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Abstract

Visually-rich document information extraction
(VIE) is a vital aspect of document under-
standing, wherein Semantic Entity Recognition
(SER) plays a significant role. However, few-
shot SER on visually-rich documents remains
relatively unexplored despite its considerable
potential for practical applications. To address
this issue, we propose a simple yet effective
Plug-and-Play Tag-guided method for few-
shot Semantic Entity Recognition (PPTSER)
on visually-rich documents. PPTSER is built
upon off-the-shelf multi-modal pre-trained
models. It leverages the semantics of the tags
to guide the SER task, reformulating SER into
entity typing and span detection, handling both
tasks simultaneously via cross-attention. Exper-
imental results illustrate that PPTSER outper-
forms existing fine-tuning and few-shot meth-
ods, especially in low-data regimes. With
full training data, PPTSER achieves compa-
rable or superior performance to fine-tuning
baseline. For instance, on the FUNSD bench-
mark, our method improves the performance
of LayoutLMv3-base in 1-shot, 3-shot and 5-
shot scenarios by 15.61%, 2.13%, and 2.01%,
respectively. Overall, PPTSER demonstrates
promising generalizability, effectiveness, and
plug-and-play nature for few-shot SER on
visually-rich documents. The codes will be
available at https://anonymous.for.review.

1 Introduction

Information extraction from visually-rich docu-
ments (VIE) is a process that concentrates on ex-
tracting pertinent information from various sources
such as scanned images, documents, and PDF files.
It effectively leverages layout and visual cues to de-
code the content enclosed within these documents
(Xu et al., 2020). As an important part of VIE,
Semantic Entity Recognition (SER) aims to extract
entity spans from the visually-rich document. SER
has been hailed as a significant advancement in

the realm of document intelligence, and has found
widespread applications in numerous sectors.

The advent of multi-modal pre-trained models
(Xu et al., 2020; Li et al., 2021c; Gu et al., 2021;
Huang et al., 2022b; Yu et al., 2023) has ushered
in a rapid evolution in SER methodologies. These
models, pre-trained on a large corpus of scanned
documents in a self-supervised manner, have sig-
nificantly enhanced the comprehension ability of
SER. Despite the remarkable achievements of the
multi-modal pre-trained models, they often rely on
extensive data for fine-tuning. However, acquiring
a large volume of well-annotated SER data poses
significant challenges such as: (1) Acquiring such
data necessitates substantial financial resources and
time. Annotators are required to label a multitude
of OCR detection boxes in the document, adhering
to meticulously designed guidelines. Identification
of content within a box and accurately assigning
labels to them are also tedious tasks. (2) The avail-
ability of data is often restricted due to privacy
concerns. In scenarios involving sensitive infor-
mation, such as invoices and insurance documents,
data accessibility is severely limited due to the con-
fidential nature of this information.

Despite the scarce research (Cheng et al., 2020;
Yao et al., 2021; Wang and Shang, 2022) on few-
shot Semantic Entity Recognition for visually-rich
documents (few-shot SER), results have shown lim-
itations in terms of generality and performance, and
were limited to the specific application scenario.
This paper, inspired by the comprehension capabil-
ities of pre-trained models and the selective focus
nature of the attention mechanism, introduces a
novel approach called PPTSER, a Plug-and-Play
Tag-guided method for few-shot Semantic Entity
Recognition on visually-rich documents. The un-
derlying principle of PPTSER consists of three
main components: (1) Semantic Understanding
and Alignment: Words related to SER tags are
used as a prompt and are concatenated with the
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Figure 1: (a) [lustration of the traditional fine-tuning method. Doc. Tok. refers to Document Tokens. (b) Overview
of our PPTSER method. PPTSER replaces the last self-attention block with an improved attention block and omits
an extra classifier layer compared to traditional fine-tuning, which has less modules and parameters.

document’s text tokens. This combined input is
then fed into a multi-modal pre-trained model. The
motivation behind this is that the pre-trained model
is expected to understand the semantics of both
the document tokens and the tag-related prompt,
thereby bringing the hidden states of the tokens
and tag-related words for a specific entity type
closer together. (2) Decoupling of SER task: SER
task is segmented into Entity Classification and
Entity Boundary Detection. This division aims to
facilitate the resolution of boundary determination
among adjacent entities of the same category within
visually-rich documents. (3) Efficient Usage of
Multi-head Attention: The attention weight ob-
tained from the last attention block between the
tag-related prompt and document tokens is directly
used as the probability of tokens belonging to dif-
ferent tags. This mechanism, with different heads
detecting various spans, is ideal for the SER task
with numerous entity spans. By fully exploiting
the weighted focus nature of the attention mech-
anism, the model eliminates the value transform
layer, feed-forward layer in the last attention block,
and omits a separate classifier layer compared to
traditional fine-tuning methods (as depicted in Fig-
ure 1), As a result, the total parameter is reduced.

Extensive experiments are conducted to show the
PPTSER’s effectiveness on commonly-used SER
benchmarks, covering multiple languages, in few-
shot to the full training set settings, and using dif-
ferent mainstream multi-modal pre-trained models.

The main contributions of this paper can be sum-
marized as follows:

* We have demonstrated that the semantics of
labels can effectively guide the SER task and
have proposed a plug-and-play method ideal
for few-shot SER on visually-rich documents.
To the best of our knowledge, we are the first
to propose a pluggable method that has shown
effectiveness on various pre-trained models
and languages.

* By innovatively leveraging the multi-head
attention mechanism embedded in the pre-
trained model, our method successfully ex-
tracts dense entities on visually-rich docu-
ments without adding any additional parame-
ters.

* Experimental results show the superiority of
our method over the traditional fine-tuning ap-
proaches in both few-shot and full-training-set
scenarios. Moreover, PPTSER outperforms
existing few-shot SER methods by significant
margin, thereby underscoring its overall effi-
cacy.

2 Method

2.1 Task Formulation

SER is usually formulated as a sequence labeling
task. For given tokens from the document x =
[;],7=1,2,...,n, SER aims to assign a label y; €
C for each token x;, where C is the SER label space.
Subsequently, entity spans would be analyzed from
the labeled tokens according to a specific scheme,
such as BIO (Ramshaw and Marcus, 1995) and I0
(Tjong Kim Sang and De Meulder, 2003).

In this paper, we primarily focus on the In-
Label-Space setting for few-shot SER. Specifi-
cally, the pre-trained model is firstly fine-tuned
on a small number of M annotated documents with
label space C and then directly evaluated on the test
set with the same label space C. This task presents
a significant challenge as the model needs to learn
the SER task with only limited training samples.

It is notable that in the context of few-shot SER,
the few-shot setting of N-way K-shot indicates that
each of the N categories has K documents contain-
ing entities of that category as the support set, as
visually-rich documents are annotated at document
level. Moreover, a document often contains entity
spans of distinct types, causing potential overlaps
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Figure 2: The overall architecture of PPTSER. Other Embeddings may include various embeddings such as Visual
Embedding, Type Embedding, among others, with their presence and format dependent on the type of the pre-trained
model used. In this architecture, the tokens extracted from documents and the tag-related prompt are concatenated
and subsequently encoded with the pre-trained model. The attention weight, obtained from the last attention block
between tokens and the prompt, is then used to ascertain whether the tokens correspond to the respective label type.

between the support sets for different entity types
across [V categories. Consequently, the overall
number of annotated documents M < N x K.

