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Abstract

Aligning parallel sentences in multilingual cor-001
pora is essential to curating data for down-002
stream applications such as Machine Transla-003
tion. In this work, we present OneAligner, an004
alignment model specially designed for sen-005
tence retrieval tasks. This model is able to006
train on only one language pair and transfers,007
in a cross-lingual fashion, to low-resource lan-008
guage pairs with negligible degradation in per-009
formance. When trained with all language pairs010
of a large-scale parallel multilingual corpus011
(OPUS-100), this model achieves the state-of-012
the-art result on the Tateoba dataset, outper-013
forming an equally-sized previous model by014
8.0 points in accuracy while using less than015
0.6% of their parallel data. When finetuned016
on a single rich-resource language pair, be it017
English-centered or not, our model is able to018
match the performance of the ones finetuned019
on all language pairs under the same data bud-020
get with less than 2.0 points decrease in accu-021
racy. Furthermore, with the same setup, scal-022
ing up the number of rich-resource language023
pairs monotonically improves the performance,024
reaching a minimum of 0.4 points discrepancy025
in accuracy, making it less mandatory to collect026
any low-resource parallel data. Finally, we con-027
clude through empirical results and analyses028
that the performance of the sentence alignment029
task depends mostly on the monolingual and030
parallel data size, up to a certain size threshold,031
rather than on what language pairs are used for032
training or evaluation.033

1 Introduction034

Cross-lingual sentence retrieval aims at aligning035

parallel sentence pairs that are translations of036

each other from unlabeled multilingual documents.037

Such mined data can be used in multiple down-038

stream applications such as Machine Translation039

and cross-lingual Word Sense Disambiguation (Fan040

et al., 2020; Tran et al., 2020; Schwenk et al.,041

2021a,b). Even under a half-automated setting with042

human-in-the-loop, a faithful aligner can help nar- 043

row down the candidate pool so that humans do not 044

need to deal with an enormous search space such as 045

cross-lingual web-document pairs (El-Kishky et al., 046

2020) or the entire internet. A retrieval model has 047

also been used to filter existing parallel corpora to 048

improve their quality (Schwenk, 2018) or to per- 049

form Quality Estimation (Fomicheva et al., 2020) 050

where the reference translations are not available. 051

For sentence retrieval tasks, a majority of re- 052

cent work is either completely unsupervised (Hu 053

et al., 2020; Tran et al., 2020; Lewis et al., 2020) 054

or leverages all parallel data available (Artetxe and 055

Schwenk, 2019; Ouyang et al., 2021), sometimes to 056

the extent of 879 language pairs (Luo et al., 2021). 057

The unsupervised approach has the benefit of not 058

collecting any parallel data; yet it usually achieves 059

relatively low accuracies on standard benchmark 060

datasets such as Tatoeba (Artetxe and Schwenk, 061

2019), which evaluates on 36 language pairs in- 062

cluding multiple low-resource ones. The super- 063

vised approach, on the other hand, assumes data 064

access to a plethora of low-resource language pairs, 065

which by definition is difficult to acquire and to 066

ensure their quality. This all-or-nothing choice be- 067

tween the unsupervised and supervised approaches 068

leaves a significant gap on whether zero-shot cross- 069

lingual transfer works for such tasks. Our work 070

aims to shed light on a recipe of how to distribute 071

the efforts for cross-lingual parallel data collec- 072

tion: (1) How much monolingual data is enough for 073

each language? (2) How many finetuning language 074

pairs are enough? (3) Is it necessary to collect 075

low-resource language pairs? (4) To what extent 076

does the amount of parallel data matter? (5) Should 077

these language pairs be centered around English? 078

To have a strong enough model to perform anal- 079

yses that address the above questions, we propose 080

OneAligner,1 a classifier that is able to align cross- 081

lingual sentences by training on parallel examples 082

1We will make our code publicly available.
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of only one language pair. OneAligner is built on083

top of XLM-RoBERTa (XLM-R) (Conneau et al.,084

2020a) with its architecture tailored to the align-085

ment task: the model leverages a supervised ver-086

sion of BERT-score (Zhang et al., 2020) to com-087

pute semantic similarity and builds a normaliza-088

tion layer into its architecture to counteract the089

popular sentence effect, where some sentences in090

the source language tend to have a high similar-091

ity score with any sentence in the target language.092

Though not our main contribution, these additions093

lead to the state-of-the-art accuracy 94.92 on the094

Tatoeba dataset when trained on all language pairs095

from OPUS-100 (Tiedemann, 2012), outperform-096

ing models that are trained with 180 times more097

parallel examples (Luo et al., 2021) by 8.0 points.098

When trained on any single rich-resource language099

pair, this model is able to match the performance100

of a model (within a 2.0 gap in accuracy) trained101

on all language pairs under the same data budget.102

To further close the already-narrow gap between103

using one language pair and all pairs while adher-104

ing to the rich-resource-only constraint, we scale105

up the number of language pairs with the top-k106

rich-resource ones, reaching a 94.0 accuracy on107

Tatoeba, only 0.4 off as compared to training on all108

language pairs under the same data budget.109

We also explore either training or evaluating on110

language pairs that are not centered around En-111

glish. We find that whether to train on an English-112

centered language pair and whether the training113

pair overlaps with the evaluation pair do not influ-114

ence model performance – the model will perform115

similarly as long as two conditions are met: (1)116

the amount of parallel data size crosses a certain117

threshold; and (2) the pretraining monolingual data118

that corresponds to the evaluation languages also119

surpasses a size threshold.120

2 Model121

2.1 Base Model122

To align sentences in different languages, it is bene-123

ficial to start with a model that has already learned124

cross-lingual representations to some extent. Our125

OneAligner thus builds on top of XLM-R (Conneau126

et al., 2020a), a Transformer-based model (Vaswani127

et al., 2017) pre-trained on the monolingual CC-128

100 dataset (Wenzek et al., 2020) covering 100 lan-129

guages. This model obtained state-of-the-art per-130

2Throughout the paper we will omit the “%” for accuracy.
Hence 94.9 means 94.9% in accuracy.

