OneAligner: Zero-shot Cross-lingual Transfer with One Rich-Resource Language Pair for Low-Resource Sentence Retrieval

Anonymous ACL submission

Abstract

Aligning parallel sentences in multilingual corpora is essential to curating data for downstream applications such as Machine Translation. In this work, we present OneAligner, an alignment model specially designed for sentence retrieval tasks. This model is able to train on only one language pair and transfers, in a cross-lingual fashion, to low-resource language pairs with negligible degradation in performance. When trained with all language pairs of a large-scale parallel multilingual corpus (OPUS-100), this model achieves the state-of-the-art result on the Tateoba dataset, outperforming an equally-sized previous model by 8.0 points in accuracy while using less than 0.6% of their parallel data. When finetuned on a single rich-resource language pair, be it English-centered or not, our model is able to match the performance of the ones finetuned on all language pairs under the same data budget with less than 2.0 points decrease in accuracy. Furthermore, with the same setup, scaling up the number of rich-resource language pairs monotonically improves the performance, reaching a minimum of 0.4 points discrepancy in accuracy, making it less mandatory to collect any low-resource parallel data. Finally, we conclude through empirical results and analyses that the performance of the sentence alignment task depends mostly on the monolingual and parallel data size, up to a certain size threshold, rather than on what language pairs are used for training or evaluation.

1 Introduction

Cross-lingual sentence retrieval aims at aligning parallel sentence pairs that are translations of each other from unlabeled multilingual documents. Such mined data can be used in multiple downstream applications such as Machine Translation and cross-lingual Word Sense Disambiguation (Fan et al., 2020; Tran et al., 2020; Schwenk et al., 2021a,b). Even under a half-automated setting with
human-in-the-loop, a faithful aligner can help narrow down the candidate pool so that humans do not need to deal with an enormous search space such as cross-lingual web-document pairs (El-Kishky et al., 2020) or the entire internet. A retrieval model has also been used to filter existing parallel corpora to improve their quality (Schwenk, 2018) or to perform Quality Estimation (Fomicheva et al., 2020) where the reference translations are not available.

For sentence retrieval tasks, a majority of recent work is either completely unsupervised (Hu et al., 2020; Tran et al., 2020; Lewis et al., 2020) or leverages all parallel data available (Artetxe and Schwenk, 2019; Ouyang et al., 2021), sometimes to the extent of 879 language pairs (Luo et al., 2021). The unsupervised approach has the benefit of not collecting any parallel data; yet it usually achieves relatively low accuracies on standard benchmark datasets such as Tatoeba (Artetxe and Schwenk, 2019), which evaluates on 36 language pairs including multiple low-resource ones. The supervised approach, on the other hand, assumes data access to a plethora of low-resource language pairs, which by definition is difficult to acquire and to ensure their quality. This all-or-nothing choice between the unsupervised and supervised approaches leaves a significant gap on whether zero-shot crosslingual transfer works for such tasks. Our work aims to shed light on a recipe of how to distribute the efforts for cross-lingual parallel data collection: (1) How much monolingual data is enough for each language? (2) How many finetuning language pairs are enough? (3) Is it necessary to collect low-resource language pairs? (4) To what extent does the amount of parallel data matter? (5) Should these language pairs be centered around English?

To have a strong enough model to perform analyses that address the above questions, we propose OneAligner, ${ }^{1}$ a classifier that is able to align crosslingual sentences by training on parallel examples

[^0]of only one language pair. OneAligner is built on top of XLM-RoBERTa (XLM-R) (Conneau et al., 2020a) with its architecture tailored to the alignment task: the model leverages a supervised version of BERT-score (Zhang et al., 2020) to compute semantic similarity and builds a normalization layer into its architecture to counteract the popular sentence effect, where some sentences in the source language tend to have a high similarity score with any sentence in the target language. Though not our main contribution, these additions lead to the state-of-the-art accuracy 94.9^{2} on the Tatoeba dataset when trained on all language pairs from OPUS-100 (Tiedemann, 2012), outperforming models that are trained with 180 times more parallel examples (Luo et al., 2021) by 8.0 points. When trained on any single rich-resource language pair, this model is able to match the performance of a model (within a 2.0 gap in accuracy) trained on all language pairs under the same data budget.

To further close the already-narrow gap between using one language pair and all pairs while adhering to the rich-resource-only constraint, we scale up the number of language pairs with the top- k rich-resource ones, reaching a 94.0 accuracy on Tatoeba, only 0.4 off as compared to training on all language pairs under the same data budget.

We also explore either training or evaluating on language pairs that are not centered around English. We find that whether to train on an Englishcentered language pair and whether the training pair overlaps with the evaluation pair do not influence model performance - the model will perform similarly as long as two conditions are met: (1) the amount of parallel data size crosses a certain threshold; and (2) the pretraining monolingual data that corresponds to the evaluation languages also surpasses a size threshold.

2 Model

2.1 Base Model

To align sentences in different languages, it is beneficial to start with a model that has already learned cross-lingual representations to some extent. Our OneAligner thus builds on top of XLM-R (Conneau et al., 2020a), a Transformer-based model (Vaswani et al., 2017) pre-trained on the monolingual CC100 dataset (Wenzek et al., 2020) covering 100 languages. This model obtained state-of-the-art per-

[^1]formance on cross-lingual classification, sequence
labeling, and question answering.