2.2 PPTSER

The fundamental concept and flow chart of
PPTSER is shown in Figure 2. The method be-
gins with the construction of a prompt based on
SER tags. This prompt is then concatenated with
the document tokens and jointly encoded using a
unified pre-trained model. Within the transformer
architecture of our model, attention weights be-
tween document tokens and the tag-related prompt
are computed in hierarchical attention blocks. We
use the attention weight between the tag-related
prompt and document tokens, which can be consid-
ered as a form of cross-attention, obtained from the
last attention block as the probability distribution
of tokens belonging to different SER entity types.

2.2.1 Tag-related Prompt Construction and
Target Generation

For an SER task with the label space C, we need
to construct tag-related words ¢; for each ¢; € C,
and then the tag-related prompt C = {¢},i =
1,2,...m is built. In PPTSER, we simply use the
tag names as the tag-related words.

To enable PPTSER to accurately identify the
boundaries of entity spans, we employ BIO tag-
ging scheme in our method. However, when
dealing with an SER task involving entity types
E = {eleo = Other},i = 0,1,2,...m

(where Other represents the entities that are not
of interest), the label space would be C =
{eo, Be,, I, }, and the prompt would be C =
{eo, beginningof e;, inner of e;}, where i =
1,2,...,m. In such a scenario, the prompt C be-
comes not only semantically redundant but also
excessively long, potentially impeding the effec-
tive semantic learning of the document tokens.

Thus, we reframe the SER task with a BIO tag-
ging scheme into two separate tasks: entity typing
and span detection. Entity typing involves assign-
ing an entity type for each document token, while
span detection aims to identify whether tokens are
at the beginning or interior of an entity span.

To further clarify, consider an SER task using
BIO tagging scheme with a predefined entity type
set E = {ejleg = Other},i = 0,1,2,...,m.
For entity typing, the label space and the tag-
related prompt would be C" = {c¢™| g™ =
ei} and Co = {&nt|egnt = "t} where
1 = 0,1,2,...,m; And for span detection, the
label space and the prompt would be Cét =
{Ccllet.’ Cglet.} and @det. — {5511815.’ 551815.}7 where
Cdet- = Cdet- = {beginning, inner}; Then the
full label space and prompt would be C = C*"*- U
Qdet. — {Cfnt',c;-let'} and @ _ Cent. U @det. _
{egnt edet}, where i = 0,1,2,...,m; j = 1,2.
For a token with an entity type of e; (i # 0) located
at the beginning/inner of an entity span, the cor-
responding labels would be ¢; for entity typing and
beginning/inner for span detection. However,
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Figure 3: (a) PPTSER at training stage. Losses of entity typing and span detection are computed separately and then
combined for the overall loss calculation. And —1 signifies that the loss at those points is disregarded. (b) PPTSER
at inference stage. Combined predictions of entity typing and span detection are utilized to analyze the entity spans.

for the token with an entity type of Other, the
specific location of it within an entity span is irrele-
vant, and the loss for span detection is ignored here.
Consequently, we can formulate the entity typing

target y*"** = [y¢""] and the span detection target
ydet: = [ydet], where i = 1,2, ...,n

It is worth emphasizing that our PPTSER frame-
work handles entity typing and span detection si-
multaneously. And prompts for them Cent- and
C%t- are encoded in parallel, allowing them to ben-
efit from each other during the learning process.

2.2.2 Cross-attention within the Pre-trained
Model

Once the tag-related prompt C is constructed, it
is concatenated with the document tokens = =

[zi],i = 1,2, ..., n, forming a boosted input T =
e@C = [2;,¢", M0 = 1,2,..,n;] =
0,1,2,....,m; k = 1,2. Then, =’ is used as the

Text Embedding encoded in the pre-trained model.
Notably, when C involves other kinds of embed-
ding, such as positional or visual embeddings, they
are set to 0, since C are hypothetical tokens not
found in the document. Let’s denote the hidden
states from the second last block as H'~!:

H'™ = (R by by (1)

where hzt-*l, ﬁ;fl, ﬁifl are the hidden states for
x, Cent- Cdet- | correspondingly.

Then, H'~! is partitioned into multiple seg-
ments H f ~1 along the channel dimension, where
queries Q' and keys K of the i*" attention head
are transformed as follows:

Qi = (W) H;™ )
K} = (W) H]™! 3)

where (W}), and (W} ), are learnable weights em-
bedded in the last attention block. And the self-
attention weight of distinct heads is computed as
below:

(Whan. = QUKDNT (4)

where (W) 4. is a matrix with the shape of (n +
m+3) x (n+m+ 3). From this matrix, we
extract a sub-matrix (W}),,, that takes the prompt
as queries and the document tokens as keys, which
possesses the shape of (m+3) xn. (W}).,, canbe
viewed as a form of cross-attention within the self-
attention, which depicts the relationship between
the tag-related prompt and document tokens.

We hypothesize that distinct heads of the atten-
tion mechanism enable the prompt to focus on dis-
tinct entity spans, which is suitable for the entity-
rich scenario in visually-rich documents. We select
the maximum weight across heads to get a sum-
mary relationship between the prompt and tokens:

!
(Wt)att. = e

/

(W)au. ®)

max
{1,2,...1}

Further, (W?),,, is partitioned into two com-
ponents, namely (W< and (W)%! as shown
in Figure 3(a). These components use the hidden
states of Ce* and C9€t- as queries, and possess the
shape of (m + 1) x n and 2 x n, correspondingly.
(WHent- and (W*)9e! represent the probability
distribution for document tokens belonging to dis-
tinct tags. The losses are then calculated as follows:

ent
exp(wyi")
Lent. — _72 (6)
Z] =0 6.’I,‘p ent )
er det
Ldet. — _75 p ) (7)

— j 16-179( det)

where L and Ldet' are the losses for entity typ-
ing and span detection, w¢ and wd* are el-

L v
ements in (W)gi and (W)%E. and i =

gt ydet: = cget'. And the total loss is formu-
lated as follows:
Loss = L™ 4+ a L4 (8)

Here, « is the ratio factor to balance the losses,
and we set a = (.1 for models with segment-level
positional embeddings and o« = 1.5 for models
with word-level positional embeddings.
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Text + Layout + Image

BROS (AAAI 22) LiLT (ACL 22) LayoutLMv2 (ACL 21) | LayoutLMv3 (MM 22)
Methodology FT Ours FT Ours FT Ours FT Ours

l-shot | 48.08 54.391031 | 5260 55.641501 (4822 5217139 | 4637  61.98 11>6!

