
Navigating Complexity: Toward Lossless Graph Condensation via Expanding
Window Matching

Yuchen Zhang * 1 Tianle Zhang * 1 Kai Wang† 1 Ziyao Guo 1 Yuxuan Liang 2 Xavier Bresson 1 Wei Jin 3

Yang You 1

Abstract

Graph condensation aims to reduce the size of a
large-scale graph dataset by synthesizing a com-
pact counterpart without sacrificing the perfor-
mance of Graph Neural Networks (GNNs) trained
on it, which has shed light on reducing the com-
putational cost for training GNNs. Nevertheless,
existing methods often fall short of accurately
replicating the original graph for certain datasets,
thereby failing to achieve the objective of lossless
condensation. To understand this phenomenon,
we investigate the potential reasons and reveal that
the previous state-of-the-art trajectory matching
method provides biased and restricted supervision
signals from the original graph when optimizing
the condensed one. This significantly limits both
the scale and efficacy of the condensed graph.
In this paper, we make the first attempt toward
lossless graph condensation by bridging the pre-
viously neglected supervision signals. Specifi-
cally, we employ a curriculum learning strategy
to train expert trajectories with more diverse su-
pervision signals from the original graph, and then
effectively transfer the information into the con-
densed graph with expanding window matching.
Moreover, we design a loss function to further
extract knowledge from the expert trajectories.
Theoretical analysis justifies the design of our
method and extensive experiments verify its supe-
riority across different datasets. Code is released
at https://github.com/NUS-HPC-AI-Lab/GEOM.

*Equal contribution , 1National University of Singapore 2Hong
Kong University of Science and Technology (Guangzhou) 3Emory
University. Correspondence to: Wei Jin <wei.jin@emory.edu>,
Yang You <youy@comp.nus.edu.sg>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1. Introduction
Graph condensation follows the success in vision dataset dis-
tillation (Wang et al., 2018; Zhao et al., 2020; Nguyen et al.,
2021; Cazenavette et al., 2022; Zhou et al., 2022; 2023) and
aims to synthesize a smaller condensed graph dataset from
the original one. Recently, gradient and trajectory matching
methods (Jin et al., 2022; 2021; Zheng et al., 2024; Hashemi
et al., 2024) have achieved remarkable results on some
small-scale graph datasets. For instance, SFGC (Zheng
et al., 2024) condenses Citeseer (Kipf & Welling, 2016) to
1.8% sparsity without performance drop. However, these
methods fail to perform well on large-scale graph datasets,
i.e, there persists an unignorable performance gap between
GNNs trained on the condensed and original graph datasets.
This severely limits their effectiveness in real-world scenar-
ios. Therefore, developing a high-performing and robust
graph condensation approach has become urgent for broader
graph-related applications.

In addressing the condensation challenges on large-scale
graphs, a critical question arises: what causes the notable
discrepancy in performance between condensing large-scale
and small-scale graphs? To this end, we analyze the dif-
fering outcomes of previous methods applied to graphs of
various sizes. A key observation highlights that a smaller
condensation ratio is utilized for large-scale graphs com-
pared to small-scale ones. This suggests a greater disparity
in size between large-scale graphs and their condensed coun-
terparts. One intuitive solution is to enlarge the condensation
ratio. We conduct experiments with the existing methods
and show results in Fig. 1(a). However, we find that the
performance of the condensed graph saturates as the ratio
increases. Besides, a significant gap still exists between the
saturated performance and that of the original graph.

GCond (Jin et al., 2021) explains this phenomenon as fol-
lows: optimizing a larger condensed graph might be more
complex. Nevertheless, GCond does not specify the exact
cause of this phenomenon. We infer that the lack of rich
supervision from the original graph might be a potential
reason. To verify it, we take trajectory matching method

1

https://github.com/NUS-HPC-AI-Lab/GEOM

Graph Condensation via Expanding Window Matching

(a) (b) (c) (d)

Figure 1. (a) shows that the performances in previous methods (Jin et al., 2021; Zheng et al., 2024) stop increasing after the condensation
ratio in large-scale graph dataset reaches a certain threshold. (b) shows that the gradient generated by easy nodes and difficult nodes
during the training process of the experts. (c) and (d) indicate that using supervision signals provided by solely easy nodes can yield better
performance for the condensed graph than solely using difficult nodes. Nevertheless, incorporating a small portion of difficult nodes into
easy ones can further enhance the performance of the condensed graph.

SFGC (Zheng et al., 2024) as an example1 for the following
exploration. SFGC trains a set of expert trajectories on the
original graph as supervision for optimizing the condensed
graph. Thus, to analyze the principal components of the
supervision, we visualize the gradient norm of easy and
difficult nodes (categorized by homophily level (Wei et al.,
2023)) from the original graph in Fig. 1(b). One can find
that the difficult nodes dominate the principal components
of supervision from the original graph. This may cause the
condensed graph to exhibit a bias toward difficult nodes
while overlooking easy nodes (Wang et al., 2022).

To investigate the effectiveness of different components of
the supervision signals, we select four ratios of mixed easy
and difficult nodes to train the expert trajectories. We report
the performance comparisons of the condensed graph in
Fig. 1(c) and 1(d). Several observations can be concluded as
follows: 1) Only using the supervision signals from difficult
nodes can not perform well; 2) Using a proper ratio of easy
and difficult nodes obtains the best performance in our ex-
periments. These observations highlight the importance of
understanding the impact of node characteristics on learning
dynamics in the condensed graph. In graph learning, easy
nodes have representative features of the original graph,
whereas difficult nodes contain ambiguous features (Wei
et al., 2023). Combined with the observations, we conclude
that condensed graph captures representative patterns under
the supervision of easy nodes. Although proper supervision
of difficult nodes further enrich the patterns, excessive su-
pervision of them may result in chaotic features (Liu et al.,
2023b;c) and damage the representative patterns.

Based on our findings, we propose a novel approach called
Graph Condensation via Expanding WindOw Matching
(GEOM). Specifically, we train the expert trajectories with
curriculum learning to involve more diverse supervision sig-
nals from the original graph. Then, we utilize an expanding

1We provide detailed experimental settings in Appendix D

window to determine the matching range when matching
trajectories. In this way, we enable the rich information of
the original graph can be compactly and efficiently trans-
ferred to the condensed counterpart. Theoretical analysis
justifies our design from the perspective of reducing ac-
cumulated error (Du et al., 2023). Furthermore, inspired
by network distillation (Hinton et al., 2015; Zhang et al.,
2021b), we design a loss function to uncover information in
expert trajectories from a new perspective.

In this work, we make the first attempt toward lossless graph
condensation. Concretely, we condense Citeseer to 0.9%,
Cora to 1.3%, Ogbn-arxiv to 5%, Flickr to 1%, and Reddit
to 5% without any performance loss when training a GCN.
Moreover, our condensed graphs can generalize well to dif-
ferent GNN models, and even achieve lossless performance
across 20 out of 35 cross-architecture experiments. We hope
our work can help mitigate the heavy computation cost for
training GNNs on large-scale graph datasets and broaden
the real-world applications of graph condensation.

2. Method
In this section, we first briefly overview the framework
of trajectory matching graph condensation and curriculum
learning. Then we introduce the components of our method
as well as theoretical understanding.

2.1. Preliminaries

Trajectory matching graph condensation (Zheng et al.,
2024). Given a large graph dataset T , trajectory matching
graph condensation synthesizes a small graph dataset S
by minimizing the training trajectory distance on T and
S. It aims to reduce the performance gap between GNNs
trained on T and S. Generally, trajectory matching graph
condensation can be divided into three phases.

(a) Buffer Phase. Preparing the expert trajectories: train-
ing GNNs on T and saving the checkpoints.

