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Abstract

Visually-rich document information extraction001
(VIE) is a vital aspect of document under-002
standing, wherein Semantic Entity Recognition003
(SER) plays a significant role. However, few-004
shot SER on visually-rich documents remains005
relatively unexplored despite its considerable006
potential for practical applications. To address007
this issue, we propose a simple yet effective008
Plug-and-Play Tag-guided method for few-009
shot Semantic Entity Recognition (PPTSER)010
on visually-rich documents. PPTSER is built011
upon off-the-shelf multi-modal pre-trained012
models. It leverages the semantics of the tags013
to guide the SER task, reformulating SER into014
entity typing and span detection, handling both015
tasks simultaneously via cross-attention. Exper-016
imental results illustrate that PPTSER outper-017
forms existing fine-tuning and few-shot meth-018
ods, especially in low-data regimes. With019
full training data, PPTSER achieves compa-020
rable or superior performance to fine-tuning021
baseline. For instance, on the FUNSD bench-022
mark, our method improves the performance023
of LayoutLMv3-base in 1-shot, 3-shot and 5-024
shot scenarios by 15.61%, 2.13%, and 2.01%,025
respectively. Overall, PPTSER demonstrates026
promising generalizability, effectiveness, and027
plug-and-play nature for few-shot SER on028
visually-rich documents. The codes will be029
available at https://anonymous.for.review.030

1 Introduction031

Information extraction from visually-rich docu-032

ments (VIE) is a process that concentrates on ex-033

tracting pertinent information from various sources034

such as scanned images, documents, and PDF files.035

It effectively leverages layout and visual cues to de-036

code the content enclosed within these documents037

(Xu et al., 2020). As an important part of VIE,038

Semantic Entity Recognition (SER) aims to extract039

entity spans from the visually-rich document. SER040

has been hailed as a significant advancement in041

the realm of document intelligence, and has found 042

widespread applications in numerous sectors. 043

The advent of multi-modal pre-trained models 044

(Xu et al., 2020; Li et al., 2021c; Gu et al., 2021; 045

Huang et al., 2022b; Yu et al., 2023) has ushered 046

in a rapid evolution in SER methodologies. These 047

models, pre-trained on a large corpus of scanned 048

documents in a self-supervised manner, have sig- 049

nificantly enhanced the comprehension ability of 050

SER. Despite the remarkable achievements of the 051

multi-modal pre-trained models, they often rely on 052

extensive data for fine-tuning. However, acquiring 053

a large volume of well-annotated SER data poses 054

significant challenges such as: (1) Acquiring such 055

data necessitates substantial financial resources and 056

time. Annotators are required to label a multitude 057

of OCR detection boxes in the document, adhering 058

to meticulously designed guidelines. Identification 059

of content within a box and accurately assigning 060

labels to them are also tedious tasks. (2) The avail- 061

ability of data is often restricted due to privacy 062

concerns. In scenarios involving sensitive infor- 063

mation, such as invoices and insurance documents, 064

data accessibility is severely limited due to the con- 065

fidential nature of this information. 066

Despite the scarce research (Cheng et al., 2020; 067

Yao et al., 2021; Wang and Shang, 2022) on few- 068

shot Semantic Entity Recognition for visually-rich 069

documents (few-shot SER), results have shown lim- 070

itations in terms of generality and performance, and 071

were limited to the specific application scenario. 072

This paper, inspired by the comprehension capabil- 073

ities of pre-trained models and the selective focus 074

nature of the attention mechanism, introduces a 075

novel approach called PPTSER, a Plug-and-Play 076

Tag-guided method for few-shot Semantic Entity 077

Recognition on visually-rich documents. The un- 078

derlying principle of PPTSER consists of three 079

main components: (1) Semantic Understanding 080

and Alignment: Words related to SER tags are 081

used as a prompt and are concatenated with the 082

1

https://anonymous.for.review


(b)
Document Tokens Tag Prompt

SER tag CE Loss

Multi-modal Pre-trained Model
Improved Self-attention Block

Self-attention Block
…

Doc. Tok.
Key

Matrix 
Multiplication

Tag Prompt
Query

Our Improved
Self-attention Block

CE
Loss

(a)
Document Tokens

SER tag

Multi-modal Pre-trained Model
Self-attention Block

Self-attention Block
…

Matrix 
Multiplication

SoftMax

Matrix Multiplication

Doc. Tok.
Query

Feed-Forward Layer

Doc. Tok.
Key

Doc. Tok.
Value

Typical Self-
attention Block

Classifier Layer

Figure 1: (a) Illustration of the traditional fine-tuning method. Doc. Tok. refers to Document Tokens. (b) Overview
of our PPTSER method. PPTSER replaces the last self-attention block with an improved attention block and omits
an extra classifier layer compared to traditional fine-tuning, which has less modules and parameters.

document’s text tokens. This combined input is083

then fed into a multi-modal pre-trained model. The084

motivation behind this is that the pre-trained model085

is expected to understand the semantics of both086

the document tokens and the tag-related prompt,087

thereby bringing the hidden states of the tokens088

and tag-related words for a specific entity type089

closer together. (2) Decoupling of SER task: SER090

task is segmented into Entity Classification and091

Entity Boundary Detection. This division aims to092

facilitate the resolution of boundary determination093

among adjacent entities of the same category within094

visually-rich documents. (3) Efficient Usage of095

Multi-head Attention: The attention weight ob-096

tained from the last attention block between the097

tag-related prompt and document tokens is directly098

used as the probability of tokens belonging to dif-099

ferent tags. This mechanism, with different heads100

detecting various spans, is ideal for the SER task101

with numerous entity spans. By fully exploiting102

the weighted focus nature of the attention mech-103

anism, the model eliminates the value transform104

layer, feed-forward layer in the last attention block,105

and omits a separate classifier layer compared to106

traditional fine-tuning methods (as depicted in Fig-107

ure 1), As a result, the total parameter is reduced.108

Extensive experiments are conducted to show the109

PPTSER’s effectiveness on commonly-used SER110

benchmarks, covering multiple languages, in few-111

shot to the full training set settings, and using dif-112

ferent mainstream multi-modal pre-trained models.113

The main contributions of this paper can be sum-114

marized as follows:115

• We have demonstrated that the semantics of116

labels can effectively guide the SER task and117

have proposed a plug-and-play method ideal118

for few-shot SER on visually-rich documents.119

To the best of our knowledge, we are the first120

to propose a pluggable method that has shown121

effectiveness on various pre-trained models122

and languages.123

• By innovatively leveraging the multi-head 124

attention mechanism embedded in the pre- 125

trained model, our method successfully ex- 126

tracts dense entities on visually-rich docu- 127

ments without adding any additional parame- 128

ters. 129

• Experimental results show the superiority of 130

our method over the traditional fine-tuning ap- 131

proaches in both few-shot and full-training-set 132

scenarios. Moreover, PPTSER outperforms 133

existing few-shot SER methods by significant 134

margin, thereby underscoring its overall effi- 135

cacy. 136

2 Method 137

2.1 Task Formulation 138

SER is usually formulated as a sequence labeling 139

task. For given tokens from the document x = 140

[xi], i = 1, 2, ..., n, SER aims to assign a label yi ∈ 141

C for each token xi, where C is the SER label space. 142

Subsequently, entity spans would be analyzed from 143

the labeled tokens according to a specific scheme, 144

such as BIO (Ramshaw and Marcus, 1995) and IO 145

(Tjong Kim Sang and De Meulder, 2003). 146

In this paper, we primarily focus on the In- 147

Label-Space setting for few-shot SER. Specifi- 148

cally, the pre-trained model is firstly fine-tuned 149

on a small number of M annotated documents with 150

label space C and then directly evaluated on the test 151

set with the same label space C. This task presents 152

a significant challenge as the model needs to learn 153

the SER task with only limited training samples. 154

It is notable that in the context of few-shot SER, 155

the few-shot setting of N-way K-shot indicates that 156

each of the N categories has K documents contain- 157

ing entities of that category as the support set, as 158

visually-rich documents are annotated at document 159

level. Moreover, a document often contains entity 160

spans of distinct types, causing potential overlaps 161
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Figure 2: The overall architecture of PPTSER. Other Embeddings may include various embeddings such as Visual
Embedding, Type Embedding, among others, with their presence and format dependent on the type of the pre-trained
model used. In this architecture, the tokens extracted from documents and the tag-related prompt are concatenated
and subsequently encoded with the pre-trained model. The attention weight, obtained from the last attention block
between tokens and the prompt, is then used to ascertain whether the tokens correspond to the respective label type.