formance on cross-lingual classification, sequence 131

labeling, and question answering. 132

2.2 Calculation of Semantic Similarity 133

Cross-lingual BERT-score The de facto way of 134

calculating semantic similarity adopts a Siamese 135

architecture, which separately encodes the source 136

and target sentences with the same encoder to ob- 137

tain two outputs. These outputs go through a mean 138

pooling layer along the sequence length dimen- 139

sion, and the similarity is obtained by computing 140

the cosine distance between the two pooled vec- 141

tors (Reimers and Gurevych, 2019). This approach 142

is fast and agnostic to the order of source and target 143

sentences but lacks cross-attention which is crucial 144

for alignment tasks. On the other hand, encoding 145

both sequences with a [sep] token in-between im- 146

plies full cross-attention, which runs slow due to 147

the extra computation. Such a method is only suit- 148

able for filtering existing parallel corpora for better 149

data quality (Schwenk, 2018). Besides, due to posi- 150

tional encoding, this method is not agnostic to the 151

order of the two sentences such that during infer- 152

ence, one needs to pay special attention to which 153

sentence comes first. 154

Our similarity calculation marries the strengths 155

of both methods and builds on top of BERT- 156

score (Zhang et al., 2020), an unsupervised au- 157

tomatic evaluation metric originally designed 158

to compute the similarity between two sen- 159

tences of the same language. We re-purpose 160

this metric to compute cross-lingual seman- 161

tic similarity. More specifically, let s = 162

{s1, s2, ..., sM} and t = {t1, t2, ..., tN} be two 163

sequences, each consisting of a list of tokens 164

in the source and target language, respectively. 165

BERT-score computes the pairwise token-level 166

cosine distance between s and t as follows: 167

P =
1

|t|
∑
tj∈t

max
si∈s

sTi tj

R =
1

|s|
∑
si∈s

max
tj∈t

sTi tj

F = 2
PR

P +R

168

We use F as the similarity. From the equations 169

we can see that because BERT-score is only ap- 170

plied after the last encoding layer of the Trans- 171

former model, this metric serves as a shallow cross- 172

attention layer that is much faster than full cross- 173

attention. The resulting model also remains agnos- 174
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tic to the order of the input sentences.175

In-Batch Normalization In bitext alignment,176

we observe that some sentences in one language177

tend to have a high similarity score with any178

sentence in the other language. This phenomenon179

causes the ranking of candidates in the target180

language to be inaccurate. To offset this bias,181

we subtract a scaled average of similarity scores182

between each sentence in one language and all183

sentences in the other. More specifically, let184

S = {S1, S2, ..., SM} and T = {T1, T2, ..., TN}185

be a batch of sequences in the source and target186

language, respectively. We compute the pair-187

wise similarity between Si and Tj as follows:188

Sij = f(Si, Tj)− α

( ∑
Tn∈T

f(Si, Tn) +
∑

Sm∈S

f(Sm, Tj)

)
189

where f stands for the function that computes190

semantic similarity (BERT-score in our case)191

and α is a hyperparameter that determines the192

normalization strength. We tuned this parameter193

on the OPUS-100 development set and found that194

α = 0.75 on average gives the best results.3 Note195

that this normalization step is built into the model196

architecture rather than serving only as a post hoc197

manipulation during inference. In practice, the198

number of sentences M and N could be quite199

large during inference, significantly slowing down200

the normalization step, not to mention that the201

evaluation data is not guaranteed be served in202

an offline fashion. Hence we instead perform203

in-batch normalization for each similarity score204

so that M and N only depend on the batch size205

during inference. In our early experiments (not206

presented in the paper), we found that this in-batch207

normalization incurs no performance loss as long208

as we maintain a reasonable evaluation batch size.209

2.3 Justification of Model Design210

We perform an ablation study on how similarity is211

calculated and on whether to include a normaliza-212

tion step. We conduct the comparison with three213

model variances (without finetuning on any par-214

allel data), namely mBERT (Devlin et al., 2019),215

XLM-R-base, and XLM-R-large (Conneau et al.,216

2020a). Following Hu et al. (2020), who find that217

3In practice, we also add back a term (2α −
1) 1

MN

∑
Sm∈S,Tn∈T f(Sm, Tn) to keep Sij around 0. This

extra term does not affect evaluation, but makes a difference
during training.

certain early layers of Transform perform better 218

on cross-lingual tasks than the last layer,4 we use 219

the 8th layer for mBERT and XLM-R-base, and 220

17th layer for XLM-R-large.5 Table 1 shows that 221

the combination of BERT-score and normalization 222

step leads to consistently and significantly higher 223

performance, indicating that these modifications 224

build a beneficial inductive bias into the model. 225

2.4 Classification with In-Batch Negatives 226

One challenge in training an aligner with only pos- 227

itive parallel data is that there are no carefully- 228

designed negative examples. To address this chal- 229

lenge, our aligner adopts a contrastive learning 230

approach and trains on a classification task with 231

in-batch negatives (Chen et al., 2020). More 232

specifically, let S = {S1, S2, ..., SN} and T = 233

{T1, T2, ..., TN} be a batch of sentences in the 234

source and target language, respectively, where 235

Si is aligned with Ti for each i. We compute the 236

pairwise BERT-score between S and T and apply 237

the in-batch normalization (as introduced in Sec- 238

tion 2.2) to obtain N2 similarity scores, including 239

N scores for the positive alignments and N2 −N 240

for the negative ones. During training, we treat 241

these scores as logits and pair each logit of positive 242

alignment with all logits of negative examples. We 243

use these logits to compute the cross-entropy loss. 244

3 Experimental Setup 245

3.1 Data 246

Training Data We experiment with both English- 247

centered and non-English-centered training cor- 248

pora. For English-centered data we use OPUS-100, 249

a multilingual corpus covering 100 languages. This 250

corpus was randomly sampled from the OPUS col- 251

lection (Tiedemann, 2012),6, which is comprised 252

of diverse corpora ranging from movie subtitles 253

to GNOME documentation. OPUS-100 contains 254

approximately 55M sentence pairs. Of the 99 lan- 255

guage pairs, 44 have 1M sentence pairs of train- 256

ing data, 73 have at least 100k, and 95 have at 257

4Jawahar et al. (2019) and Zhang et al. (2020) find similar
phenomena for English.