2

Graph Condensation via Expanding Window Matching

(b) Condensation Phase. Condensing the original graph
dataset: optimizing the condensed graph by matching
the training trajectories between T and S.

(c) Evaluation Phase. Evaluating the condensed graph
dataset: using the condensed graph datasets to train a
randomly initialized GNN.

Formally, in the condensation phase, we optimize the fol-
lowing objective to synthesize the condensed graph S:

min
S

Eθ∗
t ∼Pθτ

[
LM

(
(θ∗t |

t+p
t , θ̃t|t+q

t)
)]

, (1)

where θ∗t |
t+p
t , θ̃t|t+q

t denote the parameters of GNNs trained
on T and S within checkpoints (t, t+ p), Pθτ denotes the
parameter distribution with the expert trajectories. LM is
the distance between trajectories trained on T and S , which
can be written as:

LM =

∥∥∥θ̃t+q − θ∗t+p

∥∥∥2
2∥∥∥θ̃t − θ∗t+p

∥∥∥2
2

, (2)

where θ̃t = θ∗t , θ∗t+p denotes the model parameters p check-
points after θ∗t . Meanwhile, θ̃t+q results from q inner-loops
using the classification loss ℓ, applied to dataset S, and a
learnable learning rate η:

θ̃t+i+1 = θ̃t+i − η∇ℓ
(
f
(
θ̃t+i;S

)
,Y

)
, (3)

where f (;) is the GNN trained on S, Y is the label set of
the condensed graph dataset. Note that in the buffer phase,
GNN is trained on the whole graph dataset T by default.

Curriculum learning. Different from the normal training
scheme (Zheng et al., 2024; Cazenavette et al., 2022), the
most distinctive characteristic of curriculum learning (CL)
lies in differentiating the training samples (Bengio et al.,
2009; Krueger & Dayan, 2009). Specifically, CL imitates
how humans learn by organizing data samples in a logical
sequence, primarily from easy to difficult, as the curriculum
for model training (Wei et al., 2023; Wang et al., 2021b).
Prior works demonstrate that CL steers models to a more
optimal parameter space (Li et al., 2023; Bengio et al., 2009)
than normal training. CL can enhance model performance,
generalization, robustness, and even convergence in diverse
scenarios (Sitawarin et al., 2021; Weinshall & Amir, 2020;
Krishnapriyan et al., 2021).

2.2. Preparing Curriculum-based Expert Trajectories

The superiority of CL has been demonstrated across various
tasks, prompting us to integrate CL into graph condensation.
Taking a closer look at CL, it allows the model to initially
focus on easy samples and then gradually shift attention to
more difficult ones, thereby forming expert trajectories with

more diverse supervision signals. To implement the CL ap-
proach, we design a difficulty measurer based on homophily
to differentiate between easy and difficult samples. More-
over, we utilize a continuous training scheduler to sequence
the samples into an easy-to-difficult curriculum.

Homophily-based difficulty measurer. On node classifica-
tion tasks, GNNs learn node representation through an itera-
tive process of aggregating neighborhood information (Ma
et al., 2021; Halcrow et al., 2020). Owing to this mecha-
nism, the nodes tend to aggregate features from neighbors
sharing the same class will receive additional information
about their class features. Thus, GNNs are more adept at
learning these nodes as they will have more representative
features (Chien et al., 2020; Zhu et al., 2020). Conversely,
for nodes aggregate features from neighbors in many differ-
ent classes, their representations become chaotic, making
them hard to learn (Maurya et al., 2021; Mao et al., 2024).

Thus, inspired by CLNode (Wei et al., 2023), we calculate
the difficulty score for each node through the label distri-
bution of its neighborhood to distinguish between easy and
difficult. Specifically, for each training node x, the difficulty
score can be calculated as follows:

Pc(x) =
|{yn = c|n ∈ N (x) ∪ {x} ∧ yn ∈ Y}|

|N (x) ∪ {x}|
, (4)

D(x) = −
∑
c∈C

Pc(x)log(Pc(x)), (5)

Where yn denotes the label of node n, Pc(x) represents
the proportion of neighborhood nodes N (x) ∪ x in class c.
The difficulty score D(x) is higher as the neighbor nodes of
node x become more diverse (as illustrated in Fig 2).

4

92

3

1

7 8

6

→ Difficult node

𝐷(1) = 0.54

92

8

4

2

3

1

7

5

𝐷(8) = 0.00

→ Easy node

: Labels : Message passing

1

8

5

10

1112

Figure 2. An example of homophily-based difficulty measurer.

Curriculum training scheduler. After getting the difficulty
score, we utilize a continuous training scheduler to generate
an easy-to-difficult curriculum for training expert trajecto-
ries. Specifically, we use a pacing function to map each
epoch t to a scalar λt in (0, 1], and then select a propor-
tion λt of the easiest nodes for training at epoch t. More
details of the pacing function is detailed in Appendix B.

3

Graph Condensation via Expanding Window Matching

Furthermore, we do not stop training when the whole graph
training set is involved, as the recently added nodes may not
have been sufficiently learned at this time. Specifically, we
persist in training with the whole graph training set until the
validation set accuracy converges.

2.3. Expanding Window Matching

Since we obtain expert trajectories with more diverse su-
pervision signals through CL in the buffer phase, we aim
to fully utilize the rich information embedded in them to
optimize the condensed graph. One straightforward way is
to gradually move the matching range (we can sample the
expert trajectory segments that need to be matched from this
range) later to shift the focus of the condensed graph from
primarily learning from easy nodes to difficult nodes.

However, such a matching strategy significantly degrades
the performance of the condensed graph (as shown in Ta-
ble 3). One potential reason is: once the whole matching
range is shifted later, the condensed graph falls into the
trap of learning patterns from the difficult nodes continually,
thereby collapsing the representative patterns.

To address the challenge of effectively learning patterns
from easy and difficult nodes, we propose to use an adaptive
window that gradually expands the matching range instead
of a fixed sliding window, termed expanding window match-
ing. Formally, we determine the matching range R as:

R =


{θ∗0 . . . θ∗U+p}, I < U

{θ∗0 . . . θ∗U+p θ∗U+p+I}, I ≥ U ∧ I < U
′
,

{θ∗0 . . . θ∗U+p . . . θ
∗
U ′+p}, I ≥ U

′

(6)
where I denotes the number of the iteration in the conden-
sation phase, U and U

′
are two different upperbounds to

control the size of the matching range.

Expanding window matching ensures that in the early stages
of condensation, the main component of supervision signals
is from easy nodes, allowing the condensed graph to initially
learn representative patterns. In the later stages of condensa-
tion, the condensed graph can maintain these representative
patterns while enriching them. This is because the matching
strategy efficiently controls the weight of easy and difficult
nodes in supervision signals, the condensed graph has the
opportunity to learn from both of them.

From another perspective, in the previous method, the
matching range is confined to a very narrow scope, causing
only a few checkpoints can be utilized. In contrast, the pro-
posed expanding window matching brings 10 times more
available checkpoints than before, thereby more effectively
utilizing the information provided by expert trajectories.

Next, we provide the theoretical analysis to demonstrate the
advantages of employing CL in the buffer phase and the

expanding window matching in the condensation phase.

Theoretical understanding. In the condensation phase, the
trajectory on S is optimized to reproduce the trajectory on T
with θ̃t = θ∗t . However, in the evaluation phase, the starting
points are no longer initialized by the parameters on T and
the parameters are continually updated by S. The error
accumulates progressively in the evaluation phase, which
leads to greater divergence between the final parameters of
GNNs trained on S and T . Thus, reducing this error helps
improve the final performance of S.