between the support sets for different entity types162

across N categories. Consequently, the overall163

number of annotated documents M < N ×K.164

2.2 PPTSER165

The fundamental concept and flow chart of166

PPTSER is shown in Figure 2. The method be-167

gins with the construction of a prompt based on168

SER tags. This prompt is then concatenated with169

the document tokens and jointly encoded using a170

unified pre-trained model. Within the transformer171

architecture of our model, attention weights be-172

tween document tokens and the tag-related prompt173

are computed in hierarchical attention blocks. We174

use the attention weight between the tag-related175

prompt and document tokens, which can be consid-176

ered as a form of cross-attention, obtained from the177

last attention block as the probability distribution178

of tokens belonging to different SER entity types.179

2.2.1 Tag-related Prompt Construction and180

Target Generation181

For an SER task with the label space C, we need182

to construct tag-related words c̃i for each ci ∈ C,183

and then the tag-related prompt C̃ = {c̃i}, i =184

1, 2, ...m is built. In PPTSER, we simply use the185

tag names as the tag-related words.186

To enable PPTSER to accurately identify the187

boundaries of entity spans, we employ BIO tag-188

ging scheme in our method. However, when189

dealing with an SER task involving entity types190

E = {ei|e0 = Other}, i = 0, 1, 2, ...,m191

(where Other represents the entities that are not 192

of interest), the label space would be C = 193

{e0, Bei , Iei}, and the prompt would be C̃ = 194

{e0, beginning of ei, inner of ei}, where i = 195

1, 2, ...,m. In such a scenario, the prompt C̃ be- 196

comes not only semantically redundant but also 197

excessively long, potentially impeding the effec- 198

tive semantic learning of the document tokens. 199

Thus, we reframe the SER task with a BIO tag- 200

ging scheme into two separate tasks: entity typing 201

and span detection. Entity typing involves assign- 202

ing an entity type for each document token, while 203

span detection aims to identify whether tokens are 204

at the beginning or interior of an entity span. 205

To further clarify, consider an SER task using 206

BIO tagging scheme with a predefined entity type 207

set E = {ei|e0 = Other}, i = 0, 1, 2, ...,m. 208

For entity typing, the label space and the tag- 209

related prompt would be Cent. = {cent.i |cent.i = 210

ei} and C̃ent. = {c̃ent.i |c̃ent.i = cent.i },where 211

i = 0, 1, 2, ...,m; And for span detection, the 212

label space and the prompt would be Cdet. = 213

{cdet.1 , cdet.2 } and C̃det. = {c̃det.1 , c̃det.2 }, where 214

Cdet. = C̃det. = {beginning, inner}; Then the 215

full label space and prompt would be C = Cent. ∪ 216

Cdet. = {cent.i , cdet.j } and C̃ = C̃ent. ∪ C̃det. = 217

{c̃ent.i , c̃det.j }, where i = 0, 1, 2, ...,m; j = 1, 2. 218

For a token with an entity type of ei(i ̸= 0) located 219

at the beginning/inner of an entity span, the cor- 220

responding labels would be ci for entity typing and 221

beginning/inner for span detection. However, 222
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Figure 3: (a) PPTSER at training stage. Losses of entity typing and span detection are computed separately and then
combined for the overall loss calculation. And −1 signifies that the loss at those points is disregarded. (b) PPTSER
at inference stage. Combined predictions of entity typing and span detection are utilized to analyze the entity spans.

for the token with an entity type of Other, the223

specific location of it within an entity span is irrele-224

vant, and the loss for span detection is ignored here.225

Consequently, we can formulate the entity typing226

target yent. = [yent.i ] and the span detection target227

ydet. = [ydet.i ], where i = 1, 2, ..., n.228

It is worth emphasizing that our PPTSER frame-229

work handles entity typing and span detection si-230

multaneously. And prompts for them C̃ent. and231

C̃det. are encoded in parallel, allowing them to ben-232

efit from each other during the learning process.233

2.2.2 Cross-attention within the Pre-trained234

Model235

Once the tag-related prompt C̃ is constructed, it236

is concatenated with the document tokens x =237

[xi], i = 1, 2, ..., n, forming a boosted input x′ =238

x
⊕

C̃ = [xi, c̃
ent.
j , c̃det.k ], i = 1, 2, ..., n; j =239

0, 1, 2, ...,m; k = 1, 2. Then, x′ is used as the240

Text Embedding encoded in the pre-trained model.241

Notably, when C̃ involves other kinds of embed-242

ding, such as positional or visual embeddings, they243

are set to 0, since C̃ are hypothetical tokens not244

found in the document. Let’s denote the hidden245

states from the second last block as Ht−1:246

Ht−1 = [ht−1
i , h̃t−1

j , h̃t−1
k ] (1)247

where ht−1
i , h̃t−1

j , h̃t−1
k are the hidden states for248

x, C̃ent., C̃det., correspondingly.249

Then, Ht−1 is partitioned into multiple seg-250

ments Ht−1
i along the channel dimension, where251

queries Qt
i and keys Kt

i of the ith attention head252

are transformed as follows:253

Qt
i = (W t

i )qH
t−1
i (2)254

255
Kt

i = (W t
i )kH

t−1
i (3)256

where (W t
i )q and (W t

i )k are learnable weights em-257

bedded in the last attention block. And the self-258

attention weight of distinct heads is computed as259

below:260

(W t
i )att. = Qt

i(K
t
i )

T (4)261

where (W t
i )att. is a matrix with the shape of (n+ 262

m + 3) × (n + m + 3). From this matrix, we 263

extract a sub-matrix (W t
i )

′
att. that takes the prompt 264

as queries and the document tokens as keys, which 265

possesses the shape of (m+3)×n. (W t
i )

′
att. can be 266

viewed as a form of cross-attention within the self- 267

attention, which depicts the relationship between 268

the tag-related prompt and document tokens. 269

We hypothesize that distinct heads of the atten- 270

tion mechanism enable the prompt to focus on dis- 271

tinct entity spans, which is suitable for the entity- 272

rich scenario in visually-rich documents. We select 273

the maximum weight across heads to get a sum- 274

mary relationship between the prompt and tokens: 275

(W t)
′
att. = max

i∈{1,2,...,l}
(W t

i )
′
att. (5) 276

Further, (W t)
′
att. is partitioned into two com- 277

ponents, namely (W t)ent.att. and (W t)det.att. as shown 278

in Figure 3(a). These components use the hidden 279

states of C̃ent. and C̃det. as queries, and possess the 280

shape of (m+ 1)× n and 2× n, correspondingly. 281

(W t)ent.att. and (W t)det.att. represent the probability 282

distribution for document tokens belonging to dis- 283

tinct tags. The losses are then calculated as follows: 284

Lent. = − 1

n

n∑
i=1

exp(went.
pi )∑m

j=0 exp(w
ent.
ji )

(6) 285

286

Ldet. = − 1

n

n∑
i=1

exp(wdet.
qi )∑2

j=1 exp(w
det.
ji )

(7) 287

where Lent. and Ldet. are the losses for entity typ- 288

ing and span detection, went.
ij and wdet.

ij are el- 289

ements in (W t)ent.att. and (W t)det.att. , and yent.i = 290

cent.p , ydet.i = cdet.q . And the total loss is formu- 291

lated as follows: 292

Loss = Lent. + αLdet. (8) 293

Here, α is the ratio factor to balance the losses, 294

and we set α = 0.1 for models with segment-level 295

positional embeddings and α = 1.5 for models 296

with word-level positional embeddings. 297
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Modality Text + Layout Text + Layout + Image