5By investigating performance comparisons among differ-
ent layers in Jawahar et al. (2019); Zhang et al. (2020), we
provide a rule-of-thumb: usually the best layer is between
1 below and above 2/3 of the total number of layers. For
example, for a 12-layer Transformer, the fastest way is to try
layers 7, 8, and 9. Thanks to each new language model trying
to follow its previous work on hyperparameter settings, all
models with which we experiment have the number of layers
divisible by 3.

6https://opus.nlpl.eu/opus-100.php
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mBERT XLM-R-base XLM-R-large
Avg. Pooling BERT-score Avg. Pooling BERT-score Avg. Pooling BERT-score

w/o norm. norm. w/o norm. norm. w/o norm. norm. w/o norm. norm. w/o norm. norm. w/o norm. norm.
Avg. Acc. 37.1 45.1 42.9 55.1 54.7 62.9 48.6 70.2 47.0 42.6 57.5 72.1

Table 1: Unsupervised performance on Tatoeba-36 with three different language models. “norm” stands for
normalization which addresses the popular sentence effect, while “w/o norm” stands for no normalization. The best
average accuracy for each model is boldfaced.

least 10k. For non-English-centered data, we em-258

ploy the v2021-08-07 version of the Tatoeba Chal-259

lenge (Tiedemann, 2020),7 which we refer to as the260

New-Tatoeba (since it is new). This is a challenge261

set that contains 29G translation units in 3, 708262

bitexts covering 557 languages. The package in-263

cludes a release of 631 test sets that cover 134264

languages. Note that for training purposes, we only265

keep language pairs where both the source and the266

target language are present in CC-100 (Wenzek267

et al., 2020),8 the corpus used to pretrain XLM-268

R. This is because the tokenization of XLM-R is269

accustomed to these languages by design.270

Following OPUS-100, all experiments are per-271

formed under a fixed 1M examples budget (unless272

otherwise specified), regardless of how many lan-273

guage pairs are used. This constant data size cap274

makes it easier to compare among different set-275

tings. To remove noisy and uninformative data, we276

also aggressively remove any examples that contain277

less than 5 tokens in either the source or the target278

language. Note that this step is done after we sam-279

ple the 1M examples, since when the number of280

language pairs piles up, it becomes too expensive281

to tokenize the entire corpus to count how many282

tokens there are in each sentence.9283

Evaluation Data We evaluate on three datasets.284

The first one is the Tatoeba dataset from the285

XTREME benchmark (Hu et al., 2020), which we286

refer to as Tatoeba-36 since it contains 36 language287

pairs, including multiple low-resource ones such288

as sv-en and jv-en. We keep this historical version289

to make it easier to compare with previous work.290

The second dataset is the combination of devel-291

opment and test sets in New-Tatoeba. We only keep292

language pairs that have ≥ 1K examples in the293

development and test sets combined, because the294

smaller the evaluation set is, the easier it is to rank295

7https://github.com/Helsinki-NLP/
Tatoeba-Challenge

8http://data.statmt.org/cc-100/
9Resorting to counting the number of spaces will not work

because quite a few languages do not have spaces between
words.

among candidates. When we have a collection of 296

evaluation data that do not share roughly the same 297

difficulty, averaging their accuracies makes less 298

sense. Following Tatoeba-36, where most language 299

pairs have 1K test examples, we randomly sample 300

1K for each language pair from New-Tatoeba.10 301

The resulting evaluation set covers 223 language 302

pairs, including 49 pairs that are English-centered, 303

174 pairs that are not, and 58 pairs considered low- 304

resource by the Tatoeba Challenge. To our best 305

knowledge, we are the first to evaluate sentence 306

alignment models on this dataset. 307

The third dataset is BUCC 2018 (Zweigenbaum 308

et al., 2018) in the XTREME benchmark (Hu 309

et al., 2020). This is a cross-lingual bitext mining 310

task. We include this task because the two Tatoeba 311

datasets are both ranking tasks, while BUCC re- 312

quires a universal similarity score to serve as a de- 313

cision boundary to either accept or reject an align- 314

ment of sentences. This is a more realistic scenario 315

for web mining because a sentence in the source 316

language does not necessarily have a translation 317

in the target language. Hence this dataset contains 318

way more distraction sentences than the ones that 319

actually align with some other sentences in the 320

other language. That said, the drawback of BUCC 321

is that it only involves 4 language pairs, all of which 322

are highly rich-resource. Since our work focuses 323

more on low-resource languages, this dataset only 324

serves as a sanity check for our models. 325

Note that since both training corpora were cre- 326

ated without Tatoeba-36 and BUCC evaluation data 327

in mind, we remove any examples from the training 328

set where either the source or the target is in any of 329

the test sets. This process gets rid of less than 2.5k 330

examples from each training set. 331

3.2 Hyperparameters 332

We perform all experiments with a single A100 333

GPU. The number of training epochs is 3, the train- 334

ing batch size is 64, and the evaluation batch size 335

10We will release the test example indices with respect to
the original dataset along with the code.
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Model VECO ERNIE-M
OneAligner

1M Budget No Budget
# Parameters 550M 550M 550M 550M
# Languages 50 96 100 100

Mono. Data Size 1.36TB 1.56TB 2.34TB 2.34TB
Parallel Data Size 1TB 68.8GB 145MB 4.9GB

Table 2: Comparison of model and data sizes between
OneAligner and previous models.

