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ABSTRACT

The alignment of representations from different modalities has recently been
shown to provide insights on the structural similarities and downstream capabil-
ities of different encoders across diverse data types. While significant progress
has been made in aligning images with text, the temporal nature of video data
remains largely unexplored in this context. In this work, we conduct the first com-
prehensive study of video-text representation alignment, probing the capabilities
of modern video and language encoders. Our findings reveal several key insights.
First, we demonstrate that cross-modal alignment highly depends on the richness
of both visual (static images vs. multi-frame videos) and text (single caption
vs. a collection) data provided at test time, especially when using state-of-the-
art video encoders. We propose parametric test-time scaling laws that capture this
behavior and show remarkable predictive power against empirical observations.
Secondly, we investigate the correlation between semantic alignment and perfor-
mance on both semantic and non-semantic downstream tasks, providing initial
evidence that strong alignment against text encoders may be linked to general-
purpose video representation and understanding. Finally, we correlate temporal
reasoning with cross-modal alignment providing a challenging test-bed for vision
and language models. Overall, our work introduces video-text alignment as an
informative zero-shot way to probe the representation power of different encoders
for spatio-temporal data.

1 INTRODUCTION

A hallmark of general intelligence is the ability to reason about the world in its different manifes-
tations and to integrate different sensory data into unified mental representations (Ernst & Biilthoff,
2004; Kudithipudi et al., 2022). The pursuit of such unified representations is also fundamental to
the development of capable multimodal Al systems and for the advancement of embodied agents
that must operate within a complex world (Xie et al., 2024; Fung et al., 2025).

In recent years, significant progress has been made towards this goal. The success of multimodal
learning approaches has highlighted the potential of joint training paradigms (Radford et al., 2021;
Yin et al., 2024; Liu et al., 2024b; Dubey et al., 2024; Team et al., 2023; 2025), while a parallel
line of research has provided evidence that even unimodal models, when trained at scale, develop
representations with strong structural similarities (Huh et al., 2024; Maniparambil et al., 2024a;
Tjandrasuwita et al., 2025). This observation has given rise to the Platonic Representation Hypothe-
sis (PRH), which posits that neural networks converge towards a shared statistical model of reality in
their latent spaces (Huh et al., 2024). Building on this, several recent works have established a wide
range of techniques to evaluate and exploit cross-modal alignment, in both zero-shot and few-shot
scenarios (Maniparambil et al., 2024a; Jha et al., 2025; Schnaus et al., 2025; Hadgi et al., 2025).

However, prior work has focused almost exclusively on the alignment of szatic modalities: primarily
images and text. In other words, although the Platonic Representation Hypothesis has been stated
in full generality, so far, its validity has only been evaluated on static data, leaving its applicability
to dynamic, temporal domains an open question. Consequently, the rich information contained in
video: motion, causality and temporal dependencies, exhibited, e.g., in intricate human interactions
(Gu et al., 2018; Wang et al., 2023b), has been largely overlooked in the context of representation
alignment.
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A notable limitation of previous studies focusing on static modalities was raised in Huh et al. (2024),
where the authors pointed out: “the maximum theoretical value for the alignment metric is 1. Is a
score of 0.16 indicative of strong alignment [...] or does it signify poor alignment with major differ-
ences left to explain? We leave this as an open question.” In this work, we provide a partial answer
to this open question by showing that the limited alignment observed previously is, in large part, due
to the impoverished data given at fest time. Specifically, we demonstrate that by considering mul-
tiple video frames instead of a single image, as well as a diverse set of captions instead of a single
annotation, the alignment score can be improved significantly, achieving close to 0.4 in some cases,
without modifying the underlying trained models. This result highlights, for the first time, that large
improvements in alignment can be achieved through efforts at test time, which is complementary to
the training-time resources (model size, amount of training data, etc.) considered in prior work. It
also suggests that multi-frame approaches can capture different aspects of a scene better, and points
to the possibility of a strong zero-shot evaluation metric capable of probing the representation power
of both image and video encoders.

More broadly, in this work we extend previous cross-modal alignment studies into the temporal
domain by conducting the first comprehensive investigation of video-text representation similarity.
We introduce a robust evaluation framework to probe and compare the capabilities of modern video
and language models. Our findings reveal that the rich, temporal nature of video provides a powerful
signal for semantic grounding. Specifically, we demonstrate that (1) state-of-the-art self-supervised
video encoders, e.g., VidleoMAEv2 (Wang et al., 2023a), achieve competitive alignment with text
compared to top-performing image encoders, e.g., DINOv2 (Oquab et al., 2023); (2) we observe that
alignment quality is highly sensitive to the richness of the provided visual and textual data, and (3)
there is a non-trivial relation between the video-text alignment and the performance of video models
on downstream tasks. Finally, we highlight challenging situations with hard negative examples, in
which current video and text models struggle, leaving room for future improvement.

2 RELATED WORK

Our work is situated at the intersection of three domains: the study of emergent representation align-
ment, self-supervised video understanding, and multimodal learning. We first review the recent work
in representation convergence, then discuss the most prominent paradigms for learning from video
data, and finally, contextualize our work by highlighting the specific gap in probing the alignment
of unimodal trained video models.

The Platonic Representation Hypothesis and Emergent Alignment in Static Modalities A
foundational concept for our investigation is the Platonic Representation Hypothesis (PRH), intro-
duced by Huh et al. (2024). The PRH posits that as neural networks are scaled in terms of capacity,
data diversity, and task variety, their learned internal representations converge toward a shared, uni-
versal statistical model of reality. This converged latent structure is termed the “Platonic representa-
tion,” drawing an analogy to Plato’s notion of an ideal reality that underlies our sensory observations.
This hypothesis has been empirically tested by measuring the geometric similarity of representation
spaces, obtained using a wide range of encoders. The primary method for this is comparing the
representational kernels, which characterize how models measure dissimilarity between data points
(Kornblith et al., 2019; Maniparambil et al., 2024b; Huh et al., 2024). The key finding supporting
the PRH is that as unimodal vision and language models become more capable, the structure of their
latent spaces becomes increasingly similar, even without explicit cross-modal supervision.