Methodology
BROS (AAAI 22) LiLT (ACL 22) LayoutLMv2 (ACL 21) LayoutLMv3 (MM 22)
FT Ours FT Ours FT Ours FT Ours

FUNSD

1-shot 48.08 54.39 ↑6.31 52.60 55.64 ↑3.04 48.22 52.17 ↑3.95 46.37 61.98 ↑15.61

3-shot 64.34 67.70 ↑3.36 67.64 69.17 ↑1.52 61.66 63.64 ↑1.98 74.73 76.86 ↑ 2.13

5-shot 67.77 70.64 ↑2.87 73.29 75.26 ↑1.97 65.86 67.49 ↑1.63 79.52 81.53 ↑ 2.01

7-shot 68.21 71.96 ↑3.75 73.39 75.71 ↑2.32 66.55 68.83 ↑2.28 79.84 81.60 ↑ 1.76

Full Data 83.83 83.91 ↑0.08 88.95 89.07 ↑0.12 83.52 83.72 ↑0.20 91.15 92.01 ↑ 0.86

CORD

1-shot 66.28 68.48 ↑2.20 70.04 75.57 ↑5.54 69.61 69.97 ↑0.36 70.35 74.19 ↑ 3.84

3-shot 79.02 79.61 ↑0.59 81.64 83.83 ↑2.19 80.63 81.66 ↑1.03 82.05 85.27 ↑ 3.22

5-shot 84.04 84.37 ↑0.34 85.52 87.06 ↑1.54 84.32 84.53 ↑0.21 85.83 87.77 ↑ 1.94

7-shot 83.68 84.09 ↑0.42 85.35 87.73 ↑2.38 84.76 85.31 ↑0.55 86.94 88.48 ↑ 1.54

Full Data 95.72 95.75 ↑0.03 95.80 96.04 ↑0.25 95.20 95.63 ↑0.44 96.34 96.39 ↑ 0.05

XFUND-zh

1-shot - - 60.10 67.64 ↑7.54 60.28 68.26 ↑7.98 52.92 56.65 ↑ 3.73

3-shot - - 72.61 74.17 ↑1.56 74.37 77.20 ↑2.83 69.08 75.24 ↑ 6.16

5-shot - - 77.40 79.40 ↑2.00 81.43 82.34 ↑0.91 75.25 79.26 ↑ 4.01

7-shot - - 80.47 81.38 ↑0.91 82.25 83.66 ↑1.41 77.85 80.97 ↑ 3.12

Full Data - - 90.47 90.61 ↑0.14 90.25 90.79 ↑0.54 91.61 92.19 ↑ 0.58

Table 1: F1 score (%) of PPTSER and traditional Fine-tuning methods. F1 score in Bold is better between our
PPTSER and Fine-tuning. FT refers to Fine-tuning methods.

2.2.3 Decoding during the Inference Stage298

The inference stage is shown in Figure 3(b). We299

first apply the argmax operation on (W t)ent.att. and300

(W t)det.att. along distinct prompt words to get the301

predicted tag with the highest probability:302

ŷent.i = argmax
j∈{0,1,2...,m}

went.
ji (9)303

304
ŷdet.i = argmax

j∈{1,2}
wdet.
ji (10)305

Then the prediction with BIO tagging scheme306

ŷ = [ŷi], i = 1, 2, ..., n is formulated as follows:307

ŷi =


Bŷent.

i
, ŷent.i ̸= Other, ŷdet.i = beginning

Iŷent.
i

, ŷent.i ̸= Other, ŷdet.i = inner

Other , ŷent.i = Other
(11)308

Finally, the entity spans are analyzed from ŷ us-309

ing the BIO tagging scheme. Notably, spans not310

conform to BIO scheme, especially those starting311

with a token predicted as ŷdet.i = inner, are la-312

beled as Other. This operation, aimed at enhanc-313

ing predicting accuracy, is applied in both PPTSER314

and methods we compared to for a fair comparison.315

To provide a more vivid demonstration of our316

method, we offer an example run with PPTSER, re-317

fer to Appendix C due to paper-length constraints.318

3 Experiments319

3.1 Experimental Settings320

Benchmarks. We conducted experiments on321

several widely used SER benchmarks, including322

FUNSD (Jaume et al., 2019), CORD (Park et al.,323

2019) and XFUND (Xu et al., 2022). FUNSD324

targets form understanding with 199 scanned docu- 325

ments related to market reports, commercials, and 326

more. CORD, centered on receipt understanding, 327

features both coarse (e.g., menu, total) and fine- 328

grained (e.g., menu.unitprice, menu.price) annota- 329

tions. This benchmark provides an official split of 330

training, validation and test sets, and we strictly 331

follow the procedure by selecting the model weight 332

that achieved the best performance on the valida- 333

tion set for testing on the test set. XFUND focuses 334

on document understanding covering multiple lan- 335

guages. In this article, our primary focus is on the 336

Chinese subset of XFUND, denoted as XFUND-zh. 337

Few-shot Settings. PPTSER was evaluated on 338

1-shot, 3-shot, 5-shot, 7-shot and the full training 339

set scenarios. With no official few-shot divisions 340

in benchmarks mentioned above, we established 341

our own following the process in Appendix A. We 342

selected as few samples as possible while meeting 343

the few-shot setting, which aligns with the real- 344

world application. Due to the inherent instability 345

of few-shot experiments, we randomly generated 346

5 different divisions for every scenario and tested 347

each with 2 diverse random seeds. Hence, our ex- 348

periment result is the average of 10 runs, ensuring 349

the reliability and credibility of our findings. 350

3.2 Comparisons with Existing Fine-Tuning 351

Methods 352

Setup. The foundation for our method is built 353

upon several widely used multi-modal pre-trained 354

models, incorporating different combinations of 355

modalities as input. This includes BROS (Hong 356

et al., 2022) and LiLT (Wang et al., 2022a) with tex- 357

tual and layout input, and LayoutLMv2 (Xu et al., 358
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Modality Text Text + Layout Text + Layout + Image

Methodology
EntLM

(NAACL 22)
COPNER

(COLING 22)
LASER

(ACL 22)
COPNERLiLT

(COLING 22)
PPTSERLiLT

(Ours)
COPNERLMv3

(COLING 22)
PPTSERLMv3

(Ours)

FUNSD

1-shot 24.32 19.37 38.47 55.15 55.64 51.19 61.98
3-shot 34.94 31.21 44.88 68.66 69.17 75.84 76.86
5-shot 39.55 35.13 49.31 73.43 75.26 77.55 81.53
7-shot 41.41 37.31 52.56 73.35 75.71 78.53 81.60

Full Data 67.42 64.58 69.23 87.74 89.07 91.26 92.01

CORD-Lv1

1-shot 74.29 68.61 66.80 86.97 90.50 86.98 90.02
3-shot 83.68 82.25 76.09 94.16 94.79 94.03 95.13
5-shot 87.11 86.08 82.23 94.86 96.21 95.74 96.21
7-shot 87.31 86.74 83.61 95.04 96.13 96.06 96.51

Full Data 95.93 95.90 96.56 99.21 99.42 99.45 99.45

CORD

1-shot 57.86 54.52 - 70.05 75.57 67.33 74.19
3-shot 71.68 71.32 - 81.27 83.83 80.07 85.27
5-shot 77.74 78.98 - 84.80 87.06 85.30 87.77
7-shot 78.63 78.63 - 85.76 87.73 86.87 88.48

Full Data 93.50 94.16 - 95.74 96.04 95.79 96.39

XFUND-zh

1-shot 26.38 23.29 - 48.76 67.64 54.26 56.71
3-shot 37.22 37.49 - 64.59 74.17 71.27 75.24
5-shot 43.54 44.36 - 69.03 79.40 76.37 79.26
7-shot 46.62 46.90 - 74.44 81.38 79.29 80.97

Full Data 66.20 67.11 - 89.17 90.61 91.99 92.19

Table 2: F1 score (%) of PPTSER and other Few-shot methods. F1 score in Bold is the best, and that with underline
is the second best.