3-shot | 64.34 67.70 336 | 67.64 69.17 1152 | 61.66  63.64 1% | 7473 76.86 1 %13

FUNSD 5-shot | 67.77 70.64 1257 | 7329 7526197 | 65.86 674963 | 7952  81.53 1201
7-shot | 68.21 7196137 | 7339 75711232 | 6655  68.83122% | 79.84  81.60 T -7

Full Data | 83.83 83.917005 | 8895 89.0770-12 | 8352 83721020 | 91.15  92.01 T 0%

I-shot | 66.28 68.481220 | 7004 75571554 | 69.61  69.971056 | 7035 74,1913

3-shot | 79.02 79.6170°9 | 81.64 83.837%19 | 80.63  81.66 03 | 8205 8527732

CORD S-shot | 84.04 84.37103% | 8552 87.06 - | 8432 84531021 | 8583 8777119
7-shot | 83.68 84.09 1042 | 8535 87.731238 | 8476 85311055 | 86.94 884871154

Full Data | 95.72 95751003 | 9580 96.04 0% | 9520 95631041 | 9634  96.39 T 0-0°

1-shot - - 60.10 67.64 171 | 6028  68.26 %% | 5292  56.651%7

3-shot - - 72.61 74171156 | 7437 772072885 | 69.08  75.24 1616
XFUND-zh  3-shot - - 7740 79.40 1200 | 8143 82341091 | 7525  79.26 40!
7-shot - - 80.47 81.381091 | 8225  83.66 4 | 7785  80.97 1312

Full Data - - 90.47 90.61 1014 | 90.25 9(.79 10-54 91.61 02,19 T 0.58

Table 1: F1 score (%) of PPTSER and traditional Fine-tuning methods. F1 score in Bold is better between our
PPTSER and Fine-tuning. FT refers to Fine-tuning methods.

2.2.3 Decoding during the Inference Stage

The inference stage is shown in Figure 3(b). We
first apply the argmazx operation on (W)€ and
(W)del- along distinct prompt words to get the

predicted tag with the highest probability:

g)f"t' = argmax wj"f?t' 9)
j€{0,1,2....m}
gdet = argmax wiet (10)
Jje{1,2}

Then the prediction with BIO tagging scheme

Uy = [4i],7 = 1,2, ...,n is formulated as follows:
Byent. ,J§mt £ Other, 3¢ = beginning

Yi = § Lyent , g™ =£ Other, Qf“' = inner
Other ,j¢™ = Other

(11

Finally, the entity spans are analyzed from g us-
ing the BIO tagging scheme. Notably, spans not
conform to BIO scheme, especially those starting
with a token predicted as g);iet- = inner, are la-
beled as Other. This operation, aimed at enhanc-
ing predicting accuracy, is applied in both PPTSER
and methods we compared to for a fair comparison.
To provide a more vivid demonstration of our
method, we offer an example run with PPTSER, re-
fer to Appendix C due to paper-length constraints.

3 Experiments

3.1 Experimental Settings

Benchmarks. We conducted experiments on
several widely used SER benchmarks, including
FUNSD (Jaume et al., 2019), CORD (Park et al.,
2019) and XFUND (Xu et al., 2022). FUNSD

targets form understanding with 199 scanned docu-
ments related to market reports, commercials, and
more. CORD, centered on receipt understanding,
features both coarse (e.g., menu, total) and fine-
grained (e.g., menu.unitprice, menu.price) annota-
tions. This benchmark provides an official split of
training, validation and test sets, and we strictly
follow the procedure by selecting the model weight
that achieved the best performance on the valida-
tion set for testing on the test set. XFUND focuses
on document understanding covering multiple lan-
guages. In this article, our primary focus is on the
Chinese subset of XFUND, denoted as XFUND-zh.

Few-shot Settings. PPTSER was evaluated on
1-shot, 3-shot, 5-shot, 7-shot and the full training
set scenarios. With no official few-shot divisions
in benchmarks mentioned above, we established
our own following the process in Appendix A. We
selected as few samples as possible while meeting
the few-shot setting, which aligns with the real-
world application. Due to the inherent instability
of few-shot experiments, we randomly generated
5 different divisions for every scenario and tested
each with 2 diverse random seeds. Hence, our ex-
periment result is the average of 10 runs, ensuring
the reliability and credibility of our findings.

3.2 Comparisons with Existing Fine-Tuning
Methods

Setup. The foundation for our method is built
upon several widely used multi-modal pre-trained
models, incorporating different combinations of
modalities as input. This includes BROS (Hong
etal.,2022) and LiLT (Wang et al., 2022a) with tex-
tual and layout input, and LayoutLMv2 (Xu et al.,



Modality Text Text + Layout ‘ Text + Layout + Image
Methodology EntLM <COPN1?R LASER COPNER rirr  PPTSERp;r7 | COPNER 3 PPTSERy /03
(NAACL 22) (COLING 22) | (ACL22) (COLING 22) (Ours) (COLING 22) (Ours)
1-shot 24.32 19.37 38.47 55.15 55.64 51.19 61.98
3-shot 34.94 31.21 44.88 68.66 69.17 75.84 76.86
FUNSD 5-shot 39.55 35.13 49.31 73.43 75.26 71.55 81.53
7-shot 41.41 37.31 52.56 73.35 75.71 78.53 81.60
Full Data 67.42 64.58 69.23 87.74 89.07 91.26 92.01
1-shot 74.29 68.61 66.80 86.97 90.50 86.98 90.02
3-shot 83.68 82.25 76.09 94.16 94.79 94.03 95.13
CORD-Lv1 5-shot 87.11 86.08 82.23 94.86 96.21 95.74 96.21
7-shot 87.31 86.74 83.61 95.04 96.13 96.06 96.51
Full Data 95.93 95.90 96.56 99.21 99.42 99.45 99.45
1-shot 57.86 54.52 70.05 75.57 67.33 74.19
3-shot 71.68 71.32 81.27 83.83 80.07 85.27
CORD 5-shot 77.74 78.98 84.80 87.06 85.30 87.77
7-shot 78.63 78.63 85.76 87.73 86.87 88.48
Full Data 93.50 94.16 95.74 96.04 95.79 96.39
1-shot 26.38 23.29 48.76 67.64 54.26 56.71
3-shot 37.22 37.49 64.59 74.17 71.27 75.24
XFUND-zh 5-shot 43.54 44.36 69.03 79.40 76.37 79.26
7-shot 46.62 46.90 74.44 81.38 79.29 80.97
Full Data 66.20 67.11 89.17 90.61 91.99 92.19

Table 2: F1 score (%) of PPTSER and other Few-shot methods. F1 score in Bold is the best, and that with underline

is the second best.

2021a) and LayoutLMv3 (Huang et al., 2022b)
with textual, layout and image input. Since BROS
only supports English, we only tested it on FUNSD
and CORD. For testing on XFUND-zh, we used
LayoutXLM (Xu et al., 2021b), which is the mul-
tilingual version of LayoutLMv2. In our experi-
ments, we utilized base-size pre-trained models.
Results. Table 1 showcases the performance of
PPTSER against traditional fine-tuning methods.
The results clearly demonstrate that our PPTSER
outperforms traditional fine-tuning methods across
all tested scenarios and benchmarks. This under-
scores the superior performance of PPTSER in di-
verse language contexts with various base models.
Overall, both PPTSER and the fine-tuning
method demonstrate improved performance with
increased training data. However, our PPTSER con-
sistently outperforms previous fine-tuning meth-
ods in all few-shot settings, especially with ex-
ceptionally scarce data. In the 1-shot scenario on
FUNSD, where only a single annotated document
is available, PPTSER achieves gains of +6.31%
with BROS, +3.04% with LiLT, +3.95% with Lay-
outLMv2 and the highest gain of +15.62% with
LayoutLMv3, emphasizing its effectiveness in data-
scarce situations. Notably, even when trained with
the full training data, our PPTSER still achieves
comparable performance to the fine-tuning method,
and even outperforms it in certain scenarios. For
example, we observe a gain of +0.86% on FUNSD
with LayoutLMv3. This full data setting is often
neglected in other few-shot research, further un-

derscoring the superiority of our approach when
dealing with varying amounts of available data.