2.2 Calculation of Semantic Similarity

Cross-lingual BERT-score The de facto way of calculating semantic similarity adopts a Siamese architecture, which separately encodes the source and target sentences with the same encoder to obtain two outputs. These outputs go through a mean pooling layer along the sequence length dimension, and the similarity is obtained by computing the cosine distance between the two pooled vectors (Reimers and Gurevych, 2019). This approach is fast and agnostic to the order of source and target sentences but lacks cross-attention which is crucial for alignment tasks. On the other hand, encoding both sequences with a $[s e p]$ token in-between implies full cross-attention, which runs slow due to the extra computation. Such a method is only suitable for filtering existing parallel corpora for better data quality (Schwenk, 2018). Besides, due to positional encoding, this method is not agnostic to the order of the two sentences such that during inference, one needs to pay special attention to which sentence comes first.

Our similarity calculation marries the strengths of both methods and builds on top of BERTscore (Zhang et al., 2020), an unsupervised automatic evaluation metric originally designed to compute the similarity between two sentences of the same language. We re-purpose this metric to compute cross-lingual semantic similarity. More specifically, let $s=$ $\left\{s_{1}, s_{2}, \ldots, s_{M}\right\}$ and $t=\left\{t_{1}, t_{2}, \ldots, t_{N}\right\}$ be two sequences, each consisting of a list of tokens in the source and target language, respectively. BERT-score computes the pairwise token-level cosine distance between s and t as follows:

$$
\begin{aligned}
P & =\frac{1}{|t|} \sum_{t_{j} \in t} \max _{s_{i} \in s} s_{i}^{T} t_{j} \\
R & =\frac{1}{|s|} \sum_{s_{i} \in s} \max _{t_{j} \in t} s_{i}^{T} t_{j} \\
F & =2 \frac{P R}{P+R}
\end{aligned}
$$

We use F as the similarity. From the equations we can see that because BERT-score is only applied after the last encoding layer of the Transformer model, this metric serves as a shallow crossattention layer that is much faster than full crossattention. The resulting model also remains agnos-
tic to the order of the input sentences.
In-Batch Normalization In bitext alignment, we observe that some sentences in one language tend to have a high similarity score with any sentence in the other language. This phenomenon causes the ranking of candidates in the target language to be inaccurate. To offset this bias, we subtract a scaled average of similarity scores between each sentence in one language and all sentences in the other. More specifically, let $S=\left\{S_{1}, S_{2}, \ldots, S_{M}\right\}$ and $T=\left\{T_{1}, T_{2}, \ldots, T_{N}\right\}$ be a batch of sequences in the source and target language, respectively. We compute the pairwise similarity between S_{i} and T_{j} as follows:
$S_{i j}=f\left(S_{i}, T_{j}\right)-\alpha\left(\sum_{T_{n} \in T} f\left(S_{i}, T_{n}\right)+\sum_{S_{m} \in S} f\left(S_{m}, T_{j}\right)\right)$
where f stands for the function that computes semantic similarity (BERT-score in our case) and α is a hyperparameter that determines the normalization strength. We tuned this parameter on the OPUS-100 development set and found that $\alpha=0.75$ on average gives the best results. ${ }^{3}$ Note that this normalization step is built into the model architecture rather than serving only as a post hoc manipulation during inference. In practice, the number of sentences M and N could be quite large during inference, significantly slowing down the normalization step, not to mention that the evaluation data is not guaranteed be served in an offline fashion. Hence we instead perform in-batch normalization for each similarity score so that M and N only depend on the batch size during inference. In our early experiments (not presented in the paper), we found that this in-batch normalization incurs no performance loss as long as we maintain a reasonable evaluation batch size.

2.3 Justification of Model Design

We perform an ablation study on how similarity is calculated and on whether to include a normalization step. We conduct the comparison with three model variances (without finetuning on any parallel data), namely mBERT (Devlin et al., 2019), XLM-R-base, and XLM-R-large (Conneau et al., 2020a). Following Hu et al. (2020), who find that

[^2]certain early layers of Transform perform better on cross-lingual tasks than the last layer, ${ }^{4}$ we use the 8th layer for mBERT and XLM-R-base, and 17th layer for XLM-R-large. ${ }^{5}$ Table 1 shows that the combination of BERT-score and normalization step leads to consistently and significantly higher performance, indicating that these modifications build a beneficial inductive bias into the model.

2.4 Classification with In-Batch Negatives

One challenge in training an aligner with only positive parallel data is that there are no carefullydesigned negative examples. To address this challenge, our aligner adopts a contrastive learning approach and trains on a classification task with in-batch negatives (Chen et al., 2020). More specifically, let $S=\left\{S_{1}, S_{2}, \ldots, S_{N}\right\}$ and $T=$ $\left\{T_{1}, T_{2}, \ldots, T_{N}\right\}$ be a batch of sentences in the source and target language, respectively, where S_{i} is aligned with T_{i} for each i. We compute the pairwise BERT-score between S and T and apply the in-batch normalization (as introduced in Section 2.2) to obtain N^{2} similarity scores, including N scores for the positive alignments and $N^{2}-N$ for the negative ones. During training, we treat these scores as logits and pair each logit of positive alignment with all logits of negative examples. We use these logits to compute the cross-entropy loss.

3 Experimental Setup

3.1 Data

Training Data We experiment with both Englishcentered and non-English-centered training corpora. For English-centered data we use OPUS-100, a multilingual corpus covering 100 languages. This corpus was randomly sampled from the OPUS collection (Tiedemann, 2012), ${ }^{6}$, which is comprised of diverse corpora ranging from movie subtitles to GNOME documentation. OPUS-100 contains approximately 55 M sentence pairs. Of the 99 language pairs, 44 have 1 M sentence pairs of training data, 73 have at least 100 k , and 95 have at

[^3]

Table 1: Unsupervised performance on Tatoeba-36 with three different language models. "norm" stands for normalization which addresses the popular sentence effect, while "w/o norm" stands for no normalization. The best average accuracy for each model is boldfaced.
least 10k. For non-English-centered data, we employ the v2021-08-07 version of the Tatoeba Challenge (Tiedemann, 2020), ${ }^{7}$ which we refer to as the New-Tatoeba (since it is new). This is a challenge set that contains 29 G translation units in 3,708 bitexts covering 557 languages. The package includes a release of 631 test sets that cover 134 languages. Note that for training purposes, we only keep language pairs where both the source and the target language are present in CC-100 (Wenzek et al., 2020), ${ }^{8}$ the corpus used to pretrain XLMR. This is because the tokenization of XLM-R is accustomed to these languages by design.