This convergence has been most robustly demonstrated in the alignment of static modalities, primar-
ily between images and text (Maniparambil et al., 2024b; Tjandrasuwita et al., 2025). For example,
the work of Maniparambil et al. (2024b) showed that powerful, independently trained vision and
language encoders develop representations with a surprisingly high degree of semantic similarity.
Furthermore, following prior work (Merullo et al., 2022), the authors of Maniparambil et al. (2024b)
showed that these disparate latent spaces may differ only by a simple, learnable linear transforma-
tion. A more fundamental principle behind these and related results was offered in Huh et al. (2024),
which posited that since all modalities are projections of the same physical world, models trained
at sufficient scale will inevitably converge on similar latent structures that reflect this shared reality
(Huh et al., 2024; Tjandrasuwita et al., 2025). The vision encoders used to validate these claims are
typically state-of-the-art self-supervised models like DINOv2 (Oquab et al., 2023). Recent work has
also examined the conditions and methods related to this emergent alignment (Tjandrasuwita et al.,
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Figure 1: Scaling both the number of video frames and text captions at test time improves
alignment. Given a paired video v; and set of captions c;, leveraging rich multi-frame and multi-
caption information at test time leads to improved alignment, measured in terms of mutual k-NN.
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2025). Cross-modal alignment has also been assessed via “alignment probing,” which correlates
emergent alignment potential with the representation’s clustering quality (k-NN performance) over
linear separability (Zhang et al., 2025). The underlying universal structure has even been shown to
be sufficiently strong to enable both unsupervised and weakly supervised translation between dis-
parate embedding spaces (Jha et al., 2025; Zhang et al., 2025; Schnaus et al., 2025). While these
studies investigate and exploit emergent alignment, they focus almost exclusively on static modal-
ities. Our work complements these findings by conducting the first systematic probe of emergent
alignment in the temporal domain, and shedding light on the dependence of alignment on test-time
data in both text and visual domains.

Learning Representations from Video Learning from video data presents unique challenges
and opportunities due to the temporal dimension. Research in this area is divided into unimodal
self-supervised learning, which focuses on spatiotemporal structure, and joint video-language pre-
training, which focuses on explicit semantic alignment, e.g., Xu et al. (2021); Zhao et al. (2024).
In the former category, masked autoencoding has proven highly effective (Tong et al., 2022; Bardes
et al., 2024; Wang et al., 2023b). This paradigm, inspired by its success in language and image do-
mains, involves masking portions of the input video and training a model to reconstruct the missing
content in either pixel or feature spaces. Although initial approaches in masked video representation
learning have focused on modest model sizes, recent efforts have also been made to scale such mod-
els to the billion parameter regime (Wang et al., 2023b; Carreira et al., 2024; Assran et al., 2025).
Critically, such models are pre-trained on vast, unlabeled video datasets with self-supervised (e.g.,
reconstruction) objectives. For example, VideoMAEv2 has no exposure to textual supervision, yet
it learns powerful spatiotemporal features that achieve top performance on downstream action un-
derstanding tasks (Wang et al., 2023b). This makes it the ideal subject for probing the existence
of emergent semantic alignment. Furthermore, there is recent evidence that even unimodal video
models, when trained at scale, tend to learn features that are useful in a broad range of tasks (Wu
etal., 2025; Carreira et al., 2024). We also note that evaluating self-supervised video representations
is challenging, and current approaches rely on expensive task-specific training (Wang et al., 2023b;
Carreira et al., 2024; Hasson et al., 2025). There is thus a strong need for zero-shot metrics with
strong predictive power for video models.

Bridging Unimodal Video and Text: Probing for Emergent Alignment Given the success of
powerful unimodal encoders in both static (Oquab et al., 2023) and temporal (Wang et al., 2023b)
domains, and the evidence for emergent alignment in static data (Maniparambil et al., 2024b), a
natural question arises: does the Platonic Representation Hypothesis extend to the temporal domain?
While our work is the first to conduct a systematic probe of this question, we acknowledge related
efforts that bridge video and text representations, e.g., (Kim et al., 2023; Liu et al., 2024a; Li et al.,
2025). However, existing works in this domain typically rely on an existing source of alignment
rather than investigating the intrinsic properties of video encoders.

3 OUR APPROACH

At a high-level, our approach follows the methodology introduced in Huh et al. (2024), which uses
a mutual £-NN metric to measure the similarity across different modalities. We adapt this approach
for our setting, extending it to measure the multi-frame (or multi-clip) and multi-caption similarity
of video-text pairs. Our setting is described in Figure 1.



Under review as a conference paper at ICLR 2026

LLM Models
= = gemma2-9b-it (r = 0.87)
llama-7b (r = 0.87)
gemma-7b (r = 0.88)

pe_core giant vldeomaev;Lﬂuge
& S

e
N
o

pe_co
dinov2
dinov?, larglinov3 | hugr

dmwggg‘a")a)(deomasvz lorge -+
image model on video dmovi\ar nov3 jdrge
B image model on image webss| d)nﬁlb %QUWGE ink2k
N chp)\:ﬁ inf2k .ot
Cﬁ‘;pharg%hp huge #bla in12k*

L&ip_targe hazk
P o2 Sma” Ld\[\nov3 base
clipggese ﬁ@’eg ;@?Q‘g ,a,g.vwnt b 16X2_kinetics400
augreg_tiny dW

5 e algreg farge
viepa? \antassaeg small
augreg tin
- nggz% giant
pe_¢ (o%largs/
/ e
ma

maé_base

iant 4
g /

Model Types
@® native video model

o o S
= = N
o v o

Alignment Score w/ Gemma?2 9B-IT (VaTeX)
o
>
w

v\deomae.baseiss\/Z .l avg. video - image A: +0.014

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
K400 Retrieval Accuracy

LLM Models
= = gemma2-9b-it (r = 0.83)
llama-7b (r = 0.84)
gemma-7b (r = 0.84)