2021a) and LayoutLMv3 (Huang et al., 2022b)359

with textual, layout and image input. Since BROS360

only supports English, we only tested it on FUNSD361

and CORD. For testing on XFUND-zh, we used362

LayoutXLM (Xu et al., 2021b), which is the mul-363

tilingual version of LayoutLMv2. In our experi-364

ments, we utilized base-size pre-trained models.365

Results. Table 1 showcases the performance of366

PPTSER against traditional fine-tuning methods.367

The results clearly demonstrate that our PPTSER368

outperforms traditional fine-tuning methods across369

all tested scenarios and benchmarks. This under-370

scores the superior performance of PPTSER in di-371

verse language contexts with various base models.372

Overall, both PPTSER and the fine-tuning373

method demonstrate improved performance with374

increased training data. However, our PPTSER con-375

sistently outperforms previous fine-tuning meth-376

ods in all few-shot settings, especially with ex-377

ceptionally scarce data. In the 1-shot scenario on378

FUNSD, where only a single annotated document379

is available, PPTSER achieves gains of +6.31%380

with BROS, +3.04% with LiLT, +3.95% with Lay-381

outLMv2 and the highest gain of +15.62% with382

LayoutLMv3, emphasizing its effectiveness in data-383

scarce situations. Notably, even when trained with384

the full training data, our PPTSER still achieves385

comparable performance to the fine-tuning method,386

and even outperforms it in certain scenarios. For387

example, we observe a gain of +0.86% on FUNSD388

with LayoutLMv3. This full data setting is often389

neglected in other few-shot research, further un-390

derscoring the superiority of our approach when 391

dealing with varying amounts of available data. 392

Our findings demonstrate that PPTSER is highly 393

adaptive to different amounts of training data with 394

distinct base models, making it an effective method 395

for addressing the SER problem. 396

3.3 Comparisons with Existing Few-shot 397

Methods 398

Setup. We selected the PPTSER models that per- 399

formed better under different modality settings, de- 400

noted as PPTSERLiLT and PPTSERLMv3, and com- 401

pared them with previous few-shot methods. For 402

a comprehensive comparison, we re-implemented 403

LASER (Wang and Shang, 2022) on our few-shot 404

divisions. However, it can only handle the coarse- 405

level typing for CORD (CORD-Lv1) and is limited 406

to the English language. Since research on few- 407

shot SER is rather limited, we selected two other 408

few-shot NER methods for comparison. Specifi- 409

cally, We chose COPNER (Huang et al., 2022a) 410

and EntLM (Ma et al., 2022b) due to their simi- 411

lar In-Label-Space setting with ours. Considering 412

COPNER can also be used as a pluggable method, 413

we also integrated it with LayoutLMv3 and LiLT, 414

denoted as COPNERLiLT and COPNERLMv3. 415

Results. The overall experimental results are 416

presented in Table 2. The results clearly show that 417

PPTSER outshines existing few-shot NER and SER 418

methods by a large margin. Interestingly, COPNER 419

shows some degree of pluggability with various 420

multi-modal pre-trained models, but PPTSER still 421
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Model
Designs

Baseline Decoupling Strategies Prompt Engineering Aggregation Stratergies
default setting plain BIO prompt unrelated words random embeddings mean single head

1-shot 75.57 74.28 70.80 71.43 74.43 75.21
3-shot 83.83 82.41 82.69 83.07 83.05 83.92
5-shot 87.06 86.25 85.78 86.29 86.64 86.98
7-shot 87.73 86.49 86.42 86.95 86.74 87.24
Full Data 96.04 95.29 96.26 95.72 96.21 96.06

∆ - -1.10 -1.66 -1.35 -0.63 -0.17

Table 3: F1 score (%) of PPTSER on CORD benchmark with different designs. ∆ denotes the average deviation of
the F1 score relative to the default setting.

65

70

75

80

85

90

95

100

1-shot 3-shot 5-shot 7-shot Full Data

7th block 8th block

9th block 10th block

11th block 12th block

Figure 4: F1 score (%) of PPTSER on CORD bench-
mark with different settings when obtaining the attention
weight from different blocks.

outperforms it across all settings and benchmarks.422

In summary, our PPTSER surpasses existing few-423

shot NER and few-shot SER methods on various424

visually-rich documents, showcasing its effective-425

ness in handling few-shot SER challenge.426

4 Ablation Study427

We have conducted extensive analyses of our428

PPTSER to ensure its effectiveness and rationality.429

For convenience, experiments are conducted on the430

CORD dataset using PPTSER building upon LiLT.431

Origin of Attention Weights. To pinpoint the432

source of superiority in PPTSER, we explored433

whether it stems from our meticulous design or the434

decreased over-fitting achieved through parameter435

reduction. We extracted attention weights from var-436

ious blocks, including the default 12th block and437

shallower 7th ∼ 11th block. And the experimen-438

tal results shown in Figure 4 reveal that extracting439

attention weights from the last block is more ef-440

fective than from other blocks, which has greatly441

assured the effectiveness of our design.442

Effectiveness of Decoupling Strategies. Table443

3 also shows comparisons with different frame-444

works of prompts. In this context, default set-445

ting refers to our design to decouple the SER task446

into entity typing and span detection then process-447

ing them concurrently, while plain BIO prompt448

refers to the direct usage of the aforementioned449

C̃ = {e0, beginning of ei, inner of ei} as the450

prompt, without decoupling. The result shows that 451

our decoupling avoids disrupting the language mod- 452

eling of document tokens and performs better. 453

Prompt Engineering. We evaluated PPTSER 454

using diverse prompt types. Beyond the default 455

setting that uses tag names as prompts, we ex- 456

plored an unrelated words setting by replacing the 457

whole prompts with irrelevant words like apple 458

and orange. In the random embeddings setting, we 459

replaced the whole prompt’s text embedding with 460

random tensors. As Table 3 indicates, the default 461

setting yields the highest score, suggesting the pre- 462

trained model does grasp the prompt’s semantics, 463

and tag semantics can direct the SER task. This in- 464

dicates the careful selection and design of prompts 465

can markedly influence model performance. 466

Aggregation Strategies of Attention Weights. 467

Table 3 compares how various strategies to aggre- 468

gate attention weights across different heads affect 469

performance. While default setting and mean refer 470

to obtain the maximum and average value across 471

attention weighs of distinct heads, single head uses 472

just a single head of the attention weights to gen- 473

erate the final probability. The results indicate that 474

the max operation outperforms others, which aligns 475

with our hypothesis that different attention heads 476

focus on entities with different semantics. 477

Parameter Efficiency. The parameter compar- 478

isons of our PPTSER methods and traditional fine- 479

tuning are presented in Table 4. As the parameters 480

might vary across diverse models and benchmarks, 481

we offer a concise breakdown of the results from 482

the methods we have tested. The results illustrate 483

that our PPTSER has fewer parameters in compari- 484

son to traditional fine-tuning methods. For a more 485

detailed analysis, please refer to Appendix E. 486

5 Related Works 487

SER on Visually-rich Documents. Although 488

some early works of SER relied on heuristic al- 489

gorithms (Simon et al., 1997; Schuster et al., 2013), 490

the majority of research focused on neural network- 491

based methods. Some of them leveraged textual 492
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Methodology
BROS (AAAI 22) LiLT (ACL 22) LayoutLMv2 (ACL 21) LayoutLMv3 (MM 22)

FT Ours FT Ours FT Ours FT Ours

FUNSD 108.91M 103.59M 130.17M 123.81M 200.29M 194.38M 125.33M 119.42M
CORD 108.95M 103.59M 130.22M 123.81M 200.33M 194.38M 125.96M 119.42M
XFUND-zh - - 130.17M 123.81M 200.29M 194.38M 125.33M 119.42M

