations to fine-tune the macro layout.For MaskPlace, run 3000 epochs.Other
settings use the defaults. For methods such as DREAMPlace, AutoDMP, and MaskRegulate, their
output includes the results of the global placement stage. To ensure consistency in results, we
extracted only the macro placement distributions generated by these methods for analysis. In the
method of ChipFormer and MaskPlace, the experiments were run on an NVIDIA GeForce RTX 2080
Ti, taking one day for all cases.For the other algorithms, we used 32 CPUs (Intel(R) Xeon(R) CPU
E5-2667 v4 @ 3.20GHz), with a total time expenditure of two days.

B.2 Encountered Errors

Existing open-source EDA toolchains are typically composed of various open-source tools. However,
they have certain limitations and flaws in practical use, including functional restrictions and potential
bugs. During the design process, we encountered several issues that required resolution. For instance,
when using the OpenROAD flow, integrating DEF files back into the original flow caused parsing
errors during post-route STA due to special characters (e.g., “/”) in some component names, leading
to inaccurate analysis results. To address this, we replaced the problematic characters to ensure proper
parsing. In addition, OpenROAD lacks robust support for the syntax of SDC files. For example, in the
ICCAD2015 dataset, some SDC file content caused read failures, necessitating additional handling
during the design flow.

We also identified issues with various open-source placement algorithms during practical applica-
tion, requiring modifications and optimizations to their code. Specifically, we adjusted the canvas
initialization code of MaskPlace and ChipFormer to support non-square die shapes. For ChipFormer,
we modified the processes for reading and exporting macro positions. Furthermore, we rewrote
the benchmark reading code of MaskRegulate, which was originally limited to the ICCAD2015
dataset, to support our datasets. Through these modifications, we are able to effectively evaluate these
algorithms.

15



C Computational Resources

This section summarizes the computational resources. All experiments were executed under the
same hardware/software environment to ensure a fair comparison. Evaluation time is reported in
minutes and denotes the wall-clock elapsed time to obtain final PPA after a placement solution is
fixed. Concretely, we start the timer when the placement DEF produced by an algorithm is loaded
into our backend flow, and stop it after detailed routing and sign-off reports are generated. The time
therefore includes global placement, legalization, clock tree synthesis, and routing; it excludes the
runtime of the macro/global placer itself, logic synthesis, and any data preparation. Memory usage is
reported in megabytes (MB).

Table 4: Evaluation Time (minutes) per Design and Method
Design WireMask-EA SA AutoDMP MaskPlace ChiPFormer MaskRegulate DREAMPlace

ariane136 116 117 137 135 126 186 93
ariane133 111 141 111 123 131 114 128

bp 202 212 188 227 211 188 192
bp_fe 31 29 90 28 354 76 54
bp_be 177 271 396 229 190 63 397

bp_multi 69 75 100 69 108 84 114
swerv_wrapper 4179 4465 512 4400 431 183 318

vga_lcd 63 51 85 44 51 37 79
dft68 21 24 13 21 24 17 30

or1200 76 15 37 17 40 53 47
ethernet 42 27 33 36 29 74 28
VeriGPU 38 37 33 37 35 116 38
bp_fe38 122 157 137 98 48 327 597
bp_be12 87 94 209 156 83 353 317

swerv_wrapper43 119 252 192 284 183 384 400
bp_multi57 115 96 202 90 91 221 432

ariane81 427 441 508 567 418 221 432

Table 5: Memory Usage (MB) per Design and Method
Design WireMask-EA SA AutoDMP MaskPlace ChiPFormer MaskRegulate DREAMPlace

ariane136 9007 8419 8866 8926 8933 9063 8603
ariane133 8989 8516 8432 8786 8594 8609 8616

bp 12647 11544 11595 12088 12656 11750 12162
bp_fe 4053 4079 4999 3888 4583 4145 4016
bp_be 5353 5851 5939 5791 5656 4725 5759

bp_multi 7670 7712 7844 7836 7940 7958 7983
swerv_wrapper 35496 12531 7269 15135 7147 7448 7842

vga_lcd 5820 6112 6473 6007 6190 6666 6817
dft68 3581 3441 3161 3676 3350 3326 3181