Our findings demonstrate that PPTSER is highly
adaptive to different amounts of training data with
distinct base models, making it an effective method
for addressing the SER problem.

3.3 Comparisons with Existing Few-shot
Methods

Setup. We selected the PPTSER models that per-
formed better under different modality settings, de-
noted as PPTSER;;;r and PPTSER; .3, and com-
pared them with previous few-shot methods. For
a comprehensive comparison, we re-implemented
LASER (Wang and Shang, 2022) on our few-shot
divisions. However, it can only handle the coarse-
level typing for CORD (CORD-Lv1) and is limited
to the English language. Since research on few-
shot SER is rather limited, we selected two other
few-shot NER methods for comparison. Specifi-
cally, We chose COPNER (Huang et al., 2022a)
and EntLM (Ma et al., 2022b) due to their simi-
lar In-Label-Space setting with ours. Considering
COPNER can also be used as a pluggable method,
we also integrated it with LayoutLMv3 and LiLT,
denoted as COPNER;;7 and COPNER ;3.
Results. The overall experimental results are
presented in Table 2. The results clearly show that
PPTSER outshines existing few-shot NER and SER
methods by a large margin. Interestingly, COPNER
shows some degree of pluggability with various
multi-modal pre-trained models, but PPTSER still



Model Baseline Decoupling Strategies Prompt Engineering Aggregation Stratergies
Designs | default setting plain BIO prompt unrelated words — random embeddings | mean single head
1-shot 75.57 74.28 70.80 71.43 74.43 75.21
3-shot 83.83 82.41 82.69 83.07 83.05 83.92
5-shot 87.06 86.25 85.78 86.29 86.64 86.98
7-shot 87.73 86.49 86.42 86.95 86.74 87.24
Full Data 96.04 95.29 96.26 95.72 96.21 96.06
A - | -1.10 | -1.66 -1.35 | -0.63 -0.17

Table 3: F1 score (%) of PPTSER on CORD benchmark with different designs. A denotes the average deviation of

the F1 score relative to the default setting.
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Figure 4: F1 score (%) of PPTSER on CORD bench-
mark with different settings when obtaining the attention
weight from different blocks.

outperforms it across all settings and benchmarks.

In summary, our PPTSER surpasses existing few-
shot NER and few-shot SER methods on various
visually-rich documents, showcasing its effective-
ness in handling few-shot SER challenge.

4 Ablation Study

We have conducted extensive analyses of our
PPTSER to ensure its effectiveness and rationality.
For convenience, experiments are conducted on the
CORD dataset using PPTSER building upon LiLT.
Origin of Attention Weights. To pinpoint the
source of superiority in PPTSER, we explored
whether it stems from our meticulous design or the
decreased over-fitting achieved through parameter
reduction. We extracted attention weights from var-
ious blocks, including the default 12" block and
shallower 7" ~ 11" block. And the experimen-
tal results shown in Figure 4 reveal that extracting
attention weights from the last block is more ef-
fective than from other blocks, which has greatly
assured the effectiveness of our design.
Effectiveness of Decoupling Strategies. Table
3 also shows comparisons with different frame-
works of prompts. In this context, default set-
ting refers to our design to decouple the SER task
into entity typing and span detection then process-
ing them concurrently, while plain BIO prompt
refers to the direct usage of the aforementioned
C = {ep, beginning of e;, inner of e;} as the

prompt, without decoupling. The result shows that
our decoupling avoids disrupting the language mod-
eling of document tokens and performs better.
Prompt Engineering. We evaluated PPTSER
using diverse prompt types. Beyond the default
setting that uses tag names as prompts, we ex-
plored an unrelated words setting by replacing the
whole prompts with irrelevant words like apple
and orange. In the random embeddings setting, we
replaced the whole prompt’s text embedding with
random tensors. As Table 3 indicates, the default
setting yields the highest score, suggesting the pre-
trained model does grasp the prompt’s semantics,
and tag semantics can direct the SER task. This in-
dicates the careful selection and design of prompts
can markedly influence model performance.
Aggregation Strategies of Attention Weights.
Table 3 compares how various strategies to aggre-
gate attention weights across different heads affect
performance. While default setting and mean refer
to obtain the maximum and average value across
attention weighs of distinct heads, single head uses
just a single head of the attention weights to gen-
erate the final probability. The results indicate that
the max operation outperforms others, which aligns
with our hypothesis that different attention heads
focus on entities with different semantics.
Parameter Efficiency. The parameter compar-
isons of our PPTSER methods and traditional fine-
tuning are presented in Table 4. As the parameters
might vary across diverse models and benchmarks,
we offer a concise breakdown of the results from
the methods we have tested. The results illustrate
that our PPTSER has fewer parameters in compari-
son to traditional fine-tuning methods. For a more
detailed analysis, please refer to Appendix E.

5 Related Works

SER on Visually-rich Documents. Although
some early works of SER relied on heuristic al-
gorithms (Simon et al., 1997; Schuster et al., 2013),
the majority of research focused on neural network-
based methods. Some of them leveraged textual



BROS (AAAL22) LiLT (ACL 22) LayoutLMv2 (ACL 21) | LayoutLMv3 (MM 22)
Methodology FT Ours FT Ours FT Ours FT Ours
FUNSD 108.91IM  103.59M | 130.17M 123.81M | 200.29M  194.38M | 125.33M  119.42M
CORD 108.95M  103.59M | 130.22M  123.81M | 200.33M  194.38M | 12596M  119.42M
XFUND-zh 130.17M  123.81M | 200.29M  194.38M 125.33M  119.42M

Table 4: Parameters of our PPTSER and traditional Fine-tuning methods. The metric in Bold indicates the method
with fewer parameters. FT refers to Fine-tuning method.

features (Chiu and Nichols, 2016), visual features
(Guo et al., 2019), or combined them with layout
features (Yu et al., 2021; Wang et al., 2021a) to ad-
dress this issue, but the emergence of multi-modal
pre-trained models has revolutionized SER. These
models are jointly pre-trained on a large-scale un-
labeled document dataset with textual, layout, and
even visual cues, so they have the potential to bet-
ter understand a structured document. LayoutLM
(Xu et al., 2020) was the first to combine textual
and OCR positional features at the pre-training
stage. Later, LayoutLMv2 (Xu et al., 2021a) and
LayoutLMv3 (Huang et al., 2022b) further inte-
grated visual features into the pre-training process
with different architectures. Moreover, Wang et al.
(2022a) advanced the model architecture with a
language-agnostic layout transformer in their work,
LiLT. Alongside the advancements in model struc-
tures, other works (Appalaraju et al., 2021; Li et al.,
2021b,a; Hong et al., 2022; Luo et al., 2023) have
focused on the diverse pre-training tasks to facili-
tate the fusion of diverse modalities at pre-training
stage. While these advancements have improved
SER capabilities to some extent, their few-shot
learning abilities still require further examination.

