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Abstract

Object discovery, which refers to the task of localizing ob-001
jects without human annotations, has gained significant at-002
tention in 2D image analysis. However, despite this growing003
interest, it remains under-explored in 3D data, where ap-004
proaches rely exclusively on 3D motion, despite its several005
challenges. In this paper, we present a novel framework that006
leverages advances in 2D object discovery which are based007
on 2D motion to exploit the advantages of such motion cues008
being more flexible and generalizable and to bridge the gap009
between 2D and 3D modalities. Our primary contributions010
are twofold: (i) we introduce DIOD-3D, the first baseline011
for multi-object discovery in 3D data using 2D motion, in-012
corporating scene completion as an auxiliary task to en-013
able dense object localization from sparse input data; (ii)014
we develop xMOD, a cross-modal training framework that015
integrates 2D and 3D data while always using 2D motion016
cues. xMOD employs a teacher-student training paradigm017
across the two modalities to mitigate confirmation bias by018
leveraging the domain gap. During inference, the model019
supports both RGB-only and point cloud-only inputs. Ad-020
ditionally, we propose a late-fusion technique tailored to021
our pipeline that further enhances performance when both022
modalities are available at inference. We evaluate our ap-023
proach extensively on synthetic (TRIP-PD) and challenging024
real-world datasets (KITTI and Waymo). Notably, our ap-025
proach yields a substantial performance improvement com-026
pared with the 2D object discovery state-of-the-art on all027
datasets with gains ranging from +8.7 to +15.1 in F1@50028
score 1.029

1. Introduction030

Object detection has been extensively explored, leading to031
fast, high-performance approaches [4, 26, 27]. However,032
these methods adopt a fully supervised setting that suffers033
from high annotation costs and makes them impractical for034
scaling with the increasing data needed for better general-035
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ization. Additionally, this setting is limited to detecting spe- 036
cific semantic categories, which poses challenges in identi- 037
fying out-of-distribution instances and rare categories. Ob- 038
ject discovery has thus emerged as an unsupervised alterna- 039
tive to the localization component of object detection. It fo- 040
cuses on localizing objects within images or videos without 041
explicit prior knowledge provided by human annotations. 042
Interest in this task continues to grow in the 2D modality 043
[2, 15, 28, 30] driven by the presence of object patterns for 044
free within low-level and automatically acquired modalities 045
(motion [1, 17], depth [10], etc), resulting in interesting per- 046
formances. Moreover, the class-agnostic nature of object 047
discovery and its reliance on low-level signals allow for a 048
broader application, built around general definitions of ob- 049
jects, such as salient objects [31, 38] and objects that can 050
move [1]. These properties address the limitations of the 051
fully supervised setting. In contrast, these advances are not 052
mirrored enough in the 3D modality where only 3D motion 053
cues are explored despite being sparse and demanding ex- 054
tensive fine-tuning with changing domains. 055

In this work, we show that 3D object discovery (3DOD) 056
can largely benefit from advancements achieved in the 2D 057
modality. Specifically, we adapt the recent motion-guided 058
2D object discovery (2DOD) approach in [15] to accom- 059
modate 3D data, using the same 2D motion masks. Object 060
discovery being unsupervised, it typically includes a recon- 061
struction pretext task as a powerful regularization method. 062
In the real-world scenario, we discovered that the inherent 063
sparsity in LiDAR data (i.e. missing data points and poor 064
spatial resolution) makes 3DOD challenging, leading to in- 065
complete object segments. We thus propose scene comple- 066
tion as a more suitable pretext task for 3DOD. Specifically, 067
we encourage the prediction of a denser point cloud, which 068
helps avoid propagating the input sparsity to the predicted 069
object masks. 070

Subsequently, we aim to ensure that the transition to 3D 071
is not disconnected from the 2D data, which is rich in com- 072
plementary information such as colors and textures. To this 073
end, we propose bridging the two modalities by jointly op- 074
timizing the tasks of 2D and 3D object discovery, while al- 075
ways using the same 2D motion cues. The effectiveness of 076
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distillation for object discovery has been demonstrated in an077
intra-modal setting [15], where it progressively reintegrates078
discovered objects into the supervision set and eliminates079
noisy pseudo-labels, enhancing robustness. In our work, we080
explore distillation in a cross-modal setting. To achieve this,081
we design two teacher-student systems, one for each modal-082
ity, and establish interactions between the four models us-083
ing objective functions that enable the student model of one084
domain to be supervised by the teacher model of the alter-085
nate domain. Advantageously, our approach increases the086
robustness of the system when a modality becomes inop-087
erative due to a difficult environment, such as night scenes088
for a camera (2D-blind) or the absence of reflections for a089
3D sensor (3D-blind). This process also leverages the do-090
main gap between the student and teacher models, as each091
receives inputs from a distinct modality, reducing the risk092
of confirmation bias.093