Following Du et al. (2023), we first divide the train-
ing trajectories into N stages to be matched, denoted as
{θ∗0,0, ..., θ∗0,p, θ∗1,0, ..., θ∗N−1,p}, where the last parameter of
a previous stage is the starting parameter of the next stage,
i.e. θ∗n,0 = θ∗n−1,p. The training trajectory of GNNs trained
on S can also be divided into corresponding N stages simi-
larly. For any given stage n, the following definition apply:
Definition 2.1. Accumulated error ϵn refers to the differ-
ence in model parameters trained on condensed and original
graphs at stage n during the evaluation phase:

ϵn = θ̃n,q − θ∗n,p = θ̃n+1,0 − θ∗n+1,0, (7)

To specifically analyze the accumulated error, we introduce
two additional error terms as follows:
Definition 2.2. Initialization error I refers to the discrepan-
cies caused by varying initial parameters during the training
process. Specifically, even if the condensed graph can gen-
erate identical trajectories to the original, variations at the
trajectories’ endpoints are unavoidable due to the differing
starting points in the condensation phase compared to the
evaluation phase, i.e. θ̃n,0 = θ∗n,0 + ϵn−1. To simplify
the notation, we denote the parameter changes of the GNN
trained for p rounds on T and q rounds on S as ΘS(θ0, q) =∑q

i=0 ▽θLS(fθ0+i
) and ΘT (θ0, p) =

∑p
i=0 ▽θLT (fθ0+i

),
respectively. Then, the initialization error at stage n is:

In = I(θ∗n,0, ϵn−1) = ΘS(θ
∗
n,0 + ϵn−1, q)−ΘS(θ

∗
n,0, q),

(8)
Definition 2.3. Matching error δ refers to differences at the
endpoints of the same stage in the training trajectories of
GNNs trained on T and S during the condensation phase:

δn+1 = ΘS(θ
∗
n,0, q)−ΘT (θ

∗
n,0, p). (9)

The following theorem elucidates the relation among errors:
Theorem 2.4. During the evaluation phase, the accumu-
lated error at any stage is determined by its initial value and
the sum of matching error and initialization error starting
from the second stage.

ϵn+1 =

n∑
i=1

I(θ∗i,0, ϵi−1) +

n∑
i=0

δi+1 + ϵ0. (10)

4

Graph Condensation via Expanding Window Matching

Train

GNN

5

8
2

7 4

1
6

3 9

Epoch

t = 𝜁

Subset 𝑡0

Original Graph

…

…

Synthetic Graph

Label (𝑝)

Output (෤𝑝)

KL(෤𝑝, 𝑝) ℒ𝐸

Backward and update

Match loss ℒ𝑀

(a) Buffer

11

10

14

15 6

3

Training set scale

Whole Dataset

Subset 𝑡2

Subset 𝑡3

t = 0

Features Labels

…

…

Expert

 GNN

Serve as

𝜃𝑇
∗

A
d
d
 d

iffic
u
lt n

o
d
e
s

Easy

Difficult

Iteration

…

…

𝑘 = ∆𝑈

𝑘 = 1

Matching range

𝜃0
∗

𝜃𝑇
∗0

𝜃0
∗𝑛

𝜃𝑇
∗𝑛

…

𝜃1
∗0

𝜃1
∗𝑛

(b) Condensation

…

…

𝜃0
∗0

… 𝜃𝑈+𝑝
∗

𝜃0
∗ 𝜃𝑈+𝑝+1

∗
… 𝜃𝑈+𝑝

∗

𝜃0
∗ 𝜃𝑈′+𝑝

∗
𝜃𝑈+𝑝
∗
……

Backward and update

𝜃𝑡+1෩𝜃𝑡

𝜃𝑡+𝑞෩𝜃𝑡

…

Curriculum-based

expert trajectories

෩𝜃𝑡

Train

GNN

12

13

13

14

𝜃0
∗ 𝜃𝑈′+𝑝

∗
𝜃𝑈+𝑝
∗
……

t > 𝜁 Whole Dataset
…

Difficulty

measurer

… …

1

𝑘 = 0

𝑘 > ∆𝑈

Figure 3. Overall framework of GEOM. In the buffer phase, we train the expert trajectories with curriculum learning to involve more
informative supervision signals from the original graph. In the condensation phase, we utilize expanding window matching to capture the
rich information. Moreover, a knowledge embedding extractor is used to further extract knowledge from the expert trajectories.

The proof for the above theorem can be found in Ap-
pendix C.1. In the previous condensation method, only
a few stages of the expert trajectory are selected to optimize
the condensed graph. Assuming the sum of matching errors
is optimized to µ in the condensation phase, the optimized
accumulated error can be formulated as:

ϵ∗n+1 =

n∑
i=1

I(θ∗i,0, ϵi−1) + µ+ ϵ0. (11)

Corollary 2.5. The proposed strategy can optimize the ac-
cumulated error in both the buffer and condensation phases.

Proof. According to (Du et al., 2023), flatter training trajec-
tories reduce initialization error and can be derived from the
following equation:

θ∗n,i = argmin
θ∗
n,i

||I(θ∗n,i, ϵn−1)||2

≈ argmin
θ∗
n,i

{LM (f
(
θ∗n,i

)
+ αS(θ∗n,i)}

(12)

where α as the coefficient that balances the robustness of
θ∗ to the perturbation, and S(θ) as the sharpness of the loss
landscape. CL has been demonstrated in smoothing the loss
landscape (Sinha et al., 2020; Zhang et al., 2021a). Since we
employ CL in the buffer phase, we reduce S(θ) efficiently,
thereby reducing accumulated error.

Moreover, employing expanding window matching to deter-
mine the matching range can involve more stages in the ex-
pert trajectories as matching targets. This enables the direct
optimization of δn, thereby reducing the sum of matching
errors µ

′
. When conducting expanding window matching,

multiple simulations of the evaluation phase can be involved

in the condensation phase, i.e., training GNNs on S and T
starting from θ∗0,0, then minimize the matching error of this
stage. This allows for the effective optimization of ϵ0 and
I(θ∗1,0, ϵ0) in the condensation stage as well.

ϵ∗
′

n+1 =

n∑
i=1

I
′
(θ∗i,0, ϵi−1) + µ′ + ϵ

′

0 < ϵ∗n+1. (13)

Where ϵ
′
, I ′, µ

′
are the reduced ϵ, I , µ respectively. The

above corollary suggests that using CL in the buffer phase
and expanding window matching in the condensation phase
can effectively reduce the accumulated error during the
evaluation phase.

2.4. Knowledge Embedding Extractor

We acquire expert trajectories in buffer phase, with these
checkpoints solely employed for trajectory matching in con-
densation phase. However, utilizing checkpoints from an-
other perspective has not yet been explored. Given that these
checkpoints contain well-trained model parameters, which
retain extensive information from the original dataset (Lu
et al., 2023). Therefore, we try to transfer such knowledge
to the condensed graph to make it more informative.

Inspired by network distillation (Hinton et al., 2015; Zhang
et al., 2021b), which transfers knowledge from a large model
to a smaller one, we propose Knowledge Embedding Ex-
traction (KEE), aiming to transfer the knowledge about the
original dataset from well-trained GNNs into the condensed
graph. Specifically, we first assign soft labels to the con-
densed graph, which are generated by well-trained GNNs
with parameters chosen from the tails of expert trajectories.

5

Graph Condensation via Expanding Window Matching

Table 1. Performance comparison to baselines in the node classification tasks. We achievethe highest results in most cases on node
classification and lossless results on all datasets. We report test accuracy (%) on Citeseer, Cora, Ogbn-arxiv, Flickr, and Reddit. Bold
entries are best results, highlight marks the lossless results. Some experiments appear out of memory (oom).