Table 4: Parameters of our PPTSER and traditional Fine-tuning methods. The metric in Bold indicates the method
with fewer parameters. FT refers to Fine-tuning method.

features (Chiu and Nichols, 2016), visual features493

(Guo et al., 2019), or combined them with layout494

features (Yu et al., 2021; Wang et al., 2021a) to ad-495

dress this issue, but the emergence of multi-modal496

pre-trained models has revolutionized SER. These497

models are jointly pre-trained on a large-scale un-498

labeled document dataset with textual, layout, and499

even visual cues, so they have the potential to bet-500

ter understand a structured document. LayoutLM501

(Xu et al., 2020) was the first to combine textual502

and OCR positional features at the pre-training503

stage. Later, LayoutLMv2 (Xu et al., 2021a) and504

LayoutLMv3 (Huang et al., 2022b) further inte-505

grated visual features into the pre-training process506

with different architectures. Moreover, Wang et al.507

(2022a) advanced the model architecture with a508

language-agnostic layout transformer in their work,509

LiLT. Alongside the advancements in model struc-510

tures, other works (Appalaraju et al., 2021; Li et al.,511

2021b,a; Hong et al., 2022; Luo et al., 2023) have512

focused on the diverse pre-training tasks to facili-513

tate the fusion of diverse modalities at pre-training514

stage. While these advancements have improved515

SER capabilities to some extent, their few-shot516

learning abilities still require further examination.517

Few-shot SER on Visually-rich Documents.518

Unlike SER, few-shot SER is not fully explored519

yet. Cheng et al. (2020) proposed to utilize graph-520

matching techniques (Zanfir and Sminchisescu,521

2018), representing documents as graphs with522

nodes as OCR-scanned boxes. For an unseen docu-523

ment, the type of entities was determined by com-524

paring the relationships in the graph of unseen doc-525

ument with those in the graphs of support docu-526

ments. Yao et al. (2021) also adopted a graph-527

matching approach to address this issue, but the528

entity type was determined based on the relation-529

ships in different forms with more complex solvers.530

Taking a different way, Wang and Shang (2022)531

introduced a novel labeling scheme for SER. They532

reshaped SER as a generative task, and used Lay-533

outReader (Wang et al., 2021b) for SER label gener-534

ation. Although these studies preliminary explored535

few-shot SER, they lacked generality and plugga-536

bility, and their performances in various scenes537

require further exploration and improvement. 538

Few-shot NER in Plain Texts. While few-shot 539

SER on visually-rich documents has seen limited 540

exploration, there has been extensive research on 541

few-shot Named Entity Recognition (NER) in plain 542

texts (Wang et al., 2022b; Das et al., 2022; Ma et al., 543

2022a; Cheng et al., 2023). However, only few of 544

these studies have considered the scenario where 545

only limited data in the target domain is available. 546

Huang et al. (2022a) proposed using the NER tag 547

as a prompt and employing contrastive learning to 548

address this issue. On the other hand, Ma et al. 549

(2022b) reformulated few-shot NER as a Language 550

Modeling task and used the pre-trained Masked 551

Language Model head to predict a word related 552

to the entity type for each text token. However, 553

since these methods are designed to address the 554

NER problem with sparse entities in plain texts, 555

they might not be suitable for entity-rich scenarios 556

in visually-rich documents. Additionally, they do 557

not emphasize the issue of detecting entity bound- 558

aries, without which adjacent entities of the same 559

type might be erroneously merged into one. The 560

comparison with two representative few-shot NER 561

methods also show the effectiveness of our method. 562

6 Conclusion 563

In this paper, we present PPTSER, an innovative 564

and efficient strategy for few-shot entity recogni- 565

tion on visually-rich documents using a plug-and- 566

play, tag-guided approach. PPTSER redefines the 567

SER task as a dual-function operation of entity 568

typing and span detection, and utilizeS the atten- 569

tion weight between document tokens and prompts 570

related to SER tags as the target probability distri- 571

butions. Our findings show that PPTSER is both 572

effective and versatile in various data situations, 573

from few-shot to full data scenarios. In the future, 574

we plan to further investigate the capabilities of 575

PPTSER across a range of VIE tasks like Entity 576

Linking. In addition, we aim to explore PPTSER’s 577

potential in other few-shot scenarios, particularly 578

those outside of the In-Label-Space setting. It is 579

our hope that our work will spark further research 580

and advancements in the realm of few-shot SER. 581
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Limitations582

Due to space constraints, our exploration of the583

few-shot SER setting is primarily limited to the584

In-Label-Space. Future research is essential to in-585

vestigate the potential applications of our PPTSER586

in other few-shot settings and its adaptability to587

additional VIE tasks.588

Ethical Considerations589

Our proposed PPTSER is a purely methodological590

innovation, which inherently avoids direct negative591

social impacts. By leveraging the self-attention592

mechanism within multi-modal pre-trained models593

without adding extra modules, it does not intro-594

duce additional ethical risks beyond those already595

present in the existing multi-modal pre-trained596

models.597
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A Few-shot Divisions Generation763

To cater to the real-world application scenarios, we764

have organized our few-shot divisions from the full765

training set with Algorithm 1. Our goal was to ran-766

domly select the minimum number of documents767

that satisfy the N-way K-shot requirement of each768

of the N categories has K documents containing769

entities of that category as the support set.770

It is worth noticing that in the context of few-771

shot SER on visually-rich documents, the few-shot772

setting of N-way K-shot signifies that each of the773

N categories has K documents containing entities774

of that category as the support set, instead of there775

are K entity spans for each of N entity types as776

the support set for the setting of few-shot NER on777

plain texts.778

B Implementation Details779

B.1 Implementation Details of PPTSER780

We used one NVIDIA 3090 to fine-tune our model781

with AdamW optimizer. The learning rate is 5e−5782

with a warm up ratio of 0.1, and we fine-tuned783

the model for 2000 iterations with a batch size of784

8 by default. Besides the default augmentation785

strategies for images adopted in LayoutLMv2 and786

LayoutLMv3, we did not employ any additional787

augmentation strategies.788

B.2 Modification on few-shot NER method for789

visually-rich documents790

In Section 3.3, we mentioned that we adapted two791

methods originally used for few-shot NER on plain792

text for few-shot SER on visually-rich documents.793

We will briefly introduce these modifications.794

COPNER (Huang et al., 2022a). The COP-795

NER method employs contrastive learning, feeding796

both entity label semantics and sentences into a797

plain text pre-trained language model. This ap-798

proach uses the hidden state output of the pre-799

trained model to calculate a contrastive loss be-800

tween sentence tokens and label semantics, then801

determining the entity type of tokens. However,802

the original COPNER could only determine if a803

token belonged to an entity category, without rec-804

ognizing boundaries between entities. Therefore,805

we also improved it with the entity typing and span806

detection framework introduced in our paper. That807

is, while determining the entity type of tokens, we808

also input the tokens beginning and inner into809

the pre-trained model to detect the entity boundary.810

The model’s output hidden state is then used to cal- 811

culate a contrastive loss between sentence tokens 812

and these beginning and inner tokens. 813

Besides, we retained this core process but re- 814

placed the original language model pre-trained on 815

pure text with a multi-modal pre-trained model. 816

Experiments show that our use of multi-head cross- 817

attention methods is more suitable for SER tasks 818

on visually-rich documents, especially in Chinese 819

contexts. 820

EntLM (Ma et al., 2022b). EntLM treats NER 821

as a task of Language Modeling. For testing a 822

few-shot NER dataset on plain text, it first selects 823

a related word for each entity type. Then, using 824

the pre-trained Masked Language Modeling head 825

of BERT, it predicts the probability distribution 826

of each sentence token over these related words, 827

thereby determining the probability distribution of 828

tokens across different entity types. 829

The selection of related words relies on the 830

distant data obtained from BOND (Liang et al., 831

2020), which uses BERT and the corpora from 832

Wikipedia to create rough annotations for the NER 833

test set. However, in the realm of visually-rich doc- 834

uments, such rough annotated data is not provided 835

by BOND, and due to the relative abstract expres- 836

sion of SER tags from natural language expressions 837

and the difference between structured documents 838

and natural language expressions, it’s not feasible 839

to obtain rough annotations using corpora from 840

Wikipedia with BERT. Therefore, we directly use 841

the ground truth annotations from the SER test set 842

as distant data to find related words associated with 843

entity types in the SER dataset. Although the ex- 844

perimental results on EntLM might be artificially 845

high due to some exposure to the entity distribution 846

in the test set, our proposed method significantly 847

outperforms others that only accept text modality 848

inputs, including EntLM. 849

In summary, methods for few-shot NER on plain 850

text may not necessarily transition well to the task 851

of few-shot SER on visually-rich documents. The 852

notable performance of our proposed method in 853

few-shot SER on visually-rich documents further 854

highlights the innovation and contribution of our 855

research. 856
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Algorithm 1: Few-shot Divisions Generation