During inference, our method can accommodate 2D094
only, 3D only and multi-modal inputs, depending on the095
application and available sensors. In the multi-modal set-096
ting, we explore the consistency between both modalities as097
a source of reliability in multi-sensor applications, consid-098
ering consistent predictions between the two modalities as099
the most reliable object candidates.100

In summary, (i) we propose a first baseline to solve mul-101
tiple object discovery from point clouds using 2D motion102
cues, with scene completion as a suitable pretext task for103
3DOD; (ii) we design a cross-modal training framework,104
based on 2D motion information, that integrates 2D and 3D105
data to enable interaction between the two modalities, ad-106
dressing modality-related difficult cases. Experiments con-107
ducted on three datasets demonstrate that each modality108
benefits significantly from cross-modal learning with the109
alternate modality, validating the effectiveness of the pro-110
posed approach.111

2. Related Work112

2.1. Object discovery in RGB images (2DOD)113

Object discovery in 2D images/videos addresses the chal-114
lenge of localizing instances of objects when human anno-115
tations are unavailable. In RGB images, this task has sig-116
nificantly benefited from advances in self-supervised learn-117
ing [5, 25], which have led to the emergence of segmenta-118
tion properties in learned representations [32]. Notably, DI-119
NOSAUR [30] demonstrated that reconstructing those pre-120
learned features enables self-supervised scene decomposi-121
tion into objects.122

Recently, 2DOD has achieved greater success in video123
data, driven by the availability of motion information that124
serves as a cue for object localization. Motion information125
has been primarily incorporated into slot-attention-based126
approaches, with slot-attention being the mechanism that127

facilitates scene decomposition into objects within the la- 128
tent space of an auto-encoder architecture [21]. Motion is 129
integrated in various ways across different methods: SAVI 130
[17] learns to predict optical flow, focusing particularly on 131
the localization of moving objects. On the other hand, 132
VideoSAUR [44], a video version of [30], exploits semantic 133
similarity between image patches to predict their temporal 134
displacement, thus incorporating motion implicitly into the 135
learned representation. More explicitly, another research di- 136
rection [1, 2, 14, 15] leverages motion-derived segments, 137
highlighting moving objects, to guide slots’ learning; some 138
approaches also address noise in image backgrounds [14] 139
and the generalization from moving to static objects [15]. 140

Although these methods demonstrated interesting results 141
for 2DOD, these advances along with the use of 2D motion 142
cues have not been exploited yet for both 3DOD and corss- 143
modal object discovery. 144

2.2. Object Discovery in 3D data (3DOD) 145

Compared to 2DOD, 3DOD is less explored [22, 24]. In 146
single images, it is typically limited to single-object local- 147
ization [39], while in sequential data, the primary approach 148
leverages 3D motion cues to identify only moving objects 149
[9, 24]. However, in LiDAR-based applications like road 150
scenes, ignoring stationary objects, such as stopped vehi- 151
cles, raises safety concerns. In an other category, Open-set 152
detection [6] generalizes to unknown objects but primar- 153
ily relies on highly-supervised closed-set detectors, while 154
vision-language methods [11] assume known or describable 155
classes of objects, which is more restrictive than general ob- 156
ject discovery. Other approaches [22, 37, 43, 45], while un- 157
supervised, mostly cluster 3D point clouds [22, 43] or scene 158
flow cues [37], requiring intensive tuning and heuristic- 159
based filtering of non-object regions [43]. Clustering in 3D 160
data is further challenged by LiDAR’s low resolution and 161
sparse points on distant objects. 162

In this work, we aim to extend advancements from 163
2DOD (Section 2.1) to the 3D domain. Similar to how 2D 164
object-centric learning offers a deep learning-based alterna- 165
tive to 2D clustering, this extension seeks to replace clus- 166
tering methods for 3D point clouds, which are sensitive to 167
parameters like object count and intra-object point density. 168
Our hypothesis is also that 3D data can, in turn, enhance 169
object discovery in 2D, thus the proposed cross-modal dis- 170
tillation framework. 171