or1200 3308 500 3491 791 790 3308 3496
ethernet 3723 3630 3559 3741 3575 3691 3699
VeriGPU 5386 5309 5332 5344 5294 5298 5251
bp_fe38 5993 3825 3783 4403 4483 3745 3971
bp_be12 7622 5542 7138 7141 5684 6736 6627

swerv_wrapper43 7855 7083 7060 7232 7671 6989 7720
bp_multi57 8030 7789 7152 8202 9241 9233 7255

ariane81 11472 8908 10069 11433 9083 10057 8718

16



Table 6: The total results from the experiment. MacroHPWL(µm), Regularity(µm), and HPWL(µm)
serve as metrics during the placement stage. Congestion (%) and Wirelength(µm) are evaluated in
the routing stage. WNS (ns), TNS (ns), NVP, Power (nW), and Area(µm2) are PPA metrics.

Benchmark Method
Intermediate Metrics PPA Metrics

Placement Metrics Route Metrics Timing Performance Power ↓ Area ↓
MacroHPWL ↓ Regularity ↓ HPWL ↓ Congestion ↓ Wirelength ↓ WNS ↑ TNS ↑ NVP ↓

ariane133

WireMask-EA 242238 114512 6433324 0.264 7651585 -0.211 -189.104 1943 0.351 388201
SA 199014 105329 6281435 0.251 7467599 -0.543 -86.418 426 0.346 386449

AutoDMP 165788 90490 6073392 0.242 7189065 -0.186 -132.132 1693 0.347 385105
MaskPlace 837745 99161 8414745 0.335 9733581 -0.498 -766.003 2806 0.369 399260

ChiPFormer 228989 123006 6987169 0.282 8159913 -0.49 -674.917 2772 0.365 391184
MaskRegulate 649344 42045 6938424 0.271 8087277 -0.077 -17.829 709 0.343 389803
DREAMPlace 248452 107875 6347837 0.261 7570321 -0.374 -457.43 2397 0.359 386995
Hier-RTLMP 568103 65804 6561610 0.266 7698115 -0.129 -75.056 1321 0.342 389967

ariane136

WireMask-EA 253664 102336 6078412 0.251 7247980 -0.177 -159.48 1770 0.379 393951
SA 206782 101659 6587643 0.263 7794513 -0.187 -169.36 1498 0.39 396525

AutoDMP 178085 110442 6121622 0.246 7302628 -0.188 -166.52 1799 0.38 396119
MaskPlace 898193 100409 8348492 0.335 9688399 -0.343 -382.742 2258 0.41 409283

ChiPFormer 301790 120650 6780158 0.278 8029029 -0.282 -253.365 2013 0.396 397091
MaskRegulate 616012 44090 6908821 0.272 8089823 -0.194 -154.2 1766 0.378 397739
DREAMPlace 271713 106918 6075063 0.247 7305799 -0.259 -247.105 2001 0.387 394257
Hier-RTLMP 525799 74380 6392817 0.262 7582918 -0.116 -50.597 1079 0.379 397302

bp

WireMask-EA 23159 17726 8936778 0.461 10430310 -4.818 -72.26 1367 0.508 533310
SA 28700 15631 8804023 0.442 10290194 -4.451 -74.026 1719 0.501 534082

AutoDMP 30637 18123 8716770 0.44 10247761 -4.861 -211.311 2627 0.498 536293
MaskPlace 62427 17401 9081986 0.455 10599862 -4.741 -1316.7 6150 0.501 532615

ChiPFormer 23948 18854 8787969 0.466 10556917 -4.761 -263.491 955 0.5 532571
MaskRegulate 46161 8008 8048760 0.418 9475677 -4.371 -35.503 532 0.505 528872
DREAMPlace 30257 16972 8434472 0.433 9811774 -4.524 -156.102 1670 0.495 528154
Hier-RTLMP 22621 14169 8010716 0.414 9379330 -4.822 -22458.4 14758 0.488 525713

bp_be

WireMask-EA 12132 4401 3337281 0.617 4192684 -0.603 -48.936 111 0.147 123172
SA 14069 4008 3326938 0.633 4317839 -0.937 -79.232 111 0.151 122659

AutoDMP 16220 4496 3720895 0.7 4938884 -0.898 -70.97 220 0.157 126114
MaskPlace 20794 4140 3422765 0.648 4434133 -0.669 -45.159 111 0.147 123782

