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ABSTRACT

Large language models (LLMs) have shown impressive performance on complex
reasoning by leveraging chain-of-thought (CoT) prompting to generate intermediate
reasoning chains as the rationale to infer the answer. However, existing CoT studies
have primarily focused on the language modality. We propose Multimodal-CoT that
incorporates language (text) and vision (images) modalities into a two-stage frame-
work that separates rationale generation and answer inference. In this way, answer
inference can leverage better generated rationales that are based on multimodal
information. Experimental results on ScienceQA and A-OKVQA benchmark
datasets show the effectiveness of our proposed approach. With Multimodal-CoT,
our model under 1 billion parameters achieves new state-of-the-art performance on
the ScienceQA benchmark. Our analysis indicates that Multimodal-CoT offers the
advantages of mitigating hallucination. Code is publicly available at Anonymous.

1 INTRODUCTION

Imagine reading a textbook with no figures or tables. Our ability to knowledge acquisition is
greatly strengthened by jointly modeling diverse data modalities, such as vision, language, and
audio. Recently, large language models (LLMs) (Brown et al., 2020; Thoppilan et al., 2022; Rae
et al., 2021; Chowdhery et al., 2022) have shown impressive performance in complex reasoning by
generating intermediate reasoning steps before inferring the answer. The intriguing technique is
called chain-of-thought (CoT) reasoning (Wei et al., 2022b; Kojima et al., 2022; Zhang et al., 2023c).

Output

Rationale: The particles in both samples have the same average speed, but each
particle in sample B has more mass than each particle in sample A. So, the particles
in sample B have a higher average kinetic energy than the particles in sample A.
Because the particles in sample B have the higher average kinetic energy, sample B
must have the higher temperature.
Answer: The answer is (B).

VisionLanguage
Input

Question: Compare the average kinetic energies
of the particles in each sample. Which sample has
the higher temperature?
Context: The diagrams below show two pure
samples of gas in identical closed, rigid containers.

(C) They have the same temperature
Options:

(B) sample B(A) sample A

Figure 1: Example of the multimodal CoT task.

However, existing studies related to CoT reason-
ing are largely isolated in the language modality
(Wang et al., 2022c; Zhou et al., 2022; Lu et al.,
2022b; Fu et al., 2022), with little consideration
of multimodal scenarios. To elicit CoT reason-
ing in multimodality, we advocate a Multimodal-
CoT paradigm. Given the inputs in different
modalities, Multimodal-CoT decomposes multi-
step problems into intermediate reasoning steps
(rationale) and then infers the answer. Since
vision and language are the most popular modal-
ities, we focus on those two modalities in this
work. An example is shown in Figure 1.

In general, there are two ways to elicit Multimodal-CoT reasoning as follows: (i) prompting LLMs
and (ii) fine-tuning small models.1

The most immediate way to perform Multimodal-CoT is to transform the input of different modalities
into a unified modality and prompt LLMs to perform CoT (Zhang et al., 2023a; Lu et al., 2023; Liu
et al., 2023; Alayrac et al., 2022; Hao et al., 2022; Yasunaga et al., 2022). For example, it is possible
to generate a caption for an image by a captioning model and then concatenate the caption with the
original language input to be fed into LLMs (Lu et al., 2022a). However, there is severe information
loss in the captioning process; thus, using image captions (as opposed to vision features) may suffer

1We refer to small models as models with less than 1 billion parameters (hereinafter dubbed as 1B-models).
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from a lack of mutual synergy in the representation space of different modalities. In addition, LLMs
either have paywalls or resource-consuming to deploy locally.

To facilitate the interaction between modalities, another potential solution is to fine-tune smaller
language models (LMs) by fusing multimodal features (Zhang et al., 2023b). As this approach
allows the flexibility of adjusting model architectures to incorporate multimodal features, we study
fine-tuning models in this work instead of prompting LLMs. The key challenge is that language
models under 100 billion parameters tend to generate hallucinated rationales that mislead the answer
inference (Ho et al., 2022; Magister et al., 2022; Ji et al., 2022).

To mitigate the challenge of hallucination, we propose Multimodal-CoT that incorporates language
(text) and vision (images) modalities into a two-stage framework that separates rationale generation
and answer inference.2 In this way, answer inference can leverage better generated rationales that
are based on multimodal information. Our experiments are conducted on the ScienceQA (Lu et al.,
2022a) and A-OKVQA (Schwenk et al., 2022) datasets, which are the latest multimodal reasoning
benchmarks with annotated reasoning chains.

Our method achieves new state-of-the-art performance on the ScienceQA benchmark. We find that
Multimodal-CoT is beneficial in mitigating hallucination and boosting convergence. Our contributions
are summarized as follows:

(i) To the best of our knowledge, this work is the first to study CoT reasoning in different modalities
in scientific peer-reviewed literature.

(ii) We propose a two-stage framework by fine-tuning language models to fuse vision and language
representations to perform Multimodal-CoT. The model is able to generate informative rationales to
facilitate inferring final answers.

(iii) Our method achieves new state-of-the-art performance on the ScienceQA benchmark. Our work
elicits the analysis of why the naive way of employing CoT fails in the context and how incorporating
vision features alleviates the problem. The approach has been shown to be generally effective across
tasks and backbone models.

2 BACKGROUND

This section reviews studies eliciting CoT reasoning by prompting and fine-tuning language models.

2.1 COT REASONING WITH LLMS

Recently, CoT has been widely used to elicit the multi-step reasoning abilities of LLMs (Wei et al.,
2022b). Concretely, CoT techniques encourage the LLM to generate intermediate reasoning chains
for solving a problem. Studies have shown that LLMs can perform CoT reasoning with two major
paradigms of techniques: Zero-Shot-CoT (Kojima et al., 2022) and Few-Shot-CoT (Wei et al., 2022b;
Zhang et al., 2023c). For Zero-Shot-CoT, Kojima et al. (2022) showed that LLMs are decent zero-shot
reasoners by adding a prompt like “Let’s think step by step” after the test question to invoke CoT
reasoning. For Few-Shot-CoT, a few step-by-step reasoning demonstrations are used as conditions
for inference. Each demonstration has a question and a reasoning chain that leads to the final answer.
The demonstrations are commonly obtained by hand-crafting or automatic generation. These two
techniques, hand-crafting and automatic generation are thus referred to as Manual-CoT (Wei et al.,
2022b) and Auto-CoT (Zhang et al., 2023c).

With effective demonstrations, Few-Shot-CoT often achieves stronger performance than Zero-Shot-
CoT and has attracted more research interest. Therefore, most recent studies focused on how to
improve Few-Shot-CoT. Those studies are categorized into two major research lines: (i) optimizing
the demonstrations; (ii) optimizing the reasoning chains. Table 1 compares typical CoT techniques.

Optimizing Demonstrations The performance of Few-Shot-CoT relies on the quality of demon-
strations. As reported in Wei et al. (2022b), using demonstrations written by different annotators
results in dramatic accuracy disparity in reasoning tasks. Beyond hand-crafting the demonstrations,

2This work focuses on the language and vision modalities.
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Table 1: Representative CoT techniques (FT: fine-tuning; KD: knowledge distillation). Segment 1:
in-context learning techniques; Segment 2: fine-tuning techniques. To the best of our knowledge, our
work is the first to study CoT reasoning in different modalities in scientific peer-reviewed literature.
Besides, we focus on 1B-models, without relying on the outputs of LLMs.
Models Mutimodal Model / Engine Training CoT Role CoT Source

Zero-Shot-CoT (Kojima et al., 2022) ✗ GPT-3.5 (175B) ICL Reasoning Template
Few-Shot-CoT (Wei et al., 2022b) ✗ PaLM (540B) ICL Reasoning Hand-crafted
Self-Consistency-CoT (Wang et al., 2022b) ✗ Codex (175B) ICL Reasoning Hand-crafted
Least-to-Most Prompting (Zhou et al., 2022) ✗ Codex (175B) ICL Reasoning Hand-crafted
Retrieval-CoT (Zhang et al., 2023c) ✗ GPT-3.5 (175B) ICL Reasoning Auto-generated
PromptPG-CoT (Lu et al., 2022b) ✗ GPT-3.5 (175B) ICL Reasoning Hand-crafted
Auto-CoT (Zhang et al., 2023c) ✗ Codex (175B) ICL Reasoning Auto-generated
Complexity-CoT (Fu et al., 2022) ✗ GPT-3.5 (175B) ICL Reasoning Hand-crafted
Few-Shot-PoT (Chen et al., 2022) ✗ GPT-3.5 (175B) ICL Reasoning Hand-crafted