2.3. Motion Cues for Object Localization 172

An important part of understanding a scene is modelling its 173
dynamics. This has motivated many works on motion es- 174
timation both in RGB images through optical flow estima- 175
tion (i.e. the pixel displacement between successive frames) 176
[33, 35, 40] and in 3D by estimating 3D displacements of 177
each point, known as scene flow [18, 20, 23]. Motion in- 178
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formation has notably served as a cue for the presence of179
objects of interest: moving objects [8], objects capable of180
moving [1], etc. For instance, in [29] which addresses semi-181
supervised segmentation of moving objects in point clouds,182
scene flow is employed to localize mobile objects. Con-183
versely, 2D methods utilize optical flow for scene analysis184
[41, 42].185

In this work, the choice of using 2D-derived motion cues,186
instead of 3D scene flow offers several advantages: (i) It187
avoids the need for pre-processing steps like ground re-188
moval in point clouds, a common requirement in clustering-189
based methods [3] that entails additional hyper-parameter190
tuning. Recent advances in video object discovery (2.1)191
handle this automatically, even filtering out other perma-192
nently static regions such as buildings. (ii) Using the 2D193
domain as the source for pseudo-labels, rather than point194
clouds, helps reduce errors associated with the low reso-195
lution of LiDAR data, particularly on distant objects. (iii)196
Finally, leveraging 2D-derived supervision to solve 3DOD197
opens the perspective of using the vast resource of founda-198
tion models emerging rapidly in the 2D domain [7, 19], and199
transferring this knowledge into the 3D space.200

3. Method201

Our method consists of two main components (Figure 1).202
First, we introduce an approach for multi-object discovery203
from 3D data based on 2D motion, which we call DIOD-204
3D. Next, we design a cross-modal distillation framework205
(xMOD) that enables interaction between two branches,206
xMOD (2D) and xMOD (3D), which process 2D and 3D207
data, respectively, and generate pseudo-labels for the alter-208
nate modality. In the following sections, we first outline the209
2DOD method that forms the foundation of our approach,210
before describing the two distinct aspects of our work.211

3.1. Context: distilled motion-guided slot attention212
for 2D object discovery213

The objective is to utilize automatically acquired motion in-214
formation to localize mobile objects; and to generalize to215
other static objects within the same semantic category [1].216
A recent approach specifically addresses the challenge of217
generalization by proposing a method that first uses as tar-218
gets pseudo-labels for mobile objects, generated from op-219
tical flow. Leveraging these pseudo-labels, a distillation220
framework is employed to gradually expand the pseudo-221
labels set to include static objects identified by the model,222
thus covering all instances within the semantic category of223
interest [15]. Specifically, during an initial burn-in phase,224
the model processes a sequence of T frames to generate a225
video representation Ht ∈ h×w×D at each timestep t. The226
features H are distributed across K slots (queries) through227
an attention module in two main steps: i) Attention weights228
W are computed between Ht and the set of slots from the229

previous timestep as W t = 1√
D
k(Ht) · q(St−1) ∈ RN×K , 230

ii) Slots St are updated as W t⊤v(Ht), where v, k, and q 231
are three learnable projections and N = h×w [36]. To en- 232
able objects activation within the attention maps, these are 233
supervised using a set M2D = {ml ∈ {0, 1}h×w : l ∈ 234
{1, . . . , L}} of pseudo-labels extracted from optical flow 235
[1], with L being the number of pseudo labels available for 236
a given image. These masks are aligned with the model- 237
generated attention maps through Hungarian matching. The 238
background class is isolated within a specific attention map 239
Wbg using a negative log-likelihood loss function, as de- 240
scribed in [14]. Following the burn-in, the model enters 241
a distillation phase where it is duplicated into teacher and 242
student models. The student model learns to discover ob- 243
jects through gradient back-propagation, while the teacher 244
model is updated as an exponential moving average (EMA) 245
of the student, ensuring gradual refinement of model ca- 246
pabilities. Notably, during the burn-in phase, the teacher 247
model learns to generalize from moving objects to static ob- 248
jects within the same category through semantics. Distilla- 249
tion then allows both moving and static objects extracted 250
from the teacher model to be presented as targets to the 251
student model. Specifically, any connected region in one 252
teacher’s attention map W is identified as a candidate ob- 253
ject and, if it passes a confidence test, is added to the tar- 254
gets for supervising the student model. For supervision, a 255
weighted Binary Cross-Entropy (BCE) loss function is em- 256
ployed, where weighting is based on the confidence asso- 257
ciated with each object segment. Alongside the teacher’s 258
predictions, the motion pseudo-labels continue to be used 259
during the distillation phase and act as a regularization. 260