ChiPFormer 12226 5349 3257074 0.61 4145308 -0.836 -67.798 111 0.149 123200
MaskRegulate 16338 2809 3121381 0.519 3684330 -0.495 -39.754 110 0.142 121308
DREAMPlace 17167 4942 3388866 0.628 4289216 -0.784 -45.56 111 0.149 124045
Hier-RTLMP 13575 4333 3146056 0.591 4028731 -0.529 -39.002 110 0.146 122135

bp_fe

WireMask-EA 45868 5343 2617101 0.579 3181490 -0.332 -67.505 539 0.179 74335
SA 41649 3517 2409585 0.546 3010920 -0.314 -12.508 139 0.176 72022

AutoDMP 40442 4281 2423670 0.684 3610750 -0.092 -1.657 43 0.168 70595
MaskPlace 65234 3893 2261692 0.521 2867419 -0.168 -2.73 49 0.17 72112

ChiPFormer 65234 3893 2261692 0.595 3208864 -0.752 -33.906 257 0.173 72112
MaskRegulate 45537 3043 2281612 0.55 3021127 -0.232 -13.622 113 0.167 70687
DREAMPlace 50669 4377 2125704 0.528 2871636 -0.528 -38.339 159 0.168 70523
Hier-RTLMP 48682 4083 2100584 0.481 2628466 -0.116 -1.007 32 0.167 70658

bp_multi

WireMask-EA 30929 15190 5367993 0.42 6124013 -5.843 -4063.81 10404 0.545 268133
SA 36422 13761 5127229 0.387 5849303 -5.479 -3280.39 9967 0.538 267251

AutoDMP 36517 17625 5454418 0.41 6210775 -5.623 -3492.19 9454 0.539 265453
MaskPlace 134103 15149 5580849 0.437 6384545 -5.436 -4111.42 9676 0.541 269016

ChiPFormer 28916 17044 5202164 0.407 5938064 -5.605 -4453.74 9779 0.544 266880
MaskRegulate 44104 8347 4651180 0.37 5398697 -5.453 -2991.5 8089 0.534 260721
DREAMPlace 39400 16449 5214381 0.409 5971959 -5.622 -3192.49 10119 0.536 267504
Hier-RTLMP 22785 11794 4724466 0.372 5435399 -5.706 -2926.31 9867 0.535 262623

swerv_wrapper

WireMask-EA 92304 16087 5052232 0.445 6203022 -1.12 -1052.14 1791 0.296 235525
SA 108068 15756 4637819 0.383 5561268 -1.033 -863.393 1485 0.273 230076

AutoDMP 101651 18086 4214108 0.356 5173002 -0.941 -903.64 1478 0.27 229290
MaskPlace 282636 14743 4634862 0.378 5484915 -0.768 -582.361 1363 0.271 230706

ChiPFormer 89998 17512 4718772 0.408 5685641 -1.352 -1496.87 1537 0.277 233285
MaskRegulate 221155 11265 3991734 0.325 4731291 -0.67 -516.377 1365 0.266 228183
DREAMPlace 105719 15149 3965871 0.338 4730011 -0.744 -572.391 1415 0.266 228845
Hier-RTLMP 118198 16732 3804541 0.326 4550107 -0.66 -613.774 1435 0.265 226536

dft68

WireMask-EA 221950 39095 1346077 0.112 1505776 -0.335 -64.921 278 0.234 87852
SA 246786 36998 1327568 0.106 1476277 -0.347 -63.158 276 0.226 87679

AutoDMP 190255 42553 1075304 0.087 1220031 -0.293 -58.685 276 0.223 87624
MaskPlace 752034 37485 2408871 0.192 2577200 -0.293 -60.844 278 0.247 92363

ChiPFormer 376737 42956 1452266 0.114 1596730 -0.301 -61.864 276 0.234 87462
MaskRegulate 336667 29892 1509324 0.116 1628526 -0.31 -64.544 285 0.231 85163
DREAMPlace 198013 46027 1150751 0.092 1292984 -0.31 -62.484 277 0.225 86322
Hier-RTLMP 513984 34462 1751899 0.135 1888167 -0.292 -57.656 275 0.237 88779

D More Results

All the results from the experiment are in Tables 6-7.