UnifiedQA (Lu et al., 2022a) ✗ T5 (770M) FT Explanation Crawled
Fine-Tuned T5 XXL (Magister et al., 2022) ✗ T5 (11B) KD Reasoning LLM-generated
Fine-Tune-CoT (Ho et al., 2022) ✗ GPT-3 (6.7B) KD Reasoning LLM-generated
Multimodal-CoT (our work) ✓ T5 (770M) FT Reasoning Crawled

recent studies have investigated ways to optimize the demonstration selection process. Notably, Rubin
et al. (2022) retrieved the semantically similar demonstrations with the test instance. However, this
approach shows a degraded performance when there are mistakes in the reasoning chains (Zhang
et al., 2023c). To address the limitation, Zhang et al. (2023c) found that the key is the diversity of
demonstration questions and proposed Auto-CoT: (i) partition questions of a given dataset into a few
clusters; (ii) sample a representative question from each cluster and generate its reasoning chain using
Zero-Shot-CoT with simple heuristics. In addition, reinforcement learning (RL) and complexity-
based selection strategies were proposed to obtain effective demonstrations. Fu et al. (2022) chose
examples with complex reasoning chains (i.e., with more reasoning steps) as the demonstrations.
Lu et al. (2022b) trained an agent to find optimal in-context examples from a candidate pool and
maximize the prediction rewards on given training examples when interacting with GPT-3.5.

Optimizing Reasoning Chains A notable way to optimize reasoning chains is problem decom-
position. Zhou et al. (2022) proposed least-to-most prompting to decompose complex problems
into sub-problems and then solve these sub-problems sequentially. As a result, solving a given sub-
problem is facilitated by the answers to previously solved sub-problems. Similarly, Khot et al. (2022)
used diverse decomposition structures and designed different prompts to answer each sub-question.
In addition to prompting the reasoning chains as natural language texts, Chen et al. (2022) proposed
program-of-thoughts (PoT), which modeled the reasoning process as a program and prompted LLMs
to derive the answer by executing the generated programs. Another trend is to vote over multiple
reasoning paths for a test question. Wang et al. (2022b) introduced a self-consistency decoding
strategy to sample multiple outputs of LLMs and then took a majority over the final answers. Wang
et al. (2022c) and Li et al. (2022c) introduced randomness in the input space to produce more diverse
outputs for voting.

2.2 ELICITING COT REASONING BY FINE-TUNING MODELS

A recent interest is eliciting CoT reasoning by fine-tuning language models. Lu et al. (2022a) fine-
tuned the encoder-decoder T5 model on a large-scale dataset with CoT annotations. However, a
dramatic performance decline is observed when using CoT to infer the answer, i.e., generating the
reasoning chain before the answer (reasoning). Instead, CoT is only used as an explanation after the
answer. Magister et al. (2022) and Ho et al. (2022) employed knowledge distillation by fine-tuning
a student model on the chain-of-thought outputs generated by a larger teacher model. Wang et al.
(2022a) proposed an iterative context-aware prompting approach to dynamically synthesize prompts
conditioned on the current step’s contexts.

There is a key challenge in training 1B-models to be CoT reasoners. As observed by Wei et al.
(2022b), models under 100 billion parameters tend to produce illogical CoT that leads to wrong
answers. In other words, it might be harder for 1B-models to generate effective CoT than directly
generating the answer. It becomes even more challenging in a multimodal setting where answering
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the question also requires understanding the multimodal inputs. In the following part, we will explore
the challenge of Multimodal-CoT and investigate how to perform effective multi-step reasoning.

3 CHALLENGE OF MULTIMODAL-COT

Existing studies have suggested that the CoT reasoning ability may emerge in language models at a
certain scale, e.g., over 100 billion parameters (Wei et al., 2022a). However, it remains an unresolved
challenge to elicit such reasoning abilities in 1B-models, let alone in the multimodal scenario. This
work focuses on 1B-models as they can be fine-tuned and deployed with consumer-grade GPUs (e.g.,
32G memory). In this section, we will investigate why 1B-models fail at CoT reasoning and study
how to design an effective approach to overcome the challenge.

3.1 TOWARDS THE ROLE OF COT

To begin with, we fine-tune a text-only baseline for CoT reasoning on the ScienceQA benchmark (Lu
et al., 2022a). We adopt FLAN-AlpacaBase as the backbone language model.3 Our task is modeled as
a text generation problem, where the model takes the textual information as the input and generates
the output sequence that consists of the rationale and the answer. As an example shown in Figure
1, the model takes the concatenation of tokens of the question text (Q), the context text (C), and
multiple options (M) as the input. To study the effect of CoT, we compare the performance with three
variants: (i) No-CoT which predicts the answer directly (QCM→A); (ii) Reasoning where answer
inference is conditioned to the rationale (QCM→RA); (iii) Explanation where the rationale is
used for explaining the answer inference (QCM→AR).

Table 2: Effects of CoT in the one-stage setting.
Method Format Accuracy

No-CoT QCM→A 81.63

Reasoning QCM→RA 69.32
Explanation QCM→AR 69.68

Surprisingly, we observe a ↓12.31% accuracy
decrease (81.63%→69.32%) if the model pre-
dicts rationales before answers (QCM→RA).
The results imply that the rationales might not
necessarily contribute to predicting the right
answer. According to Lu et al. (2022a), the
plausible reason might be that the model ex-
ceeds the maximum token limits before ob-
taining the required answer or stops generating the prediction early. However, we find that the
maximum length of the generated outputs (RA) is always less than 400 tokens, which is below the
length limit of language models (i.e., 512 in T5 models). Therefore, it deserves a more in-depth
investigation into why the rationales harm answer inference.

3.2 MISLEADING BY HALLUCINATED RATIONALES

Table 3: Two-stage setting of (i) rationale generation
(RougeL) and (ii) answer inference (Accuracy).

Method (i) QCM→ R (ii) QCMR→ A

Two-Stage Framework 90.73 78.57

w/ Captions 90.88 79.37
w/ Vision Features 93.46 85.31

To dive into how the rationales affect the an-
swer prediction, we separate the CoT prob-
lem into two stages, rationale generation and
answer inference.4 We report the RougeL
score and accuracy for the rationale genera-
tion and answer inference, respectively. Table
3 shows the results based on the two-stage
framework. Although the two-stage baseline
model achieves a 90.73 RougeL score of the rationale generation, the answer inference accuracy is
only 78.57%. Compared with the QCM→A variant (81.63%) in Table 2, the result shows that the
generated rationale in the two-stage framework does not improve answer accuracy.

Then, we randomly sample 50 error cases and find that the model tends to generate hallucinated
rationales that mislead the answer inference. As an example shown in Figure 2, the model (left part)
hallucinates that, “The south pole of one magnet is closest to the south pole of the other magnet”,

3https://github.com/declare-lab/flan-alpaca. It is a 200M T5 model (Raffel et al., 2020)
fine-tuned on Stanford Alpaca data (Taori et al., 2023). Implementation details are presented in Appendix B.1.

4The details will be presented in Section 4.
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Generated Rationale: Will these magnets attract or repel? To
find out, look at which poles are closest to each other. The
south pole of one magnet is closest to the south pole of the
other magnet. Poles that are the same repel. So, these
magnets will repel each other.
Answer: The answer is (B).

Options: (B) repel(A) attract

Problem

Baseline

Question: Will these magnets attract or repel each other?
Context: Two magnets are placed as shown. Hint: Magnets that attract pull together.
Magnets that repel push apart.

Gold Rationale: Will these magnets attract or repel? To find out, look at which poles are closest to each other. The north pole of
one magnet is closest to the south pole of the other magnet. Poles that are different attract. So, these magnets will attract each other.
Answer: The answer is (A).

Generated Rationale: Will these magnets attract or repel? To
find out, look at which poles are closest to each other. The
north pole of one magnet is closest to the south pole of the
other magnet. Poles that are different attract. So, these
magnets will attract each other.
Answer: The answer is (A).