Pe-SAg SRz huge

giant
dinov2_giant
dinov3_huge dinov2arge ,'

t
ditovgggian v\deo&ndiZIarzeb
URRNZRIER huga ok @

webssl_dinolb 224 A

dip_huge T2k
lip g U .
clpJpy giﬁ'
clip_pugh B9k large i mlzk

dined3 | sez
(| sﬂal\
C'pirfgp pefe chp arge l‘ank
ciogosse ki, oS EREY 00«
aygredbraenglarge

pe_coj

Model Types

@ native video model
image model on video

M image model on image

augreg uny

augy tmy

pe_core_large -,

v\daoﬁvae.baseissvz gl 2V9: video -image A: +0.014

0.125 0.150 0.175 0.200 0.225

SSv2 Retrieval Accuracy

0.250 0.275

Figure 2: Video representations are strongly aligned with text. We measure alignment between
modern vision encoders and recent text encoders (Gemma 2-9B-it shown, subset of all vision mod-
els for clarity) on the VATEX video dataset using a single caption for each video. We differentiate
between native video, multi-frame image and single frame vision models (@, A, ). Vision represen-
tations are evaluated for video retrieval using weighted k-NN on the Kinetics-400 and SSv2 test sets.
In addition to the points, we plot a linear regression of alignment scores to representation strength
for three different LLMs. Our takeaways are threefold: (1) Image-only models are mostly limited
to alignment scores of 20%, as noted in Huh et al. (2024). (2) Recent text models have improved
alignment with vision models, shown by the regression lines. (3) Averaging over frames is a simple
yet effective baseline for image models on video input.

At its core, the Platonic representation alignment is calculated in the following stages.

Dataset. We assume a test set of V video-caption pairs: S = (V,C) = {(v1,¢1),...,(vn,en)}
Here v; is a video, and ¢; is a corresponding set of text captions for this video. Each caption ¢;; in
the set ¢; provides a textual description of the given video v;.

Encoding. We embed each video using a video encoder into some video embedding space
Evia(v;)) = v; € RP. Similarly, we encode each set of captions ¢; into a text embedding space
using a text encoder: Eioxt(c;) = ¢; € R?. Importantly, the dimensionality of the embedding
spaces, p and ¢ are typically different, making it difficult to directly compare distances. We de-
fine X € RV*P and Y € R¥*? to be the matrices obtained by stacking all of the video and text
embeddings respectively. For simplicity we denote X = Eiq(V), and Y = ot (C).

Alignment metric. The Mutual £-NN (MKNN) metric introduced in Huh et al. (2024) measures
the agreement between the nearest neighbor structure in two different embedding spaces. Given
two feature sets X € RY XPY € RN>4, we first construct two binary indicator matrices Mx and
My, both of size N x N, s.t., (Mx);; = 1 if element (row) j is among the k-nearest neighbors of
element (row) ¢ in space X, and 0 otherwise. The Mutual k-NN alignment is then calculated as:

k:NZZ Mx ® My );;.

i=1 j=1

AMENN (XY (1)

Here, ©® denotes the Hadamard product (element-wise multiplication) of the two indicator matrices.
Observe that the operation in Eq. (1) represents simply the mean overlap (alignment) in the sets of k
nearest neighbors, normalized by a hyperparameter £ (typically set to k = 10 for a dataset of 1024
examples). Additionally, we also follow previous work and optimize over the choice of intermediate
layers for both encoders, and pick the pair of layers that maximizes the alignment score.

Incorporating multi-instance data. As mentioned above, our main goal is to extend previous ap-
proaches, which focused on static instances to datasets of videos (treated as multi-frame sequences)
paired with potentially multiple diverse captions; see Sec. 4 for a detailed description of our data
sources. For a video v; and a given video encoder &iq, which natively processes clips with n,
frames, we extract the indices of ny frames through uniform linear interpolation to study the effect



Under review as a conference paper at ICLR 2026

of using an increasing number of frames ny at test-time. Using one frame (ny = 1) corresponds
to the setup used in prior works that focus on image-text alignment. For videos longer than n,, we
use nearest neighbor interpolation to extract increasing numbers of frames that are multiple of n,,
e.g. for n, = 16, we consider ny € {16,32,64,80}. We pass the n,-length sub-clips through the
encoder and then average the representations over sub-clips.

Similarly, for a set of captions c;; associated with a given video v;, we can use anywhere from one
caption to the full set of captions. We concatenate the set of selected captions into a single string and
use text-based encoders (including LLM-based ones as discussed below) to extract their intermediate
features. When an encoder produces per-token embedding, we average the features along the token
dimension to obtain a [layer, hidden dimension]-shaped feature, associated with each video.

4 DATA AND MODELS

Data. We evaluate video-text alignment on several datasets that contain paired video/text data. Our
main investigations use VATEX and the Perception Encoder Video Datasets (PVD) (Wang et al.,
2019; Bolya et al., 2025). We construct two test sets using 1024 videos randomly sampled from
VATEX and PVD. Each video in VATEX lasts around 10 seconds and is taken from a unique YouTube
video. They are captioned by 10 different annotators in English and Chinese (we only use the English
captions). In other words, each video contains 10 different captions (each caption is produced by
a different annotator and is typically a sentence with around 15 words on average). This provides
a rich source of diversity which we can use to vary the amount of textual information used for
alignment. To achieve a similar effect with PVD, we use Gemini-2.5Pro to split each fine-grained
caption into 10 separate captions in a similar style to VATEX; see Sec A.3 for more details.

Models. We experimented with a wide range of both video and image encoders, as well as aggrega-
tion strategies. For image models, we consider two variants: first, we simply use a single (middle)
frame; second, to introduce naive temporal dynamics, we averaged the image features across the
temporal dimension. We denote the resulting method as image model on video.

For video models, we consider a range of encoders, including self-supervised ones like VideoMAE
and VideoMAEv2 (Tong et al., 2022; Wang et al., 2023b), as well as partially text-supervised ones
like VideoPrism (Zhao et al., 2024). We also evaluate recent vision models, such as the Perception
Encoder and DINOv3 (Bolya et al., 2025; Siméoni et al., 2025). We make a distinction between
text-aligned and self-supervised models and use the former as an upper bound for our alignment
evaluation. For image models which are trained on video data, i.e., Perception Encoder (Bolya
et al., 2025), we denote them as video models when tested on video input. In total, we test 63
different models and variants; see full list in the Appendix, Section A.2.