Following OPUS-100, all experiments are performed under a fixed 1 M examples budget (unless otherwise specified), regardless of how many language pairs are used. This constant data size cap makes it easier to compare among different settings. To remove noisy and uninformative data, we also aggressively remove any examples that contain less than 5 tokens in either the source or the target language. Note that this step is done after we sample the 1 M examples, since when the number of language pairs piles up, it becomes too expensive to tokenize the entire corpus to count how many tokens there are in each sentence. ${ }^{9}$

Evaluation Data We evaluate on three datasets. The first one is the Tatoeba dataset from the XTREME benchmark (Hu et al., 2020), which we refer to as Tatoeba- $\mathbf{3 6}$ since it contains 36 language pairs, including multiple low-resource ones such as $s v$-en and $j v$-en. We keep this historical version to make it easier to compare with previous work.

The second dataset is the combination of development and test sets in New-Tatoeba. We only keep language pairs that have $\geq 1 \mathrm{~K}$ examples in the development and test sets combined, because the smaller the evaluation set is, the easier it is to rank

[^4]among candidates. When we have a collection of evaluation data that do not share roughly the same difficulty, averaging their accuracies makes less sense. Following Tatoeba-36, where most language pairs have 1 K test examples, we randomly sample 1 K for each language pair from New-Tatoeba. ${ }^{10}$ The resulting evaluation set covers 223 language pairs, including 49 pairs that are English-centered, 174 pairs that are not, and 58 pairs considered lowresource by the Tatoeba Challenge. To our best knowledge, we are the first to evaluate sentence alignment models on this dataset.

The third dataset is BUCC 2018 (Zweigenbaum et al., 2018) in the XTREME benchmark (Hu et al., 2020). This is a cross-lingual bitext mining task. We include this task because the two Tatoeba datasets are both ranking tasks, while BUCC requires a universal similarity score to serve as a decision boundary to either accept or reject an alignment of sentences. This is a more realistic scenario for web mining because a sentence in the source language does not necessarily have a translation in the target language. Hence this dataset contains way more distraction sentences than the ones that actually align with some other sentences in the other language. That said, the drawback of BUCC is that it only involves 4 language pairs, all of which are highly rich-resource. Since our work focuses more on low-resource languages, this dataset only serves as a sanity check for our models.

Note that since both training corpora were created without Tatoeba-36 and BUCC evaluation data in mind, we remove any examples from the training set where either the source or the target is in any of the test sets. This process gets rid of less than 2.5 k examples from each training set.

3.2 Hyperparameters

We perform all experiments with a single A100 GPU. The number of training epochs is 3 , the training batch size is 64 , and the evaluation batch size

[^5]| Model | VECO | | ERNIE-M | |
| :---: | :---: | :---: | :---: | :---: |
| | OneAligner | | | |
| \# Parameters | 550 M | 550 M | 550 M | 550 M |
| \# Languages | 50 | 96 | 100 | 100 |
| Mono. Data Size | 1.36 TB | 1.56 TB | 2.34 TB | 2.34 TB |
| Parallel Data Size | 1TB | 68.8 GB | 145 MB | 4.9 GB |

Table 2: Comparison of model and data sizes between OneAligner and previous models.
is 256 . These are the largest number of examples we can fit in a batch with A100. Not surprisingly, having a smaller training batch size will lead to lower performance not only because previous work has found that large batch size benefit training due to its more stable gradients (Devlin et al., 2019), but also that a larger batch size enables a more accurate estimation of the in-batch normalization term and allows more in-batch negatives to pair with each positive example, making the model converge faster with additional contrastive learning signals. We set the softmax temperature to 5.0 and the learning rate to $3 e-6$ for all experiments. ${ }^{11}$ The maximum sequence length for both source and target languages is set to 100 .

3.3 Dot Product vs. Cosine Similarity

When computing the semantic distance between sentences, Sentence-BERT (Reimers and Gurevych, 2019) applies a Siamese encoding scheme to each sentence followed by mean pooling and computation of cosine distance between the two pooled vectors. However, during training they do not normalize the sentence vectors before taking the dot product, while during evaluation they do. We also observed that this different handling of training and evaluation phase led to better performance. Hence when computing the BERT-score during training, we also do not pre-normalize the vectors before taking the dot product.

3.4 Baseline Models

We compare with VECO (Luo et al., 2021) and ERNIE-M (Ouyang et al., 2021), the strongest models at the time of submission on the XTREME benchmark leaderboard (Hu et al., 2020) sentence retrieval tasks. ${ }^{12}$ Like OneAligner, ERNIE-

[^6]M is built on top of XLM-R and is trained on 96 languages. The monolingual corpus is extracted from CC-100 (Wenzek et al., 2020), while the bilingual corpora include MultiUN (Ziemski et al., 2016), IIT Bombay (Kunchukuttan et al., 2018), OPUS (Tiedemann, 2012), and WikiMatrix (Schwenk et al., 2021a). VECO shares the same model size as ours ${ }^{13}$ and is trained on 50 languages (possibly to avoid capacity dilution). The monolingual data is extracted from CC-100, while the bilingual data is collected from the OPUS website. ${ }^{14}$ There are 6.4 G parallel examples covering 879 language pairs. We summarize the basic statistics of each model in Table 2.