Dataset Ratio (r) Random Herding K-Center DC-Graph GCond GCond-X SFGC GEOM Whole Dataset

Citeseer
0.90% 54.4±4.4 57.1±1.5 52.4±2.8 66.8±1.5 70.5±1.2 71.4±0.8 71.4±0.5 73.0±0.5

71.7±0.11.80% 64.2±1.7 66.7±1.0 64.3±1.0 59.0±0.5 70.6±0.9 69.8±1.1 72.4±0.4 74.3±0.1

3.60% 69.1±0.1 69.0±0.1 69.1±0.1 66.3±1.5 69.8±1.4 69.4±1.4 70.6±0.7 73.3±0.4

Cora
1.30% 63.6±3.7 67.0±1.3 64.0±2.3 67.3±1.9 79.8±1.3 75.9±1.2 80.1±0.4 82.5±0.4

81.2±0.22.60% 72.8±1.1 73.4±1.0 73.2±1.2 67.6±3.5 80.1±0.6 75.7±0.9 81.7±0.5 83.6±0.3

5.20% 76.8±0.1 76.8±0.1 76.7±0.1 67.7±2.2 79.3±0.3 76.0±0.3 81.6±0.8 82.8±0.7

Ogbn-arxiv

0.05% 47.1±3.9 52.4±1.8 47.2±3.0 58.6±0.4 59.2±1.1 61.3±0.5 65.5±0.7 65.5±0.6

71.4±0.1

0.25% 57.3±1.1 58.6±1.2 56.8±0.8 59.9±0.3 63.2±0.3 64.2±0.4 66.1±0.4 68.8±0.2

0.50% 60.0±0.9 60.4±0.8 60.3±0.4 59.5±0.3 64.0±1.4 63.1±0.5 66.8±0.4 69.6±0.2

2.50% 64.1±0.7 64.3±0.8 64.1±0.5 61.3±0.3 66.3±1.1 66.1±0.3 68.3±0.3 71.0±0.1

5.00% 66.0±0.6 66.1±0.4 66.2±0.3 66.7±0.3 oom 66.9±0.4 69.4±0.3 71.4±0.1

Flickr
0.10% 41.8±2.0 42.5±1.8 42.0±0.7 46.3±0.2 46.5±0.4 45.9±0.1 46.6±0.2 47.1±0.1

47.2±0.10.50% 44.0±0.4 43.9±0.9 43.2±0.1 45.9±0.1 47.1±0.1 45.0±0.2 47.0±0.1 47.0±0.2

1.00% 44.6±0.2 44.4±0.6 44.1±0.4 44.6±0.1 47.1±0.1 45.0±0.2 47.1±0.1 47.3±0.3

Reddit

0.01% 46.1±4.4 53.1±2.5 46.6±2.3 88.2±0.2 88.0±1.8 88.4±0.4 89.7±0.2 91.1±0.4

0.10% 58.0±2.2 62.7±1.0 53.0±3.3 89.5±0.1 89.6±0.7 89.3±0.1 90.0±0.3 91.4±0.2

93.9±0.00.20% 66.3±1.9 71.0±1.6 58.5±2.1 90.5±1.2 90.1±0.5 88.8±0.4 90.3±0.3 91.5±0.4

3.00% 78.4±1.3 81.3±1.1 82.2±1.4 90.8±0.9 oom 89.2±0.2 91.0±0.3 93.7±0.1

5.00% 83.6±1.1 88.1±0.8 88.3±1.2 91.5±0.7 oom 88.9±0.3 91.9±0.2 93.9±0.1

Algorithm 1 GEOM for condensing graph.

1: Input: Original graph dataset T .
2: Require: {τp}: A set of expert trajectories obtained

by training GNNT on T with a curriculum learning
schema. p: numbers of the training steps of GNNS q:
numbers of checkpoints between the start and target
parameters. U,U

′
: two upper bounds to determine the

matching range. Initialized condensed graph S .
3: for k = 0, . . . ,K − 1 do
4: Randomly sample a expert trajectory τp ∼ {τp}
5: Randomly sample θ∗t and θ∗t+p, where 0 < t ≤ U

6: Initialize θ̃t, θ̃t = θ∗t
7: for i = 0, . . . , q − 1 do
8: training GNNs on S and update θ̃t+i

through Eq. 3
9: end for

10: Update condensed graph S through Eq. 15
11: if U < U

′
then

12: U = U + 1
13: end for
14: Output: Condensed graph dataset S.

During the optimization of S , we feed the condensed graph
with soft labels into well-trained GNNs and calculate the
following loss term:

LE = DKL

(
f (θ∗T ;S) ∥ Ỹ

)
, (14)

Where DKL(·||·) represents the Kullback-Leibler (KL) di-
vergence, Ỹ denotes the soft labels. By incorporating such a

matching loss, we further uncovered information embedded
in the expert trajectories from a unique perspective.

2.5. Final Objective and Algorithm

To sum up, the total optimization objective of GEOM is:

min
S

Eθ∗
t ∼Pθτ

[
L
(
(θ∗t |

t+p
t , θ̃t|t+q

t), (S, Ỹ)
)]

,where

(15)
L = LM + αLE

=

∥∥∥θ̃t+q − θ∗t+p

∥∥∥2
2∥∥∥θ̃t − θ∗t+p

∥∥∥2
2

,+αDKL

(
f (θ∗T ;S) ∥ Ỹ

)
.

(16)

The pipeline of the proposed GEOM is detailed in Alg. 1.

3. Experiments
3.1. Setup

Datasets & architectures. We conduct experiments on
three transductive datasets, i.e., Cora, Citeseer (Kipf &
Welling, 2016) and Ogbn-arxiv (Hu et al., 2020), and two
inductive datasets, i.e, Flickr (Zeng et al., 2019) and Red-
dit (Hamilton et al., 2017). For all five datasets, we use the
public splits and setups. More details of each dataset can be
found in Appendix A. We select APPNP (Gasteiger et al.,
2018), GCN (Kipf & Welling, 2016), SGC (Wu et al., 2019),
GraphSAGE (Hamilton et al., 2017). Cheby (Defferrard
et al., 2016) and GAT (Veličković et al., 2018), as well as a
standard MLP for cross-architecture experiments.

Baselines. We compare our method to seven baselines:

6

Graph Condensation via Expanding Window Matching

Table 2. Performance across different GNN architectures. Avg. and Std. : the average performance and the standard deviation of the
results of all architectures, ∆(%) denotes the improvements upon the DC-Graph. GCN indicates that the synthetic graph is condensed
with GCN. Bold entries are best results.

Architectures StatisticsDatasets Methods
MLP GAT APPNP Cheby GCN SAGE SGC Avg. Std. ∆(%)

DC-Graph 66.2 - 66.4 64.9 66.2 65.9 69.6 66.5 1.5 -
GCond 63.9 55.4 69.6 68.3 70.5 66.2 70.3 66.3 5.0 ↓ 0.2
SFGC 71.3 72.1 70.5 71.8 71.6 71.7 71.8 71.5 0.5 ↑ 5.0

Citeseer

GEOM 74.2 74.2 74.0 74.1 74.3 74.1 74.3 74.2 0.1 ↑ 7.7
(r = 1.80%)

DC-Graph 67.2 - 67.1 67.7 67.9 66.2 72.8 68.1 2.1 -
GCond 73.1 66.2 78.5 76.0 80.1 78.2 79.3 75.9 4.5 ↑ 7.8
SFGC 81.1 80.8 78.8 79.0 81.1 81.9 79.1 80.3 1.2 ↑ 12.2

Cora

GEOM 83.6 82.7 82.8 80.7 83.6 83.7 83.1 82.9 1.0 ↑ 14.8
(r = 2.60%)