For language models, we experimented with a broad range of encoders, starting with the ones con-
sidered in Huh et al. (2024). We also consider recent unimodal language models from the Gemma
2 series (Gemma Team: Riviere et al., 2024) and evaluate their potential as text encoders. Given
a caption, we encode it with a text encoder and then average the representation over the token se-
quence. As mentioned above, we store intermediate representations across all layers of the encoder
and select the best pair of layers for each pair of vision and text models when measuring alignment.

5 VIDEO-TEXT ALIGNMENT RESULTS

Our first results on the VATEX dataset (Wang et al., 2019) are summarized in Figure 2. These results
are obtained by using a randomly selected single (out of 10) caption for each video. We evaluate
video understanding performance using nearest neighbour video retrieval on 10,000-video subsets
of the Kinetics-400 and SSv2 test sets, respectively (Kay et al., 2017; Goyal et al., 2017). We use
weighted k-NN accuracy as retrieval metric following NPID and DINO (Wu et al., 2018; Caron
et al., 2021); note that this is different from our Mutual £-NN alignment metric. We sweep over
the number of nearest neighbours and find 8 to give good results for majority of the models for
the retrieval task. We also report the alignment of the same vision models against a wide range of
language encoders on the VATEX dataset in the Appendix, Figure 6.

We make several observations: first, when considering pure image and text models that were studied
in prior work Huh et al. (2024), the alignment scores that we obtain closely follow previously re-
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available at test time. (a) Providing more frames increases vision-text alignment for both image
and video models, with the latter being able to take advantage of more frames more effectively. (b)
Providing more captions to the text model also significantly boosts alignment with vision models,
across all frame counts.

ported values on other datasets (e.g., the alignment score between the best image model DINOv2 and
the best text encoder outside of the Gemma family is 0.18). Secondly, we note that more recent text
models in the Gemma-2 family lead to better alignment with video models, even if trained purely for
text generation, highlighting the utility of these models as text encoders. Simply using a powerful
text encoder already increases the best image-text alignment score to approximately 0.206. This
is consistent with, e.g., Zhang et al. (2025) which has highlighted the importance of the language
model for multimodal alignment. Third, we note that simple temporal averaging across multiple
frames with powerful image models exhibits remarkably high video-text alignment reaching align-
ment of approximately 0.223. Finally, there is a very wide range of text-alignment scores across
video models. Nevertheless, the highest alignment is achieved with a self-supervised VideoMAEv2
model. This last result is notable, since it shows, both that natively-trained video models can outper-
form extremely strong image-based models (DINOV2) in text alignment, and that temporal dynamics
play an important role in semantic grounding.

Overall, these results above point to the potential, first, of using multi-frame video data for text align-
ment, and second, of using language models for computing informative embeddings. Since in all of
our experiments, Gemma-based encoders achieved the best alignment, our subsequent experiments
focus on that particular text encoder and investigate the role of vision encoders in text alignment.

6 VIDEO-TEXT ALIGNMENT AND DATA DEPENDENCE

A key observation of our work is that the quality of the vision-text alignment depends strongly on
the amount of visual and caption data given at test time. This is in direct complement to the focus
of previous works that analyzed the dependence of the alignment on the size of the pre-training
datasets or number of trainable parameters in different models.

Figures 11a and 11b illustrate the dependence of vision-text alignment scores (against the Gemma
2-9b-it text encoder) on the number of frames from a video and the number of associated captions
in the VATEX dataset (Wang et al., 2019). Figure 11a demonstrates how the average alignment score
changes with an increasing number of frames for different caption counts and two vision models:
VideoMAEvV2 (Wang et al., 2023b) and DINOv2 (Oquab et al., 2023). Observe that across all
settings, the alignment scores generally increases as more frames are incorporated, suggesting that
a richer temporal context from the video leads to better alignment with textual descriptions.

Figure 11b complements the first by showing the alignment score’s dependency on the number of
captions used, for the same vision models and a selection of frame counts. Increasing the number
of captions leads to a significant improvement in alignment scores, particularly when starting with
a small number of captions. We note that since in the VATEX dataset each caption corresponds
to a description of the same video provided by a different user, increasing the number of captions
increases both the coverage of the captured visual concepts, as well as the diversity of perspectives
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on the same concept and event. We include in Appendix, Figure 7 alignment scores against multiple
Gemma models when using single vs all captions in VATEX, confirming this same observation.

These plots collectively underscore the importance of visual (frames) and textual (captions) data
quantity in achieving high vision-text alignment, with distinct performance characteristics associated
with different vision models. We emphasize that our results strongly complement the preliminary
experiments in Sec. 6 of Huh et al. (2024), relating information density to alignment. This is because
we investigate, for the first time, the use of multi-frame video data, but also in our study of multiple
complementary captions instead of a single shorter description distilled from a longer one as done
in that work. We observe that having diverse captions, possibly describing the same visual concept
in different ways, can boost alignment significantly.

To illustrate this behavior further, we demonstrate that by using multiple text descriptions, artificially
synthesized from a single long video caption, we can obtain alignment that is higher than that against
the source caption. Namely, in Figure 8 (appendix), we find that our test time scaling approach
improves alignment on the PVD dataset (Bolya et al., 2025).

Test-time Scaling Laws Building on the empirical observations in Figures 11a and 11b, we also
quantify these dependencies using a predictive parametric model. We tested several formulations,
but found that a saturation-based model (eq. 2) provided the best fit by a significant margin:

score(ny,ng) = Soo — (C’fn;“ + C’cngﬂ). 2)

Here ny and n. are the number of video frames and text captions given to a specific pair of vision
and text encoders (as in Fig. 1), S, represents the theoretical saturation score corresponding to
ideal alignment of this vision/text model pair, whereas C'f, C, o and 3 are fitted scalar parameters.
This formulation achieves remarkably high coefficients of determination for both VideoMAEv2
(R? = 0.9838) and DINOV2 (R? = 0.9905), with strong predictive power for test-time data scaling
against the Gemma-2 text model.