is 256. These are the largest number of examples336

we can fit in a batch with A100. Not surprisingly,337

having a smaller training batch size will lead to338

lower performance not only because previous work339

has found that large batch size benefit training due340

to its more stable gradients (Devlin et al., 2019),341

but also that a larger batch size enables a more342

accurate estimation of the in-batch normalization343

term and allows more in-batch negatives to pair344

with each positive example, making the model con-345

verge faster with additional contrastive learning346

signals. We set the softmax temperature to 5.0347

and the learning rate to 3e-6 for all experiments.11348

The maximum sequence length for both source and349

target languages is set to 100.350

3.3 Dot Product vs. Cosine Similarity351

When computing the semantic distance be-352

tween sentences, Sentence-BERT (Reimers and353

Gurevych, 2019) applies a Siamese encoding354

scheme to each sentence followed by mean pooling355

and computation of cosine distance between the356

two pooled vectors. However, during training they357

do not normalize the sentence vectors before tak-358

ing the dot product, while during evaluation they359

do. We also observed that this different handling360

of training and evaluation phase led to better per-361

formance. Hence when computing the BERT-score362

during training, we also do not pre-normalize the363

vectors before taking the dot product.364

3.4 Baseline Models365

We compare with VECO (Luo et al., 2021) and366

ERNIE-M (Ouyang et al., 2021), the strongest mod-367

els at the time of submission on the XTREME368

benchmark leaderboard (Hu et al., 2020) sen-369

tence retrieval tasks.12 Like OneAligner, ERNIE-370

11The temperature and the learning rate are tuned on the
OPUS-100 development set. Our early experiments showed
that having a larger learning rate, e.g., 3e-5, would make the
model converge faster (more data-efficient) but eventually
arrive at slightly lower performance.

12The leaderboard can be visited at https://sites.
research.google/xtreme. We ignore submissions

M is built on top of XLM-R and is trained on 371

96 languages. The monolingual corpus is ex- 372

tracted from CC-100 (Wenzek et al., 2020), while 373

the bilingual corpora include MultiUN (Ziemski 374

et al., 2016), IIT Bombay (Kunchukuttan et al., 375

2018), OPUS (Tiedemann, 2012), and WikiMa- 376

trix (Schwenk et al., 2021a). VECO shares the 377

same model size as ours13 and is trained on 50 lan- 378

guages (possibly to avoid capacity dilution). The 379

monolingual data is extracted from CC-100, while 380

the bilingual data is collected from the OPUS web- 381

site.14 There are 6.4G parallel examples covering 382

879 language pairs. We summarize the basic statis- 383

tics of each model in Table 2. 384

4 Results and Analysis 385

4.1 All Language Pair Performance 386

To justify our model design and obtain a perfor- 387

mance upper bound with which single-pair models 388

can compare, we first train OneAligner on the en- 389

tire OPUS-100 dataset, either with or without the 390

1M budget. Table 3 shows that both models achieve 391

state-of-the-art results on the Tatoeba-36 dataset. 392

Because there is only a 0.5 difference in accuracy 393

between the two settings, it is reasonable to apply 394

the fixed budget to save computational cost. When 395

we put Table 2 and 3 side-by-side, we can also see 396

that OneAligner is more data-efficient as compared 397

to the other two models. 398

4.2 Single Language Pair Performance 399

English-centered Language Pairs Table 4 400

shows Tatoeba-36 performance for models trained 401

on the OPUS-100 dataset for each of the top-16 402

rich-resource language pairs in the intersection 403

of OPUS-100 and CC-100 languages.15 We can 404

see that the performance is consistent across lan- 405

guage pairs, which translates to the suggestion that 406

one can finetune OneAligner with almost any rich- 407

resource language pair at hand and arrive at a sim- 408

ilar performance. Figure 1 presents a scatter plot 409

of Table 4 against the data availability of each lan- 410

guage pair. We observe that after reaching a certain 411

that do not link to any paper or code.
13There are two versions of VECO, namely VECOout and

VECOin. VECOout is of the same size as our model while
VECOin is 20% larger in size. Hence throughout the paper,
whenever we mention VECO, we are referring to the more
comparable VECOout version. As a side note, our best model
is able to outperform VECOin on Tatoeba-36 by 3.8 points in
accuracy.

14https://opus.nlpl.eu/
15Results of all language pairs are presented in Appendix A.

5

https://sites.research.google/xtreme
https://sites.research.google/xtreme
https://opus.nlpl.eu/


Language af ar bg bn de el es et eu fa fi fr he hi hu id it ja jv
VECO 80.9 85.1 91.3 78.1 98.5 89.5 97.4 94.8 79.8 93.1 95.4 93.7 85.8 94.2 93.8 93.0 92.2 92.8 35.1

ERNIE-M 92.6 94.3 96.6 89.2 99.7 96.8 98.8 92.5 87.4 96.0 97.1 96.5 90.1 97.9 95.5 95.7 95.2 96.9 65.2
OneAligner 96.3 93.0 95.2 90.7 99.6 96.8 98.9 96.2 92.7 96.4 98.2 96.3 93.2 97.9 97.2 95.9 95.4 98.1 78.0

OneAligner (All) 97.4 94.7 95.3 92.2 99.6 97.3 99.0 98.6 95.7 96.9 98.2 96.5 94.1 98.3 98.1 96.7 96.6 98.5 78.5
ka kk ko ml mr nl pt ru sw ta te th tl tr ur vi zh Average

VECO 83.0 74.1 88.7 94.8 82.5 95.9 94.6 92.2 69.7 82.4 91.0 94.7 73.0 95.2 63.8 95.1 93.9 86.9
ERNIE-M 94.9 88.0 94.1 98.5 90.8 98.1 94.5 95.7 68.4 91.8 97.9 98.4 86.0 98.3 94.9 98.1 96.7 93.3

OneAligner 95.6 89.7 94.0 98.4 92.7 97.7 95.6 95.5 65.6 93.2 97.0 97.4 89.9 98.3 94.8 98.4 97.2 94.4
OneAligner (All) 95.6 91.3 95.3 98.8 93.6 98.3 96.0 95.8 63.6 93.2 96.6 97.8 88.3 98.9 95.6 98.5 97.3 94.9

Table 3: Comparison of Tatoeba-36 results (accuracy) between OneAligner and the strongest models so far, namely
VECO and ERNIE-M. “All” stands for unlimited data budget, which uses the entire OPUS-100 corpus. Best results
for each language and the average are boldfaced.