+ Vision Features

Vision

Figure 2: Example of the two-stage framework without vision features (baseline) and with vision
features (ours) for generating rationales and predicting answers. The upper part presents the problem
details with a gold rationale, and the lower part shows the outputs of the baseline and our method
incorporated with vision features. We observe that the baseline fails to predict the right answer due to
the misleading by hallucinated rationales. More examples are shown in Appendix A.1.

due to the lack of reference to the vision content. We find that such mistakes occur at a ratio of 56%
among the error cases (Figure 3(a)).

3.3 MULTIMODALITY CONTRIBUTES TO EFFECTIVE RATIONALES

We speculate that such a phenomenon of hallucination is due to a lack of necessary vision contexts
for performing effective Multimodal-CoT. To inject vision information, a simple way is to transform
the image into a caption (Lu et al., 2022a) and then append the caption in the input of both stages.
However, as shown in Table 3, using captions only yields marginal performance gains (↑0.80%).
Then, we explore an advanced technique by incorporating vision features into the language model.
Concretely, we feed the image to the ViT model (Dosovitskiy et al., 2021b) to extract vision features.
Then we fuse the vision features with the encoded language representations before feeding the decoder
(more details will be presented in Section 4). Interestingly, with vision features, the RougeL score of
the rationale generation has boosted to 93.46% (QCM→R), which correspondingly contributes to
better answer accuracy of 85.31% (QCMR→A).

Others
(44%)

Resolved 
(60.7%)

Unresolved
(29.3%)

Hallucination
(56%)

(a) ratio of hallucination mistakes (b) correction rate w/ vision features  

Figure 3: The ratio of (a) hallucination mistakes
and (b) correction rate w/ vision features.

With those effective rationales, the phenomenon of
hallucination is mitigated — 60.7% hallucination
mistakes in Section 3.2 have been corrected (Fig-
ure 3(b)), as an example shown in Figure 2 (right
part).5 The analysis so far compellingly shows that
vision features are indeed beneficial for generating
effective rationales and contributing to accurate an-
swer inference. As the two-stage method achieves
better performance than one-stage methods, we
choose the two-stage method in our Multimodal-
CoT framework.

4 MULTIMODAL-COT

In light of the discussions in Section 3, we propose Multimodal-CoT to incorporate language (text)
and vision (images) modalities into a two-stage framework. The key motivation is the anticipation
that the answer inference can leverage better generated rationales that are based on multimodal
information. In this section, we will overview the procedure of the framework and elaborate on the
technical design of the model architecture.

5The left mistakes are mainly about map understanding, requiring extra commonsense signals (Section 6.3).
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Vision

Language Rationale 
Generation

The particles in both samples
have the same average speed,
but each particle in sample B
has more mass than each
particle in sample A. So, the
particles in sample B have a
higher average kinetic energy
than the particles in sample A.
Because the particles in
sample B have the higher
average kinetic energy,
sample B must have the
higher temperature.

Rationale

Answer 
Inference

The answer
is (B).

Answer

(C) They have the same temperature
Options:

(B) sample B(A) sample A

Question: Compare the average kinetic energies
of the particles in each sample. Which sample has
the higher temperature?
Context: The diagrams below show two pure
samples of gas in identical closed, rigid containers.

Figure 4: Overview of our Multimodal-CoT framework. Multimodal-CoT consists of two stages:
(i) rationale generation and (ii) answer inference. Both stages share the same model structure but
differ in the input and output. In the first stage, we feed the model with language and vision inputs to
generate rationales. In the second stage, we append the original language input with the rationale
generated from the first stage. Then, we feed the updated language input with the original vision
input to the model to infer the answer.

4.1 FRAMEWORK OVERVIEW

Multimodal-CoT consists of two operation stages: (i) rationale generation and (ii) answer inference.
Both stages share the same model structure but differ in the input X and output Y . The overall
procedure is illustrated in Figure 4. We will take vision-language as an example to show how
Multimodal-CoT works.

In the rationale generation stage, we feed the model with X = {X1
language, Xvision} where X1

language
represents the language input in the first stage and Xvision represents the vision input, i.e., the image.
For example, X can be instantiated as a concatenation of question, context, and options of a multiple
choice reasoning problem (Lu et al., 2022a) as shown in Figure 4. The goal is to learn a rationale
generation model R = F (X) where R is the rationale.

In the answer inference stage, the rationale R is appended to the original language input X1
language

to construct the language input in the second stage, X2
language = X1

language ◦ R where ◦ denotes
concatenation. Then, we feed the updated input X ′ = {X2

language, Xvision} to the answer inference
model to infer the final answer A = F (X ′).

In both stages, we train two models with the same architecture independently. They take the annotated
elements (e.g., X → R, XR → A, respectively) from the training set for supervised learning. During
inference, given X , the rationales for the test sets are generated using the model trained in the first
stage; they are used in the second stage for answer inference.

4.2 MODEL ARCHITECTURE

Given language input Xlanguage ∈ {X1
language, X

2
language} and vision input Xvision, we compute the

probability of generating target text Y (either the rationale or the answer in Figure 4) of length N by

p(Y |Xlanguage, Xvision) =

N∏
i=1

pθ (Yi | Xlanguage, Xvision, Y<i) , (1)

where pθ (Yi | Xlanguage, Xvision, Y<i) is implemented with a Transformer-based network (Vaswani
et al., 2017). The network has three major procedures: encoding, interaction, and decoding. Specifi-
cally, we feed the language text into a Transformer encoder to obtain a textual representation, which
is interacted and fused with the vision representation before being fed into the Transformer decoder.

Encoding The model F (X) takes both the language and vision inputs and obtains the text repre-
sentation Hlanguage and the image feature Hvision by the following functions:

Hlanguage = LanguageEncoder(Xlanguage), (2)
Hvision = Wh · VisionExtractor(Xvision), (3)
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where LanguageEncoder(·) is implemented as a Transformer model. We use the hidden states of
the last layer in the Transformer encoder as the language representation Hlanguage ∈ Rn×d where n
denotes the length of the language input, and d is the hidden dimension. Meanwhile, VisionExtractor(·)
is used to vectorize the input image into vision features. Inspired by the recent success of Vision
Transformers (Dosovitskiy et al., 2021a), we fetch the patch-level features by frozen vision extraction
models, such as ViT (Dosovitskiy et al., 2021b). After obtaining the patch-level vision features, we
apply a learnable projection matrix Wh to convert the shape of VisionExtractor(Xvision) into that of
Hlanguage; thus we have Hvision ∈ Rm×d where m is the number of patches.

Note that our approach is general to both scenarios with or without image context. For the questions
without associated images, we use all-zero vectors as the “blank features” with the same shape as the
normal image features to tell the model to ignore them.

Interaction After obtaining language and vision representations, we use a single-head attention
network to correlate text tokens with image patches, where the query (Q), key (K) and value (V ) are
Hlanguage, Hvision and Hvision, respectively. The attention output Hattn

vision ∈ Rn×d is defined as:

Hattn
vision = Softmax(

QK⊤
√
dk

)V, (4)

where dk is the same as the dimension of Hlanguage because a single head is used.

Then, we apply the gated fusion mechanism (Zhang et al., 2020; Wu et al., 2021; Li et al., 2022a) to
fuse Hlanguage and Hvision. The fused output Hfuse ∈ Rn×d is obtained by:

λ = Sigmoid(WlHlanguage +WvH
attn
vision), (5)

Hfuse = (1− λ) ·Hlanguage + λ ·Hattn
vision, (6)

where Wl and Wv are learnable parameters.

Decoding Finally, the fused output Hfuse is fed into the Transformer decoder to predict the target Y .

5 EXPERIMENTS

This section will present the benchmark dataset, the implementation of our technique, and the
baselines for comparisons. Then, we will report our main results and findings.

5.1 DATASET

Our method is evaluated on the ScienceQA (Lu et al., 2022a) and A-OKVQA (Schwenk et al.,
2022) benchmark datasets. ScienceQA is a large-scale multimodal science question dataset with
annotated lectures and explanations. It contains 21k multimodal multiple choice questions with rich
domain diversity across 3 subjects, 26 topics, 127 categories, and 379 skills. There are 12k, 4k, and
4k questions in the training, validation, and test splits, respectively. A-OKVQA is a knowledge-
based visual question answering benchmark, which has 25k questions requiring a broad base of
commonsense and world knowledge to answer. It has 17k/1k/6k questions for train/val/test. To keep
consistency with ScienceQA, we use the multiple-choice setting.