17



Table 7: Continuation of the total results from the experiment. MacroHPWL(µm), Regularity(µm),
and HPWL(µm) serve as metrics during the placement stage. Congestion (%) and Wirelength(µm)
are evaluated in the routing stage. WNS (ns), TNS (ns), NVP, Power (nW), and Area(µm2) are PPA
metrics.

Benchmark Method
Intermediate Metrics PPA Metrics

Placement Metrics Route Metrics Timing Performance Power ↓ Area ↓
MacroHPWL ↓ Regularity ↓ HPWL ↓ Congestion ↓ Wirelength ↓ WNS ↑ TNS ↑ NVP ↓

ethernet

WireMask-EA 33333 23562 1039116 0.356 1339544 -0.225 -11.497 181 0.121 98142
SA 32535 23021 907604 0.303 1155201 -0.151 -4.9 87 0.119 96782

AutoDMP 27806 17475 862110 0.285 1086531 -0.161 -2.691 81 0.118 96593
MaskPlace 44773 18065 941947 0.32 1205506 -0.188 -5.061 105 0.12 97243

ChiPFormer 34756 18018 905432 0.299 1137392 -0.178 -5.728 91 0.118 96908
MaskRegulate 38545 8979 872538 0.29 1098309 -0.311 -8.686 86 0.118 96087
DREAMPlace 27407 15645 876320 0.298 1117049 -0.121 -3.548 90 0.119 96925
Hier-RTLMP 27959 13597 859203 0.286 1092044 -0.199 -10.524 176 0.118 96157

vga_lcd

WireMask-EA 63144 47858 1651480 0.122 2403183 -1.419 -525.233 3306 0.188 250788
SA 62127 47979 1617172 0.123 2423446 -2.525 -2513.52 6231 0.187 251728

AutoDMP 50597 54164 1579406 0.127 2577725 -1.677 -5270.93 14440 0.192 263853
MaskPlace 116002 43041 1857369 0.136 2676714 -1.451 -209.683 2720 0.191 253809

ChiPFormer 55335 46957 1573687 0.128 2516897 -1.502 -7975.91 18370 0.193 254257
MaskRegulate 86314 28023 1619866 0.136 2765299 -1.805 -2229.64 9010 0.185 163340
DREAMPlace 70247 43622 1481247 0.125 2465370 -1.12 -1458.73 7313 0.189 263523
Hier-RTLMP 101530 28761 1716574 0.133 2706057 -1.214 -676.131 6430 0.191 260105

VeriGPU

WireMask-EA 2134 6930 1111197 0.179 1587238 -0.462 -63.542 656 0.096 152631
SA 2070 6480 1133066 0.182 1613611 -0.411 -101.937 1071 0.096 152835

AutoDMP 2095 5778 1131313 0.183 1623046 -0.508 -70.665 439 0.095 152990
MaskPlace 2856 5192 1173636 0.188 1661907 -0.623 -150.034 947 0.093 152175

ChiPFormer 1587 4439 1143320 0.183 1617706 -0.375 -61.958 641 0.095 152899
MaskRegulate 2772 4057 1214396 0.188 1710181 -0.436 -75.662 502 0.093 152338
DREAMPlace 2297 6092 1192232 0.19 1687203 -0.291 -80.186 630 0.096 153476
Hier-RTLMP 2364 5022 1196418 0.189 1670147 -0.294 -51.109 491 0.094 153084

ariane81

WireMask-EA 208944 66638 6263567 0.381 8235930 -0.813 -1942.48 3312 0.197 344495
SA 199555 54578 5942475 0.332 7374859 -0.325 -404.722 2143 0.193 341581

AutoDMP 162147 66033 5266932 0.288 6405132 -0.147 -101.844 1402 0.188 339448
MaskPlace 739756 55947 7069029 0.423 9163711 -0.692 -1438.37 3231 0.203 350442

ChiPFormer 185541 63300 5742238 0.318 6844088 -0.184 -109.88 1449 0.193 343524
MaskRegulate 436868 38070 5820626 0.326 7255339 -0.148 -103.496 1455 0.191 340730
DREAMPlace 156297 61184 4559488 0.254 5643862 -0.143 -116.533 1657 0.186 335894
Hier-RTLMP 330885 53896 5538206 0.323 6980976 -0.298 -397.887 2151 0.189 339853

bp_be12

WireMask-EA 801604 6488 3693994 0.558 4512177 -1.215 -160.407 343 0.076 91574
SA 782211 5837 3755117 0.543 4304811 -0.75 -70.518 114 0.076 94456