Language es fr de pt it nl ru pl
Avg. Acc. 92.4 92.7 92.5 92.3 92.3 92.4 92.6 91.9

cs sv el ro da zh no ar
92.0 91.8 92.8 92.2 92.0 92.7 91.9 92.9

Table 4: Tatoeba-36 performance for models trained on
the OPUS-100 top-16 rich-resource language pairs (in
descending order) centered around English.

Figure 1: Scatter plot of single-pair Tatoeba-36 per-
formance against English-centered single-pair parallel
data size (as measured in the number of training exam-
ples) for each language pair in the OPUS-100 dataset.

data size threshold (somewhere between 10k and412

20k), all language pairs perform similarly. This is413

partially expected because our model design does414

not introduce any new parameters to XLM-R, ob-415

viating the need to train any randomly initialized416

layers.417

Language Pairs Not Centered around English418

English is with no doubt the most widely adopted419

language. However, in a real-world scenario, we420

cannot always assume that the parallel data con-421

tains English. Similar to Table 4, we present in Ta-422

ble 5 the accuracies of OneAligner trained on each423

of the Top-16 rich-resource non-English-centered424

pairs from the New-Tatoeba dataset. We can see425

Language fr-es pt-es de-fr fr-pt it-es fr-it de-es it-pt
Avg. Acc. 92.0 91.5 92.2 92.0 92.0 92.1 92.2 92.1

ca-es de-it de-pt de-nl nl-es pl-pt fr-nl ru-es
90.9 92.3 92.3 92.2 92.6 92.3 92.3 92.0

Table 5: Tatoeba-36 performance for models trained on
the New-Tatoeba top-16 rich-resource language pairs (in
descending order) that are not centered around English.

Model Tatoeba-36
New Tatoeba
Eng ¬ Eng

Top1 (Eng) 92.4 91.6 89.3
Top1 (¬ Eng) 92.0 91.5 89.2

Table 6: English-centered and Non-English-centered
Top1 model accuracies under three evaluation settings
on the two Tatoeba datasets.

that the performance is again consistent across lan- 426

guage pairs, indicating that we can train on a non- 427

English language pair and still obtain similar per- 428

formance on an evaluation set centered around En- 429

glish. This raises a natural follow-up question: is 430

the reverse true? In other words, does a model 431

trained on English-centered data perform just as 432

well on non-English evaluation data? 433

Table 6 addresses this question and we make two 434

observations from it. When comparing column- 435

wise, OneAligner performs similarly regardless of 436

whether it is trained on an English-centered lan- 437

guage pair or whether there is an overlap between 438

finetuning and evaluation languages. When com- 439

paring each model evaluated on either English- 440

centered or non-English-centered language pairs, 441

we can see that both models perform better on 442

English-centered language pairs.16 We hypothesize 443

that this is because English dominates the monolin- 444

gual data during the pretraining of XLM-R. 445

Before diving into an analysis that verifies this 446

16Interested readers can refer to Table 10 in the Appendix
for a comprehensive list of accuracies for each language pair
in the New-Tatoeba test set.

6



Figure 2: Scatter plot of Top1-Eng New-Tatoeba perfor-
mance against monolingual data size (as measured in
GB) for each language in the CC-100 dataset.

hypothesis, we need to “expand our vocabulary”:447

rather than dividing in a bipolar fashion between448

“English-centered” and “non-English-centered”,449

we describe the setting with a spectrum and ex-450

plore X-centered, where X could be any language.451

We define the accuracy for language X as the aver-452

age of accuracies of all language pairs that involve453

X. Figure 2 shows the scatter plot of Top-1-Eng454

New-Tatoeba performance against monolingual455

data size for each language in the CC-100 dataset.456

Similar to Figure 1, the New-Tatoeba performance457

is positively correlated with the monolingual data458

size up to a certain data threshold.459

4.3 Scaling up the Number of Language Pairs460

The single-pair Tatoeba results are already promis-461

ing. However, what if we aim for even better perfor-462

mance without violating the rich-resource-only as-463

sumption? We find that adding other rich-resource464

pairs can help. Unfortunately, OPUS-100 does not465

provide us with a ranking on the data availability466

of language pairs.17 Hence we resort to the New-467

Tatoeba dataset and rank based on the availability468

of each English-centered pair.18 In Table 7 we469

present performance of combined top-1 through470

top-32 rich-resource language pairs on Tatoeba-471

36.19 We can see that the performance monotoni-472

cally increases as we include more language pairs,473

17The size of each language pair in OPUS-100 is capped at
1M, and the original paper did not include the data statistics
before sampling.

18The training data size for each language pair is listed in
the table at https://github.com/Helsinki-NLP/
Tatoeba-Challenge/tree/master/data.

19The top-32 languages are es, fr, de, pt, it, nl, ru, pl, cs, sv,
sh, el, ro, da, zh, no, ar, ms, hu, bg, tr, fi, sl, vi, he, ja, et, lt, lv,
fa, ko, uk, in the order of descending data availability.

Language Top1 Top2 Top4 Top8 Top16 Top32 All
Avg. Acc. 92.4 92.5 92.9 93.2 93.4 94.0 94.4

Table 7: Tatoeba-36 performance when the model is
trained on Top-k rich-resource, English-centered lan-
guage pairs. “All” stands for all language pairs com-
bined. All results are under a fixed 1M data budget.