The fitted parameters are also highly informative: VideoMAEV2 (S, =~ 0.40, Cy = 0.11, C. =
0.14, o = 1.22, 8 = 1.31) versus DINOV2 (S, ~ 0.37, Cy = 0.06, C.. = 0.13, a = 1.78, 3 =
1.36). Notably, the frame coefficient (C'y) for VideoMAEV2 is nearly double that of DINOv2, while
the caption coefficients (C.) remain comparable, highlighting the video model’s stronger ability to
leverage temporal information from additional frames to improve alignment.

This parametric analysis resembles compute-optimal scaling laws, such as those identified for pre-
training, e.g., in Hoffmann et al. (2022), which model the dependency of a loss function (e.g.,
Negative Log-Likelihood) on compute or data size. Whereas those laws are formulated in terms
of a loss metric (where lower is better), our metric is an alignment score (where higher is better),
making our additive saturation model conceptually equivalent. The saturation score S, (e.g., 0.40
for VideoMAEvV2) can be interpreted as the base accuracy of an ideal alignment process, while the
subtracted terms represent the respective error penalties incurred by the approximation of providing
only a finite data at inference time.

We note that such predictive models for test-time scaling can be useful to design strategies for multi-
modal data acquisition (e.g., when collecting multiple high-quality annotations of video data, which
can be costly), as well as to compare the ability of different encoders to incorporate diverse data
modalities. We include test-time scaling laws for other vision models in the appendix, Sec. A.5.

7 CROSS-MODAL ALIGNMENT AND DOWNSTREAM PERFORMANCE

Previous works, including Huh et al. (2024) and Maniparambil et al. (2024a) have highlighted that
multimodal alignment between images and text is correlated with performance on unimodal tasks.
L.e., image models that perform well on pure vision tasks (e.g., depth estimation) tend to also align
well with language. Our goal is to evaluate whether a similar claim holds for video encoders.

We take advantage of recent work that trained large-scale unimodal video encoders and evaluated
their performance on various semantic and non-semantic downstream tasks. We focus on video
models trained without explicit text supervision, in order to better analyze the emergent alignment
between representations, as opposed to models explicitly trained for video-language alignment (e.g.
through video-text contrastive losses). In particular, we consider the best performing video models



Under review as a conference paper at ICLR 2026

Pearson Corr: R = 0.883, p = 0. Pearson Corr: R = 0.923, p = 0.000

Pear%o’n E}?rr: R =0.396, p = 0.291
0.07 .

o
°

L VideoMAE- D56
et § VideOMAEL

o
°
=

o d
veran G 0.06 VIEPAH
" 8 ViEPAH
. & . .

aDsL
.

o
o
&
.

e £
Videowae:s
50.04 © s 5004 .
K aps:s <
0.03 2. 0.03 .. aps's

ent
°
°
3
o
Alignment Score
&

4ps8
@ ® VideoMAES

o
o
4

o
o
e

040 045 050 055 060 065 070 030 035 040 045 050 055 076 077 078 079 080 081 082 083
ssv2 action classification (Higher better) kinetics action classification (Higher better) perception_test point tracking (Higher better)

Pearson Corr: R = -0.832, p = 0.005
4ps-e g VideoAEH

Vn*CDFr' R =-0.926, p = 0.000 Pearson Corr: R = 0. az\ollpi[o 007
4 Videon

0.07 . 0.07 0.07 .
@ deomaEL o o2 VieomEL o UL 2 G
5 0.06 VEPAH 5 0.06 ViEra 5 ° ¢
o o) . L S 0.06 VIERAH
9 45T apsi, 2 o .
£ 0.05 . £ 0.05 . £ 005 o5t
§
£ VideoMAES ~~~4ps.8 £ VideoMAE-8 £
£0.04 . . £ 004 o ganse £ e .
< 4SS Z wss % 0.04 ® ®VideoMAE B
0.03 = 0.03 L 4058
0.03 -
03 04 05 0.6 0.7 10 12 14 16 18 20 0.70 0.72 0.74 0.76 078

rel0k camera pose estimation (Lower better) scannet depth estimation (Lower better) waymo object tracking (Higher better)

Figure 4: Correlation between video/text alignment and downstream video perception task perfor-
mance, for SSL methods trained without text supervision.

reported in Carreira et al. (2024) and correlate their vision-text feature alignment against Gemma
2-9b-it on the VATEX dataset to their accuracy on video analysis tasks: point tracking on the Per-
ception Test dataset (Patraucean et al., 2023), box tracking on the Waymo Open dataset (Sun et al.,
2020), camera pose estimation on RealEstate10k (Zhou et al., 2018b), ScanNet depth estimation
(Dai et al., 2017), and action classification on the SSv2 (Goyal et al., 2017) and Kinetics-700-2020
(Kay et al., 2017; Smaira et al., 2020) datasets. Downstream accuracy is computed by training a
separate learnable attention-based decoder on top of the frozen video features for each task.

Figure 4 summarizes our key results. Observe that generally for self-supervised video models, there
is a strong positive correlation between the cross-modal alignment scores and semantic tasks perfor-
mance such as action classification on SSv2 and Kinetics. Interestingly, there is also a significant
correlation between the alignment score and the accuracy on non-semantic perception tasks such as
camera pose estimation, depth prediction, and object tracking. The point tracking task represents
a notable exception, with weak correlation between text alignment and downstream performance.
This can potentially be due to the highly local nature of the point tracking task, and also suggests
room for improvement in terms of truly general purpose video encoders.

Overall, these results suggest that video-text alignment could potentially be used as a powerful zero-
shot metric for probing the quality of video representations as an alternative or complementary to
more expensive evaluation techniques that require repeatedly training multiple cross-modal decoders
during self-supervised video model development.