4 Results and Analysis

4.1 All Language Pair Performance

To justify our model design and obtain a performance upper bound with which single-pair models can compare, we first train OneAligner on the entire OPUS-100 dataset, either with or without the 1 M budget. Table 3 shows that both models achieve state-of-the-art results on the Tatoeba-36 dataset. Because there is only a 0.5 difference in accuracy between the two settings, it is reasonable to apply the fixed budget to save computational cost. When we put Table 2 and 3 side-by-side, we can also see that OneAligner is more data-efficient as compared to the other two models.

4.2 Single Language Pair Performance

English-centered Language Pairs Table 4 shows Tatoeba-36 performance for models trained on the OPUS-100 dataset for each of the top-16 rich-resource language pairs in the intersection of OPUS-100 and CC-100 languages. ${ }^{15}$ We can see that the performance is consistent across language pairs, which translates to the suggestion that one can finetune OneAligner with almost any richresource language pair at hand and arrive at a similar performance. Figure 1 presents a scatter plot of Table 4 against the data availability of each language pair. We observe that after reaching a certain

[^7]| Language | af | ar | bg | bn | de | el | es | et | eu | fa | fi | fr | he | hi | hu | id | it | ja | jv |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VECO | 80.9 | 85.1 | 91.3 | 78.1 | 98.5 | 89.5 | 97.4 | 94.8 | 79.8 | 93.1 | 95.4 | 93.7 | 85.8 | 94.2 | 93.8 | 93.0 | 92.2 | 92.8 | 35.1 |
| ERNIE-M | 92.6 | 94.3 | $\mathbf{9 6 . 6}$ | 89.2 | $\mathbf{9 9 . 7}$ | 96.8 | 98.8 | 92.5 | 87.4 | 96.0 | 97.1 | $\mathbf{9 6 . 5}$ | 90.1 | 97.9 | 95.5 | 95.7 | 95.2 | 96.9 | 65.2 |
| OneAligner | 96.3 | 93.0 | 95.2 | 90.7 | 99.6 | 96.8 | 98.9 | 96.2 | 92.7 | 96.4 | $\mathbf{9 8 . 2}$ | 96.3 | 93.2 | 97.9 | 97.2 | 95.9 | 95.4 | 98.1 | 78.0 |
| OneAligner (All) | $\mathbf{9 7 . 4}$ | $\mathbf{9 4 . 7}$ | 95.3 | $\mathbf{9 2 . 2}$ | 99.6 | $\mathbf{9 7 . 3}$ | $\mathbf{9 9 . 0}$ | $\mathbf{9 8 . 6}$ | $\mathbf{9 5 . 7}$ | $\mathbf{9 6 . 9}$ | $\mathbf{9 8 . 2}$ | $\mathbf{9 6 . 5}$ | $\mathbf{9 4 . 1}$ | $\mathbf{9 8 . 3}$ | $\mathbf{9 8 . 1}$ | $\mathbf{9 6 . 7}$ | $\mathbf{9 6 . 6}$ | $\mathbf{9 8 . 5}$ | $\mathbf{7 8 . 5}$ |
| ka | kk | ko | ml | mr | nl | pt | ru | sw | ta | te | th | tl | tr | ur | vi | zh | Average | | |
| VECO | 83.0 | 74.1 | 88.7 | 94.8 | 82.5 | 95.9 | 94.6 | 92.2 | $\mathbf{6 9 . 7}$ | 82.4 | 91.0 | 94.7 | 73.0 | 95.2 | 63.8 | 95.1 | 93.9 | 86.9 | |
| ERNIE-M | 94.9 | 88.0 | 94.1 | 98.5 | 90.8 | 98.1 | 94.5 | 95.7 | 68.4 | 91.8 | $\mathbf{9 7 . 9}$ | $\mathbf{9 8 . 4}$ | 86.0 | 98.3 | 94.9 | 98.1 | 96.7 | 93.3 | |
| OneAligner | $\mathbf{9 5 . 6}$ | 89.7 | 94.0 | 98.4 | 92.7 | 97.7 | 95.6 | 95.5 | 65.6 | $\mathbf{9 3 . 2}$ | 97.0 | 97.4 | $\mathbf{8 9 . 9}$ | 98.3 | 94.8 | 98.4 | 97.2 | 94.4 | |
| OneAligner (All) | $\mathbf{9 5 . 6}$ | $\mathbf{9 1 . 3}$ | $\mathbf{9 5 . 3}$ | $\mathbf{9 8 . 8}$ | $\mathbf{9 3 . 6}$ | $\mathbf{9 8 . 3}$ | $\mathbf{9 6 . 0}$ | $\mathbf{9 5 . 8}$ | 63.6 | $\mathbf{9 3 . 2}$ | 96.6 | 97.8 | 88.3 | $\mathbf{9 8 . 9}$ | $\mathbf{9 5 . 6}$ | $\mathbf{9 8 . 5}$ | $\mathbf{9 7 . 3}$ | $\mathbf{9 4 . 9}$ | |

Table 3: Comparison of Tatoeba-36 results (accuracy) between OneAligner and the strongest models so far, namely VECO and ERNIE-M. "All" stands for unlimited data budget, which uses the entire OPUS-100 corpus. Best results for each language and the average are boldfaced.

Language	es	fr	de	pt	it	nl	ru	pl
Avg. Acc.	92.4	92.7	92.5	92.3	92.3	92.4	92.6	91.9
	cs	sv	el	ro	da	zh	no	ar
	92.0	91.8	92.8	92.2	92.0	92.7	91.9	92.9

Table 4: Tatoeba-36 performance for models trained on the OPUS-100 top-16 rich-resource language pairs (in descending order) centered around English.