AutoDMP 722030 6034 3504039 0.51 4261752 -0.944 -90.002 129 0.074 87899
MaskPlace 775553 5497 3699082 0.523 4365827 -1.051 -113.241 308 0.075 88779

ChiPFormer 719018 5912 3800124 0.549 4366388 -0.835 -66.482 114 0.075 93953
MaskRegulate 848084 3480 3781833 0.537 4465025 -0.758 -72.157 116 0.075 90972
DREAMPlace 731770 6381 3215579 0.471 3797049 -0.775 -74.772 114 0.074 86949
Hier-RTLMP 759741 4758 3528859 0.534 4297826 -0.89 -87.346 115 0.075 88026

bp_fe38

WireMask-EA 928352 18728 3404465 0.475 4003637 -1.486 -676.669 1068 0.112 62662
SA 892633 14572 2935496 0.389 3237419 -1.453 -334.63 587 0.111 59398

AutoDMP 863228 17699 2957685 0.395 3292141 -1.403 -526.071 781 0.111 59751
MaskPlace 1074969 17056 3204116 0.454 3652153 -1.358 -494.692 738 0.111 60497

ChiPFormer 874067 18921 3899590 0.552 4446133 -2.015 -1896.47 1864 0.112 67309
MaskRegulate 986798 11323 3019194 0.398 3309468 -1.288 -374.213 623 0.111 59552
DREAMPlace 887412 19321 3213779 0.435 3626122 -1.351 -376.483 613 0.111 61727
Hier-RTLMP 960487 19504 3289998 0.463 3733979 -1.998 -808.689 1383 0.111 62706

bp_multi57

WireMask-EA 1134797 37830 7065213 0.575 7825719 -3.064 -887.269 566 0.107 212841
SA 1114175 32659 7598877 0.587 8363004 -1.962 -418.758 353 0.11 216864

AutoDMP 499382 38144 5956153 0.474 6764802 -2.474 -622.456 412 0.107 205661
MaskPlace 1128354 32415 8234160 0.633 9012536 -2.043 -461.315 365 0.11 220663

ChiPFormer 1167727 38451 7753888 0.633 8676775 -2.971 -922.214 689 0.107 218603
MaskRegulate 887050 23312 8112323 0.616 8809855 -3.858 -1225.7 551 0.107 213761
DREAMPlace 515292 36648 5835798 0.46 6558793 -1.967 -399.415 349 0.105 205736
Hier-RTLMP 739354 25468 5670985 0.467 6333021 -2.499 -621.463 407 0.105 203747

swerv_wrapper43

WireMask-EA 170470 32345 5445062 0.286 6689880 -0.624 -465.246 1073 0.262 237381
SA 159134 24460 4422281 0.216 5193274 -0.555 -424.13 1312 0.255 228015

AutoDMP 134513 30710 4074313 0.198 4777988 -0.656 -487.128 1262 0.255 226496
MaskPlace 553676 28096 5995283 0.293 6852646 -0.712 -545.3 1508 0.276 240865

ChiPFormer 169043 32229 4361625 0.219 5135204 -0.638 -487.583 1228 0.256 228100
MaskRegulate 161152 14528 4332287 0.212 5103448 -0.457 -310.164 954 0.254 227237
DREAMPlace 155826 33516 4046946 0.205 4814504 -0.568 -430.422 1136 0.26 226821
Hier-RTLMP 198089 23576 4194027 0.211 4949116 -0.482 -352.959 1222 0.256 225634

E Additional Experiments and Analyses

E.1 Commercial Baselines and Cross-Verification

To contextualize academic methods against mature commercial EDA tools and to verify the fidelity
of our open-source evaluation flow, we conduct two complementary studies.

Commercial baselines. We run Synopsys’ commercial placer on six representative designs from
our dataset and then evaluate the resulting layouts with our open-source flow to obtain final PPA.
The absolute results and their normalization against our baseline are reported in Table 8 and Table 9,
respectively. Overall, the commercial tool shows advantages on several timing- and violation-
related metrics, underscoring the headroom that remains for open-source and AI-based approaches,
particularly in PPA optimization.