Few-shot SER on Visually-rich Documents.
Unlike SER, few-shot SER is not fully explored
yet. Cheng et al. (2020) proposed to utilize graph-
matching techniques (Zanfir and Sminchisescu,
2018), representing documents as graphs with
nodes as OCR-scanned boxes. For an unseen docu-
ment, the type of entities was determined by com-
paring the relationships in the graph of unseen doc-
ument with those in the graphs of support docu-
ments. Yao et al. (2021) also adopted a graph-
matching approach to address this issue, but the
entity type was determined based on the relation-
ships in different forms with more complex solvers.
Taking a different way, Wang and Shang (2022)
introduced a novel labeling scheme for SER. They
reshaped SER as a generative task, and used Lay-
outReader (Wang et al., 2021b) for SER label gener-
ation. Although these studies preliminary explored
few-shot SER, they lacked generality and plugga-
bility, and their performances in various scenes

require further exploration and improvement.
Few-shot NER in Plain Texts. While few-shot
SER on visually-rich documents has seen limited
exploration, there has been extensive research on
few-shot Named Entity Recognition (NER) in plain
texts (Wang et al., 2022b; Das et al., 2022; Ma et al.,
2022a; Cheng et al., 2023). However, only few of
these studies have considered the scenario where
only limited data in the target domain is available.
Huang et al. (2022a) proposed using the NER tag
as a prompt and employing contrastive learning to
address this issue. On the other hand, Ma et al.
(2022b) reformulated few-shot NER as a Language
Modeling task and used the pre-trained Masked
Language Model head to predict a word related
to the entity type for each text token. However,
since these methods are designed to address the
NER problem with sparse entities in plain texts,
they might not be suitable for entity-rich scenarios
in visually-rich documents. Additionally, they do
not emphasize the issue of detecting entity bound-
aries, without which adjacent entities of the same
type might be erroneously merged into one. The
comparison with two representative few-shot NER
methods also show the effectiveness of our method.

6 Conclusion

In this paper, we present PPTSER, an innovative
and efficient strategy for few-shot entity recogni-
tion on visually-rich documents using a plug-and-
play, tag-guided approach. PPTSER redefines the
SER task as a dual-function operation of entity
typing and span detection, and utilizeS the atten-
tion weight between document tokens and prompts
related to SER tags as the target probability distri-
butions. Our findings show that PPTSER is both
effective and versatile in various data situations,
from few-shot to full data scenarios. In the future,
we plan to further investigate the capabilities of
PPTSER across a range of VIE tasks like Entity
Linking. In addition, we aim to explore PPTSER’s
potential in other few-shot scenarios, particularly
those outside of the In-Label-Space setting. It is
our hope that our work will spark further research
and advancements in the realm of few-shot SER.



Limitations

Due to space constraints, our exploration of the
few-shot SER setting is primarily limited to the
In-Label-Space. Future research is essential to in-
vestigate the potential applications of our PPTSER
in other few-shot settings and its adaptability to
additional VIE tasks.

Ethical Considerations

Our proposed PPTSER is a purely methodological
innovation, which inherently avoids direct negative
social impacts. By leveraging the self-attention
mechanism within multi-modal pre-trained models
without adding extra modules, it does not intro-
duce additional ethical risks beyond those already
present in the existing multi-modal pre-trained
models.
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A Few-shot Divisions Generation

To cater to the real-world application scenarios, we
have organized our few-shot divisions from the full
training set with Algorithm 1. Our goal was to ran-
domly select the minimum number of documents
that satisfy the N-way K-shot requirement of each
of the N categories has K documents containing
entities of that category as the support set.

It is worth noticing that in the context of few-
shot SER on visually-rich documents, the few-shot
setting of N-way K-shot signifies that each of the
N categories has K documents containing entities
of that category as the support set, instead of there
are K entity spans for each of N entity types as
the support set for the setting of few-shot NER on
plain texts.

B Implementation Details

B.1 Implementation Details of PPTSER

We used one NVIDIA 3090 to fine-tune our model
with AdamW optimizer. The learning rate is be — 5
with a warm up ratio of 0.1, and we fine-tuned
the model for 2000 iterations with a batch size of
8 by default. Besides the default augmentation
strategies for images adopted in LayoutLMv2 and
LayoutLMv3, we did not employ any additional
augmentation strategies.

B.2 Modification on few-shot NER method for
visually-rich documents

In Section 3.3, we mentioned that we adapted two
methods originally used for few-shot NER on plain
text for few-shot SER on visually-rich documents.
We will briefly introduce these modifications.
COPNER (Huang et al., 2022a). The COP-
NER method employs contrastive learning, feeding
both entity label semantics and sentences into a
plain text pre-trained language model. This ap-
proach uses the hidden state output of the pre-
trained model to calculate a contrastive loss be-
tween sentence tokens and label semantics, then
determining the entity type of tokens. However,
the original COPNER could only determine if a
token belonged to an entity category, without rec-
ognizing boundaries between entities. Therefore,
we also improved it with the entity typing and span
detection framework introduced in our paper. That
is, while determining the entity type of tokens, we
also input the tokens beginning and inner into
the pre-trained model to detect the entity boundary.
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The model’s output hidden state is then used to cal-
culate a contrastive loss between sentence tokens
and these beginning and inner tokens.

Besides, we retained this core process but re-
placed the original language model pre-trained on
pure text with a multi-modal pre-trained model.
Experiments show that our use of multi-head cross-
attention methods is more suitable for SER tasks
on visually-rich documents, especially in Chinese
contexts.

EntLM (Ma et al., 2022b). EntLM treats NER
as a task of Language Modeling. For testing a
few-shot NER dataset on plain text, it first selects
a related word for each entity type. Then, using
the pre-trained Masked Language Modeling head
of BERT, it predicts the probability distribution
of each sentence token over these related words,
thereby determining the probability distribution of
tokens across different entity types.

The selection of related words relies on the
distant data obtained from BOND (Liang et al.,
2020), which uses BERT and the corpora from
Wikipedia to create rough annotations for the NER
test set. However, in the realm of visually-rich doc-
uments, such rough annotated data is not provided
by BOND, and due to the relative abstract expres-
sion of SER tags from natural language expressions
and the difference between structured documents
and natural language expressions, it’s not feasible
to obtain rough annotations using corpora from
Wikipedia with BERT. Therefore, we directly use
the ground truth annotations from the SER test set
as distant data to find related words associated with
entity types in the SER dataset. Although the ex-
perimental results on EntLM might be artificially
high due to some exposure to the entity distribution
in the test set, our proposed method significantly
outperforms others that only accept text modality
inputs, including EntLM.

In summary, methods for few-shot NER on plain
text may not necessarily transition well to the task
of few-shot SER on visually-rich documents. The
notable performance of our proposed method in
few-shot SER on visually-rich documents further
highlights the innovation and contribution of our
research.



Algorithm 1: Few-shot Divisions Generation

Input: Novel Dataset with the label space C = {cy, ca, ..., cy }, full training set D/
Output: N-way K-shot few-shot training set D"
1 Dtrain — {}
2 Number of documents that contain entities of ¢; in D7 Q = {¢1:0,¢2:0,...,cn: 0}
3 Document set that contain entities of ¢; in D/%: R = {c; : {},co: {},...,en : {}}
4 for doc; in DI do
5 for c; in C do
if doc; contain entities of c; then
Qlg] +=1
R|c;].append(doc;)
end

o e 9 &

10 end

11 end

12 Q' = sorted(Q, key = lambda x : z[1]) = {c} : n1,cy : na,....cy :nn} (1 <ng < ... <
nN)

13 Number of documents that contain entities of ¢; in D%": § = {¢1 : 0,¢5: 0,...,cy : 0}

14 for ¢} in keys of Q' do

'S

15 | for S[¢}] < K do

16 if R[c]] is empty then

17 ‘ break

18 end

19 Randomly select a document doc qndidate from R[c}]
20 R[C;] ’pop(doccandidate)

21 if doceandidate ¢ D" then

22 Drain., append(doccandidate)

23 for c; € Cdo

24 if doccandidate contain entities of c; then
25 ‘ S [Cj] +=1

26 end

27 end

28 else

29 continue

30 end

31 end

32 end

12



[CASETORM]

Donald ID. Sellers and Robin J . Sellers v. Raybestos-Manhattan, ct al.