3.2. 3D Object Discovery 261

The inherent sparsity in 3D data is a challenge for tasks like 262
object detection, in particular in the unsupervised setting of 263
object discovery, where detailed and complete input infor- 264
mation is crucial. Additionally, directly processing raw 3D 265
data requires more complex and computationally intensive 266
algorithms. To address this, 2D projections of point clouds 267
are used to transfer data into a denser grid-structured space, 268
manageable by efficient 2D models. 269

3.2.1. DIOD-3D: our approach for 3D Object Discovery 270

For each scene, the corresponding LiDAR-generated point 271
cloud (i.e. a set of 3D points) is projected into 2D 272
using a front-view projection, as shown in Figure 1. 273
Let Ifv ∈ RH′×W ′×4 be the projected 2D image ma- 274
trix for a given scene. Each pixel in Ifv contains 275
four channels: Ifv(i, j) = (Xij , Yij , Zij , dij) for i ∈ 276
{1, . . . ,H ′} and j ∈ {1, . . . ,W ′}, with d being the dis- 277
tance of the projected points from the RGB camera origin. 278
The pixel (i, j) is assigned a fill-value vector (f, f, f, f), 279
where f is set to 0 in this work to indicate the absence of 280
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Figure 1. Overview of the proposed approach. i) DIOD-3D. At each iteration, a sequence front-view projections of point clouds is
passed to the 3D teacher and student models. Attention maps from the teacher model are presented as targets to the student model through
Ldist

3D→3D . An MSE objective is employed to predict the original scene from input with missing data, enabling 3D scene completion as
an auxiliary task for 3DOD. ii) Cross-modal distillation (xMOD). Alongside the 3D branch, sequences of RGB images are forwarded
to the 2D teacher and student models. Ldist

2D→3D means pseudo-labels from the 2D teacher model are aligned with the 3D student input
and used for its supervision; Ldist

3D→2D works similarly for 3D to 2D pseudo-labeling. Motion pseudo-labels M2D and M3D are used for
regularization, with M3D being the 2D motion segments with corresponding 3D points. We omit representing 2D reconstruction and 3D
completion task for simplification.

an associated 3D point. This can occur either due to the Li-281
DAR’s lower resolution compared to the camera or because282
the camera’s vertical field of view (FOV) is wider than that283
of the LiDAR.284

Due to the inherent differences in the vertical FOV be-285
tween the LiDAR and RGB camera, the motion pseudo-286
labels extracted from the optical flow (in the 2D domain)287
can occupy regions without any corresponding 3D informa-288
tion, particularly at the top of the projected image. This289
has been observed to cause model hallucinations in those290
regions, in the form of high-confidence noise segments. To291
address this, motion masks without corresponding 3D data292
are discarded in the motion guidance. We denote the new293
set of motion pseudo-labels as M3D. For each scene Ifv,294
M3D is a subset of the 2D pseudo-labels M2D defined as:295

M3D =

{
ml ∈ M2D

∣∣∣∣∣ ∃(i, j) such that ml(i, j) = 1

and (Xij , Yij , Zij , dij) ̸= (f, f, f, f)

}
.

(1)296
Let m3D ∈ M3D be a motion pseudo-label for the scene297

Ifv, that matches the attention map W (Hungarian match- 298
ing) learned by the student model. Motion supervision is 299
applied via the following BCE loss: 300

Lmotion
3D (m3D,W ) = − 1

N

N∑
i=1

[(
1 + sm3D

)
m3D(i) log

(
W (i)

)
+

(
1−m3D(i)

)
log

(
1−W (i)

)]
(2) 301

where the confidence score sm3D
is computed as the aver- 302

age activation within the learned foreground map Wfg at 303
the object’s location in m3D. 304

Similar to the 2D approach in [15], Lmotion
3D is employed 305

as the sole supervisory signal during the burn-in phase. Dur- 306
ing the distillation phase, each highly confident teacher- 307
generated pseudo-label c is incorporated as a target using 308
Ldist
3D→3D(c,W ) (same definition as Lmotion

3D ). 309
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3.2.2. Scene Completion as a Pretext Task for 3DOD310

Scene reconstruction has proven to be an effective pretext311
task in RGB images [2]. However, this conclusion does not312
hold for the task of 3DOD. Trying to reproduce the high and313
variable sparsity of LiDAR data makes scene understanding314
challenging, and results in sparse and less accurate predic-315
tions. Refer to the ablation study in subsection 4.6 for a316
quantitative evaluation of these limitations.317