8 TEMPORAL ANALYSIS & CROSS-MODEL ALIGNMENT

Given that both modalities we focus on follow the arrow of time, we set out to investigate their
temporal abilities via cross-modal alignment. While LLMs have been trained natively to handle
long sequences of text, video models traditionally are trained on short 16-32 frame videos lasting
2-4 seconds. Any understanding over longer horizons is therefore emergent. We analyze temporal
alignment on two datasets: the simple, synthetic Test of Time (Bagad et al., 2023) and the challeng-
ing long-form VideoComp (Kim et al., 2025).

Test of Time. We first evaluate temporal alignment on the synthetic dataset from Test of
Time (Bagad et al., 2023), specifically designed to probe the temporal abilities of video models.
The dataset contains 180 synthetic (video, caption) pairs, with captions of the form “A ¢; circle ap-
pears {after, before} a ¢y circle,” where ¢y, ¢, are selected colors, and the videos are 30 second 1fps
clips enacting the caption with the shapes appearing in the same region of a black square (upper left,
upper right, bottom left, bottom right). For each choice of shape and {c1, c2}, there are four pairs
of related captions: two for each choice of preposition and color order. Within these, there are two
sets of logically equivalent captions (e.g., c; before co and c5 after ¢ ), for which their videos may
be identical or different depending on the location of the shapes.

We use video-text alignment on this dataset to understand how sensitive text and vision models are
to this temporal reordering.
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VideoComp. We also test multimodal alignment on VideoComp (Kim et al., 2025). We use Video-
Comp’s test set, sourced from YouTube and based on ActivityNet Captions and YouCook?2 (Krishna
et al., 2017; Zhou et al., 2018a). We consider videos at most 2 minutes long, and use the “segment
mismatch” negatives which pair partial video segments with mismatched captions of alternative seg-
ments in the same video. This results in 285 video-caption pairs, so we use a lower k£ = 3 for these
experiments. To test the sensitivity to such negatives, we first compute the standard alignment using
the text embeddings of positive captions. Then, we recompute neighbors in the text space, by con-
sidering the negative of each caption, say ¢;, and computing its neighbors to the positive captions of
other videos. Since negative captions are still from the same overall video, just temporally shuffled,
this tests if the model is still aligned with the content in a temporally-agnostic manner. As shown in
Figure 10 (appendix), the alignment with the negative captions is significantly lower than with the
positive captions. Notably, models with larger alignment suffer more of a drop, suggesting that these
models have well aligned structures which are adequately perturbed by the negative. These results
again highlight that better alignment correlates with better downstream semantic understanding.

Cross-model alignment. We also investigated the alignment of features across different video mod-
els, and report the results in the Appendix A.6. We observe that text-supervised and self-supervised
models, predictably, form clusters in pairwise alignment. However, interestingly, we note that some
models (such as DINOvV2) are able to span multiple clusters, and we hypothesize that such alignment
against multiple models provides a strong indicator of the versatility of a given vision model. We
leave a complete investigation of this phenomenon as interesting future work.

9 CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this work, we conduct the first comprehensive study extending the Platonic Representation Hy-
pothesis into the temporal domain. We demonstrate that alignment scores dramatically improve
— doubling in some cases — simply by utilizing multiple video frames and diverse caption sets
at inference, without any retraining. We quantify this phenomenon with a novel, highly accurate
(R? > 0.98) saturation-based scaling law, which quantitatively confirms that native video mod-
els (like VideoMAEV2) are fundamentally more able to leverage temporal information than static
encoders (like DINOv2).

Through an extensive analysis involving 98 vision and language models, we show that alignment
against text encoders strongly correlates with downstream performance on both semantic and non-
semantic tasks, suggesting that vision-text alignment can be used as an informative zero-shot metric
to guide video model development. At the same time, our analysis sheds light on some limitations
of existing pure video foundation models, showing that many video models are outperformed by
image models applied frame-by-frame.
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REPRODUCIBILITY STATEMENT

All our results can be reproduced using models and datasets hosted on HuggingFace or open-sourced
by their authors; see Section A.2 in the Appendix for full list of models.
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A APPENDIX

A.1 ADDITIONAL RESULTS

We include in Figure 6 the alignment scores of all the vision and text encoders considered in our anal-
ysis on the VATEX dataset — 98 models in total; see the full list in Section A.2. The rows correspond
to vision encoders and the columns correspond to language models. The label for each model has
the format: <model name> (<max_alignment_score>) <num_layers>. Each ¢j entry
in the matrix contains the alignment score (also colour-coded: lighter shades correspond to higher
alignment scores) and a tuple (layer;, layerj) indicating from which layers in vision.model_i
and language_model_j, respectively, the representations were extracted to get the best align-
ment for that pair; we recommend zooming in for better readability. We used a single caption for
each video (out of 10) sampled randomly.

As mentioned in Section 6, the alignment scores improve significantly when considering more video
frames and/or more text captions. In Figure 7, we show additional results that confirm this observa-
tion. We calculate alignment scores between visual representations produced by a subset of the vi-
sion encoders considered above and language representations given by different variants of Gemma
text models, when processing a single caption (left) vs. multiple captions (right) from the VATEX
dataset. As before, the rows correspond to vision encoders and the columns correspond to language
models. Note that if we only have access to the final model output, num_layers in the model label
is marked as 1. For vision models, we consider: (1) image models applied on the middle frame of
each video, (2) image models applied on every frame of the video and the representations averaged
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Global Average: 0.0985