Model de fr ru zh Avg.
XLM-R-large 67.5 66.5 73.5 56.7 66.1

VECO 93.0 88.7 89.9 85.7 89.3
Top1 (Eng) 91.7 90.0 89.5 90.9 90.5

Top1 (¬ Eng) 93.0 89.8 88.7 90.6 90.5

Table 8: BUCC F1 Results. Best scores in each column
are boldfaced. Below the dashed line are our model re-
sults, where “¬ Eng” stands for “non-English-centered”.
Note that ERNIE-M did not evaluate on BUCC, hence
not included in this table.

until reaching an accuracy of 94.0 – only 0.4 point 474

off of the best performance when training with all 475

language pairs under the 1M data budget. Note that 476

the least rich-resource language uk in the top-32 list 477

is still in the “highest”-resource range as defined in 478

the Tateoba Challenge20 and contains around 34M 479

training examples, so we are still far from violating 480

the rich-resource restrictions. Hence at least given 481

the sentence alignment task and the current models, 482

the marginal cost of improving for that 0.4 point 483

in accuracy does not seem to justify the effort of 484

extensively collecting more parallel data for the 485

low-resource language pairs. This observation mo- 486

tivates future work to develop new approaches that 487

leverage low-resource data more effectively. 488

4.4 BUCC Results 489

As a sanity check, we report BUCC F1 scores of 490

the two top-1 models as compared to previous work 491

in Table 8. We can see that both models outper- 492

form VECO by 1.2 points. Recall that the two 493

models are trained on en-es and fr-es, respectively. 494

In other words, neither model has seen a single par- 495

allel example between en and each of the BUCC 496

target languages {de, fr, ru, zh}, while VECO is 497

trained extensively on each of the language pairs. 498

This result is consistent with the observation that 499

OneAligner is able to perform cross-lingual trans- 500

fer with performance on par with in-language mod- 501

els regardless of whether the finetuning language 502

pair is English-centered. 503

20https://github.com/Helsinki-NLP/
Tatoeba-Challenge/blob/master/data/
subsets/highest.md
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5 Related work504

5.1 Multilingual Representation Learning505

There have been extensive effort in learning mas-506

sive cross-lingual representations. Such models507

are pretrained with a large amount of unlabeled508

data from multiple languages with the intention509

to benefit low-resource languages with the rich-510

resource languages through shared vocabulary, ge-511

netic relatedness (Nguyen and Chiang, 2017) or512

contact relatedness (Goyal et al., 2020). Some513

of the widely adopted models are mBERT (De-514

vlin et al., 2019), XLM (Conneau and Lample,515

2019), mBART (Liu et al., 2020), MARGE (Lewis516

et al., 2020), XLM-R (Conneau et al., 2020a), and517

mT5 (Xue et al., 2021). Other models also leverage518

cross-lingual signals (large-scale parallel data) with519

a translation language model objective, including520

LASER (Artetxe and Schwenk, 2019), VECO (Luo521

et al., 2021) and ERNIE-M (Ouyang et al., 2021).522

5.2 Parallel Corpus Mining523

A major downstream application of a massively524

multilingual model is parallel corpus mining. There525

have been efforts to mine parallel sentences from526

the entire web (Bañón et al., 2020; Wenzek et al.,527

2020; Tran et al., 2020). Such approaches are in-528

advertently forced to handle an enormous search529

space. Consequently, some models adopt the530

mean pooling followed by the cosine distance531

approach and leverage approximation algorithms532

like FAISS (Johnson et al., 2019) to compute co-533

sine distance faster. There have also been efforts534

such as WikiMatrix (Schwenk et al., 2021a) and535

CCAligned (El-Kishky et al., 2019) that divide the536

mining process into two steps. The first step is537

to align text on the document level, which signifi-538

cantly reduces the search space, while the second539

step is to deploy a sentence retrieval model as usual.540

Apart from aligning text at the document and541

sentence level, there has also been models that fo-542

cus on a higher level of granularity and target word543

alignment (Dou and Neubig, 2021). Such work can544

be used for downstream tasks such as automatically545

building preliminary bilingual dictionaries.546

5.3 Zero-Shot Cross-lingual Transfer547

The standard zero-shot cross-lingual transfer as-548

sumes no in-language data and consists of two549

steps: (1) finetune a multi-lingual pretrained model550

on task-specific data in the source language; and (2)551

evaluate it on the test data in the target language.552

Another alternative to the implicit transfer re- 553

quires a Machine Translation system (Hu et al., 554

2020; Luo et al., 2021), which itself demands par- 555

allel data to train in the first place. There are two 556

settings: (1) translate-train: machine translate the 557

task-specific training data from the source to the 558

target language and train on that noisy data; and 559

(2) translate-test: train on task-specific data in the 560

source language and evaluate on data translated 561

from the target to the source language. 562

Several benchmark datasets have been released 563

to test cross-lingual transfer capability, including 564

XGLUE (Liang et al., 2020), XTREME (Hu et al., 565

2020), and XTREME-R (Ruder et al., 2021). They 566

include diverse tasks such as Natural Language In- 567

ference, Relation Extraction, Named Entity Recog- 568

nition, Part of Speech Tagging, Question Answer- 569

ing, and Sentence Retrieval. 570

There has been extensive work devoted to ana- 571

lyzing the mechanism behind cross-lingual trans- 572

fer (K et al., 2020; Muller et al., 2021). For exam- 573

ple, Pires et al. (2019) and Wu and Dredze (2020) 574

show that the amount of shared vocabulary between 575

the source and target language plays an important 576

role in the transfer. However, some other works 577

suggest the opposite. For instance, Conneau et al. 578

(2020b) show that the transfer happens even if there 579

is no shared vocabulary while the training and eval- 580

uation data can also come from distinct domains. 581

6 Conclusion 582

We present OneAligner, an alignment model tai- 583

lored to sentence retrieval tasks. We show that 584

this model transfers well under a cross-lingual 585

setting even when trained on a single language 586

pair. Through experiments and analyses, our work 587

helps uncover what factors influence sentence align- 588

ment performance and identifies monolingual data 589

size, parallel data size, and the number of rich- 590

resource language pairs as the top priorities to 591

which one should distribute their data collection 592

efforts. Though having covered a broad range of 593

languages and settings, this work still leaves many 594

unexplored territories: (1) How do we deal with 595

languages not present in the pretraining phase given 596

that the vocabulary is not constructed toward them? 597

(2) Why is the cross-lingual transfer successful in 598

the first place? What has the model learned dur- 599

ing finetuning? (3) Does OneAligner generalize to 600

other retrieval tasks other than cross-lingual sen- 601

tence alignment? We leave these as future work. 602
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A Tatoeba-36 Results in Detail873