For this reason, we propose to rely on scene completion318
as a pretext task for 3DOD. Let P be the set of coordinates319
corresponding to valid projections of 3D points. We ran-320
domly remove a subset Pdrop ⊂ P from these coordinates.321
The objective is then to reconstruct the pixels at positions in322
P using the information from pixels at positions in P\Pdrop323
(see Figure 1). The reconstruction is guided by a mean324
squared error loss, optimized only for valid projections of325
3D points to avoid reproducing the input sparsity; and is326
defined as:327

LMSE =
1

|P|
∑

(i,j)∈P

(
Î(i, j)− Ifv(i, j)

)2

(3)328

where Î and Ifv are the reconstructed and original frontal329
projections. The previous objective enables scene comple-330
tion behavior, which enhances scene understanding and seg-331
mentation.332

3.3. Cross-Modal Distillation for Unsupervised333
2D/3D Object Discovery334

In the previous sections, we proposed a first method for real-335
world object discovery using LiDAR data. Our approach336
is based on intra-modal distillation, where both the student337
and teacher models receive the same 3D data. Even when338
these data are augmented differently, the gap between the339
two inputs remains limited, suggesting that the teacher’s340
contribution to the student might be reduced in this set-341
ting. This assumption is confirmed in the ablation study342
presented in subsection 4.6.343

In this section, we propose a cross-modal distillation344
framework that places the teacher and student models in two345
different domains: 2D and 3D modalities. Specifically, we346
jointly optimize two teacher-student systems, one in each347
modality, and enable pseudo-labeling from the teacher in348
one modality to the student in the alternate modality, as349
shown in Figure 1. Thus, the 3D teacher provides a guid-350
ance signal from the 3D domain, addressing the limita-351
tions of the 2D student in 2D-blind scenarios (such as night352
scenes or fog). The 2D teacher, in turn, enhances the robust-353
ness of the 3D student in 3D-blind scenarios such as objects354
with low reflectivity or highly cluttered environments.355

Concretely, at each iteration, a video sequence of length356
T is passed through the four models (2D teacher, 2D stu-357
dent, 3D teacher, and 3D student), with strong modality-358
specific augmentations applied to the inputs of the student359

models. Attention maps are produced by the slot-attention 360
module within each model and are involved in the cross- 361
model supervision. The attention maps from the teacher 362
models are binarized to generate object candidates as de- 363
scribed in [15]. For simplicity, we will consider the case 364
where T = 1 frame. Let D1 and D2 be the source and tar- 365
get domains, respectively, during the exchange of pseudo- 366
labels. We denote cD1

an object candidate proposed by the 367
teacher model of domain D1, which matches the attention 368
map WD2

of the student model from domain D2. The inter- 369
modal distillation objective function for the previous pair is 370
defined as follows: 371

Ldist
D1→D2

(cD1 ,WD2) = − 1

N

N∑
i=1

[(
1 + sc

)
cD1(i) log

(
WD2(i)

)
+

(
1− cD1(i)

)
log

(
1−WD2(i)

)]
(4) 372

D1 and D2 can be either 2D or 3D modalities, based on the 373
direction of the pseudo-label exchange. Specifically: 374

• Ldist
2D→3D(c,W ) when the object candidate c is derived 375

from the 2D teacher and W is a learned 3D student’s at- 376
tention map. 377

• Ldist
3D→2D(c,W ) when the object candidate c is derived 378

from the 3D teacher and W is a learned 2D student’s at- 379
tention map. 380

The case where D1 = D2 ∈ {2D, 3D} corresponds to 381
intra-modal distillation, which is not utilized as an objec- 382
tive in our proposed training approach. The ablation study 383
in section 4.6 demonstrates the ineffectiveness of this distil- 384
lation compared to inter-modal pseudo-labelling. 385

Given the findings presented in section 3.2.2, we employ 386
scene completion as a pretext task for the 3D branch, while 387
the 2D branch continues to pursue a 2D scene reconstruc- 388
tion objective. Additionally, the motion masks M2D and 389
M3D are still used as targets for the 2D and 3D branches, 390
respectively, for regularization. Corresponding objective 391
functions are denoted as Lmotion