[ASENAME:])

August 3, 1998

Asbestos

Larillard Tobacco Compar

my

San Francisea Superior Court - No. 996382

other

I:I header
I:I question

answer

9810528
S1I529h6

Figure 5: Illustration of a sample from FUNSD dataset. Different colored boxes represent the entities of distinct

kinds. Zoom in for better view.

C Examples when apply PPTSER

To more intuitively demonstrate our method, we
provide an example from FUNSD dataset when
apply our PPTSER method.

The FUNSD dataset includes three meaning-
ful entity types: header, question, and answer,
with all other uninteresting entities categorized
as other. Hence, the entity type set is E
{other, header, question, answer}. The label
spaces for entity typing and span detection are
Ce™- = {other, header, question, answer} and
Clet- = {beginning, inner}, respectively. We di-
rectly use the label’s names as tag-related prompts,
with the prompts for entity typing and span detec-
tion being Cent- = "other header question answer"
and C%! = "beginning inner". These prompts
are then concatenated to form the full tag-related
prompt C = "other header question answer begin-
ning inner".

Consider an example from the FUNSD dataset
shown in Figure 5, with the document con-
tent "... CASE TYPE: Asbestos ... 82504862",
where "..." indicates omitted parts. Here, "CASE
TYPE:" belongs to the entity type of question,
"Asbestos" to the entity type of answer, and
"82504862" to other. Assuming the tokenizer
splits the document into "CASE", "TYPE:", "As-
bestos", and "82504862", their labels for entity
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typing and span detection would be y“*: =
[question, question, answer, other] and y@ =
[beginning, inner, beginning, —1].

Subsequently, "CASE", "TYPE:", "Asbestos",
and "82504862" as document tokens are concate-
nated with the full tag-related prompt, and form
the boosted input ' = "CASE TYPE: Asbestos
82504862 other header question answer beginning
inner". Then, 2’ is input into the multi-modal pre-
trained model as the Text Embedding to obtain the
multi-head attention weight and the aggregated at-
tention weight from the last block, as shown in
Figure 6.

During training stage, as shown in Figure 7(a),
the aggregated attention weight is split into atten-
tion weights between "other header question an-
swer" and document tokens, as well as "beginning
inner" and document tokens, which are then used
to calculate the losses for entity typing and span
detection, respectively, culminating in a combined
total loss.

During inference stage, as shown in Figure 7(b),
we select the document tokens with the highest
probability for "other header question answer" and
"beginning inner" as §°™ and g%, then com-
bine them to get the predictions under BIO tagging
scheme g following the procedure in Section 2.2.3.
And the entity spans are finally analyzed from g.
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from the last attention block :‘“’
1
CASE i
TYPE: !
Asbestos : _________ f
82504862 H
other other
header header
question MaxPool question
answer Slice a‘nsnjer
beginning beginning
inner inner
4Q$ $\0 \\,\0 0‘6‘@ \\0 s‘QQ/ \(\% ‘\Qﬁ ?V%@ Q)QP\ bfbb
R
Multi-modal Pre-trained Model
Hierarchical Attention Blocks
X1, Xz, X3, X &y, C,C3 80 B B 1O @  Other Embeddings
1, X2,X3,X4 (1, 2,€3,Cy,Cs, Cg Embedding 8
C@%{‘Z@ s\o bfbb \\‘Q’ “Q' \0‘ \Qw \(‘q"‘\\\c’
?‘ m ‘0&
Positional Embedding
+
Other Embeddings

Figure 6: Example of a FUNSD sample run with PPTSER. In the image, bolded words in Text Embeddings
indicate they are part of the prompt. In the Multi-head Self-attention section, the brightness of the color represents
the magnitude of the value.
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Figure 7: Example of a FUNSD sample running on PPTSER at Training stage and Inference stage. In the Inference
stage, q, a, b, i and o respectively stand for the question, answer, beginning, inner and other categories.
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Modality Text + Layout

Text + Layout + Image

BROS (AAAT22) | LILT (ACL 22) | LayoutLMv2 (ACL 21) | LayoutLMv3 (MM 22)
Methodology FT Ours FT Ours FT Ours FT Ours
1-shot 49.17 52.50 51.07 5091 | 44.15 46.91 42.67 56.27
3-shot 63.07 64.31 65.65 67.24 | 60.67 60.65 72.66 75.18
FUNSD 5-shot 66.31 68.10 71.11 7295 | 63.45 64.36 77.29 79.53
7-shot 69.24 71.06 7249 74.14 | 65.94 66.79 79.22 81.31
Full Data | 83.42 83.67 88.62 88.89 | 83.54 83.59 91.41 91.96
1-shot 64.92 68.04 69.31 75.35 | 68.08 69.73 70.03 74.02
3-shot 78.75 79.26 81.63 83.85 | 79.92 81.35 81.97 85.09
CORD 5-shot 83.86 84.23 85.62 87.03 | 83.84 84.42 85.76 87.71
7-shot 83.56 83.76 85.39 87.74 | 84.40 85.09 86.92 88.37
Full Data | 95.72 95.88 95.82  96.06 | 94.95 95.64 96.34 96.39
1-shot - - 59.03 64.90 | 59.17 67.04 46.64 54.59
3-shot - - 7133 7154 | 73.17 75.21 62.73 72.36
XFUND-zh  Sshot | - - 7509 77.07 | 79.21 79.96 69.39 76.57
7-shot - - 7734 77170 | 79.68 80.22 72.03 77.95
Full Data - - 87.92 88.17 | 88.60 88.95 89.09 91.04

(a) Precision (%) of our PPTSER and Traditional Fine-tuning methods.

Modality ‘ Text + Layout ‘ Text + Layout + Image

BROS (AAAIL22) | LiLT (ACL 22) | LayoutLMv2 (ACL 21) | LayoutLMv3 (MM 22)

Methodology FT Ours FT  Ours FT Ours FT Ours

1-shot | 49.75 57.89 5439 61.77 | 53.64 59.15 53.14 70.07

3-shot | 65.82  71.50 69.81 7135 | 62.82 67.01 76.94 78.64

FUNSD S5-shot | 69.32  73.43 75.61 7176 | 68.50 70.97 81.92 83.65

7-shot | 67.54  72.94 7433 7738 | 67.23 71.04 80.51 81.91

Full Data | 84.26 84.15 89.30 89.26 | 83.51 83.85 90.91 92.05

I-shot | 67.70  68.95 70.79 75.80 | 71.23 70.22 70.67 74.35

3-shot | 79.30  79.96 81.65 83.82 | 81.36 81.98 82.14 85.45

CORD 5-shot | 84.21 84.52 85.43 87.08 | 84.81 84.63 85.91 87.84

7-shot | 83.79  84.43 8532 87.72 | 85.12 85.54 86.97 88.59

Full Data | 95.72 95.61 95.78 96.03 | 95.45 95.62 96.34 96.40

1-shot - - 61.54 70.68 | 61.46 69.68 61.21 59.24

3-shot - - 7422 7722 | 75.88 79.46 77.24 78.58

XFUND-zh  S-shot - - 79.99 82.02 | 83.88 85.02 82.27 82.23

7-shot - - 8397 8544 | 85.03 87.43 84.76 84.30

Full Data - - 93.18 93.20 | 91.96 92.72 94.27 93.37

(b) Recall (%) of our PPTSER and Traditional Fine-tuning methods.