Table 9 shows Tatoeba-36 performance for models874

trained on the OPUS-100 dataset for each language875

pair in the intersection of OPUS-100 and CC-100876

languages.877

B New-Tatoeba Results in Detail878

Table 10 shows the detailed performance on each879

language pair in the New-Tatoeba dataset.880
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Language af am ar as az be bg bn br bs ca cs cy da de el eo es et eu fa
Avg. Acc. 92.2 90.9 92.9 90.8 92.3 89.8 92.6 92.7 91.3 91.1 92.0 92.0 91.4 92.0 92.5 92.8 91.7 92.4 92.1 92.6 92.5

fi fr fy ga gd gl gu ha he hi hr hu hy id is it ja ka kk km kn
92.3 92.7 88.2 91.5 53.2 92.1 90.9 90.6 92.7 92.3 90.9 92.4 29.8 92.5 91.8 92.3 92.6 90.0 90.5 91.2 55.4
ko ku ky lt lv mg mk ml mn mr ms my ne nl no or pa pl ps pt ro

92.4 90.6 26.0 91.9 92.3 92.3 92.6 92.7 20.6 90.4 92.6 85.0 91.1 92.4 91.9 26.2 90.1 91.9 85.8 92.3 92.2
ru si sk sl sq sr sv ta te th tr ug uk ur uz vi xh yi zh

92.6 92.7 91.8 91.2 92.4 91.1 91.8 92.3 91.2 92.3 92.3 91.5 92.4 91.7 91.0 92.8 90.5 22.5 92.7

Table 9: Tatoeba-36 performance for models trained on the OPUS-100 dataset for each language pair (the intersection
between OPUS-100 and CC-100 languages) centered around English.
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Lang de-hu ar-es eo-vi fr-hu en-ga hu-pl de-el de-en be-ru en-it hu-ja en-uk de-pl nl-uk eo-lt fr-ja
Top-1 (Eng) 94.9 89.0 91.1 90.0 62.8 91.4 91.9 98.9 98.0 97.1 95.4 97.4 98.0 93.5 85.2 96.0

Top-1 (¬ Eng) 95.1 89.4 91.6 90.4 63.4 91.9 90.6 98.8 98.1 98.0 95.3 97.1 97.5 92.5 85.7 95.7
All (Eng) 98.1 91.8 96.9 94.0 78.6 95.2 93.8 99.2 98.2 99.3 97.2 98.3 98.6 95.9 96.1 97.2