Figure 1: Scatter plot of single-pair Tatoeba-36 performance against English-centered single-pair parallel data size (as measured in the number of training examples) for each language pair in the OPUS-100 dataset.
data size threshold (somewhere between 10 k and 20k), all language pairs perform similarly. This is partially expected because our model design does not introduce any new parameters to XLM-R, obviating the need to train any randomly initialized layers.

Language Pairs Not Centered around English English is with no doubt the most widely adopted language. However, in a real-world scenario, we cannot always assume that the parallel data contains English. Similar to Table 4, we present in Table 5 the accuracies of OneAligner trained on each of the Top-16 rich-resource non-English-centered pairs from the New-Tatoeba dataset. We can see

Language fr-es pt-es de-fr fr-pt it-es fr-it de-es it-pt

Avg. Acc.	92.0	91.5	92.2	92.0	92.0	92.1	92.2	92.1
ca-es	de-it de-pt de-nl	nl-es	pl-pt	fr-nl	ru-es			

90.9	92.3	92.3	92.2	92.6	92.3	92.3	92.0

Table 5: Tatoeba-36 performance for models trained on the New-Tatoeba top-16 rich-resource language pairs (in descending order) that are not centered around English.

Model	Tatoeba-36	New Tatoeba	
		Eng	\neg Eng
Top1 (Eng)	92.4	91.6	89.3
Top1 $(\neg$ Eng)	92.0	91.5	89.2

Table 6: English-centered and Non-English-centered Top1 model accuracies under three evaluation settings on the two Tatoeba datasets.
that the performance is again consistent across language pairs, indicating that we can train on a nonEnglish language pair and still obtain similar performance on an evaluation set centered around English. This raises a natural follow-up question: is the reverse true? In other words, does a model trained on English-centered data perform just as well on non-English evaluation data?

Table 6 addresses this question and we make two observations from it. When comparing columnwise, OneAligner performs similarly regardless of whether it is trained on an English-centered language pair or whether there is an overlap between finetuning and evaluation languages. When comparing each model evaluated on either Englishcentered or non-English-centered language pairs, we can see that both models perform better on English-centered language pairs. ${ }^{16}$ We hypothesize that this is because English dominates the monolingual data during the pretraining of XLM-R.

Before diving into an analysis that verifies this

[^8]

Figure 2: Scatter plot of Top1-Eng New-Tatoeba performance against monolingual data size (as measured in $\mathbf{G B})$ for each language in the $\mathrm{CC}-100$ dataset.
hypothesis, we need to "expand our vocabulary": rather than dividing in a bipolar fashion between "English-centered" and "non-English-centered", we describe the setting with a spectrum and explore X -centered, where X could be any language. We define the accuracy for language X as the average of accuracies of all language pairs that involve X. Figure 2 shows the scatter plot of Top-1-Eng New-Tatoeba performance against monolingual data size for each language in the CC-100 dataset. Similar to Figure 1, the New-Tatoeba performance is positively correlated with the monolingual data size up to a certain data threshold.

4.3 Scaling up the Number of Language Pairs

The single-pair Tatoeba results are already promising. However, what if we aim for even better performance without violating the rich-resource-only assumption? We find that adding other rich-resource pairs can help. Unfortunately, OPUS-100 does not provide us with a ranking on the data availability of language pairs. ${ }^{17}$ Hence we resort to the NewTatoeba dataset and rank based on the availability of each English-centered pair. ${ }^{18}$ In Table 7 we present performance of combined top-1 through top-32 rich-resource language pairs on Tatoeba36. ${ }^{19}$ We can see that the performance monotonically increases as we include more language pairs,

[^9]Table 7: Tatoeba-36 performance when the model is trained on Top-k rich-resource, English-centered language pairs. "All" stands for all language pairs combined. All results are under a fixed 1M data budget.

Model	de	fr	ru	zh	Avg.
XLM-R-large	67.5	66.5	73.5	56.7	66.1
VECO	93.0	88.7	89.9	85.7	89.3
$\overline{\mathrm{T}}$ ¢ $\mathrm{1}^{1}(\underline{\text { Eng }}$)	$\overline{9} 1.7$	$\overline{90.0}$	$\overline{89} .5$	90.9	90.5
Top1 (\neg Eng)	93.0	89.8	88.7	90.6	90.5

Table 8: BUCC F1 Results. Best scores in each column are boldfaced. Below the dashed line are our model results, where " \neg Eng" stands for "non-English-centered". Note that ERNIE-M did not evaluate on BUCC, hence not included in this table.
until reaching an accuracy of 94.0 - only 0.4 point off of the best performance when training with all language pairs under the 1 M data budget. Note that the least rich-resource language $u k$ in the top- 32 list is still in the "highest"-resource range as defined in the Tateoba Challenge ${ }^{20}$ and contains around 34 M training examples, so we are still far from violating the rich-resource restrictions. Hence at least given the sentence alignment task and the current models, the marginal cost of improving for that 0.4 point in accuracy does not seem to justify the effort of extensively collecting more parallel data for the low-resource language pairs. This observation motivates future work to develop new approaches that leverage low-resource data more effectively.

4.4 BUCC Results

As a sanity check, we report BUCC F1 scores of the two top-1 models as compared to previous work in Table 8. We can see that both models outperform VECO by 1.2 points. Recall that the two models are trained on en-es and fr-es, respectively. In other words, neither model has seen a single parallel example between en and each of the BUCC target languages $\{d e, f r, r u, z h\}$, while VECO is trained extensively on each of the language pairs. This result is consistent with the observation that OneAligner is able to perform cross-lingual transfer with performance on par with in-language models regardless of whether the finetuning language pair is English-centered.