5.2 IMPLEMENTATION

The following part presents the experimental settings of Multimodal-CoT and the baseline methods.

Experimental Settings We adopt the T5 encoder-decoder architecture (Raffel et al., 2020) under
Base (200M) and large (700M) settings in our framework. We apply FLAN-Alpaca to initialize
our model weights.6 We will show that Multimodal-CoT is generally effective with other backbone
LMs, such as UnifiedQA (Khashabi et al., 2020) and FLAN-T5 (Chung et al., 2022) (Section 6.1).
The vision features are obtained by the frozen ViT-large encoder (Dosovitskiy et al., 2021b). We
fine-tune the models up to 20 epochs, with a learning rate of 5e-5. The maximum input sequence
length is 512. The batch size is 8. Our experiments are run on 8 NVIDIA Tesla V100 32G GPUs.

6https://github.com/declare-lab/flan-alpaca.
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Table 4: Main results (%). Size = backbone model size from the ScienceQA leaderboard (“-” means
unavailable or unknown). Question classes: NAT = natural science, SOC = social science, LAN =
language science, TXT = text context, IMG = image context, NO = no context, G1-6 = grades 1-6,
G7-12 = grades 7-12. Segment 1: Human performance; Segment 2: VQA baselines; Segment 3: LM
baselines, i.e., UnifiedQA and few-shot learning LLMs; Segment 4: Fine-tuned large vision-language
models; Segment 5: Our Multimodal-CoT results. Prior published best results are marked with an
underline. Our best average result is in bold face. † denotes concurrent studies after this work.

Model Size NAT SOC LAN TXT IMG NO G1-6 G7-12 Avg

Human - 90.23 84.97 87.48 89.60 87.50 88.10 91.59 82.42 88.40

MCAN (Yu et al., 2019) 95M 56.08 46.23 58.09 59.43 51.17 55.40 51.65 59.72 54.54
Top-Down (Anderson et al., 2018) 70M 59.50 54.33 61.82 62.90 54.88 59.79 57.27 62.16 59.02
BAN (Kim et al., 2018) 112M 60.88 46.57 66.64 62.61 52.60 65.51 56.83 63.94 59.37
DFAF (Gao et al., 2019) 74M 64.03 48.82 63.55 65.88 54.49 64.11 57.12 67.17 60.72
ViLT (Kim et al., 2021) 113M 60.48 63.89 60.27 63.20 61.38 57.00 60.72 61.90 61.14
Patch-TRM (Lu et al., 2021) 90M 65.19 46.79 65.55 66.96 55.28 64.95 58.04 67.50 61.42
VisualBERT (Li et al., 2019) 111M 59.33 69.18 61.18 62.71 62.17 58.54 62.96 59.92 61.87

UnifiedQA (Lu et al., 2022a) 223M 71.00 76.04 78.91 66.42 66.53 81.81 77.06 68.82 74.11
GPT-3.5 (text-davinci-002) (Lu et al., 2022a) 173B 75.44 70.87 78.09 74.68 67.43 79.93 78.23 69.68 75.17
GPT-3.5 (text-davinci-003) 173B 77.71 68.73 80.18 75.12 67.92 81.81 80.58 69.08 76.47
ChatGPT (Lu et al., 2023) - 78.82 70.98 83.18 77.37 67.92 86.13 80.72 74.03 78.31
GPT-4 (Lu et al., 2023) - 85.48 72.44 90.27 82.65 71.49 92.89 86.66 79.04 83.99
Chameleon (ChatGPT) (Lu et al., 2023)† - 81.62 70.64 84.00 79.77 70.80 86.62 81.86 76.53 79.93
Chameleon (GPT-4) (Lu et al., 2023)† - 89.83 74.13 89.82 88.27 77.64 92.13 88.03 83.72 86.54

LLaMA-Adapter (Zhang et al., 2023a)† 6B 84.37 88.30 84.36 83.72 80.32 86.90 85.83 84.05 85.19
LLaVA (Liu et al., 2023)† 13B 90.36 95.95 88.00 89.49 88.00 90.66 90.93 90.90 90.92
InstructBLIP (Dai et al., 2023)† 11B - - - - 90.70 - - -

Mutimodal-CoTBase 223M 84.06 92.35 82.18 82.75 82.75 84.74 85.79 84.44 85.31
Mutimodal-CoTLarge 738M 91.03 93.70 86.64 90.13 88.25 89.48 91.12 89.26 90.45

Baseline Models Our baselines include (i) Visual question answering (VQA) models (Anderson
et al., 2018; Kim et al., 2018; Yu et al., 2019; Gao et al., 2019; Kim et al., 2021; Lu et al., 2021; Li
et al., 2019); (ii) LMs, including the Text-to-text UnifiedQA model (Khashabi et al., 2020) and few-
shot learning LLMs (GPT-3.5, ChatGPT, GPT-4, and Chameleon (Lu et al., 2023)); (iii) Fine-tuned
large vision-language model LLaMA-Adapter (Zhang et al., 2023a), LLaVA (Liu et al., 2023), and
InstructBLIP (Dai et al., 2023). More details are presented in Appendix B.1.

5.3 MAIN RESULTS

Table 5: Results on the A-OKVQA dataset.
Baseline results are from (Chen et al.,
2023) and Schwenk et al. (2022).

Model Accuracy

BERT 32.93
GPT-3 (Curie) 35.07

IPVR (OPT-66B) 48.6
ViLBERT 49.1
LXMERT 51.4

Language-only Baseline 47.86
Multimodal-CoTBase 50.57

Table 4 shows the main results in the ScienceQA bench-
mark. Mutimodal-CoTLarge achieves substantial perfor-
mance gains over the prior best model in publications
(86.54%→90.45%). The efficacy of Multimodal-CoT
is further supported by the results obtained from the
A-OKVQA benchmark (Table 5). Our ablation study
(Appendix C.1) reveals that both the integration of vision
features and the two-stage framework design contribute
to the overall performance. Furthermore, Multimodal-
CoT demonstrates the ability to mitigate hallucination
(Section 3.3) and improve convergence (Appendix C.2).

It is worth noting that Chameleon, LLaMA-Adapter,
LLaVA, and InstructBLIP are concurrent works released
several months after our work. We show that our method
is orthogonal to those latest multimodal models (e.g., InstructBLIP) and can be potentially used
with them together to improve generality further, i.e., scaled to scenarios where human-annotated
rationales are unavailable (Appendix C.3), thereby establishing the effectiveness across diverse tasks.

6 ANALYSIS

The following analysis will investigate whether Multimodal-CoT is generally effective with different
backbone models and vision features. We will also conduct an error analysis to explore the limitations
to inspire future studies. We use models under the base size for analysis unless otherwise stated.
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6.1 EFFECTIVENESS ACROSS BACKBONES Table 6: Using different backbone LMs. More
detailed results are presented in Appendix C.5.

Method Accuracy

Prior Best (Lu et al., 2022a) 75.17

MM-CoT on UnifiedQA 82.55
MM-CoT on FLAN-T5 83.19
MM-CoT on FLAN-Alpaca 85.31

To test the generality of the benefits of our approach
to other backbone models, we alter the underlying
LMs to other variants in different types. As shown
in Table 6, our approach is generally effective for the
widely used backbone models.

6.2 USING DIFFERENT VISION FEATURES

Table 7: Using different vision features.
Feature Feature Shape Accuracy

ViT (145, 1024) 85.31
CLIP (49, 2048) 84.27
DETR (100, 256) 83.16
ResNet (512, 2048) 82.86

Different vision features may affect the model per-
formance. We compare three widely-used types of
vision features, ViT (Dosovitskiy et al., 2021b), CLIP
(Radford et al., 2021), DETR (Carion et al., 2020),
and ResNet (He et al., 2016). ViT, CLIP, and DETR
are patch-like features. For the ResNet features, we
repeat the pooled features of ResNet-50 to the same
length with the text sequence to imitate the patch-like features, where each patch is the same as the
pooled image features. More details of the vision features are presented in Appendix B.2.