DC-Graph 59.9 - 60.0 55.7 59.8 60.0 60.4 59.3 1.6 -
GCond 62.2 60.0 63.4 54.9 63.2 62.6 63.7 61.4 2.9 ↑ 2.1
SFGC 65.1 65.7 63.9 60.7 65.1 64.8 64.8 64.3 1.6 ↑ 5.0

Ogbn-arxiv

GEOM 68.8 66.4 65.8 62.5 68.8 68.9 66.4 66.8 2.1 ↑ 7.5
(r = 0.25%)

DC-Graph 61.2 - 61.4 58.3 61.1 60.9 61.3 60.7 1.1 -
SFGC 69.4 69.6 68.7 64.7 69.4 69.4 69.1 68.5 1.6 ↑7.8Ogbn-arxiv

GEOM 71.2 70.0 69.1 64.5 71.4 71.1 69.6 69.6 2.2 ↑ 8.9(r = 5.00%)
DC-Graph 43.1 - 45.7 43.8 45.9 45.8 45.6 45.0 1.1 -

GCond 44.8 40.1 45.9 42.8 47.1 46.2 46.1 44.7 2.3 ↓ 0.3
SFGC 47.1 45.3 40.7 45.4 47.1 47.0 42.5 45.0 2.3 -

Flickr

GEOM 47.0 42.1 46.6 45.3 47.3 47.1 46.3 46.0 1.7 ↑ 1.0
(r = 0.50%)

DC-Graph 50.3 - 81.2 77.5 89.5 89.7 90.5 79.8 14.0 -
GCond 42.5 60.2 87.8 75.5 89.4 89.1 89.6 76.3 17.1 ↓ 3.5
SFGC 89.5 87.1 88.3 82.8 89.7 90.3 89.5 88.2 2.4 ↑ 8.4

Reddit

GEOM 91.4 90.0 87.9 82.7 91.4 91.4 89.3 89.2 2.9 ↑ 9.4
(r = 0.10%)

DC-Graph 52.3 - 84.1 81.2 90.3 90.6 90.9 81.6 13.6 -
SFGC 91.6 90.3 91.1 85.3 91.9 91.6 90.9 90.4 2.1 ↑8.8Reddit

GEOM 93.9 93.0 92.4 88.5 93.9 93.8 92.7 92.6 1.8 ↑ 11.0(r = 5.00%)

1) Coreset selection methods: Random; Herding (Welling,
2009); K-Center (Farahani & Hekmatfar, 2009; Sener &
Savarese, 2018). 2) State-of-the-art condensation methods:
the graph-based variant DC-Graph of vision dataset con-
densation (Zhao et al., 2020); gradient matching graph con-
densation method GCond (Jin et al., 2021); GCond-X, the
variant of GCond, which do not optimize the structure of the
condensed graph; trajectory matching graph condensation
method SFGC (Zheng et al., 2024).

Implementation & evaluation. We initially employ the
eight methods to synthesize condensed graphs, subsequently
assessing the performance of GNNs across different datasets
and architectures. In the condensation phase, GNNs are both
commonly-used GCN model (Kipf & Welling, 2016). In the
evaluation phase, we train a GNN on the condensed graph
and then evaluate the GNN on the test set of the correspond-
ing original graph dataset to get the performance. We report
the average performance and variance on Table 1 with re-
peated 10 times experiments, where the GNN models used
are all 2-layer GCN models with 256 hidden units. More
hyper-parameter setting details are provided in Appendix G.

3.2. Results

Node classification. We compare our method with the base-
lines across all condensation ratios on node classification,
as reported in Table 1. Our method achieves state-of-the-art
results in 18 out of 19 experimental cases and brings non-
trivial improvements up to 2.8%. Notably, in all datasets,
we achieve lossless graph condensation below or at a 5%

condensation ratio for the first time. The results confirm
that the proposed GEOM can provide more informative su-
pervision signals from the original graph for optimizing the
condensed graph in the condensation phase, allowing us to
get an optimal substitute for the original graph dataset.

Cross-architecture generalization. We evaluate the test
performance of our condensed graphs across different GNN
architectures. The results are reported in Table 2, showing
that our condensed graphs do not overfit in the GNN ar-
chitecture used in the buffer and condensation phase, they
can generalize well on all other GNN architectures in our
experiments. It is noteworthy that our condensed graph can
even achieve lossless performance in 20 out of 35 cases,
which opens up possibilities for the widespread real-world
application of graph condensation. As our approach shows
that it is possible to condense graphs without tailoring the
condensation to specific GNN architectures separately. The
performance of the whole dataset across different architec-
tures can be found in Appendix A.

3.3. Ablation

Evaluating expanding window matching. We compare
expanding window matching to two fixed matching (Fixed1
with its starting point fixed at 0, Fixed2 at a later stage) and a
sliding window matching. Additionally, we conduct the ab-
lation on whether to use CL in the buffer phase. The results
in Table 3 show that: 1) Utilizing expanding window match-
ing solely in the condensation phase can yield better results
compared to other matching strategies; 2) Fixed matching

7

Graph Condensation via Expanding Window Matching

(a) (b) (c) (d)

Figure 4. (a) and (b) illustrate the ablation study on whether to use the KEE. (c) and (d) illustrate the ablation of the tunable hyperparameter
α, which determines the weights of the optimization item generated by the KEE.

(a) Cora, r=5.2%

(b) Citeseer, r=3.6%

(c) Reddit, r=0.2%

Figure 5. T-SNE visualization on the condensed graph. Nodes of
the same class are in the same color. SC↑, DB↓, and CH↑ in the
figure refer to the Silhouette Coefficient, Davies-Bouldin Index,
and Calinski-Harabasz Index respectively. ↑ and ↓ denote the
clustering pattern is better when the value is higher or lower.

can not collaborate well with the expert trajectories trained
with CL; 3) The combination of using CL and expanding
window matching can bring non-trivial improvements.

Evaluating knowledge embedding extractor. We first
study the condensation phase with and without KEE un-
der the optimal α. As illustrated in Fig. 4(a) and 4(b), due
to the stable guidance KEE offers, it can further enhance
the performance of the condensed graph when the previ-
ous optimization hits a bottleneck. Moreover, as shown
in Fig. 4(c) and 4(d), simply determining the order of the
hyper-parameter α can make KEE aid in condensation.

Table 3. Ablation on expanding window matching.

Matching Range Cora Citeseer

w/o CL CL w/o CL CL

Fixed1 82.3±0.4 82.6±0.2 72.1±0.2 72.4±0.1

Fixed2 81.8±0.5 81.9±0.3 71.3±0.1 71.3±0.3

Sliding 80.8±0.3 81.1±0.4 70.7±0.1 71.0±0.2

Expanding 82.9±0.2 83.6±0.3 73.2±0.3 74.3±0.1

3.4. Visualization
We present the visualization results for all five datasets in
Fig. 5, we can observe that our condensed graphs on Cora
and Citeseer show clear clustering patterns without inter-
class mixing, while that of SFGC still lack clarity in the
separation between classes. This gap becomes more appar-
ent in larger datasets, where the condensed graph of SFGC
fails to show any significant clustering patterns. Conversely,
our condensed graph still manages to represent clear pat-
terns between classes and clusters within the same class.

To measure the clustering patterns more precisely, we em-
ployee three different metrics designed to assess the dis-
tinctness of the clustering pattern comprehensively: Sil-
houette Coefficient (Rousseeuw, 1987), Davies-Bouldin
Index (Davies & Bouldin, 1979) and Calinski-Harabasz
Index (Caliński & Harabasz, 1974). Our condensed graph
is significantly more competitive across these three evalua-
tion metrics. This demonstrates that our matching strategy
effectively captures the patterns of both easy and difficult
nodes in the original graph. More visualization results on
other ratios and datasets can be found in Appendix H.