Table 5: Precision and Recall of PPTSER and Traditional Fine-tuning methods. Metrics in Bold is better between
PPTSER and Fine-tuning and FT refers to Fine-tuning methods.

D Further Analysis of Experimental
Results

This section presents further analysis and additional
performance metrics obtained from the main exper-
iments.

D.1 Further Analysis of Comparisons with
Existing Fine-Tuning Methods

Table 5a and Table 5b present the precision and
recall of PPTSER compared to the traditional
fine-tuning method. The results demonstrate that
PPTSER consistently outperforms the traditional
fine-tuning method in most cases, leading to im-
proved overall performance in terms of F1 scores.
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Additionally, we observed from Table 1 and Ta-
ble 5 that the improvement of PPTSER on the
CORD dataset is generally less pronounced com-
pared to its performance on other benchmarks. This
prompted further investigation on our part.

As mentioned in Section 2.1, our N-way K-shot
setting implies that each of the N categories has K
documents containing entities of that category as
the support set. Given that a single document in
the CORD dataset cannot encompass entities from
all categories, we selected more than K documents
under the K-shot setup in the previous experiments.
Consequently, we reselected 1 to 5 document sam-
ples as the training set for CORD and conducted ad-
ditional experiments with LiLT, which showed the



LayoutLMv2 LiLT
Methodology | gr Ours FT Ours
1]3328 3381 | 4046 4247
2| 44.86 47.09 | 4939 54.18
Sample 3| 5424 5691 | 5631 63.71
Number 4 | 6154 6223 | 61.36 69.19
516389 64.92 | 64.09 69.83

(a) F1 score (%) of our PPTSER and Traditional Fine-tuning
methods on CORD benchmark.

LayoutLMv?2 LiLT
Methodology | ET  Qurs | FT  Ours
11]33.10 34.06 | 40.35 40.08
2| 4231 46.20 | 47.26 52.58
Sample 3| 51.31 5750 | 53.58 62.92
Number 4 | 5958 62.50 | 60.17 68.72
516193 64.65 | 63.21 69.47

(b) Precision (%) of our PPTSER and Traditional Fine-tuning
methods on CORD benchmark.

LayoutLMv2 LiLT
Methodology | ET  Qurs | FT  Ours
1] 3382 3375 | 4136 45.28
2| 48.01 48.10 | 51.81 55.89
Sample 3| 57.60 5635 | 5773 64.52
Number 4| 6364 61.97 | 62.63 69.68
516600 6522 | 65.01 70.19

(c) Recall (%) of our PPTSER and Traditional Fine-tuning
methods on CORD benchmark.

Table 6: Performances of our PPTSER and Traditional
Fine-tuning methods on CORD benchmark with various
numbers of sample as the support set. Metrics in Bold
is the best and FT refers to Fine-tuning methods.

most significant improvement, and LayoutLMv2,
which showed the least. The results, as illustrated
in Table 6, led to several conclusions:

e Sample Size: The K-shot division on CORD
often includes more than K samples. For ex-
ample, in the 1-shot experiment, our train-
ing set averaged 7.6 samples. In contrast,
on FUNSD, a single sample typically encom-
passes entities of all 4 types, resulting in only
1 sample in the training set for the 1-shot sce-
nario. Our findings indicate that as the sample
size increases, the performance gap between
our method and conventional fine-tuning di-
minishes, yet our method retains its advan-
tage. Therefore, under the same K-shot set-
ting, CORD involves more samples than other
datasets, which leads to a less pronounced
improvement.

* Label Complexity: We believe that the la-
bels in CORD are more complex and ab-
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stract, making it harder for the model to grasp
their semantic meanings compared to those
in FUNSD. For instance, entity categories in
FUNSD include header, question, and answer,
whereas in CORD, they involve more abstract
types like menu.num and total.creditcardprice.
The experimental results indicate that when
the sample size is extremely small, the im-
provement on CORD from our method is lim-
ited. However, this improvement increases
rapidly with the sample size, suggesting our
method can more accurately capture the re-
lationship between document tokens and tag-
related prompts with relatively more samples.

Pre-trained Models: Different pre-trained
models have varying degrees of understand-
ing of labels. This could explain why some
pre-trained models show weaker improvement
on CORD. Our supplementary experiments
reveal that the extent of improvement of our
method is consistently better with the LiL’T
than the LayoutLMv2, suggesting that LiLT
better understands the semantic information
implied by the labels.

D.2 Further Analysis of Comparisons with
Existing Few-shot Methods

We also present a detailed comparison of PPTSER
with other few-shot methods, including precision
and recall metrics in Table 7a and Table 7b. Similar
to the F1 score, models enhanced with PPTSER
usually demonstrate superior performance com-
pared to both few-shot NER and few-shot SER
methods.



Modality Text Text + Layout ‘ Text + Layout + Image

Methodology EntLM COPNER | LASER COPNER;;; ;7 PPTSER;; 7 | COPNER, ;3 PPTSER[ /03
(NAACL 22) (COLING 22) | (ACL 22) (COLING 22) (Ours) (COLING 22) (Ours)
1-shot 22.85 18.67 36.61 53.79 5091 49.01 56.27
3-shot 33.39 30.97 46.71 67.26 67.24 73.54 75.18
FUNSD  S5-shot 37.23 32.57 46.80 71.40 72.95 75.40 79.53
7-shot 40.29 35.43 51.17 72.81 74.14 78.63 81.31
Full Data 67.53 63.39 69.08 87.45 88.89 91.45 91.96
1-shot 73.23 67.42 65.56 86.93 90.62 86.80 90.05
3-shot 82.85 81.37 75.43 94.39 94.97 93.99 95.14
CORD.Lyl  5-shot 86.87 85.87 82.07 94.94 96.38 95.65 96.20
7-shot 86.65 86.54 83.54 95.12 96.25 96.05 96.53
Full Data 95.93 95.83 96.50 99.23 99.43 99.45 99.45
1-shot 57.45 51.22 - 70.27 75.35 67.14 74.02
3-shot 71.42 67.26 - 81.48 83.85 79.89 85.09
CORD 5-shot 77.70 74.59 - 84.92 87.03 85.13 87.71
7-shot 78.51 75.69 - 85.86 87.74 86.83 88.37
Full Data 93.56 92.33 - 95.75 96.06 95.79 96.39
1-shot 27.02 23.98 - 49.49 64.90 53.37 54.59
3-shot 35.94 35.72 - 64.69 71.54 69.98 72.36
XFUND-zh  S-shot 43.18 4293 - 68.21 77.07 73.48 76.57
7-shot 45.13 44.66 - 72.61 71.70 76.42 71.95
Full Data 64.75 65.59 - 87.23 88.17 91.10 91.04
(a) Precision (%) of PPTSER and other Few-shot methods.
Modality ‘ Text ‘ Text + Layout ‘ Text + Layout + Image
Methodology EntLM COPNER | LASER COPNER;;; PPTSER;; 7 | COPNER 1103 PPTSER; /03
(NAACL 22) (COLING 22) | (ACL22) (COLING 22) (Ours) (COLING 22) (Ours)
1-shot 28.01 21.53 41.05 56.72 61.77 54.43 70.07
3-shot 37.56 32.12 46.55 70.17 71.35 78.32 78.64
FUNSD  S-shot 42.42 38.28 52.14 75.59 7176 79.83 83.65
7-shot 42.79 39.57 54.08 73.92 77.38 78.45 81.91
Full Data 67.31 65.81 69.41 88.04 89.26 91.06 92.05
1-shot 75.38 69.90 68.12 87.01 90.38 87.16 89.99
3-shot 84.54 83.17 76.77 93.95 94.61 94.06 95.12
CORD-Lvi  5-shot 87.35 86.30 82.42 94.78 96.04 95.84 96.23
7-shot 87.99 86.97 83.71 94.96 96.00 96.07 96.50
Full Data 95.94 95.97 96.62 99.19 99.42 99.45 99.45
1-shot 58.29 53.79 - 69.83 75.80 67.51 74.35
3-shot 71.95 68.35 - 81.08 83.82 80.24 85.45
CORD 5-shot 77.78 74.69 - 84.68 87.08 85.47 87.84
7-shot 78.76 76.51 - 85.66 87.72 86.91 88.59
Full Data 93.45 92.68 - 95.72 96.03 95.79 96.40
1-shot 26.35 23.26 - 48.26 70.68 55.67 59.24
3-shot 39.62 40.48 - 64.88 77.22 72.89 78.58
XFUND-zh  5-shot 44.03 46.14 - 70.00 82.02 79.92 82.23
7-shot 48.46 49.58 - 76.58 85.44 82.47 84.30
Full Data 67.72 68.71 - 91.20 93.20 9291 93.37