[^10]
5 Related work

5.1 Multilingual Representation Learning

There have been extensive effort in learning massive cross-lingual representations. Such models are pretrained with a large amount of unlabeled data from multiple languages with the intention to benefit low-resource languages with the richresource languages through shared vocabulary, genetic relatedness (Nguyen and Chiang, 2017) or contact relatedness (Goyal et al., 2020). Some of the widely adopted models are mBERT (Devlin et al., 2019), XLM (Conneau and Lample, 2019), mBART (Liu et al., 2020), MARGE (Lewis et al., 2020), XLM-R (Conneau et al., 2020a), and mT5 (Xue et al., 2021). Other models also leverage cross-lingual signals (large-scale parallel data) with a translation language model objective, including LASER (Artetxe and Schwenk, 2019), VECO (Luo et al., 2021) and ERNIE-M (Ouyang et al., 2021).

5.2 Parallel Corpus Mining

A major downstream application of a massively multilingual model is parallel corpus mining. There have been efforts to mine parallel sentences from the entire web (Bañón et al., 2020; Wenzek et al., 2020; Tran et al., 2020). Such approaches are inadvertently forced to handle an enormous search space. Consequently, some models adopt the mean pooling followed by the cosine distance approach and leverage approximation algorithms like FAISS (Johnson et al., 2019) to compute cosine distance faster. There have also been efforts such as WikiMatrix (Schwenk et al., 2021a) and CCAligned (El-Kishky et al., 2019) that divide the mining process into two steps. The first step is to align text on the document level, which significantly reduces the search space, while the second step is to deploy a sentence retrieval model as usual.

Apart from aligning text at the document and sentence level, there has also been models that focus on a higher level of granularity and target word alignment (Dou and Neubig, 2021). Such work can be used for downstream tasks such as automatically building preliminary bilingual dictionaries.

5.3 Zero-Shot Cross-lingual Transfer

The standard zero-shot cross-lingual transfer assumes no in-language data and consists of two steps: (1) finetune a multi-lingual pretrained model on task-specific data in the source language; and (2) evaluate it on the test data in the target language.

Another alternative to the implicit transfer requires a Machine Translation system (Hu et al., 2020; Luo et al., 2021), which itself demands parallel data to train in the first place. There are two settings: (1) translate-train: machine translate the task-specific training data from the source to the target language and train on that noisy data; and (2) translate-test: train on task-specific data in the source language and evaluate on data translated from the target to the source language.

Several benchmark datasets have been released to test cross-lingual transfer capability, including XGLUE (Liang et al., 2020), XTREME (Hu et al., 2020), and XTREME-R (Ruder et al., 2021). They include diverse tasks such as Natural Language Inference, Relation Extraction, Named Entity Recognition, Part of Speech Tagging, Question Answering, and Sentence Retrieval.

There has been extensive work devoted to analyzing the mechanism behind cross-lingual transfer (K et al., 2020; Muller et al., 2021). For example, Pires et al. (2019) and Wu and Dredze (2020) show that the amount of shared vocabulary between the source and target language plays an important role in the transfer. However, some other works suggest the opposite. For instance, Conneau et al. (2020b) show that the transfer happens even if there is no shared vocabulary while the training and evaluation data can also come from distinct domains.

6 Conclusion

We present OneAligner, an alignment model tailored to sentence retrieval tasks. We show that this model transfers well under a cross-lingual setting even when trained on a single language pair. Through experiments and analyses, our work helps uncover what factors influence sentence alignment performance and identifies monolingual data size, parallel data size, and the number of richresource language pairs as the top priorities to which one should distribute their data collection efforts. Though having covered a broad range of languages and settings, this work still leaves many unexplored territories: (1) How do we deal with languages not present in the pretraining phase given that the vocabulary is not constructed toward them? (2) Why is the cross-lingual transfer successful in the first place? What has the model learned during finetuning? (3) Does OneAligner generalize to other retrieval tasks other than cross-lingual sentence alignment? We leave these as future work.

References

Mikel Artetxe and Holger Schwenk. 2019. Massively multilingual sentence embeddings for zeroshot cross-lingual transfer and beyond. Transactions of the Association for Computational Linguistics, 7:597-610.

Marta Bañón, Pinzhen Chen, Barry Haddow, Kenneth Heafield, Hieu Hoang, Miquel Esplà-Gomis, Mikel L. Forcada, Amir Kamran, Faheem Kirefu, Philipp Koehn, Sergio Ortiz Rojas, Leopoldo Pla Sempere, Gema Ramírez-Sánchez, Elsa Sarrías, Marek Strelec, Brian Thompson, William Waites, Dion Wiggins, and Jaume Zaragoza. 2020. ParaCrawl: Web-scale acquisition of parallel corpora. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 4555-4567, Online. Association for Computational Linguistics.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A simple framework for contrastive learning of visual representations. In International conference on machine learning, pages 1597-1607. PMLR.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. 2020a. Unsupervised cross-lingual representation learning at scale. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 84408451, Online. Association for Computational Linguistics.

Alexis Conneau and Guillaume Lample. 2019. Crosslingual language model pretraining. In Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.

Alexis Conneau, Shijie Wu, Haoran Li, Luke Zettlemoyer, and Veselin Stoyanov. 2020b. Emerging cross-lingual structure in pretrained language models. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6022-6034, Online. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Association for Computational Linguistics.

Zi-Yi Dou and Graham Neubig. 2021. Word alignment by fine-tuning embeddings on parallel corpora. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 2112-2128, Online. Association for Computational Linguistics.

Ahmed El-Kishky, Vishrav Chaudhary, Francisco Guzman, and Philipp Koehn. 2019. A massive collection of cross-lingual web-document pairs. arXiv preprint arXiv:1911.06154.