aimv2_3B_224_video (Max: 0.0117) I:23
aimv2_3B_448_video (Max: 0.0179) :23
aimv2_3B_448_image (Max: 0.0175) I:23
aimv2_1B_224_video (Max: 0.0184) 1:23
aimv2_large_224_video (Max: 0.0195) 1:23
aimv2_3B_336_video (Max: 0.0192) I:23
videomae_base_ssv2 (Max: 0.0195) I:12
aimv2_huge_224_video (Max: 0.0193) I:23
aimv2_1B_224_image (Max: 0.0201) |:23
pe_core_small_video (Max: 0.0241) I:12
pe_core_tiny_video (Max: 0.0278) I:12
mae_base_video (Max: 0.0314) :12
mae_base_image (Max: 0.0315) 1:12
pe_core_base_video (Max: 0.0350) I:12
mae_large_image (Max: 0.0430) :24
mae_huge_video (Max: 0.0453) 1:32
mae_huge_image (Max: 0.0457) I:32
mae_large_video (Max: 0.0468) I:24
pe_core_large_video (Max: 0.0776) |:24
videomae_base_finetuned_kinetics (Max: 0.0823) :12
vjepa2_huge (Max: 0.0857) I:32
viepa2_giant (Max: 0.0896) I:40
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Figure 6: We measure alignment between a large number of vision and text encoders on the VATEX
dataset.
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Figure 7: Video-text alignment results when using a single caption (left) vs. multiple captions
(right) when measuring alignment. We observe a significant boost when integrating information
across multiple captions. Notably, the best results on the right significantly exceed those reported
in Huh et al. (2024), highlighting that the paucity of annotations in both visual space (images vs.
videos) and text space (single caption vs. multiple descriptions) can help to explain the limited
alignment observed in prior work.

over time (marked with red boxes), and (3) video models (marked with blue boxes). When using a
single caption (left), we observe that the best alignment scores are generally obtained by video mod-
els, which are able to encode not only features about the scene appearance, but also details about
the scene dynamics, leading to better alignment with caption representations. A notable exception
is the DINOv2 image model applied on all the frames of the video, which obtains the second best
alignment score. However, when we consider all the ten captions available for each video (right), the
alignment scores improve significantly overall, and several image models applied on the full videos
or even on single frames outperform many video models.

These findings hold on other datasets as well. We show the effect of adding more frames or using
multiple captions at test time on the PVD dataset (Bolya et al., 2025). As the original dataset comes
with a single detailed caption, we use an LLM to synthesize multiple captions; prompt and examples
included in Section A.3. Figure 8 summarizes the results. On the left, we plot the alignment scores
as we add more synthesized captions for different vision models. The dashed lines indicate the
baseline alignment score of each vision model when considering the original detailed caption. We
can observe that for all models, using more than 4 or 5 captions leads to better alignment compared
to the baseline score. This saturates around 6 or 7 captions for most models, pointing to potential
redundancy between the synthesized captions beyond this number. On the right, we show the effect
of adding more frames.

A.2 FULL LIST OF MODELS

We use the following 68 open-sourced visual models and their variants for our analysis. All the
models are available on HuggingFace or from the GitHub repositories of the authors.

aimv2_3B_.224_video, aimv2_3B_448_video, aimv2.3B.448_image, aimv2_.1B_224_video, aimv2_large_224_video,
aimv2_3B.336.video, timesformer._base k400, timesformer_base.ssv2, videomaev2.base, videomaev2.large,
videomaev2_huge, videomae.base_ssv2, videomae base_finetuned.kinetics, videomae_huge_finetuned.kinetics,

vivitb.16x2_kinetics400, dinov2.small.video, dinov2_small_.image, dinov2_base.video, dinov2.base.image,
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Alignment Score vs. Number of Captions (PVD)
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Figure 8: Test Time Scaling for PVD works well. Scaling the number of captions at test time
outperforms using the original provided caption, and scaling with more clips is important to improve
upon simple frame number scaling.

dinov2.large_.video, dinov2.large.image, dinov2.giant.video, dinov2_giant.image, augreg-tiny.-video,
augreg-tiny_.image, augreg.small_video, augreg.small_image, augreg-base_video, augreg.-base_image,
augreg.large_.video, augreg.large.image, mae.base.video, mae.base.image, mae.large.video, mae_large.image,
mae_huge_video, mae.huge._image, clip.base.video, clip-base.image, clip_-large.video, clip-large.image,
clip.-huge_.video, clip.-huge.image, clip.base.inl2k_video, clip.base_inl2k_image, clip_large_inl2k_video,
clip-large-inl2k.image, clip-huge_inl2k.video, clip-huge.inl2k.image, pe-core.tiny.video, pe_core.small_video,
pe.core base_video, pe.core.large_video, pe.core_large._image, pe.core._giant_video, pe_core_giant.image,
dinov3base_video, dinov3.large_video, dinov3.huge_video, dinov3.7b_video, dinov3.7b_image,
webssl.dinolb.224_video, webssl.dinob5b.224_video, webssl.dino7b.224_video, webssl.dino7b-224_image, vijepa2-large,

vjepa2_huge, vjepa2.giant, vjepa2_giant.384.
For language models, we experiment with the following 30 open-sourced models and their variants:

bloom-560m, bloom-1bl, bloom-1b7, bloom-3b, bloom-7bl, open-llama-3b, open-llama-7b, open-llama-13b,
llama-7b, llama-13b, llama-30b, llama-65b, gemma-2b, gemma-7b, gemma2-2b-it, gemma2-9b-it, gemma2-27b-it,
gemma3-1lb-it, gemma3-4b-it, gemma3-12b-it, gemma3-27b-it, t5-small, t5-base, t5-large, t5-3b, t5-1lb,
llama3.2-1b, llama3.2-3b, llama3.1-8b, llama3.3-70b.

A.3 SYNTHETIZING CAPTIONS FOR PVD DATASET USING LLMS

To study the effect of including an increasing number of captions on the alignment score between
video representations and the language representation of the associated captions, we synthesized
multiple captions for videos in the PVD dataset using LLMs, starting from the detailed caption
provided in the original dataset. We relied on Gemini 2.5Pro. For reproducibility purposes, we
provide below the prompt used to generate these captions, which was obtained from the prompt
given to the VLM model when collecting the annotations for the original PVD dataset. We also
include a qualitative example in Figure 9.
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Create ten concise captions of a video using the provided detailed captions. Each caption
should mention different details present. The goal is not to summarize all of the information
10 different ways, but to get 10 different descriptions all potentially containing different
information.

TASK: Extract key information from the captions and combine it into a set of ten captions,
each of which is a single phrase or set of phrases that includes some subset of the relevant
details in alt text format.