Table 7 shows the comparative results of vision features. We observe that ViT achieves relatively
better performance. Therefore, we use ViT by default in Multimodal-CoT.

6.3 ERROR ANALYSIS

To gain deeper insights into the behavior of Multimodal-CoT and facilitate future research, we
manually analyzed randomly selected examples generated by our approach. The categorization
results are illustrated in Figure 5. We examined 50 samples that yielded incorrect answers and
categorized them accordingly. The examples from each category can be found in Appendix D.

80%

14%

6%

Commonsense

Logical

Others

Figure 5: Categorization analysis.

The most prevalent error type is commonsense mis-
takes, accounting for 80% of the errors. These mis-
takes occur when the model is faced with questions
that require commonsense knowledge, such as inter-
preting maps, counting objects in images, or utilizing
the alphabet. The second error type is logical mis-
takes, constituting 14% of the errors, which involve
contradictions in the reasoning process. Additionally,
we have observed cases where incorrect answers are
provided despite the CoT being either empty or cor-
rect, amounting to 6% of the errors. The CoT in these
cases may not necessarily influence the final answer.

The analysis reveals potential avenues for future research. Enhancements can be made to Multimodal-
CoT by: (i) integrating more informative visual features and strengthening the interaction between
language and vision to enable comprehension of maps and numerical counting; (ii) incorporating
commonsense knowledge; and (iii) implementing a filtering mechanism, such as using only relevant
CoTs to infer answers and disregarding irrelevant ones.

7 CONCLUSION

We formally study the problem of multimodal CoT. We propose Multimodal-CoT that incorporates
language and vision modalities into a two-stage framework that separates rationale generation and
answer inference, so answer inference can leverage better generated rationales from multimodal
information. With Multimodal-CoT, our model under 1 billion parameters achieves new state-of-
the-art performance on the ScienceQA benchmark. Analysis shows that Multimodal-CoT has the
merits of mitigating hallucination and enhancing convergence speed. Our error analysis identifies
the potential to leverage more effective vision features, inject commonsense knowledge, and apply
filtering mechanisms to improve CoT reasoning in future studies.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in Neural Information Processing Systems, 35:23716–
23736, 2022.

Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen Gould, and Lei
Zhang. Bottom-up and top-down attention for image captioning and visual question answering. In
2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City,
UT, USA, June 18-22, 2018, pp. 6077–6086. IEEE Computer Society, 2018. doi: 10.1109/CVPR.
2018.00636.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances
in Neural Information Processing Systems 33: Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I, pp. 213–229, 2020.

Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E. Hinton. Big
self-supervised models are strong semi-supervised learners. In Hugo Larochelle, Marc’Aurelio
Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. ArXiv preprint,
abs/2211.12588, 2022.

Zhenfang Chen, Qinhong Zhou, Yikang Shen, Yining Hong, Hao Zhang, and Chuang Gan. See,
think, confirm: Interactive prompting between vision and language models for knowledge-based
visual reasoning. ArXiv preprint, abs/2301.05226, 2023.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph,
Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M.
Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon
Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,
Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways. ArXiv preprint,
abs/2204.02311, 2022.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language models.
ArXiv preprint, abs/2210.11416, 2022.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language
models with instruction tuning, 2023.

10



Under review as a conference paper at ICLR 2024

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021a.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021b.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting
for multi-step reasoning. ArXiv preprint, abs/2210.00720, 2022.

Peng Gao, Zhengkai Jiang, Haoxuan You, Pan Lu, Steven C. H. Hoi, Xiaogang Wang, and Hongsheng
Li. Dynamic fusion with intra- and inter-modality attention flow for visual question answering.
In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach,
CA, USA, June 16-20, 2019, pp. 6639–6648. Computer Vision Foundation / IEEE, 2019. doi:
10.1109/CVPR.2019.00680.

Yaru Hao, Haoyu Song, Li Dong, Shaohan Huang, Zewen Chi, Wenhui Wang, Shuming Ma, and
Furu Wei. Language models are general-purpose interfaces. ArXiv preprint, abs/2206.06336, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 770–778. IEEE Computer Society, 2016. doi:
10.1109/CVPR.2016.90.

Namgyu Ho, Laura Schmid, and Se-Young Yun. Large language models are reasoning teachers.
ArXiv preprint, abs/2212.10071, 2022.

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey.
ArXiv preprint, abs/2212.10403, 2022.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Yejin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
Computing Surveys, 2022.

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish Sabharwal, Oyvind Tafjord, Peter Clark, and
Hannaneh Hajishirzi. UNIFIEDQA: Crossing format boundaries with a single QA system. In
Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 1896–1907, Online,
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.171.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. ArXiv
preprint, abs/2210.02406, 2022.

Jin-Hwa Kim, Jaehyun Jun, and Byoung-Tak Zhang. Bilinear attention networks. In Samy Bengio,
Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett
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A EXTENDED ANALYSIS FOR THE CHALLENGE OF MULTIMODAL-COT

A.1 ADDITIONAL EXAMPLES OF MISLEADING THROUGH HALLUCINATED RATIONALES

Based on our case studies (Section 3.2), we have observed a tendency for the baseline model to
generate hallucinated rationales. Here, we present additional examples to illustrate this phenomenon,
as depicted in Figure 6.

Options: (B) Solution A(A) Solution B

Problem

Baseline

Question: Which solution has a higher concentration of yellow particles?
Context: The diagram below is a model of two solutions. Each yellow ball represents one particle of solute.

Gold Rationale: In Solution A and Solution B, the yellow particles represent the solute. To figure out which
solution has a higher concentration of yellow particles, look at both the number of yellow particles and the volume
of the solvent in each container. Use the concentration formula to find the number of yellow particles per milliliter.
Solution B has more yellow particles per milliliter. So, Solution B has a higher concentration of yellow particles.

+ Vision Features

Answer: The answer is (A).

Rationale: In Solution A and Solution B, the yellow particles represent
the solute. To figure out which solution has a higher concentration of
yellow particles, look at both the number of yellow particles and the
volume of the solvent in each container. Use the concentration formula
to find the number of yellow particles per milliliter. Solution A has more
yellow particles per milliliter. So, Solution A has a higher concentration
of yellow particles.
Answer: The answer is (B).

Rationale: In Solution A and Solution B, the yellow particles represent
the solute. To figure out which solution has a higher concentration of
yellow particles, look at both the number of yellow particles and the
volume of the solvent in each container. Use the concentration formula
to find the number of yellow particles per milliliter. Solution B has more
yellow particles per milliliter. So, Solution B has a higher concentration
of yellow particles.
Answer: The answer is (A).

Vision

Problem

Baseline

Question: Think about the magnetic force between the magnets in each pair. Which of the
following statements is true?
Context: The images below show two pairs of magnets. The magnets in different pairs do
not affect each other. All the magnets shown are made of the same material.

Gold Rationale: The magnets in Pair 1 attract. The magnets in Pair 2 repel. But whether the magnets attract or repel affects only the direction of
the magnetic force. It does not affect the magnitude of the magnetic force. Both magnet sizes and distance affect the magnitude of the magnetic
force. The sizes of the magnets in Pair 1 are the same as in Pair 2. The distance between the magnets is also the same. So, the magnitude of the
magnetic force is the same in both pairs.
Answer: The answer is (C).

Rationale: Distance affects the magnitude of the magnetic force.
When there is a greater distance between magnets, the magnitude of
the magnetic force between them is smaller. There is a greater
distance between the magnets in Pair 2 than in Pair 1. So, the
magnitude of the magnetic force is smaller in Pair 2 than in Pair 1.
Answer: The answer is (B).

Rationale: The magnets in Pair 1 attract. The magnets in Pair 2 repel.
But whether the magnets attract or repel affects only the direction of
the magnetic force. It does not affect the magnitude of the magnetic
force. Both magnet sizes and distance affect the magnitude of the
magnetic force. The sizes of the magnets in Pair 1 are the same as in
Pair 2. The distance between the magnets is also the same. So, the
magnitude of the magnetic force is the same in both pairs.
Answer: The answer is (C).

Vision

+ Vision Features

Options:

(B) The magnitude of the magnetic force is smaller in Pair 1.