18



Table 8: Evaluation results using a commercial EDA tool (Synopsys).

MacroHPWL (µm) Regularity (µm) HPWL (µm) Cong. Wirelength (µm) WNS (ns) TNS (ns) NVP Power (nW) Area (µm2)
ariane133 180241 118308 6077457.9 0.244 7264950 -0.0520 -12.34 402 0.304 387311
ariane136 186767 117957 6130882 0.248 7355342 -0.0686 -21.34 591 0.325 396284

bp 23048 17401 8401960 0.515 944277 -4.12 -72.34 621 0.496 534217
bp_be 18821 3681 3346075 0.607 4150867 -0.849 -41.63 144 0.123 123221
bp_fe 36544 4110 2356003 0.583 3161588 -0.0562 -0.7112 28 0.142 72962

swerv_wrapper 96692 12794 4143879 0.355 4970401 -0.703 -697.8 1500 0.240 229277

Table 9: Normalized results of the commercial tool relative to the open-source baseline.

MacroHPWL Regularity HPWL Cong. Wirelength WNS TNS NVP Power Area

ariane133 0.317 1.798 0.926 0.919 0.944 0.404 0.164 0.304 0.889 0.993
ariane136 0.355 1.586 0.959 0.947 0.970 0.592 0.422 0.548 0.859 0.997

bp 1.019 1.228 1.049 1.232 0.101 0.855 0.003 0.042 1.016 1.016
bp_be 1.386 0.850 1.064 1.028 1.030 1.606 1.067 1.309 0.846 1.009
bp_fe 0.751 1.007 1.122 1.214 1.203 0.483 0.706 0.875 0.854 1.033

swerv_wrapper 0.818 0.765 1.089 1.091 1.092 1.066 1.137 1.045 0.906 1.012
Avg. 0.774 1.205 1.035 1.072 0.890 0.834 0.583 0.687 0.895 1.010

Cross-verification with a commercial flow. To assess evaluation consistency, we take placements
produced by multiple AI algorithms and evaluate them twice: once with the commercial sign-off flow
and once with our open-source flow. The comparison in Table 10 shows that the relative ranking of
algorithms is preserved across the two flows. This consistency demonstrates that ChiPBench is a
reliable and trustworthy framework for differentiating the quality of placement algorithms, which is
the core purpose of our benchmark.

Table 10: Comparison of Results Between Commercial EDA Tool Flow and Our Proposed Flow
(after Normalized).

Commercial EDA Tool Our Open-Source Flow

Algorithm WNS TNS NVP Power Algorithm WNS TNS NVP Power

AutoDMP 1.129 1.041 1.271 1.647 AutoDMP 1.316 1.501 1.120 1.022
WireMask-EA 1.161 1.057 1.014 1.018 WireMask-EA 1.280 1.580 1.039 1.033
ChiPFormer 1.132 1.057 1.014 1.018 ChiPFormer 1.976 3.422 1.243 1.035

DREAMPlace 1.331 1.483 1.276 1.119 DREAMPlace 1.560 2.259 1.037 1.018
MaskPlace 1.355 1.151 1.017 1.030 MaskPlace 1.818 3.425 1.188 1.036

MaskRegulate 0.961 0.813 0.976 1.050 MaskRegulate 0.962 0.935 0.769 1.002
SA 1.291 1.158 0.984 1.030 SA 1.801 1.392 0.716 1.022

Hier-RTLMP 1.000 1.000 1.000 1.000 Hier-RTLMP 1.000 1.000 1.000 1.000

E.2 Evaluation of Other Stages

Beyond placement, our dataset and workflow are stage-agnostic and can be used to benchmark
algorithms at other points in the EDA flow. In this section, we evaluate logic synthesis. Specifically,
we compare the widely used open-source synthesizer Yosys with a commercial tool (Synopsys Design
Compiler, DC) [49], on our dataset.

For each design, we synthesize the RTL with either Yosys or DC under identical technology libraries
and timing constraints. The resulting gate-level netlists are then fed into the same open-source
backend to ensure fairness—running floorplanning, placement, clock-tree synthesis, and detailed
routing—after which we report the final PPA metrics. The results are summarized in Table 11.