2D and Lmotion
3D . 392

3.4. Late fusion of modalities 393

The 2D student and 3D student models, trained through 394
cross-modal distillation, can be independently applied to 395
a single sensor—either an RGB camera or LiDAR— 396
depending on the specific application. To further enhance 397
performance, we propose merging the predictions from both 398
models for multi-sensor applications. The underlying as- 399
sumption in our fusion method is that the pseudo-label ex- 400
change during cross-modal training should lead to consis- 401
tent object regions between the two modalities. In contrast, 402
inconsistent predictions are likely due to domain-specific 403
noise. We therefore suggest using inter-domain consistency 404
as a measure of confidence in the predictions. During infer- 405
ence, we propose a simple late fusion strategy by retaining 406
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the union of predictions from both models that overlap by407
at least a threshold value τ , while discarding predictions408
unique to only one modality.409

4. Experiments410

4.1. Datasets411

We evaluate the proposed approach on TRI-PD [1], KITTI412
[12] and WOD [34] datasets. TRI-PD is a benchmark for413
2DOD, comprising an extensive collection of highly realis-414
tic synthetic videos of driving environments. The bench-415
mark’s test set contains solely RGB images. To accom-416
modate evaluations involving a 3D model, we introduce a417
new test set composed of 17 scenes with 3 camera views418
each, randomly extracted from the former TRI-PD train-419
ing set. Point clouds for each image are computed using420
the GT dense depth and camera poses. In all our experi-421
ments, this test set is excluded from the training sequences.422
The list of KITTI frames used in 3D evaluation, as well423
as the list of scenes of the new TRI-PD test set, are pro-424
vided in the appendix. KITTI is a set of benchmarks de-425
signed for computer vision tasks in road scene applications.426
The instance segmentation subset has been adopted in pre-427
vious works as a benchmark for 2DOD. This subset in-428
cludes 200 frames, of which only 142 have associated 3D429
information (LiDAR points). We use this new subset for430
evaluation in the multi-modal setting. During training, all431
raw-data are used without labels. Waymo Open Dataset432
(WOD) [34] is a large-scale dataset for autonomous driv-433
ing, which includes 3D point clouds and 2D RGB images.434
Although WOD has not been traditionally used for 2DOD435
benchmarks, its complex, real-world scenarios are valuable436
for testing our unsupervised method. For our experiments,437
we use point clouds from the top-mounted 64-channel Li-438
DAR, along with video frames from the front-facing cam-439
era. The training set includes approximately 800 sequences440
of 200 frames each, while the validation set contains 200441
sequences of 200 frames each.442

4.2. Metrics443

Consistent with previous work on object discovery [15],444
we validate our approach using three metrics: foreground445
Adjusted Rand Index (fg-ARI), all-ARI, and F1@50. The446
fg-ARI measures the similarity between two clusterings by447
considering all pairs of points within the foreground area,448
counting pairs that are either assigned to the same cluster or449
different clusters in both the predicted and true clustering.450
Both metrics aim to evaluate the quality of the instance seg-451
mentation, considering only the foreground regions without452
relying on class labels. The all-ARI is a variation of ARI453
that accounts for the accurate segmentation of the image454
background. Both of these metrics are pixel-wise measures455
and do not normalize for the size of the objects, which tend456

Modality Method
TRI-PD KITTI WOD

all-
ARI F1 all-

ARI F1 all-
ARI F1

2D
DIOD 66.1 30.6 62.8 18.7 59.4 27.5

xMOD (2D) 64.7 35.5 69.7 22.3 66.1 35.1

3D
DIOD-3D 65.1 39.6 51.6 15.5 55.3 25.6

xMOD (3D) 65.0 37.5 58.8 18.9 62.3 31.0

Multi xMOD (2D+3D) 64.8 42.5 75.8 27.4 72.3 42.6

Table 1. Multi-modal Object Discovery. The models resulting
from our proposed approach are presented in blue. Parentheses
indicate the modality used during inference. A comparison with
ClusterNet [37] is provided in the supplementary materials.

to be biased toward correctly segmenting larger objects. 457
[15] has addressed this bias by calculating an instance-wise 458
metric, known in object detection as F1@50. 459