Input: Novel Dataset with the label space C = {c1, c2, ..., cN}, full training set Dfull

Output: N-way K-shot few-shot training set Dtrain

1 Dtrain = {}
2 Number of documents that contain entities of ci in Dfull: Q = {c1 : 0, c2 : 0, ..., cN : 0}
3 Document set that contain entities of ci in Dfull: R = {c1 : {}, c2 : {}, ..., cN : {}}
4 for doci in Dfull do
5 for cj in C do
6 if doci contain entities of cj then
7 Q[cj ] += 1
8 R[cj ].append(doci)

9 end
10 end
11 end
12 Q′ = sorted(Q, key = lambda x : x[1]) = {c′1 : n1, c

′
2 : n2, ..., c

′
N : nN} (n1 ≤ n2 ≤ ... ≤

nN )
13 Number of documents that contain entities of ci in Dtrain: S = {c1 : 0, c2 : 0, ..., cN : 0}
14 for c′i in keys of Q′ do
15 for S[c′i] < K do
16 if R[c′i] is empty then
17 break
18 end
19 Randomly select a document doccandidate from R[c′i]
20 R[c′j ].pop(doccandidate)

21 if doccandidate /∈ Dtrain then
22 Dtrain.append(doccandidate)
23 for cj ∈ C do
24 if doccandidate contain entities of cj then
25 S[cj ] += 1
26 end
27 end
28 else
29 continue
30 end
31 end
32 end

12



other

header

question

answer

Figure 5: Illustration of a sample from FUNSD dataset. Different colored boxes represent the entities of distinct
kinds. Zoom in for better view.

C Examples when apply PPTSER857

To more intuitively demonstrate our method, we858

provide an example from FUNSD dataset when859

apply our PPTSER method.860

The FUNSD dataset includes three meaning-861

ful entity types: header, question, and answer,862

with all other uninteresting entities categorized863

as other. Hence, the entity type set is E =864

{other, header, question, answer}. The label865

spaces for entity typing and span detection are866

Cent. = {other, header, question, answer} and867

Cdet. = {beginning, inner}, respectively. We di-868

rectly use the label’s names as tag-related prompts,869

with the prompts for entity typing and span detec-870

tion being C̃ent. = "other header question answer"871

and C̃det. = "beginning inner". These prompts872

are then concatenated to form the full tag-related873

prompt C̃ = "other header question answer begin-874

ning inner".875

Consider an example from the FUNSD dataset876

shown in Figure 5, with the document con-877

tent "... CASE TYPE: Asbestos ... 82504862",878

where "..." indicates omitted parts. Here, "CASE879

TYPE:" belongs to the entity type of question,880

"Asbestos" to the entity type of answer, and881

"82504862" to other. Assuming the tokenizer882

splits the document into "CASE", "TYPE:", "As-883

bestos", and "82504862", their labels for entity884

typing and span detection would be yent. = 885

[question, question, answer, other] and ydet. = 886

[beginning, inner, beginning,−1]. 887

Subsequently, "CASE", "TYPE:", "Asbestos", 888

and "82504862" as document tokens are concate- 889

nated with the full tag-related prompt, and form 890

the boosted input x′ = "CASE TYPE: Asbestos 891

82504862 other header question answer beginning 892

inner". Then, x′ is input into the multi-modal pre- 893

trained model as the Text Embedding to obtain the 894

multi-head attention weight and the aggregated at- 895

tention weight from the last block, as shown in 896

Figure 6. 897

During training stage, as shown in Figure 7(a), 898

the aggregated attention weight is split into atten- 899

tion weights between "other header question an- 900

swer" and document tokens, as well as "beginning 901

inner" and document tokens, which are then used 902

to calculate the losses for entity typing and span 903

detection, respectively, culminating in a combined 904

total loss. 905

During inference stage, as shown in Figure 7(b), 906

we select the document tokens with the highest 907

probability for "other header question answer" and 908

"beginning inner" as ŷent. and ŷdet., then com- 909

bine them to get the predictions under BIO tagging 910

scheme ŷ following the procedure in Section 2.2.3. 911

And the entity spans are finally analyzed from ŷ. 912

13
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Figure 6: Example of a FUNSD sample run with PPTSER. In the image, bolded words in Text Embeddings
indicate they are part of the prompt. In the Multi-head Self-attention section, the brightness of the color represents
the magnitude of the value.
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Figure 7: Example of a FUNSD sample running on PPTSER at Training stage and Inference stage. In the Inference
stage, q, a, b, i and o respectively stand for the question, answer, beginning, inner and other categories.
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Modality Text + Layout Text + Layout + Image

Methodology
BROS (AAAI 22) LiLT (ACL 22) LayoutLMv2 (ACL 21) LayoutLMv3 (MM 22)

FT Ours FT Ours FT Ours FT Ours

FUNSD

1-shot 49.17 52.50 51.07 50.91 44.15 46.91 42.67 56.27
3-shot 63.07 64.31 65.65 67.24 60.67 60.65 72.66 75.18
5-shot 66.31 68.10 71.11 72.95 63.45 64.36 77.29 79.53
7-shot 69.24 71.06 72.49 74.14 65.94 66.79 79.22 81.31

Full Data 83.42 83.67 88.62 88.89 83.54 83.59 91.41 91.96

CORD

1-shot 64.92 68.04 69.31 75.35 68.08 69.73 70.03 74.02
3-shot 78.75 79.26 81.63 83.85 79.92 81.35 81.97 85.09
5-shot 83.86 84.23 85.62 87.03 83.84 84.42 85.76 87.71
7-shot 83.56 83.76 85.39 87.74 84.40 85.09 86.92 88.37

Full Data 95.72 95.88 95.82 96.06 94.95 95.64 96.34 96.39

XFUND-zh

1-shot - - 59.03 64.90 59.17 67.04 46.64 54.59
3-shot - - 71.33 71.54 73.17 75.21 62.73 72.36
5-shot - - 75.09 77.07 79.21 79.96 69.39 76.57
7-shot - - 77.34 77.70 79.68 80.22 72.03 77.95

Full Data - - 87.92 88.17 88.60 88.95 89.09 91.04

(a) Precision (%) of our PPTSER and Traditional Fine-tuning methods.