From Table 11, the comparison reveals that there is still a significant performance gap between
existing open-source synthesis tools and mature commercial solutions. We believe that the proposed
evaluation framework and dataset can play a vital role in accelerating the advancement of open-source
synthesis tools.

19



Table 11: Comparison of Results between a commercial tool (Synopsys DC) and open-source tool
Yosys. The metrics are WNS (ns), TNS (ns), NVP, Power (nW), and Area(µm2)

WNS (Yosys) WNS (DC) TNS (Yosys) TNS (DC) NVP (Yosys) NVP (DC) Power (Yosys) Power (DC) Area (Yosys) Area (DC)

ariane133 -0.129 -0.041 -75.056 -41.344 1321 452 0.342 0.317 389967 386121
ariane136 -0.116 -0.056 -50.597 -34.421 1079 718 0.379 0.325 397302 375192

bp -4.822 -4.011 -22458.4 -95.1250 14758 511 0.488 0.492 525713 535112
bp_be -0.529 -0.497 -39.002 -32.510 110 151 0.416 0.395 122135 121221
bp_fe -0.116 -0.062 -1.007 -0.625 32 26 0.167 0.151 70658 715526

swerv_wrapper -0.660 -0.813 -613.774 -717.243 1435 1612 0.265 0.241 226536 221256

F License

We include the following licenses for the code and raw data we used in this paper.

• Yosys:ISC
• OpenROAD:BSD-3-Clause
• ariane133:SOLDERPAD HARDWARE
• ariane136:SOLDERPAD HARDWARE
• bp:BSD-3-Clause
• bp_be:BSD-3-Clause
• bp_fe:BSD-3-Clause
• bp_multi:BSD-3-Clause
• swerv_wrapper:Apache

20

https://github.com/YosysHQ/yosys?tab=ISC-1-ov-file#readme
https://github.com/The-OpenROAD-Project/OpenROAD/blob/master/LICENSE
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts/blob/master/flow/designs/src/ariane136/LICENSE
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts/blob/master/flow/designs/src/ariane136/LICENSE
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts/blob/master/flow/designs/src/black_parrot/LICENSE
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts/blob/master/flow/designs/src/bp_be_top/LICENSE
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts/blob/master/flow/designs/src/bp_fe_top/LICENSE
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts/blob/master/flow/designs/src/bp_multi_top/LICENSE
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts/blob/master/flow/designs/src/swerv/LICENSE


NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This paper presents a comprehensive dataset that spans the entire spectrum of
the EDA design process and an end-to-end evaluation method.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are detailed in Section6.4
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

21



Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The dataset generation pipeline is detailed in Section 4.2.The details of the
experiment are in Section B.1
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

22



Answer: [Yes]
Justification:The code and dataset is publicly accessible.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The details of the experiment and evaluation are included in SectionB.1
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The analysis of the experiment is in Section 6.2
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The details of compute resources are included in Section B.1 and Section C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed and conformed with the CodeofEthics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The details of broader impacts are included in Section 6.4.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

24

https://neurips.cc/public/EthicsGuidelines


generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work focuses on the physical implementation of chips, with almost no risk
of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The licenses are mentioned in Section F

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

25

paperswithcode.com/datasets


Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification:The details of the new dataset are detailed in Section 4.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

26



Answer: [NA]
Justification: The paper does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

27

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Background on Electronic Design Automation
	Dataset
	Motivation
	Dataset Generation Pipeline
	Diverse Design Generation

	Evaluation
	Evaluation Metrics
	Final Design PPA Metrics
	Intermediate Surrogate Metrics

	End-to-End Evaluation Workflow
	Experimental Setup

	Results and Discussions
	Main Evaluation
	Detailed Correlation Analysis
	Case Study on Performance Metrics
	Discussion

	Conclusion
	Algorithms
	Black-Box-Optimization (BBO) Methods
	Analytical (Gradient-Based) Methods
	Reinforcement Learning (RL) Methods

	Technical details
	Experimental Details
	Encountered Errors

	Computational Resources
	More Results
	Additional Experiments and Analyses
	Commercial Baselines and Cross-Verification
	Evaluation of Other Stages

	License