4. Related Work
Dataset Distillation & Graph Condensation. Dataset
distillation (DD) is a technique to reduce the size and
complexity of large-scale datasets for training deep neu-
ral networks (Qin et al., 2023). Methods in DD are majorly
based on matching, such as matching gradients (Zhao et al.,
2020; Liu et al., 2022b; 2023a; Zhang et al., 2023), distribu-
tion (Zhao & Bilen, 2023; Wang et al., 2023), feature (Wang
et al., 2022) and training trajectories (Cazenavette et al.,
2022; Du et al., 2023; Guo et al., 2023), which has led to
a wide application in lots of downstream tasks (Masarczyk
& Tautkute, 2020; Rosasco et al., 2021; Wang et al., 2021a;

8

Graph Condensation via Expanding Window Matching

Liu et al., 2023d; Gao et al., 2024). Following DD, Graph
Condensation compresses the graph dataset by matching
gradients (Jin et al., 2022; 2021; Yang et al., 2024; Zhang
et al., 2024), distribution (Liu et al., 2022a) and training
trajectories (Zheng et al., 2024). For a thorough review, we
refer the reader to a recent survey (Hashemi et al., 2024).
However, there persists a significant performance gap to get
lossless graph condensation.

5. Conclusion
In this work, we propose GEOM, a novel method for graph
condensation via expanding window matching. GEOM out-
performs the state-of-the-art methods across various datasets
and architectures, making the first attempt toward lossless
graph condensation.

Limitations and future work. GEOM still relies on deriv-
ing trajectories in advance, which incurs additional compu-
tational costs for expert GNNs training. We will explore
improving the efficiency of condensing graphs in the future.

Impact Statement
Ethical impacts. There are no ethical issues in our paper,
including its motivation, designs, experiments, and used
data. The goal of the proposed GEOM is to advance the
field of graph condensation.

Expected societal implications. Training GNNs on real-
world graph data comes with a high computational cost.
Graph condensation achieves more efficient computation
by reducing the size of the graph data. This helps in re-
ducing energy consumption in computing devices, thereby
reducing carbon emissions, which is highly beneficial for
sustainability and environmental conservation.

Acknowledgement
This research is supported by the National Research Founda-
tion, Singapore under its AI Singapore Programme (AISG
Award No: AISG2-PhD-2021-08-008). Yang You’s research
group is being sponsored by NUS startup grant (Presiden-
tial Young Professorship), Singapore MOE Tier-1 grant,
ByteDance grant, ARCTIC grant, SMI grant (WBS num-
ber: A-8001104-00-00), Alibaba grant, and Google grant
for TPU usage.

Contribution Statement
In this paper, the authors made the following contributions:

• Yuchen Zhang proposed GEOM and implemented it.
He also designed the experiments, conducted part of
the experiments, analyzed the results, designed the

entire logic, plotted the figures, and wrote the majority
of the manuscript.

• Tianle Zhang conducted part of the experiments and
recorded all the experimental results. He also wrote
the theoretical analysis of GEOM.

• Kai Wang designs the logic of the abstract and introduc-
tion with Yuchen, modifies the abstract and introduc-
tion sentence-by-sentence with Yuchen, improves the
storytelling, and organizes the rebuttal (analyzing the
questions and replying to the reviewers) with Yuchen
and Tianle.

• Ziyao Guo, Yuxuan Liang, and Xavier Bresson pro-
vided critical feedback and revised the manuscript.

• Wei Jin and Yang You supervised the project and pro-
vided valuable feedback about the work.

References
Bengio, Y., Louradour, J., Collobert, R., and Weston, J.

Curriculum learning. In ICML, pp. 41–48, 2009.

Caliński, T. and Harabasz, J. A dendrite method for clus-
ter analysis. Communications in Statistics-theory and
Methods, 3(1):1–27, 1974.

Cazenavette, G., Wang, T., Torralba, A., Efros, A. A., and
Zhu, J.-Y. Dataset distillation by matching training tra-
jectories. In CVPR, pp. 4750–4759, 2022.

Chien, E., Peng, J., Li, P., and Milenkovic, O. Adaptive
universal generalized pagerank graph neural network. In
ICLR, 2020.

Davies, D. L. and Bouldin, D. W. A cluster separation
measure. TPAMI, (2):224–227, 1979.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. NeurIPS, 29, 2016.

Du, J., Jiang, Y., Tan, V. Y., Zhou, J. T., and Li, H. Minimiz-
ing the accumulated trajectory error to improve dataset
distillation. In CVPR, pp. 3749–3758, 2023.

Farahani, R. Z. and Hekmatfar, M. Facility location: con-
cepts, models, algorithms and case studies. Springer
Science & Business Media, 2009.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with pytorch geometric. arXiv preprint arXiv:1903.02428,
2019.

Gao, Q., Shan, X., Zhang, Y., and Zhou, F. Enhancing
knowledge transfer for task incremental learning with
data-free subnetwork. NeurIPS, 36, 2024.

9

Graph Condensation via Expanding Window Matching

Gasteiger, J., Bojchevski, A., and Günnemann, S. Predict
then propagate: Graph neural networks meet personalized
pagerank. In ICLR, 2018.

Guo, Z., Wang, K., Cazenavette, G., LI, H., Zhang, K., and
You, Y. Towards lossless dataset distillation via difficulty-
aligned trajectory matching. In ICLR, 2023.

Halcrow, J., Mosoi, A., Ruth, S., and Perozzi, B. Grale:
Designing networks for graph learning. In KDD, pp.
2523–2532, 2020.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. NeurIPS, 30, 2017.

Hashemi, M., Gong, S., Ni, J., Fan, W., Prakash, B. A.,
and Jin, W. A comprehensive survey on graph reduction:
Sparsification, coarsening, and condensation. 2024.

Hinton, G., Vinyals, O., and Dean, J. Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. NeurIPS, 33:
22118–22133, 2020.

Jin, W., Zhao, L., Zhang, S., Liu, Y., Tang, J., and Shah, N.
Graph condensation for graph neural networks. In ICLR,
2021.

Jin, W., Tang, X., Jiang, H., Li, Z., Zhang, D., Tang, J.,
and Yin, B. Condensing graphs via one-step gradient
matching. In SIGKDD, pp. 720–730, 2022.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In ICLR, 2016.

Krishnapriyan, A., Gholami, A., Zhe, S., Kirby, R., and
Mahoney, M. W. Characterizing possible failure modes
in physics-informed neural networks. NeurIPS, 34:26548–
26560, 2021.

Krueger, K. A. and Dayan, P. Flexible shaping: How learn-
ing in small steps helps. Cognition, 110(3):380–394,
2009.

Li, H., Wang, X., and Zhu, W. Curriculum graph machine
learning: a survey. In IJCAI, pp. 667–6682, 2023.

Liu, M., Li, S., Chen, X., and Song, L. Graph condensation
via receptive field distribution matching. arXiv preprint
arXiv:2206.13697, 2022a.

Liu, S., Wang, K., Yang, X., Ye, J., and Wang, X. Dataset
distillation via factorization. NeurIPS, 35:1100–1113,
2022b.

Liu, S., Ye, J., Yu, R., and Wang, X. Slimmable dataset
condensation. In CVPR, pp. 3759–3768, 2023a.

Liu, Y., Gu, J., Wang, K., Zhu, Z., Jiang, W., and You,
Y. Dream: Efficient dataset distillation by representative
matching. In ICCV, pp. 17314–17324, 2023b.

Liu, Y., Gu, J., Wang, K., Zhu, Z., Zhang, K., Jiang, W.,
and You, Y. Dream+: Efficient dataset distillation by
bidirectional representative matching. arXiv preprint
arXiv:2310.15052, 2023c.