Ahmed El-Kishky, Vishrav Chaudhary, Francisco Guzmán, and Philipp Koehn. 2020. CCAligned: A massive collection of cross-lingual web-document pairs. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 5960-5969, Online. Association for Computational Linguistics.

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, and Armand Joulin. 2020. Beyond english-centric multilingual machine translation. arXiv preprint.
Marina Fomicheva, Shuo Sun, Lisa Yankovskaya, Frédéric Blain, Francisco Guzmán, Mark Fishel, Nikolaos Aletras, Vishrav Chaudhary, and Lucia Specia. 2020. Unsupervised quality estimation for neural machine translation. Transactions of the Association for Computational Linguistics, 8:539-555.

Vikrant Goyal, Anoop Kunchukuttan, Rahul Kejriwal, Siddharth Jain, and Amit Bhagwat. 2020. Contact relatedness can help improve multilingual NMT: Microsoft STCI-MT @ WMT20. In Proceedings of the Fifth Conference on Machine Translation, pages 202-206, Online. Association for Computational Linguistics.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Graham Neubig, Orhan Firat, and Melvin Johnson. 2020. Xtreme: A massively multilingual multi-task benchmark for evaluating cross-lingual generalisation. In International Conference on Machine Learning, pages 4411-4421. PMLR.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah. 2019. What does BERT learn about the structure of language? In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3651-3657, Florence, Italy. Association for Computational Linguistics.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity search with gpus. IEEE Transactions on Big Data.

Karthikeyan K, Zihan Wang, Stephen Mayhew, and Dan Roth. 2020. Cross-lingual ability of multilingual bert: An empirical study. In International Conference on Learning Representations.

Anoop Kunchukuttan, Pratik Mehta, and Pushpak Bhattacharyya. 2018. The IIT Bombay English-Hindi parallel corpus. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan. European Language Resources Association (ELRA).

Mike Lewis, Marjan Ghazvininejad, Gargi Ghosh, Armen Aghajanyan, Sida Wang, and Luke Zettlemoyer. 2020. Pre-training via paraphrasing. In Advances in Neural Information Processing Systems, volume 33, pages 18470-18481. Curran Associates, Inc.

Yaobo Liang, Nan Duan, Yeyun Gong, Ning Wu, Fenfei Guo, Weizhen Qi, Ming Gong, Linjun Shou, Daxin Jiang, Guihong Cao, Xiaodong Fan, Ruofei Zhang, Rahul Agrawal, Edward Cui, Sining Wei, Taroon Bharti, Ying Qiao, Jiun-Hung Chen, Winnie Wu, Shuguang Liu, Fan Yang, Daniel Campos, Rangan Majumder, and Ming Zhou. 2020. XGLUE: A new benchmark datasetfor cross-lingual pre-training, understanding and generation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6008-6018, Online. Association for Computational Linguistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, and Luke Zettlemoyer. 2020. Multilingual denoising pretraining for neural machine translation. Transactions of the Association for Computational Linguistics, 8:726-742.

Fuli Luo, Wei Wang, Jiahao Liu, Yijia Liu, Bin Bi, Songfang Huang, Fei Huang, and Luo Si. 2021. VECO: Variable and flexible cross-lingual pre-training for language understanding and generation. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 3980-3994, Online. Association for Computational Linguistics.

Benjamin Muller, Yanai Elazar, Benoît Sagot, and Djamé Seddah. 2021. First align, then predict: Understanding the cross-lingual ability of multilingual BERT. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 2214-2231, Online. Association for Computational Linguistics.

Toan Q. Nguyen and David Chiang. 2017. Transfer learning across low-resource, related languages for neural machine translation. In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 296-301, Taipei, Taiwan. Asian Federation of Natural Language Processing.

Xuan Ouyang, Shuohuan Wang, Chao Pang, Yu Sun, Hao Tian, Hua Wu, and Haifeng Wang. 2021. ERNIE-M: Enhanced multilingual representation by aligning cross-lingual semantics with monolingual corpora. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 27-38, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019. How multilingual is multilingual BERT? In Proceedings of the 57th Annual Meeting of the Association for

Computational Linguistics, pages 4996-5001, Florence, Italy. Association for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. SentenceBERT: Sentence embeddings using Siamese BERTnetworks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3982-3992, Hong Kong, China. Association for Computational Linguistics.

Sebastian Ruder, Noah Constant, Jan Botha, Aditya Siddhant, Orhan Firat, Jinlan Fu, Pengfei Liu, Junjie Hu, Dan Garrette, Graham Neubig, and Melvin Johnson. 2021. XTREME-R: Towards more challenging and nuanced multilingual evaluation. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 10215-10245, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.

Holger Schwenk. 2018. Filtering and mining parallel data in a joint multilingual space. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 228-234, Melbourne, Australia. Association for Computational Linguistics.

Holger Schwenk, Vishrav Chaudhary, Shuo Sun, Hongyu Gong, and Francisco Guzmán. 2021a. WikiMatrix: Mining 135M parallel sentences in 1620 language pairs from Wikipedia. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 1351-1361, Online. Association for Computational Linguistics.

Holger Schwenk, Guillaume Wenzek, Sergey Edunov, Edouard Grave, Armand Joulin, and Angela Fan. 2021b. CCMatrix: Mining billions of high-quality parallel sentences on the web. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 6490-6500, Online. Association for Computational Linguistics.

Jörg Tiedemann. 2012. Parallel data, tools and interfaces in OPUS. In Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12), pages 2214-2218, Istanbul, Turkey. European Language Resources Association (ELRA).