Modality Text + Layout Text + Layout + Image

Methodology
BROS (AAAI 22) LiLT (ACL 22) LayoutLMv2 (ACL 21) LayoutLMv3 (MM 22)

FT Ours FT Ours FT Ours FT Ours

FUNSD

1-shot 49.75 57.89 54.39 61.77 53.64 59.15 53.14 70.07
3-shot 65.82 71.50 69.81 71.35 62.82 67.01 76.94 78.64
5-shot 69.32 73.43 75.61 77.76 68.50 70.97 81.92 83.65
7-shot 67.54 72.94 74.33 77.38 67.23 71.04 80.51 81.91

Full Data 84.26 84.15 89.30 89.26 83.51 83.85 90.91 92.05

CORD

1-shot 67.70 68.95 70.79 75.80 71.23 70.22 70.67 74.35
3-shot 79.30 79.96 81.65 83.82 81.36 81.98 82.14 85.45
5-shot 84.21 84.52 85.43 87.08 84.81 84.63 85.91 87.84
7-shot 83.79 84.43 85.32 87.72 85.12 85.54 86.97 88.59

Full Data 95.72 95.61 95.78 96.03 95.45 95.62 96.34 96.40

XFUND-zh

1-shot - - 61.54 70.68 61.46 69.68 61.21 59.24
3-shot - - 74.22 77.22 75.88 79.46 77.24 78.58
5-shot - - 79.99 82.02 83.88 85.02 82.27 82.23
7-shot - - 83.97 85.44 85.03 87.43 84.76 84.30

Full Data - - 93.18 93.20 91.96 92.72 94.27 93.37

(b) Recall (%) of our PPTSER and Traditional Fine-tuning methods.

Table 5: Precision and Recall of PPTSER and Traditional Fine-tuning methods. Metrics in Bold is better between
PPTSER and Fine-tuning and FT refers to Fine-tuning methods.

D Further Analysis of Experimental913

Results914

This section presents further analysis and additional915

performance metrics obtained from the main exper-916

iments.917

D.1 Further Analysis of Comparisons with918

Existing Fine-Tuning Methods919

Table 5a and Table 5b present the precision and920

recall of PPTSER compared to the traditional921

fine-tuning method. The results demonstrate that922

PPTSER consistently outperforms the traditional923

fine-tuning method in most cases, leading to im-924

proved overall performance in terms of F1 scores.925

Additionally, we observed from Table 1 and Ta- 926

ble 5 that the improvement of PPTSER on the 927

CORD dataset is generally less pronounced com- 928

pared to its performance on other benchmarks. This 929

prompted further investigation on our part. 930

As mentioned in Section 2.1, our N-way K-shot 931

setting implies that each of the N categories has K 932

documents containing entities of that category as 933

the support set. Given that a single document in 934

the CORD dataset cannot encompass entities from 935

all categories, we selected more than K documents 936

under the K-shot setup in the previous experiments. 937

Consequently, we reselected 1 to 5 document sam- 938

ples as the training set for CORD and conducted ad- 939

ditional experiments with LiLT, which showed the 940
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Methodology
LayoutLMv2 LiLT
FT Ours FT Ours

Sample
Number

1 33.28 33.81 40.46 42.47
2 44.86 47.09 49.39 54.18
3 54.24 56.91 56.31 63.71
4 61.54 62.23 61.36 69.19
5 63.89 64.92 64.09 69.83

(a) F1 score (%) of our PPTSER and Traditional Fine-tuning
methods on CORD benchmark.

Methodology
LayoutLMv2 LiLT
FT Ours FT Ours

Sample
Number

1 33.10 34.06 40.35 40.08
2 42.31 46.20 47.26 52.58
3 51.31 57.50 53.58 62.92
4 59.58 62.50 60.17 68.72
5 61.93 64.65 63.21 69.47

(b) Precision (%) of our PPTSER and Traditional Fine-tuning
methods on CORD benchmark.

Methodology
LayoutLMv2 LiLT
FT Ours FT Ours

Sample
Number

1 33.82 33.75 41.36 45.28
2 48.01 48.10 51.81 55.89
3 57.60 56.35 57.73 64.52
4 63.64 61.97 62.63 69.68
5 66.00 65.22 65.01 70.19

(c) Recall (%) of our PPTSER and Traditional Fine-tuning
methods on CORD benchmark.

Table 6: Performances of our PPTSER and Traditional
Fine-tuning methods on CORD benchmark with various
numbers of sample as the support set. Metrics in Bold
is the best and FT refers to Fine-tuning methods.

most significant improvement, and LayoutLMv2,941

which showed the least. The results, as illustrated942

in Table 6, led to several conclusions:943

• Sample Size: The K-shot division on CORD944

often includes more than K samples. For ex-945

ample, in the 1-shot experiment, our train-946

ing set averaged 7.6 samples. In contrast,947

on FUNSD, a single sample typically encom-948

passes entities of all 4 types, resulting in only949

1 sample in the training set for the 1-shot sce-950

nario. Our findings indicate that as the sample951

size increases, the performance gap between952

our method and conventional fine-tuning di-953

minishes, yet our method retains its advan-954

tage. Therefore, under the same K-shot set-955

ting, CORD involves more samples than other956

datasets, which leads to a less pronounced957

improvement.958

• Label Complexity: We believe that the la-959

bels in CORD are more complex and ab-960

stract, making it harder for the model to grasp 961

their semantic meanings compared to those 962

in FUNSD. For instance, entity categories in 963

FUNSD include header, question, and answer, 964

whereas in CORD, they involve more abstract 965

types like menu.num and total.creditcardprice. 966

The experimental results indicate that when 967

the sample size is extremely small, the im- 968

provement on CORD from our method is lim- 969

ited. However, this improvement increases 970

rapidly with the sample size, suggesting our 971

method can more accurately capture the re- 972

lationship between document tokens and tag- 973

related prompts with relatively more samples. 974

• Pre-trained Models: Different pre-trained 975

models have varying degrees of understand- 976

ing of labels. This could explain why some 977

pre-trained models show weaker improvement 978

on CORD. Our supplementary experiments 979

reveal that the extent of improvement of our 980

method is consistently better with the LiLT 981

than the LayoutLMv2, suggesting that LiLT 982

better understands the semantic information 983

implied by the labels. 984

D.2 Further Analysis of Comparisons with 985

Existing Few-shot Methods 986

We also present a detailed comparison of PPTSER 987

with other few-shot methods, including precision 988

and recall metrics in Table 7a and Table 7b. Similar 989

to the F1 score, models enhanced with PPTSER 990

usually demonstrate superior performance com- 991

pared to both few-shot NER and few-shot SER 992

methods. 993
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Modality Text Text + Layout Text + Layout + Image

Methodology
EntLM

(NAACL 22)
COPNER

(COLING 22)
LASER

(ACL 22)
COPNERLiLT

(COLING 22)
PPTSERLiLT

(Ours)
COPNERLMv3

(COLING 22)
PPTSERLMv3

(Ours)

FUNSD

1-shot 22.85 18.67 36.61 53.79 50.91 49.01 56.27
3-shot 33.39 30.97 46.71 67.26 67.24 73.54 75.18
5-shot 37.23 32.57 46.80 71.40 72.95 75.40 79.53
7-shot 40.29 35.43 51.17 72.81 74.14 78.63 81.31

Full Data 67.53 63.39 69.08 87.45 88.89 91.45 91.96

CORD-Lv1

1-shot 73.23 67.42 65.56 86.93 90.62 86.80 90.05
3-shot 82.85 81.37 75.43 94.39 94.97 93.99 95.14
5-shot 86.87 85.87 82.07 94.94 96.38 95.65 96.20
7-shot 86.65 86.54 83.54 95.12 96.25 96.05 96.53

Full Data 95.93 95.83 96.50 99.23 99.43 99.45 99.45

CORD

1-shot 57.45 51.22 - 70.27 75.35 67.14 74.02
3-shot 71.42 67.26 - 81.48 83.85 79.89 85.09
5-shot 77.70 74.59 - 84.92 87.03 85.13 87.71
7-shot 78.51 75.69 - 85.86 87.74 86.83 88.37

Full Data 93.56 92.33 - 95.75 96.06 95.79 96.39

XFUND-zh

1-shot 27.02 23.98 - 49.49 64.90 53.37 54.59
3-shot 35.94 35.72 - 64.69 71.54 69.98 72.36
5-shot 43.18 42.93 - 68.21 77.07 73.48 76.57
7-shot 45.13 44.66 - 72.61 77.70 76.42 77.95

Full Data 64.75 65.59 - 87.23 88.17 91.10 91.04

(a) Precision (%) of PPTSER and other Few-shot methods.