(A) The magnitude of the magnetic force is smaller in Pair 2.

(C) The magnitude of the magnetic force is the same in both pairs.

(C) neither; their concentrations are the same

Figure 6: Examples of the two-stage framework without vision features (baseline) and with vision
features (ours) for generating rationales and predicting answers. The upper part presents the problem
details, and the lower part shows the outputs of the baseline and our method.

A.2 TWO-STAGE TRAINING PERFORMANCE WITH DIFFERENT SIZES OF LMS

In Section 3, we observed that the inclusion of vision features has a positive impact on the generation
of more effective rationales, consequently resulting in improved answer accuracy. In addition to
incorporating vision features, another approach to addressing the issue of incorrect rationales is
to scale the size of the language model (LM). Figure 7 showcases the answer accuracy achieved
by our two-stage training framework, both with and without the integration of vision features.
Notably, when employing a larger LM, the baseline accuracy (without vision features) experiences a
significant enhancement. This finding suggests that scaling the LM size could potentially alleviate
the problem of incorrect rationales. However, it is crucial to acknowledge that the performance still
falls considerably short of utilizing vision features. This outcome further validates the effectiveness
of our Multimodal-CoT methodology across varying LM sizes.
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Figure 7: Answer accuracy with different sizes of LMs.

A.3 DISCUSSION OF THE POSSIBLE PARADIGMS TO ACHIEVE MULTIMODAL-COT

As discussed in Section 1, there are two primary approaches to facilitate Multimodal-CoT reasoning:
(i) prompting LLMs and (ii) fine-tuning small models. The common approach in the first approach is
to unify the input from different modalities and prompt LLMs to perform reasoning (Zhang et al.,
2023a; Lu et al., 2023; Liu et al., 2023; Alayrac et al., 2022; Hao et al., 2022; Yasunaga et al., 2022).
For instance, one way to achieve this is by extracting the caption of an image using a captioning
model and then concatenating the caption with the original language input to feed LLMs. By doing
so, visual information is conveyed to LLMs as text, effectively bridging the gap between modalities.
This approach can be represented as the input-output format ¡image → caption, question + caption
→ answer¿. We refer to this approach as Caption-based Reasoning (Figure 8a). It is worth noting
that the effectiveness of this approach depends on the quality of the image caption, which may be
susceptible to errors introduced during the transfer from image captioning to answer inference.

In contrast, an intriguing aspect of CoT is the ability to decompose complex problems into a series
of simpler problems and solve them step by step. This transformation leads to a modification of the
standard format ¡question → answer¿ into ¡question → rationale → answer¿. Rationales, being more
likely to reflect the reasoning processes leading to the answer, play a crucial role in this paradigm.
Consequently, we refer to approaches following this paradigm as CoT-based Reasoning. The
nomenclature has been widely adopted in the literature (Huang & Chang, 2022; Zhang et al., 2023c;
Lu et al., 2022c).

Caption

Image Question

Prompted Text

Image Question

Rationale

Answer

Caption 
Model

LLM

Model

Model

Answer

(a) Caption-based Reasoning (b) CoT-based Reasoning

Figure 8: Paradigms to achieve Multimodal-CoT.
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Our work aligns with the paradigms of CoT-based Reasoning in the context of multimodal scenar-
ios, specifically employing the ¡question + image → rationale → answer¿ framework (Figure 8b).
This approach confers advantages on two fronts. Firstly, the Multimodal-CoT framework leverages
feature-level interactions between vision and language inputs, enabling the model to gain a deeper
understanding of the input information and facilitating more effective inference of answers by incor-
porating well-founded rationales. Our analysis has demonstrated that Multimodal-CoT offers notable
benefits by mitigating hallucination and enhancing convergence, resulting in superior performance on
our benchmark datasets. Secondly, the lightweight nature of Multimodal-CoT renders it compatible
with resource constraints and circumvents any potential paywalls.

B EXPERIMENTAL DETAILS

B.1 BASELINE METHODS

We utilized three categories of methods as our baselines:

(i) Visual question answering (VQA) models, including MCAN (Yu et al., 2019), Top-Down (An-
derson et al., 2018), BAN (Kim et al., 2018), DFAF (Gao et al., 2019), ViLT (Kim et al., 2021),
Patch-TRM (Lu et al., 2021), and VisualBERT (Li et al., 2019). These VQA baselines take the
question, context, and choices as textual input, while utilizing the image as visual input. They employ
a linear classifier to predict the score distribution over the choice candidates.

(ii) LMs, including the text-to-text UnifiedQA model (Khashabi et al., 2020) and few-shot learning
LLMs (GPT-3.5, ChatGPT, GPT-4, and Chameleon (Lu et al., 2023)). UnifiedQA (Khashabi et al.,
2020) is adopted as it is the best fine-tuning model in Lu et al. (2022a). UnifiedQA takes the textual
information as the input and outputs the answer choice. The image is converted into a caption
extracted by an image captioning model following Lu et al. (2022a). UnifiedQA treats our task
as a text generation problem. In Lu et al. (2022a), it is trained to generate a target answer text,
i.e., one of the candidate options. Then, the most similar option is selected as the final prediction
to evaluate the question answering accuracy. For GPT-3.5 models (Chen et al., 2020), we use the
text-davinci-002 and text-davinci-003 engines due to their strong performance. In addition, we also
include the comparison with ChatGPT and GPT-4. The inference is based on the few-shot prompting,
where two in-context examples from the training set are concatenated before the test instance. The
few-shot demonstrations are the same as those in Lu et al. (2022a).

(iii) Fine-tuned large vision-language model. We select the recently released LLaMA-Adapter (Zhang
et al., 2023a), LLaVA (Liu et al., 2023), and InstructBLIP (Dai et al., 2023) as the competitive
large vision-language baselines. The backbone model is the 7B LLaMA model fine-tuned with 52k
self-instruct demonstrations. To adapt to our tasks, the model is further fine-tuned on the ScienceQA
dataset.

For UnifiedQA and GPT-family models, CoT is applied after the answer (Lu et al., 2022a). Besides
the above baselines, we develop a stronger baseline by slightly modifying the output format of
UnifiedQA. Instead of predicting the answer texts, our baseline directly predicts the choice, e.g.,
the answer is B. This setting helps our baseline achieve better results than the existing UnifiedQA.
Therefore, we use the stronger method as the language-only baseline for analysis.

B.2 DETAILS OF VISION FEATURES

In Section 6.2, we compared four types of vision features, ViT (Dosovitskiy et al., 2021b), CLIP
(Radford et al., 2021), DETR (Carion et al., 2020), and ResNet (He et al., 2016). The specific
models are: (i) ViT: vit large patch32 384,7 (ii) CLIP: RN101;8 (iii) DETR: detr resnet101 dc5;9

(iv) ResNet: we use the averaged pooled features of a pre-trained ResNet50 CNN.

Table 8 presents the dimension of the vision features (after the function VisionExtractor(·) in Eq. 3).
For ResNet-50, we repeat the pooled features of ResNet-50 to the same length as the text sequence to
imitate the patch-like features, where each patch is the same as the pooled image features.

7https://github.com/rwightman/pytorch-image-models.
8https://github.com/jianjieluo/OpenAI-CLIP-Feature.
9https://github.com/facebookresearch/detr.
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Table 8: Feature shape of vision features
Method Feature Shape

ViT (145, 1024)
CLIP (49, 2048)
DETR (100, 256)
ResNet (512, 2048)

B.3 DATASETS

Our method is evaluated on the ScienceQA (Lu et al., 2022a) and A-OKVQA (Schwenk et al., 2022)
benchmark datasets.

• ScienceQA is a large-scale multimodal science question dataset with annotated lectures and
explanations. It contains 21k multimodal multiple choice questions with rich domain diversity across
3 subjects, 26 topics, 127 categories, and 379 skills. The dataset is split into training, validation, and
test splits with 12k, 4k, and 4k questions, respectively.

• A-OKVQA is a knowledge-based visual question answering benchmark, which has 25k questions
requiring a broad base of commonsense and world knowledge to answer. Each question is annotated
with rationales that explain why a particular answer was correct according to necessary facts or
knowledge. It has 17k/1k/6k questions for train/val/test.