4.3. Implementation details 460

Synthetic photo-realistic dataset (TRI-PD). Given the 461
availability of dense depth maps, we used the camera poses 462
to generate XYZd-formatted input and omitted the scene 463
completion task. Both the RGB images and front-view pro- 464
jections were resized to (480 × 968). Images were aug- 465
mented similarly to [15], while depth maps were trans- 466
formed using data jittering, data drop, horizontal-flip and 467
crop-resize, all with a probability 0.4. The model was 468
trained for 300 epochs. 469
Real-world setting (KITTI and WOD). We forwarded 470
RGB images to the 2D branch and front-projected 3D point 471
clouds to the 3D branch, both using a ResNet18 [13] back- 472
bone without pre-training. The training was conducted for 473
100 epochs following a burn-in period, using batches of 8 474
input sequences of length T = 5. For each modality, the 475
teacher parameters were computed as the EMA of the stu- 476
dent with a keeping-rate 0.996. For KITTI, the motion seg- 477
ments used for guiding the slots’ learning were extracted 478
from RAFT optical flow [35], using the approach in [8]. For 479
WOD, pseudo-motion segments are generated using xMOD 480
trained on KITTI. Specific details for each branch are pro- 481
vided in the appendix. 482

4.4. Multi-modal Object Discovery 483

In Table 1, we present the quantitative results on the three 484
datasets for the 2D and 3D object discovery tasks. On the 485
TRI-PD dataset the point cloud data is very dense and con- 486
tains less texture compared to RGB input, simplifying the 487
task of object discovery. Consequently, the 3DOD baseline 488
approach (DIOD-3D) achieves significantly higher perfor- 489
mance than the 2DOD baseline (DIOD), with a 9-point in- 490
crease in F1 score. Cross-modal training further enhances 491
the 2D model’s performance by 4.9 point, attributed to the 492
3D model, which experiences a 2.1-point decrease mainly 493
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due to lower precision. Detailed precision and recall re-494
sults are provided in the appendix. Ultimately, late fusion495
of modalities yields the highest performance on this dataset,496
achieving an F1 score of 42.5. The sparsity of point cloud497
data in the KITTI and WOD datasets presents added chal-498
lenges for the DIOD-3D baseline relative to the 2D base-499
line. Cross-modal training helps mitigate these challenges,500
boosting the F1@50 score of the 2D model by 3.6 and 7.6501
points and the 3D model by 3.4 and 4.6 points on KITTI502
and WOD, respectively. In this context, late fusion proves503
highly beneficial, increasing performance by 5.1 points on504
KITTI and 7.5 points on WOD compared to the next best505
model, our xMOD (2D) branch. The discrepancy between506
all-ARI and F1 scores across datasets arises from the dif-507
fering nature of these metrics: all-ARI is pixel-wise, while508
F1 score is instance-wise. This means that if the model de-509
tects a large, noisy segment, it minimally impacts the F1510
score (counting as a single false positive) but lowers the all-511
ARI score due to many misclassified pixels. As a result,512
the model may perform better on TRIP-PD and Waymo in513
terms of F1 score, but achieve higher all-ARI on KITTI,514
where the effects of pixel-wise noise differ.515

4.5. 2D Object Discovery516

Guidance signal Method TRI-PD KITTI
DINOSAUR [30] - 70.3

optical flow PPMP [16] - 51.9

flow + depth SAVI++ [2, 10] - 23.9

2D motion masks

Bao et al. [1] 50.9 47.1
MoTok [2] 55.1 64.4
BMOD [14] 53.9 54.7
DIOD [15] 66.1 73.5
xMOD (2D) 68.0 75.5

BMOD* [14] 58.5 60.8
DIOD* [15] 69.7 72.3
xMOD* (2D) 67.1 76.9

Table 2. Evaluation of 2D object discovery in foreground regions
using fg-ARI metric on the TRI-PD and KITTI test sets. Methods
using an encoder pre-trained with DINOv2 [25] are marked with *.

In previous experiments, we introduced a baseline in517
3DOD, which was enhanced through cross-modal training518
and late fusion during inference. We emphasize that these519
results were achieved on the new KITTI and TRI-PD test520
sets, with available 3D data (see section 4.1). In this sec-521
tion, for an objective comparison with previous methods in522
2DOD, we evaluate the 2D branch of our model (xMOD523
(2D)) on the conventional test sets of the studied bench-524
marks. We use the most widely employed metric in 2DOD,525
ie. fg-ARI, for evaluation. The results in Table 2 show that526

xMOD (2D) branch also benefits from cross-modal training, 527
exploiting readily available 3D data. 528

4.6. Ablation studies 529

Early fusion vs. late fusion. We explored two fusion 530
strategies for integrating RGB images and front-projected 531
point clouds. Early fusion combines the modalities at the in- 532
put level with concatenation across the channel axis, while 533
late fusion, as explained in subsection 3.4, refines segmen- 534
tation by cross-examining predictions from the two modal- 535
ities. With an overlap threshold of τ = 0.3, late fusion 536
significantly outperformed early fusion by 8 F1 points after 537
cross-modal training such as shown in Table 3.