Liu, Y., Qiu, R., and Huang, Z. Cat: Balanced continual
graph learning with graph condensation. In ICDM, pp.
1157–1162. IEEE, 2023d.

Lu, Y., Chen, X., Zhang, Y., Gu, J., Zhang, T., Zhang,
Y., Yang, X., Xuan, Q., Wang, K., and You, Y. Can
pre-trained models assist in dataset distillation? arXiv
preprint arXiv:2310.03295, 2023.

Ma, Y., Liu, X., Shah, N., and Tang, J. Is homophily a
necessity for graph neural networks? In ICLR, 2021.

Mao, H., Chen, Z., Jin, W., Han, H., Ma, Y., Zhao, T., Shah,
N., and Tang, J. Demystifying structural disparity in
graph neural networks: Can one size fit all? NeurIPS, 36,
2024.

Masarczyk, W. and Tautkute, I. Reducing catastrophic for-
getting with learning on synthetic data. In CVPR Work-
shops, pp. 252–253, 2020.

Maurya, S. K., Liu, X., and Murata, T. Improving graph
neural networks with simple architecture design. arXiv
preprint arXiv:2105.07634, 2021.

Nguyen, T., Novak, R., Xiao, L., and Lee, J. Dataset
distillation with infinitely wide convolutional networks.
NeurIPS, 34:5186–5198, 2021.

Qin, Z., Wang, K., Zheng, Z., Gu, J., Peng, X., Zhou, D.,
Shang, L., Sun, B., Xie, X., You, Y., et al. Infobatch:
Lossless training speed up by unbiased dynamic data
pruning. In ICLR, 2023.

Rosasco, A., Carta, A., Cossu, A., Lomonaco, V., and Bac-
ciu, D. Distilled replay: Overcoming forgetting through
synthetic samples. In International Workshop on Con-
tinual Semi-Supervised Learning, pp. 104–117. Springer,
2021.

Rousseeuw, P. J. Silhouettes: a graphical aid to the inter-
pretation and validation of cluster analysis. Journal of
computational and applied mathematics, 20:53–65, 1987.

Sener, O. and Savarese, S. Active learning for convolutional
neural networks: A core-set approach. In ICLR, 2018.

10

Graph Condensation via Expanding Window Matching

Sinha, S., Garg, A., and Larochelle, H. Curriculum by
smoothing. NeurIPS, 33:21653–21664, 2020.

Sitawarin, C., Chakraborty, S., and Wagner, D. Sat: Im-
proving adversarial training via curriculum-based loss
smoothing. In AISec at CCS, pp. 25–36, 2021.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò,
P., and Bengio, Y. Graph attention networks. In ICLR,
2018.

Wang, K., Zhao, B., Peng, X., Zhu, Z., Yang, S., Wang,
S., Huang, G., Bilen, H., Wang, X., and You, Y. Cafe:
Learning to condense dataset by aligning features. In
CVPR, pp. 12196–12205, 2022.

Wang, K., Gu, J., Zhou, D., Zhu, Z., Jiang, W., and You,
Y. Dim: Distilling dataset into generative model. arXiv
preprint arXiv:2303.04707, 2023.

Wang, R., Cheng, M., Chen, X., Tang, X., and Hsieh, C.-J.
Rethinking architecture selection in differentiable nas. In
ICLR, 2021a.

Wang, T., Zhu, J.-Y., Torralba, A., and Efros, A. A. Dataset
distillation. arXiv preprint arXiv:1811.10959, 2018.

Wang, Y., Wang, W., Liang, Y., Cai, Y., and Hooi, B. Cur-
graph: Curriculum learning for graph classification. In
WWW, pp. 1238–1248, 2021b.

Wei, X., Gong, X., Zhan, Y., Du, B., Luo, Y., and Hu, W.
Clnode: Curriculum learning for node classification. In
Proceedings of the Sixteenth ACM International Con-
ference on Web Search and Data Mining, pp. 670–678,
2023.

Weinshall, D. and Amir, D. Theory of curriculum learning,
with convex loss functions. JMLR, 21(1):9184–9202,
2020.

Welling, M. Herding dynamical weights to learn. In ICML,
pp. 1121–1128, 2009.

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Wein-
berger, K. Simplifying graph convolutional networks. In
ICML, pp. 6861–6871. PMLR, 2019.

Yang, B., Wang, K., Sun, Q., Ji, C., Fu, X., Tang, H., You, Y.,
and Li, J. Does graph distillation see like vision dataset
counterpart? NeurIPS, 36, 2024.

Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and
Prasanna, V. Graphsaint: Graph sampling based inductive
learning method. In ICLR, 2019.

Zhang, J., Fan, J., Peng, J., et al. Curriculum learning
for vision-and-language navigation. NeurIPS, 34:13328–
13339, 2021a.

Zhang, L., Zhang, J., Lei, B., Mukherjee, S., Pan, X., Zhao,
B., Ding, C., Li, Y., and Xu, D. Accelerating dataset
distillation via model augmentation. In CVPR, pp. 11950–
11959, 2023.

Zhang, S., Liu, Y., Sun, Y., and Shah, N. Graph-less neural
networks: Teaching old mlps new tricks via distillation.
In ICLR, 2021b.

Zhang, T., Zhang, Y., Wang, K., Wang, K., Yang, B., Zhang,
K., Shao, W., Liu, P., Zhou, J. T., and You, Y. Two
trades is not baffled: Condense graph via crafting rational
gradient matching. arXiv preprint arXiv:2402.04924,
2024.

Zhao, B. and Bilen, H. Dataset condensation with distribu-
tion matching. In WACV, pp. 6514–6523, 2023.

Zhao, B., Mopuri, K. R., and Bilen, H. Dataset condensation
with gradient matching. In ICLR, 2020.

Zheng, X., Zhang, M., Chen, C., Nguyen, Q. V. H., Zhu,
X., and Pan, S. Structure-free graph condensation: From
large-scale graphs to condensed graph-free data. NeurIPS,
36, 2024.

Zhou, D., Wang, K., Gu, J., Peng, X., Lian, D., Zhang, Y.,
You, Y., and Feng, J. Dataset quantization. In ICCV, pp.
17205–17216, 2023.

Zhou, Y., Nezhadarya, E., and Ba, J. Dataset distillation
using neural feature regression. NeurIPS, 35:9813–9827,
2022.

Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., and
Koutra, D. Beyond homophily in graph neural networks:
Current limitations and effective designs. NeurIPS, 33:
7793–7804, 2020.

11

Graph Condensation via Expanding Window Matching

A. Dataset Details
A.1. Statistics of Dataset

The performance assessment of our method encompasses an array of datasets, comprising three transductive datasets: Cora,
Citeseer (Kipf & Welling, 2016), Ogbn-arxiv (Hu et al., 2020) and two inductive datasets: Flickr (Zeng et al., 2019) and
Reddit (Hamilton et al., 2017)). These datasets are sourced from PyTorch Geometric (Fey & Lenssen, 2019), with publicly
accessible splits consistently applied across all experimental setups. We first set three condensation ratios for each dataset,
consistent with the setting before (Zheng et al., 2024; Jin et al., 2021), and for Ogbn-arxiv and Reddit, we add comparisons
with two additional larger condensation ratios. Dataset statistics are shown in Table 4

Table 4. Dataset statistics. The first three are transductive datasets and the last two are inductive datasets.