ar-ja eo-yi en-ur ar-de en-lv en-sq cs-es de-no es-tr ca-es it-tr nl-pl fr-nl fi-no fr-zh de-it
80.2 64.5 82.8 89.2 92.8 85.9 91.7 94.7 95.3 96.6 69.2 93.3 93.8 63.7 95.7 96.2
79.3 65.8 81.2 89.5 91.7 85.8 91.4 94.4 95.4 98.1 68.4 93.2 94.8 62.0 95.2 96.9
81.8 71.4 83.9 91.9 96.1 93.6 93.1 95.4 99.0 98.8 78.1 96.2 95.8 66.4 96.4 98.0
da-fr az-en ar-he fi-sv pl-sv be-en fi-ru de-fa de-uk en-tr bg-it cs-eo en-mk en-sv cs-en el-ru
91.4 92.5 75.6 91.6 96.7 94.9 92.2 97.5 96.5 98.0 86.0 90.8 95.2 98.0 98.6 96.6
91.0 92.2 76.3 90.8 96.4 93.9 91.4 96.6 96.0 97.7 87.8 90.4 95.4 97.4 98.4 96.9
91.7 96.4 78.5 94.4 97.3 95.2 94.4 98.0 97.4 99.2 89.3 96.8 99.0 98.2 99.3 98.1
gl-es fr-tr ja-ru he-pl en-es en-vi lt-ru it-ro en-ro ro-es fr-es it-ru eo-ja es-uk fi-hu ru-sv
95.3 93.8 97.6 96.5 98.5 96.8 92.2 75.8 95.9 88.3 97.4 96.5 88.7 93.8 81.0 88.5
97.1 93.3 96.7 95.9 98.7 96.6 93.0 75.1 95.7 90.3 99.2 97.5 90.1 95.2 80.7 86.7
98.1 96.3 98.3 97.2 99.3 97.1 96.9 77.9 96.6 91.7 99.3 98.7 96.3 96.4 86.1 89.1
eo-fi en-nl en-no ar-ru en-hi eo-fa en-zh da-nl el-fr fr-it de-ko eo-ro fi-tr en-lt fr-vi af-nl
74.1 97.8 97.3 94.9 95.3 89.4 98.0 91.6 89.0 92.7 88.8 84.2 91.9 90.0 95.4 88.7
75.0 97.7 97.2 95.0 95.1 90.0 97.1 91.2 89.9 95.6 87.4 85.1 92.2 90.3 96.0 89.9
85.5 99.0 98.0 97.1 95.3 96.0 98.1 92.8 91.8 96.8 90.5 91.2 96.3 95.3 96.1 91.8
de-es el-tr en-ru nl-es pl-es de-fr eu-es sv-zh eo-sv nl-tr fr-sv en-eu nl-ru eo-it kk-ru pl-zh
98.0 88.6 99.3 97.1 94.6 98.6 72.2 80.9 79.9 88.8 94.8 78.9 94.7 84.9 91.0 93.6
99.1 88.2 99.2 97.8 95.7 98.9 73.2 79.7 80.2 88.8 95.2 78.8 94.0 87.4 91.8 93.0
99.2 93.1 99.0 98.3 95.9 99.3 93.6 81.0 88.3 95.2 95.9 95.2 95.7 94.9 94.6 94.9
da-en de-sv ug-zh fr-uk eo-he af-de bg-en hu-es he-es lt-tr ja-no da-de hu-ru cs-ru ar-fr en-fr
98.1 95.0 86.3 97.1 87.9 89.4 97.0 93.5 90.7 80.5 92.5 98.0 93.8 95.8 79.2 98.4
97.8 94.4 85.3 97.0 88.5 92.0 96.1 93.4 89.3 79.4 91.1 97.7 92.7 95.5 78.5 98.3
98.8 95.3 91.1 98.0 94.8 94.6 97.2 96.6 91.0 88.6 93.6 98.2 95.8 97.0 81.4 99.1
af-en eo-fr he-it eo-tr pl-ru he-tr de-he fi-fr de-lt en-sl ja-vi de-eo fr-he en-ka it-nl ja-nl
92.1 91.4 80.8 86.2 97.9 69.6 90.5 77.2 84.9 92.1 87.8 93.4 90.8 82.6 92.7 92.5
93.0 92.2 81.8 87.0 97.8 68.8 90.0 78.0 84.6 90.9 86.3 93.1 90.8 80.7 93.7 92.0
95.8 98.4 82.7 97.1 98.2 74.5 90.8 79.7 89.1 94.4 87.8 98.4 91.4 84.0 95.0 95.1
el-en en-ug bn-en en-fi en-yi eo-ru az-tr en-hy he-ru it-ja ca-en en-he uk-zh ar-en tr-uk eo-zh
95.4 83.6 84.1 94.6 75.1 88.9 86.0 59.0 92.6 94.1 87.8 98.1 85.3 94.4 90.4 85.7
95.6 81.2 82.4 94.2 76.9 91.3 86.4 57.9 92.4 93.1 90.4 96.5 83.9 93.1 89.4 87.3
95.7 87.6 86.9 98.1 81.7 97.6 90.7 62.1 93.5 94.7 92.2 98.5 86.4 96.0 94.5 95.6
de-yi bg-ru fi-es ru-zh da-fi tr-ug en-eo ja-zh da-ru fr-ru en-fa el-es fr-pl es-sv el-nl de-fi
63.1 90.0 93.7 93.7 67.0 91.0 92.3 94.5 94.3 98.2 95.9 85.7 96.0 87.9 90.1 91.7
64.4 89.2 94.5 92.7 66.7 91.4 91.9 93.8 93.3 98.0 95.5 87.3 96.1 88.6 90.3 91.4
65.3 91.2 96.4 94.2 69.8 93.7 99.3 95.1 93.5 98.8 96.3 89.9 96.5 89.8 90.6 93.4
da-sv en-ja de-zh hu-tr de-is ru-tr km-es eo-nl en-is br-fr pl-uk eo-uk eo-no cs-de da-no de-tr
94.0 97.7 95.1 81.1 81.5 93.5 66.2 88.7 93.6 22.7 95.9 88.3 90.3 95.8 95.6 94.9
93.6 97.8 94.8 79.5 81.8 93.3 65.9 89.0 93.2 22.2 95.4 87.6 91.3 95.9 95.5 94.8
94.2 98.4 95.8 86.7 85.5 96.4 69.8 98.1 96.2 48.3 96.6 95.2 96.4 96.4 95.9 97.3
eo-es it-uk eo-hu en-mr hu-nl ar-tr it-es be-uk en-hu da-eo en-th eo-pl bg-uk he-yi no-ru de-ro
92.6 91.3 88.6 96.1 86.3 88.9 97.1 94.9 94.2 88.7 91.0 89.1 81.2 55.9 93.0 88.6
94.4 91.6 88.7 96.7 84.9 87.8 97.8 94.8 94.3 90.6 90.5 90.2 80.7 57.6 92.0 88.6
98.9 94.1 97.4 97.9 90.2 92.9 98.2 95.3 98.1 96.6 91.9 96.3 83.3 59.9 92.5 90.1
ru-uk en-gl de-nl cs-it en-et fi-ja fr-ro es-zh tr-zh cs-uk sl-uk de-ru af-eo he-nl fi-it it-zh
99.3 84.6 97.1 90.5 82.7 87.1 88.2 95.1 81.4 90.4 70.8 98.3 74.4 97.2 79.9 83.7
99.2 85.7 96.7 90.6 82.2 85.1 88.5 94.8 80.7 89.2 70.3 98.3 75.3 96.8 81.1 83.8
99.4 86.9 98.3 92.2 94.5 91.0 91.0 95.7 86.8 91.7 75.6 99.2 84.5 98.5 84.5 86.8
nl-zh lt-pl it-pl ru-es en-pl da-es de-ja nl-ro ro-tr en-ko ja-es cs-hu ja-pl hu-it hu-sv Avg.
95.3 92.4 93.6 98.5 98.8 96.2 97.8 88.4 92.3 93.6 95.7 87.9 97.7 90.0 88.0 89.8
95.2 92.2 93.9 98.4 98.3 96.4 97.4 89.2 92.8 93.0 97.0 88.3 96.9 90.9 87.5 89.7
96.1 97.4 95.3 98.7 99.3 97.4 98.1 92.1 96.8 94.6 98.5 92.5 98.5 94.8 92.0 92.9

Table 10: Performance on all language pairs in the New-Tatoeba dataset whose devtest size is greater or equal than
1K (we randomly sample 1K examples for the “greater” case).
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