Method F1@50

end of burn-in
2DOD 9.3
3DOD 8.6

Early fusion 12.8

Early fusion 19.4final setting Late fusion 27.4

Table 3. Early vs. late fusion.

538

Impact of scene completion. We evaluated using the pre- 539
text task of scene completion, where the model estimates 540
point positions based on neighbors. As shown in Table 4, 541
this task helped our method discover objects, resulting in a 542
7.7-point increase in F1 score.

Scene completion all-ARI F1@50

✗ 63.7 19.7
✓ 75.8 27.4

Table 4. Ablation study on the scene completion pretext task on
KITTI dataset, using the late fusion strategy.

543

Impact of intra-modal distillation. Unlike prior work, 544
we focused solely on cross-modality distillation losses, 545
without applying intra-modality losses between the teacher 546
and student of the same modality. Experiments showed (Ta- 547
ble 5) that adding intra-modality losses decreased perfor- 548
mance slightly by 0.6 F1 points. This suggests the intra- 549
modality loss may act as a redundant constraint, hindering 550
the model’s ability to learn valuable features from the other 551
modality through cross-modal losses. 552

Limitations on nearby and distant objects. From the 553
qualitative analysis in Figure 2 and Figure 3, we observe 554
that segmentation quality depends on the object’s distance 555
from the camera, affecting its size in the 2D image. Based 556
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xMOD (2D) xMOD (3D) xMOD (2D+3D) Ground truthDIOD

Figure 2. Qualitative comparison of our method with state-of-the-art approach DIOD [15], the cross-modal branches xMOD (2D), xMOD
(3D) separately and the final result after fusion xMOD (2D+3D) in real-world scenes (KITTI [12]). Parentheses indicate the modality
used during inference. Each colored mask represents the content of one slot. The segmentations are displayed above the RGB image for
visualisation purposes only. Improvements in xMOD are especially evident in pedestrian detection and background noise suppression.

Losses F1@50Cross-modal Intra-modal

✓ ✓ 26.8
✓ 27.4

Table 5. Analysis of the impact of intra-modal losses (Ldist
2D→2D

and Ldist
3D→3D) on object discovery in real-world (KITTI).

on this, we split the test set into three distance-based sub-557
sets and measure the F1 score for each in Table 6. For ob-558
jects within 10 meters, which are usually cropped in images559
and front view projections (see the example of the red car560
at the top right of Figure 3), the F1 score decreases. Mid-561
distance objects (10-30 meters), which are clearly visible562
and densely represented in the point cloud, achieve a higher563
F1 score. Beyond 30 meters, objects are small and LiDAR564
data is sparse, dropping the F1 score to 7.2 due to low recall.565
A potential solution is re-injecting object instances from the566
high-confidence range into the two other ranges to enhance567
model sensitivity in these areas.

Distance (m) AvgPts/Obj F1@50 Precision Recall

0-10 2640 21.7 68.2 12.9
10-30 941 46.4 85.7 31.8
30-70 134 7.2 29.5 4.1

0-70 1105 27.4 56.9 18.0

Table 6. Object discovery performance on KITTI on 3 subsets of
objects defined by their distance to the camera. AvgPts/Obj is the
average number of points per object in the subset.

568

5. Conclusion569

In this work, we first presented a method for discovering570
multiple objects in 3D data. Our approach builds on the lat-571
est advancements in motion-guided object discovery in im-572

Figure 3. 3D visualization of predictions produced by xMOD
(2D+3D). The background is displayed in gray and each colored
mask represents the content of a distinct slot.

ages and introduces necessary adjustments to handle sparse 573
3D point cloud data from LiDAR sensors. In particular, we 574
found that scene completion is a well-suited pretext task 575
for 3DOD, as scene understanding is critical in this unsu- 576
pervised setting. We also proposed a cross-modal distilla- 577
tion training method, where two branches, each processing 578
a distinct modality—2D or 3D—exchange pseudo-labels 579
during training. The experiments showed advantages for 580
both modalities, which can be attributed to the limitations 581
of each sensor when used independently. To further inves- 582
tigate the multi-modal setting, we proposed a late fusion 583
strategy during inference, using multi-modal consistency as 584
a confidence criterion. The high precision of this approach 585
at medium distances opens perspective for instance injec- 586
tion methods to improve the model reliability in more chal- 587
lenging conditions. Future work could also explore the use 588
of multi-scale supervision—beyond the latent space—to ad- 589
dress the reduced sensitivity observed for small objects. 590
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