Modality Text Text + Layout Text + Layout + Image

Methodology
EntLM

(NAACL 22)
COPNER

(COLING 22)
LASER

(ACL 22)
COPNERLiLT

(COLING 22)
PPTSERLiLT

(Ours)
COPNERLMv3

(COLING 22)
PPTSERLMv3

(Ours)

FUNSD

1-shot 28.01 21.53 41.05 56.72 61.77 54.43 70.07
3-shot 37.56 32.12 46.55 70.17 71.35 78.32 78.64
5-shot 42.42 38.28 52.14 75.59 77.76 79.83 83.65
7-shot 42.79 39.57 54.08 73.92 77.38 78.45 81.91

Full Data 67.31 65.81 69.41 88.04 89.26 91.06 92.05

CORD-Lv1

1-shot 75.38 69.90 68.12 87.01 90.38 87.16 89.99
3-shot 84.54 83.17 76.77 93.95 94.61 94.06 95.12
5-shot 87.35 86.30 82.42 94.78 96.04 95.84 96.23
7-shot 87.99 86.97 83.71 94.96 96.00 96.07 96.50

Full Data 95.94 95.97 96.62 99.19 99.42 99.45 99.45

CORD

1-shot 58.29 53.79 - 69.83 75.80 67.51 74.35
3-shot 71.95 68.35 - 81.08 83.82 80.24 85.45
5-shot 77.78 74.69 - 84.68 87.08 85.47 87.84
7-shot 78.76 76.51 - 85.66 87.72 86.91 88.59

Full Data 93.45 92.68 - 95.72 96.03 95.79 96.40

XFUND-zh

1-shot 26.35 23.26 - 48.26 70.68 55.67 59.24
3-shot 39.62 40.48 - 64.88 77.22 72.89 78.58
5-shot 44.03 46.14 - 70.00 82.02 79.92 82.23
7-shot 48.46 49.58 - 76.58 85.44 82.47 84.30

Full Data 67.72 68.71 - 91.20 93.20 92.91 93.37

(b) Recall (%) of PPTSER and other Few-shot methods.

Table 7: Precision and Recall of PPTSER and other Few-shot methods. Metrics in Bold is the best, and that with
underline is the second best.
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CORD

7th block 8th block 9th block 10th block 11th block 12th block

1-shot 68.27 69.63 68.34 68.93 74.27 75.57
3-shot 80.09 81.16 80.81 81.51 82.89 83.83
5-shot 84.29 85.25 85.00 84.84 86.41 87.06
7-shot 84.58 85.86 85.48 85.97 86.79 87.73
Full Data 95.63 95.59 95.48 96.12 95.86 96.04

∆ -3.47 -2.55 -3.03 -2.57 -0.80 -

(a) F1 score (%) of PPTSER on CORD benchmark when obtaining the attention weight from different blocks.

CORD

7th block 8th block 9th block 10th block 11th block 12th block

1-shot 67.36 69.02 67.86 68.53 73.91 75.35
3-shot 79.76 81.19 80.78 81.46 82.76 83.85
5-shot 80.98 85.38 85.01 84.78 86.22 87.03
7-shot 84.41 85.92 85.52 85.97 86.68 87.74
Full Data 95.70 95.64 95.55 96.16 95.87 96.06

∆ -4.36 -2.58 -3.06 -2.63 -0.92 -

(b) Precision (%) of PPTSER on CORD benchmark when obtaining the attention weight from different blocks.

CORD

7th block 8th block 9th block 10th block 11th block 12th block

1-shot 69.21 70.25 68.83 69.34 74.64 75.80
3-shot 80.43 81.14 80.84 81.56 83.03 83.82
5-shot 80.41 85.13 84.99 84.89 86.60 87.08
7-shot 84.75 85.80 85.43 85.97 86.90 87.72
Full Data 95.57 95.54 95.41 96.09 95.85 96.03

∆ -4.02 -2.52 -2.99 -2.52 -0.69 -

(c) Recall (%) of PPTSER on CORD benchmark when obtaining the attention weight from different blocks.

Table 8: Performances of PPTSER on CORD benchmark when obtaining the attention weight from different blocks.
∆ denotes the average deviation of the corresponding metrics compared to that in the 12th block.

D.3 Further Analysis of Attention weights994

obtained from different blocks995

We additionally provide the numerical metrics of996

distinct settings to obtain the attention weight from997

different blocks. Table 8 illustrates the experi-998

mental results, indicating that obtaining attention999

weights from the last block yields the best perfor-1000

mance of F1 score, precision, and recall. Although1001

the reduction of parameters alleviates over-fitting1002

to some extent, since some shallower blocks outper-1003

form certain deeper ones in the 1-shot scenario, our1004

default setting to obtain the attention weight from1005

the last block significantly outperforms the alterna-1006

tive settings of obtaining the attention weight from1007

shallower blocks. This finding strongly reinforces1008

the effectiveness of our design.1009

D.4 Further Analysis of Different Designs on 1010

PPTSER 1011

Besides, we also offer the precision and recall of 1012

our PPTSER under different designs in Table 9a 1013

and Table 9b. The outcomes clearly indicate that 1014

our PPTSER, characterized by its meticulous de- 1015

sign, outperforms other designs across all metrics 1016

evaluated, including the F1 score, Precision, and 1017

Recall. This superiority not only showcases the 1018

robustness of our design but also significantly sub- 1019

stantiates the efficacy of our PPTSER framework in 1020

tackling the few-shot SER problem on visually-rich 1021

documents. 1022
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Model
Designs

Baseline Decoupling Strategies Prompt Engineering Aggregation Stratergies
default setting plain BIO prompt unrelated words random embeddings mean single head

1-shot 75.35 73.92 70.58 71.32 74.16 74.92
3-shot 83.85 82.44 82.83 83.24 83.04 84.07
5-shot 87.03 86.50 85.84 86.47 86.61 86.97
7-shot 87.74 86.64 86.44 87.09 86.76 87.30
Full Data 96.06 95.58 96.27 95.75 96.23 96.08

∆ - -0.99 -1.61 -1.23 -0.64 -0.14

(a) Precision (%) of PPTSER on CORD benchmark with different designs.

Model
Designs

Baseline Decoupling Strategies Prompt Engineering Aggregation Stratergies
default setting plain BIO prompt unrelated words random embeddings mean single head

1-shot 75.80 74.66 71.03 71.54 74.69 75.51
3-shot 83.82 82.37 82.54 82.90 83.06 83.77
5-shot 87.08 86.01 85.72 86.11 86.67 86.99
7-shot 87.72 86.35 86.40 86.81 86.71 87.19
Full Data 96.03 95.00 96.24 95.70 96.18 96.03

∆ - -1.21 -1.70 -1.48 -0.63 -0.19

(b) Recall (%) of PPTSER on CORD benchmark with different designs.

Table 9: Precision and Recall of PPTSER on CORD benchmark with different designs. ∆ denotes the average
deviation of the corresponding metrics relative to the default setting.

E In-depth Parameter Analysis of1023

PPTSER over Traditional Fine-tuning1024

We provide a further analysis of the parameter1025

counts in this section. As shown in Table 4, our1026

PPTSER maintains consistent parameters across1027

different benchmarks with the same pre-trained1028

model. This is attributed to the fact that PPTSER1029

does not necessitate an additional classifier layer,1030

unlike the traditional fine-tuning method. Conse-1031

quently, the parameter variance arises when em-1032

ploying the traditional fine-tuning method with1033

the same pre-trained models on different bench-1034

marks, owing to variations in the number of entity1035

types present in those benchmarks. Furthermore,1036

as PPTSER omits the value transform layer and the1037

feed-forward layer in the final attention block, we1038

achieve a reduction in the parameter count of the1039

pre-trained model it is based on. Additionally, the1040

extent of parameter reduction varies among differ-1041

ent pre-trained models due to disparities in their1042

architectural designs, resulting in slice differences1043

in the eliminations of the modules.1044
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