For ScienceQA, our model is evaluated on the test set. For A-OKVQA, our model is evaluated on the
validation set as the test set is hidden.

B.4 IMPLEMENTATION DETAILS OF MULTIMODAL-COT

As the Multimodal-CoT task requires generating the reasoning chains and leveraging the vision
features, we adopt the T5 encoder-decoder architecture (Raffel et al., 2020) under Base (200M)
and large (700M) settings in our framework. We apply FLAN-Alpaca to initialize our model
weights.10 We will show that Multimodal-CoT is generally effective with other backbone LMs, such
as UnifiedQA (Khashabi et al., 2020) and FLAN-T5 (Chung et al., 2022) (Section 6.1). The vision
features are obtained by the frozen ViT-large encoder (Dosovitskiy et al., 2021b). Since using image
captions can slightly improve model performance, as shown in Section 3.3, we append the image
captions to the context following Lu et al. (2022a). The captions are generated by InstructBLIP (Dai
et al., 2023). We fine-tune the models up to 20 epochs, with a learning rate selected in {5e-5, 8e-5}.
The maximum input sequence lengths for rationale generation and answer inference are 512 and 64,
respectively. The batch size is 8. Our experiments are run on 8 NVIDIA Tesla V100 32G GPUs.

C FURTHER ANALYSIS

C.1 ABLATION STUDY

Ablation study results in Table 9 show that both the integration of vision features and the two-stage
framework design contribute to the overall performance. These findings provide strong evidence for
the effectiveness of multimodality and highlight the potential for achieving CoT reasoning using
1B-models through our proposed two-stage framework.

Table 9: Ablation results of Multimodal-CoT.
Model Base Large

Multimodal-CoT 85.31 90.45
w/o Two-Stage Framework 82.62 84.56
w/o Vision Features 78.57 83.97

10https://github.com/declare-lab/flan-alpaca.
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C.2 MULTIMODALITY BOOSTS CONVERGENCE

Figure 9 shows the validation accuracy curve of the baseline and Multimodal-CoT across different
training epochs. “One-stage” is based on the QCM→A input-output format as it achieves the best
performance in Table 2 and “Two-stage” is our two-stage framework. We find that the two-stage
methods achieve relatively higher accuracy at the beginning than the one-stage baselines that generate
the answer directly without CoT. However, without the vision features, the two-stage baseline could
not yield better results as the training goes on due to the low-quality rationales (as observed in Section
3). In contrast, using vision features helps generate more effective rationales that contribute to better
answer accuracy in our two-stage multimodal variant.
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Figure 9: Accuracy curve of the No-CoT baseline and Multimodal-CoT variants.

C.3 WHEN MULTIMODAL-COT MEETS LARGE MODELS

A recent flame is to leverage large language models or large vision-language models to generate
reasoning chains for multimodal question answering problems (Zhang et al., 2023a; Lu et al., 2023;
Liu et al., 2023; Alayrac et al., 2022; Hao et al., 2022; Yasunaga et al., 2022). We are interested in
whether we can use large models to generate the rationales for Multimodal-CoT; thus breaking the
need for datasets with human-annotated rationales. During the first-stage training of Multimodal-CoT,
our target rationales are based on human annotation in the benchmark datasets. Now, we replace the
target rationales with those generated by an LLM or a vision-language model. Concretely, we feed
the questions with images (IMG) and the question without images (TXT) to InstructBLIP (Dai et al.,
2023) (Figure 10a) and ChatGPT (Figure 10b) for zero-shot inference, respectively. Then, we use
the generated pseudo-rationales as the target rationales for training instead of relying on the human
annotation of reasoning chains.

Table 10 shows the comparison results. We see that using the generated rationales achieves comparable
performance to using human-annotated rationales for training. In addition, the performance is also
much better than directly prompting those baseline models to obtain the answer (in the QCM→A
inference format).

Table 10: Result comparison with large models. We also present the results of InstructBLIP and
ChatGPT baselines for reference. The inference format for the two baselines is QCM→A.

Model IMG TXT AVG

InstructBLIP 60.50 - -
ChatGPT 56.52 67.16 65.95

Multimodal-CoT w/ Annotation 88.25 90.13 90.45
Multimodal-CoT w/ Generation 83.54 85.73 87.76
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Output

The green area represents the state of New Hampshire, which is located in the
northeastern region of the United States. There are several other states visible on the
map, including Maine, Vermont, Massachusetts, Rhode Island, Connecticut, New York,
New Jersey, Pennsylvania, Maryland, Delaware, Virginia, North Carolina, South
Carolina, Georgia, Florida, and Alabama. Additionally, there are several smaller states
scattered throughout the map, such as West Virginia, Kentucky, and Tennessee.

VisionLanguage
Input

Question: What is the name of the colony shown?
Context: N/A

Options:
(B) New Hampshire(A) Maryland

Answer: The answer is (B).
Please explain the rationale to choose the correct answer.
Solution:

(D) Vermont(C) Rhode Island

Output

The best estimate for the length of a hiking trail is (C) 4
kilometers. Hiking trails are typically longer than a few
meters or centimeters, and 4 millimeters is too small to be
a reasonable estimate. Therefore, 4 kilometers is the
most appropriate option.

Input

Question: How long is a hiking trail?
Context: Select the best estimate.

Options:
(B) 4 millimeters(A) 4 meters

Answer: The answer is (C).
Please explain the rationale to choose the correct answer.
Solution:

(D) 4 centimeters(C) 4 kilometers

(a) Rationale generated by InstructBLIP (b) Rationale generated by ChatGPT

Figure 10: Rationale generation examples

We see that Multimodal-CoT can work effectively with large models. The findings above com-
pellingly show the feasibility of adaptation to scenarios without human-annotated rationales, thereby
establishing the effectiveness of our approach across diverse tasks.

C.4 ALIGNMENT STRATEGIES FOR MULTIMODAL INTERACTION

We are interested in whether using different alignment strategies for multimodal interaction may
contribute to different behaviors of multimodal-CoT. To this end, we tried another alignment strategy,
i.e., image-grounded text encoder, in BLIP Li et al. (2022b). This alignment approach injects visual
information by inserting one additional cross-attention layer between the self-attention layer and the
feed-forward network for each transformer block of the text encoder. Our current strategy in the
paper is similar to the unimodal encoder as in BLIP, which is used for comparison.

Table 11: Result comparison with different alignment strategies for multimodal interaction.
Model Accuracy

Direct Answering 82.62
Unimodal encoder 85.31
Image-grounded text encoder 84.60

In Table 11, we see that using other alignment strategies also contributes to better performance than
direct answering.

C.5 DETAILED RESULTS OF MULTIMODAL-COT ON DIFFERENT BACKBONE MODELS

To test the generality of the benefits of our approach to other backbone models, we alter the underlying
LMs to other variants of different types. As detailed results shown in Table 12, our approach is
generally effective for the widely used backbone models.

Table 12: Detailed results of Multimodal-CoT on different backbone models.
Model NAT SOC LAN TXT IMG NO G1-6 G7-12 Avg

MM-CoT on UnifiedQA 80.60 89.43 81.00 80.50 80.61 81.74 82.38 82.86 82.55
MM-CoT on FLAN-T5 81.39 90.89 80.64 80.79 80.47 82.58 83.48 82.66 83.19
MM-CoT on FLAN-Alpaca 84.06 92.35 82.18 82.75 82.75 84.74 85.79 84.44 85.31
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D EXAMPLES OF CASE STUDIES

To gain deeper insights into the behavior of Multimodal-CoT and facilitate future research, we
manually analyzed randomly selected examples generated by our approach. The categorization
results are illustrated in Figure 11. We examined 50 samples that yielded incorrect answers and
categorized them accordingly.

80%

14%

6%

Commonsense

Logical

Others

Figure 11: Categorization analysis.

The most prevalent error type is commonsense mistakes, accounting for 80% of the errors. These
mistakes occur when the model is faced with questions that require commonsense knowledge, such
as interpreting maps (Figure 12a), counting objects in images (Figure 12b), or utilizing the alphabet
(Figure 12c).

The second error type is logical mistakes, constituting 14% of the errors, which involve comparison
mistakes (Figure 13a) and contradictions in the reasoning process (Figure 13b).