(b) Recall (%) of PPTSER and other Few-shot methods.

Table 7: Precision and Recall of PPTSER and other Few-shot methods. Metrics in Bold is the best, and that with
underline is the second best.
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CORD

7 block 8™ block 9 block  10*" block 11" block 12" block
1-shot 68.27 69.63 68.34 68.93 74.27 75.57
3-shot 80.09 81.16 80.81 81.51 82.89 83.83
5-shot 84.29 85.25 85.00 84.84 86.41 87.06
7-shot 84.58 85.86 85.48 85.97 86.79 87.73
Full Data  95.63 95.59 95.48 96.12 95.86 96.04
A -3.47 -2.55 -3.03 -2.57 -0.80 -

(a) F1 score (%) of PPTSER on CORD benchmark when obtaining the attention weight from different blocks.

CORD

T plock 8™ block 9™ block 10" block 11" block 12" block
1-shot 67.36 69.02 67.86 68.53 73.91 75.35
3-shot 79.76 81.19 80.78 81.46 82.76 83.85
5-shot 80.98 85.38 85.01 84.78 86.22 87.03
7-shot 84.41 85.92 85.52 85.97 86.68 87.74
Full Data  95.70 95.64 95.55 96.16 95.87 96.06
A -4.36 -2.58 -3.06 -2.63 -0.92 -

(b) Precision (%) of PPTSER on CORD benchmark when obtaining the attention weight from different blocks.

CORD
7 block 8" block 9" block  10*" block  11*" block 12" block

1-shot 69.21 70.25 68.83 69.34 74.64 75.80
3-shot 80.43 81.14 80.84 81.56 83.03 83.82
5-shot 80.41 85.13 84.99 84.89 86.60 87.08
7-shot 84.75 85.80 85.43 85.97 86.90 87.72
Full Data  95.57 95.54 95.41 96.09 95.85 96.03
A -4.02 252 -2.99 252 -0.69 -

(c) Recall (%) of PPTSER on CORD benchmark when obtaining the attention weight from different blocks.

Table 8: Performances of PPTSER on CORD benchmark when obtaining the attention weight from different blocks.
A denotes the average deviation of the corresponding metrics compared to that in the 12" block.

D.3 Further Analysis of Attention weights
obtained from different blocks

We additionally provide the numerical metrics of
distinct settings to obtain the attention weight from
different blocks. Table 8 illustrates the experi-
mental results, indicating that obtaining attention
weights from the last block yields the best perfor-
mance of F1 score, precision, and recall. Although
the reduction of parameters alleviates over-fitting
to some extent, since some shallower blocks outper-
form certain deeper ones in the 1-shot scenario, our
default setting to obtain the attention weight from
the last block significantly outperforms the alterna-
tive settings of obtaining the attention weight from
shallower blocks. This finding strongly reinforces
the effectiveness of our design.
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D.4 Further Analysis of Different Designs on
PPTSER

Besides, we also offer the precision and recall of
our PPTSER under different designs in Table 9a
and Table 9b. The outcomes clearly indicate that
our PPTSER, characterized by its meticulous de-
sign, outperforms other designs across all metrics
evaluated, including the F1 score, Precision, and
Recall. This superiority not only showcases the
robustness of our design but also significantly sub-
stantiates the efficacy of our PPTSER framework in
tackling the few-shot SER problem on visually-rich
documents.



Model Baseline Decoupling Strategies Prompt Engineering Aggregation Stratergies
Designs | default setting plain BIO prompt unrelated words — random embeddings | mean single head
1-shot 75.35 73.92 70.58 71.32 74.16 74.92
3-shot 83.85 82.44 82.83 83.24 83.04 84.07
5-shot 87.03 86.50 85.84 86.47 86.61 86.97
7-shot 87.74 86.64 86.44 87.09 86.76 87.30
Full Data 96.06 95.58 96.27 95.75 96.23 96.08
A - | -0.99 | -1.61 -1.23 -0.64 -0.14
(a) Precision (%) of PPTSER on CORD benchmark with different designs.
Model Baseline Decoupling Strategies Prompt Engineering Aggregation Stratergies
Designs | default setting plain BIO prompt unrelated words — random embeddings | mean single head
1-shot 75.80 74.66 71.03 71.54 74.69 75.51
3-shot 83.82 82.37 82.54 82.90 83.06 83.77
5-shot 87.08 86.01 85.72 86.11 86.67 86.99
7-shot 87.72 86.35 86.40 86.81 86.71 87.19
Full Data 96.03 95.00 96.24 95.70 96.18 96.03
A - | -1.21 | -1.70 -1.48 -0.63 -0.19

(b) Recall (%) of PPTSER on CORD benchmark with different designs.

Table 9: Precision and Recall of PPTSER on CORD benchmark with different designs. A denotes the average
deviation of the corresponding metrics relative to the default setting.

E In-depth Parameter Analysis of
PPTSER over Traditional Fine-tuning

We provide a further analysis of the parameter
counts in this section. As shown in Table 4, our
PPTSER maintains consistent parameters across
different benchmarks with the same pre-trained
model. This is attributed to the fact that PPTSER
does not necessitate an additional classifier layer,
unlike the traditional fine-tuning method. Conse-
quently, the parameter variance arises when em-
ploying the traditional fine-tuning method with
the same pre-trained models on different bench-
marks, owing to variations in the number of entity
types present in those benchmarks. Furthermore,
as PPTSER omits the value transform layer and the
feed-forward layer in the final attention block, we
achieve a reduction in the parameter count of the
pre-trained model it is based on. Additionally, the
extent of parameter reduction varies among differ-
ent pre-trained models due to disparities in their
architectural designs, resulting in slice differences
in the eliminations of the modules.
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