Steps to Follow:

1. Review the caption for general context.

2. Extract the most relevant and concise information.

3. Don’t include all of the key information in every caption. Pick some information to leave
out between captions.

4. Combine extracted information into a alt text format using short phrase or set of phrases
with approximately 120 tokens, considering special characters like comma as part of the token
count.

5. Minimize the use of special characters and including everything in each caption.

6. Pick only a few things to include in each caption, it’s okay to leave details out.

What to Avoid:

— Avoid adding or inferring information not present in the original metadata and captions.

- Avoid using complex sentence structures or prioritizing sentence flow.

Return a list separated only by new lines, with only the captions, nothing else.

Figure 9 shows video frames, the original caption, and the synthesized captions for a video from the
PVD dataset.

Human caption

The video shows a person making a burger. The person is adding mayonnaise to one bun and
then placing different vegetables and a patty on top of it after that applies ketchup on another
bun. The person is also using wooden boards to keep the ingredients and the burger. The
person is wearing a red and white checkered shirt.

Synthesized captions

1. Person making a burger.

Adding mayonnaise and vegetables to a burger.

Burger assembled on a wooden board.

Tutorial showing how to make a burger.

Person in a red and white checkered shirt making a burger.
Well-lit video with vibrant colors showing burger preparation.
A person makes a burger using a wooden board.

Tutorial on adding mayonnaise and vegetables to a burger.

Person in a red and white checkered shirt preparing a burger.

© 0 ® NN kA BN

—_

Great tutorial for learning how to make a burger.

Figure 9: Example of video frames, the original human-provided caption, and LLM-synthesized
captions for a video in the PVD dataset.
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Alignment Scores against Positive vs. Negative Captions (VideoComp)
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Figure 10: Video embeddings are sensitive to temporal caption reordering. Video-text align-
ment drops against the segment mismatch negatives in VideoComp, with the most aligned video
representations showing the largest drop in alignment with the negatives (models towards the right).

Alignment against Gemma-2-9b-it

Alignment against Gemma-2-9b-it

Number of Frames " ' " Number of Capéions ’
(a) Alignment Score vs. Number of Frames for Video- (b) Alignment Score vs. Number of Captions for
Prism VideoPrism

Figure 11: Analysis of vision-text alignment sensitivity to the amount of visual and textual data
available at test time for the VideoPrism model on the VATEX dataset

A.4 TEMPORAL ALIGNMENT IN VIDEOCOMP

Using the same mutual k-NN metric, we probe if the visual and text representations produced by
different vision and language encoders are sensitive to temporal order and / or temporal alignment.
We use VideoComp dataset (Kim et al., 2025), which contains tuplets of (video, positive_caption,
negative_caption), and measure alignment for each video against its associated positive and negative
captions; see Figure 10. We observe that the alignment with negatives is significantly lower. Im-
portantly, as the visual-language alignment with the positive captions is stronger (towards the right
of the figure), the gap in alignment with the negative captions increases, confirming that the mutual
k-NN alignment metric correlates with temporal understanding.

A.5 TEST-TIME SCALING LAWS FOR OTHER MODELS AND DATASETS

Figure 11 shows the test-time scaling results for VideoPrism encoder Zhao et al. (2024) on the
VATEX dataset.

R — squared : 0.9832
* S0 =0.40,Cf =0.09, 0 =0.74,C. = 0.14, 5 = 1.21
We also include some test time scaling laws for other models using PVD as our alignment dataset.

* dinov2_base_video (R? = 0.9310):

- S5 =0.242,Cy = 0.031, o = 1.647, C. = 0.063, 5 = 3.825
* dinov2_giant_video (R? = 0.8736):

- 8% =0.310, Cy = 0.028, a = 0.919, C. = 0.087, 8 = 3.461
» pe_core_giant_video (R? = 0.8248):

- S =0.334, Cy = 0.014, a = 2.101, C, = 0.101, 3 = 3.063
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Pairwise Alignment Scores Heatmap
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Figure 12: Video encoders cluster into semantic and geometric specialities. We find that video-
video alignment exhibits two clusters of models: those which are closer aligned to language and
semantic tasks (bottom right), and those which are closer to geometric abilities (top left). However,
some models are able to span both axes, notably DINOv2 and VideoMAEv2 K710 finetuned.

* timesformer_base_k400 (R? = 0.9079):

- S5 =0.285, Cy = 0.066, o« = 1.648, C. = 0.082, 5 = 2.889
e timesformer_base_ssv2 (R? = 0.9589):

- 8% =0.172, Cy = 0.056, o = 0.812, C. = 0.039, 5 = 1.864
+ videomaev2_base (R? = 0.9644):

- So =0.451, Cy = 0.303, a = 0.065, C. = 0.052, 8 = 2.277
» videomaev2_huge (R? = 0.9509):

- S5 =0.291, Cy = 0.096, a = 0.484, C. = 0.074, B = 2.573
» videomaev2_large (R? = 0.9722):

- 8% =0.292,Cy = 0.146, o = 0.194, C. = 0.054, 5 = 2.128
e vivit b 16x2_kinetics400 (R? = 0.9279):

- S5, =0.237,C; =0.070, « = 1.124, C. = 0.064, 8 = 2.971

A.6 CROSS-MODEL (PAIRWISE VIDEO-VIDEO) ALIGNMENT)

Figure 12 shows the pairwise feature alignment between a selection of video models, as well as the
Gemma? text encoder. We include both MAE-based models Tong et al. (2022), a Kinetics-finetuned
VideoMAEvV2-G Wang et al. (2023b), self-supervised 4DS-e model Carreira et al. (2024) as well as
language-supervised model Zhao et al. (2024), and a recent pure motion encoder TRAJAN Allen
et al. (2025). We observe that there are several clusters appearing across video models, which seem
to reflect language-alignment and spatio-temporal awareness (especially among MAE-based mod-
els). We hypothesize that although language alignment along is correlated with downstream per-
formance, cross-model alignment might hold more predictive power. Specifically, strong, general-
purpose models must align across multiple clusters to be useful in a broad range of downstream
(including pixel or patch-level) applications.
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