Additionally, we have observed cases where incorrect answers are provided despite the CoT being
either empty or correct, amounting to 6% of the errors. The CoT in these cases may not necessarily
influence the final answer (Figure 14).

The analysis reveals potential avenues for future research. Enhancements can be made to Multimodal-
CoT by: (i) integrating more informative visual features and strengthening the interaction between
language and vision to enable comprehension of maps and numerical counting; (ii) incorporating
commonsense knowledge; and (iii) implementing a filtering mechanism, such as using only relevant
CoTs to infer answers and disregarding irrelevant ones.
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Rationale: The city is San Francisco, California. Salt Lake City, Las Vegas, and Phoenix are marked with gray circles on the map below.
Answer: The answer is (B).

Options: (A) Las Vegas

Problem

Prediction

Question: Which of these cities is marked on the map?
Context: N/A

Rationale : The city is Las Vegas, Nevada. Salt Lake City, Phoenix, and San Francisco are marked with gray circles on
the map below.
Answer: The answer is (A).

Vision

(B) San Francisco 

(a) Mistakes about maps.

Rationale: (extract) It shows you how the solution changed during the process of diffusion. Before the solute particles reached equilibrium, there were
5 solute particles on the left side of the membrane and 4 solute particles on the right side of the membrane. When the solute particles reached
equilibrium, there were 5 solute particles on each side of the membrane. There was 1 more solute particle on the right side of the membrane than
before. So, for the solute particles to reach equilibrium, more solute particles must have moved across the membrane to the right than to the right.
Answer: The answer is (B).

Options: (A) to the left than to the right

Problem

Prediction

Question: Complete the text to describe the diagram. Solute particles moved in both directions across the permeable
membrane. But more solute particles moved across the membrane (). When there was an equal concentration on both sides,
the particles reached equilibrium.
Context: The diagram below shows a solution with one solute. Each solute particle is represented by a green ball. The
solution fills a closed container that is divided in half by a membrane. The membrane, represented by a dotted line, is
permeable to the solute particles. The diagram shows how the solution can change over time during the process of diffusion.

Rationale : (extract) It shows you how the solution changed during the process of diffusion. Before the solute particles
reached equilibrium, there were 3 solute particles on the left side of the membrane and 5 solute particles on the right side
of the membrane. When the solute particles reached equilibrium, there were 4 solute particles on each side of the
membrane. There was 1 more solute particle on the left side of the membrane than before. So, for the solute particles to
reach equilibrium, more solute particles must have moved across the membrane to the left than to the right.
Answer: The answer is (A).

Vision

(b) Mistakes about counting numbers in the image.

(C) Phoenix (D) Salt Lake City

(B) to the right than to the left

Rationale: Put the words in alphabetical order. Since hardship is between the guide words helping - hunter, it would be found on that page.
Answer: The answer is (B).

Options: (A) hospital

Problem

Prediction

Question: Which word would you find on a dictionary page with the following guide words? helping - hunter
Context: The diagram below shows a solution with one solute. Each solute particle is represented by a green ball. The
solution fills a closed container that is divided in half by a membrane. The membrane, represented by a dotted line, is
permeable to the solute particles. The diagram shows how the solution can change over time during the process of diffusion.

Rationale : Put the words in alphabetical order. Since hospital is between the guide words helping - hunter, it would be found on that page.
Answer: The answer is (A).

(B) hardship

Vision

N/A

(c) Mistakes about utilizing alphabet.

Figure 12: Examples of commonsense mistakes.
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Options: (A) a car that moved 445miles in 10hours

Problem

Prediction

Question: Compare the motion of two cars. Which car was moving at a lower speed?
Context: N/A

Rationale : Look at the distance each car moved and the time it took to move that distance. One car moved 170 miles in 10 hours. The other car
moved 445 miles in 10 hours. Notice that each car spent the same amount of time moving. The car that moved 170 miles moved a shorter distance
in that time. So, that car must have moved at a lower speed.
Answer: The answer is (B).

(B) a car that moved 170miles in 10hours

Vision

N/A

Options: (A) a black coat 

Problem

Prediction

Question: Based on this information, what is Sage's phenotype for the coat color trait?
Context: In a group of horses, some individuals have a black coat and others have a reddish-brown coat. In this group, the
gene for the coat color trait has two alleles. The allele for a reddish-brown coat (l) is recessive to the allele for a black coat (L).
Sage is a horse from this group. Sage has the homozygous genotype ll for the coat color gene.

Rationale : Sage's genotype for the coat color gene is ll. Sage's genotype of ll has only l alleles. The l allele is for a reddish-brown coat. So, Sage's
phenotype for the coat color trait must be a reddish-brown coat. To check this answer, consider whether Sage's alleles are dominant or recessive.
The allele for a reddish-brown coat (l) is recessive to the allele for a black coat (L). This means L is a dominant allele, and l is a recessive allele.
Sage's genotype of ll has only recessive alleles. An organism with only recessive alleles for a gene will have the recessive allele's version of the trait.
So, Sage's phenotype for the coat color trait must be a reddish-brown coat.
Answer: The answer is (B).

(B) a reddish-brown coat

Vision

N/A

(a) Logical mistake where the model fails at comparisons.

(b) Logical mistake where the there is a contradiction in the rationale.

Rationale: Sage's genotype for the coat color gene is ll. Sage's genotype of ll has only l alleles. The l allele is for a reddish-brown coat. So, Sage's
phenotype for the coat color trait must be a reddish-brown coat. To check this answer, consider whether Sage's alleles are dominant or recessive.
The allele for a reddish-brown coat (l) is recessive to the allele for a black coat (L). This means L is a dominant allele, and l is a recessive allele.
Sage's genotype of ll has only recessive alleles. An organism with only recessive alleles for a gene will have the recessive allele's version of the trait.
So, Sage's phenotype for the coat color trait must be a black coat.
Answer: The answer is (A).

Rationale: Look at the distance each car moved and the time it took to move that distance. One car moved 445 miles in 10 hours. The other car
moved 170 miles in 10 hours. Notice that each car spent the same amount of time moving. The car that moved 445 miles moved a shorter distance
in that time. So, that car must have moved at a lower speed.
Answer: The answer is (A).

Figure 13: Examples of logical mistakes.

Options: (A) black stripes on its skin

Problem

Prediction

Rationale : The way an organism looks or acts is called a trait. Scientists use fossils to learn more about the traits of ancient organisms. Fossils can
preserve the remains of body parts and activities. A fossil of a body part, such as a tail or a wing, can tell you what an organism looked like. A fossil of
an organism's activities, such as a burrow or a footprint, can tell you about the organism's behavior. Here are three examples of fossils and the traits
that you can observe from them: This is a fossil of an animal. This fossil tells you that the animal had a spiral-shaped shell. This is a fossil of a plant.
This fossil tells you that the plant had small leaves arranged in a branched pattern. This is a fossil of an animal's footprint. This fossil tells you that the
animal could walk on land. An organism's fossil may not show all of the organism's traits. This is because most body parts are destroyed during fossil
formation. When an organism's body turns into a fossil, only a few body parts are usually preserved.
Answer: The answer is (C).

(B) large fins on its body

Vision

(C) a long, thin body

Question: Which trait did Palaeopython have? Select the trait you can observe on the fossil.
Context: This picture shows a fossil of an ancient animal called Palaeopython. Palaeopython lived in trees and could
grow more than six feet long.

Rationale : The way an organism looks or acts is called a trait. Scientists use fossils to learn more about the traits of ancient organisms. Fossils can
preserve the remains of body parts and activities. A fossil of a body part, such as a tail or a wing, can tell you what an organism looked like. A fossil of
an organism's activities, such as a burrow or a footprint, can tell you about the organism's behavior. Here are three examples of fossils and the traits
that you can observe from them: This is a fossil of an animal. This fossil tells you that the animal had a spiral-shaped shell. This is a fossil of a plant.
This fossil tells you that the plant had small leaves arranged in a branched pattern. This is a fossil of an animal's footprint. This fossil tells you that the
animal could walk on land. An organism's fossil may not show all of the organism's traits. This is because most body parts are destroyed during fossil
formation. When an organism's body turns into a fossil, only a few body parts are usually preserved.
Answer: The answer is (B).

Figure 14: Examples of answers are incorrect while the CoT is correct.
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