Jörg Tiedemann. 2020. The tatoeba translation challenge - realistic data sets for low resource and multilingual MT. In Proceedings of the Fifth Conference on Machine Translation, pages 1174-1182, Online. Association for Computational Linguistics.

Chau Tran, Yuqing Tang, Xian Li, and Jiatao Gu. 2020. Cross-lingual retrieval for iterative self-supervised
training. In Advances in Neural Information Processing Systems, volume 33, pages 2207-2219. Curran Associates, Inc.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Conneau, Vishrav Chaudhary, Francisco Guzmán, Armand Joulin, and Edouard Grave. 2020. CCNet: Extracting high quality monolingual datasets from web crawl data. In Proceedings of the 12th Language Resources and Evaluation Conference, pages 4003-4012, Marseille, France. European Language Resources Association.

Shijie Wu and Mark Dredze. 2020. Are all languages created equal in multilingual BERT? In Proceedings of the 5th Workshop on Representation Learning for NLP, pages 120-130, Online. Association for Computational Linguistics.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and Colin Raffel. 2021. mT5: A massively multilingual pre-trained text-to-text transformer. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 483-498, Online. Association for Computational Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. 2020. Bertscore: Evaluating text generation with bert. In International Conference on Learning Representations.

Michał Ziemski, Marcin Junczys-Dowmunt, and Bruno Pouliquen. 2016. The united nations parallel corpus v1. 0. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16), pages 3530-3534.

Pierre Zweigenbaum, Serge Sharoff, and Reinhard Rapp. 2018. Overview of the third bucc shared task: Spotting parallel sentences in comparable corpora. In Proceedings of 11th Workshop on Building and Using Comparable Corpora, pages 39-42.

A Tatoeba-36 Results in Detail

Table 9 shows Tatoeba-36 performance for models trained on the OPUS-100 dataset for each language pair in the intersection of OPUS-100 and CC-100 languages.

B New-Tatoeba Results in Detail

Table 10 shows the detailed performance on each language pair in the New-Tatoeba dataset.

Table 9: Tatoeba-36 performance for models trained on the OPUS-100 dataset for each language pair (the intersection between OPUS-100 and CC-100 languages) centered around English.

Table 10: Performance on all language pairs in the New-Tatoeba dataset whose devtest size is greater or equal than 1 K (we randomly sample 1 K examples for the "greater" case).

[^0]: ${ }^{1}$ We will make our code publicly available.

[^1]: ${ }^{2}$ Throughout the paper we will omit the "\%" for accuracy. Hence 94.9 means 94.9% in accuracy.

[^2]: ${ }^{3}$ In practice, we also add back a term $(2 \alpha-$ 1) $\frac{1}{M N} \sum_{S_{m} \in S, T_{n} \in T} f\left(S_{m}, T_{n}\right)$ to keep $S_{i j}$ around 0 . This extra term does not affect evaluation, but makes a difference during training.

[^3]: ${ }^{4}$ Jawahar et al. (2019) and Zhang et al. (2020) find similar phenomena for English.
 ${ }^{5}$ By investigating performance comparisons among different layers in Jawahar et al. (2019); Zhang et al. (2020), we provide a rule-of-thumb: usually the best layer is between 1 below and above $2 / 3$ of the total number of layers. For example, for a 12 -layer Transformer, the fastest way is to try layers 7,8 , and 9 . Thanks to each new language model trying to follow its previous work on hyperparameter settings, all models with which we experiment have the number of layers divisible by 3 .
 ${ }^{6}$ https://opus.nlpl.eu/opus-100.php

[^4]: ${ }^{7}$ https://github.com/Helsinki-NLP / Tatoeba-Challenge
 ${ }^{8}$ http://data.statmt.org/cc-100/
 ${ }^{9}$ Resorting to counting the number of spaces will not work because quite a few languages do not have spaces between words.

[^5]: ${ }^{10}$ We will release the test example indices with respect to the original dataset along with the code.

[^6]: ${ }^{11}$ The temperature and the learning rate are tuned on the OPUS-100 development set. Our early experiments showed that having a larger learning rate, e.g., $3 e-5$, would make the model converge faster (more data-efficient) but eventually arrive at slightly lower performance.
 ${ }^{12}$ The leaderboard can be visited at https://sites. research.google/xtreme. We ignore submissions

[^7]: that do not link to any paper or code.
 ${ }^{13}$ There are two versions of VECO, namely VECOout and VECOin. VECOout is of the same size as our model while VECOin is 20% larger in size. Hence throughout the paper, whenever we mention VECO, we are referring to the more comparable VECOout version. As a side note, our best model is able to outperform VECOin on Tatoeba- 36 by 3.8 points in accuracy.
 ${ }^{14}$ https://opus.nlpl.eu/
 ${ }^{15}$ Results of all language pairs are presented in Appendix A.

[^8]: ${ }^{16}$ Interested readers can refer to Table 10 in the Appendix for a comprehensive list of accuracies for each language pair in the New-Tatoeba test set.

[^9]: ${ }^{17}$ The size of each language pair in OPUS-100 is capped at 1 M , and the original paper did not include the data statistics before sampling.
 ${ }^{18}$ The training data size for each language pair is listed in the table at https://github.com/Helsinki-NLP/ Tatoeba-Challenge/tree/master/data.
 ${ }^{19}$ The top-32 languages are es, fr, de, pt, it, nl, ru, pl, cs, sv, $s h, e l, r o, d a, z h, n o, a r, m s, h u, b g, t r, f i, s l, v i, h e, j a, e t, l t, l v$, $f a, k o, u k$, in the order of descending data availability.

[^10]: ${ }^{20}$ https://github.com/Helsinki-NLP/ Tatoeba-Challenge/blob/master/data/ subsets/highest.md