Dataset #Nodes #Edges #Classes #Features Training/Validation/Test

Cora 2,708 5,429 7 1,433 140/500/1000
Citeseer 3,327 4,732 6 3,703 120/500/1000

Ogbn-arxiv 169,343 1,166,243 40 128 90,941/29,799/48,603

Flickr 89,250 899,756 7 500 44,625/22312/22313
Reddit 232,965 57,307,946 210 602 15,3932/23,699/55,334

A.2. Performance of Dataset

We show the performances of various GNNs on the original graph datasets in Table 5. Notably, our approach achieves
lossless performance for 20 combinations across 35 combinations of five datasets and seven architectures

Table 5. Performances of various GNNs on original graphs. The underline signifies that the performance of our synthetic graph is the
same as or better than the original graph dataset.

MLP GAT APPNP Cheby GCN SAGE SGC

Citeseer 69.1 70.8 71.8 70.2 71.7 70.1 71.3

Cora 76.9 83.1 83.1 81.4 81.2 81.2 81.4

Ogbn-arxiv 67.8 71.5 71.2 71.4 71.4 71.5 71.4

Flickr 47.6 44.3 47.3 47.0 47.1 46.1 46.2

Reddit 92.6 91.0 94.3 93.1 93.9 93.0 93.5

B. Datails of the Training Scheduler
After assessing node difficulty, we implement a curriculum-based approach to train a GNN model. Following CLNode (Wei
et al., 2023), We introduce a continuous training scheduler that gradually increases the difficulty level in the curriculum.
Specifically, we organize the training set by the ascending node difficulty. Then, using a pacing function h(t) to map each
epoch to a certain value λt, where 0 < λt ≤ 1, indicating the proportion of the training nodes selected for the training
subset at epoch ζ . λ represents initial proportion of the available nodes, ζ is the epoch when h(t) attains the value of 1. The
pacing functions are as follows:

• linear:
h(t) = min(1, λ+ (1− λ)

t

ζ
). (17)

• root:

h(t) = min(1,

√
λ2 + (1− λ2)

t

ζ
). (18)

• geometrics:
h(t) = min(1, 2log2λ−log2λ

t
ζ). (19)

12

Graph Condensation via Expanding Window Matching

Furthermore, we do not halt the training as soon as t equals ζ , since at this point, the knowledge of difficult nodes might not
be fully embedded into the expert trajectories. Therefore, we continue to train the model for an additional period to ensure
that the information of these difficult nodes is also embedded into the expert trajectories.

C. Theoretical Analysis
C.1. Proof of Theorem 2.4

Theorem C.1. During the evaluation phase, the accumulated error at any stage is determined by its initial value, the sum of
matching error, and the initialization error starting from the second stage.

ϵn+1 =

n∑
i=1

I(θ∗i,0, ϵi−1) +

n∑
i=0

δi+1 + ϵ0. (20)

Proof. For the stage directly matched in the condensation process, we assume that its matching error can be reduced to a
negligible value. Assuming the sum of matching errors for the remaining segments is µ.

ϵn+1 = θ̂n,q − θ∗n,p

= (θ̂n,0 +ΘS(θ̂n,0, q))− (θ∗n,0 +ΘT (θ
∗
n,0, p))

= (θ̂n,0 +ΘS(θ
∗
n,0 + ϵn, q))− (θ∗n,0 +ΘT (θ

∗
n,0, p))

= (θ̂n,0 − θ∗n,0) + (ΘS(θ
∗
n,0 + ϵn, q)−ΘS(θ

∗
n,0, q)) + (ΘS(θ

∗
n,0, q)−ΘT (θ

∗
n,0, p))

= ϵn + I(θ∗n,0, ϵt) + δn+1

=

n∑
i=1

I(θ∗i,0, ϵi−1) +

n∑
i=0

δi+1 + ϵ0,

(21)

As shown in Equation 21, the accumulated error during the evaluation process can be represented as the result of the
summation of the initial accumulated error, the sum of the matching errors, and the accumulated errors, except for those that
have been reduced.

C.2. Detailed Analysis

In the meta-matching method proposed by SFGC, only one segment of the expert trajectory is selected for trajectory
matching. This approach can only utilize a small part of the information in the whole training trajectory. In our method,
there are two improvements in the condensation matching phase. Firstly, we use an expanding window starting from 0
for matching, which means during the condensation phase, more stages will be matched, resulting in a smaller matching
error µ

′
, and the student network is trained multiple times starting from θ∗0,0, thus incorporating ϵ0 into the optimization.

Note that when t = 0, the definitions of accumulated error and matching error are the same, and due to the optimization
of ϵ0, I(θ∗1,0, ϵ0) is also optimized simultaneously (Du et al., 2023). More importantly, previous research has shown that
curriculum learning can generate flatter training trajectories (Sinha et al., 2020; Sitawarin et al., 2021; Krishnapriyan et al.,
2021; Zhang et al., 2021a), which can optimize I(θ∗n,0, ϵn−1) efficiently (Du et al., 2023).

We denote the optimized accumulated error and initialization error as ϵ
′

n and I ′ respectively. Assuming ||I(θ∗1,0, ϵ0) −
I ′(θ∗1,0, ϵ0)|| = τ1 > 0, ||ϵ0 − ϵ

′

0|| ≥ τ2 > 0, ||I(θ∗i,0, ϵi−1)− I ′(θ∗i,0, ϵi−1)|| = τ3 > 0 and ||µ− µ
′ || = τ4 > 0, we have

ϵ∗
′

n = ϵn − τ1 − τ2 − (t∗ − 2)τ3 − τ4 < ϵ∗n. (22)

This implies that our method has a smaller accumulated error during the evaluation phase, resulting in better performances.

D. Training Samples Analysis
In our quest to identify nodes that play a dominant role in the formation of expert trajectories, we train each node in the
training set sequentially through a GNN and record the gradient values generated by each node. At the same time, based

13

Graph Condensation via Expanding Window Matching

on a ranking of difficulty, we classify the lowest 70% of nodes in terms of difficulty scores as easy nodes and the highest
30% as difficult nodes and compute the average gradients for easy and difficult nodes. As illustrated in Fig. 1(b), due to the
challenge GNNs face in learning clear representations from these difficult nodes, larger gradients are produced, and the
GNN tends to focus more on these nodes during training. Consequently, in expert trajectories, the supervision signals from
difficult nodes are more emphasized.

To explore the distinct guiding roles of these nodes during the condensation phase, we train the GNN with different ratios of
easy to difficult nodes (since we need to control the ratio while maintaining a consistent number of nodes used, we must
select subsets from the whole training set) to form expert trajectories. As shown in Fig. 1(c) and 1(d), the supervision role of
easy nodes is essential for optimizing the condensed graph; relying solely on difficult nodes is insufficient for optimization,
as they rarely contain the general patterns of the original graph.

E. Time Complexity Analysis
Time complexity. We first measure the time complexity of the GCond, SFGC, and GEOM. For simplicity, let the number of
GCN layers in the adjacency matrix generator be L, the number of the sampled neighbors per node be r and all the hidden
units be d. The number of nodes in the original graph dataset is N and the number of nodes in the condensed graph dataset
is N

′
. In the forward process, training GCN on the original graph has a complexity of O(rLNd2) and O(LN ′2d+ LN ′d)

on the condensed graph. For GCond, it has time complexity of TKO(LN ′2d+ LN ′d) + TKO(N ′2d2), where ζ denotes
the number of outermost loops, K denotes the number of different initialization. For SFGC and our method, the time
complexity of matching training trajectories is about TO(LN ′d2 + LN ′d), and offline training expert GCNs have a time
complexity of MO(rLNd2), where M is the number of the experts. Although our method requires calculating the loss
generated by a one-time forward on the expert GCN on the condensed graph, the small size of the condensed graph means
that the time for a single forward on a 2-layer GCN is almost negligible. Additionally, the expert parameters do not require
extra training to obtain, so we consider the time complexity of this operation as a constant E.

Running time. Although our method introduces an additional constant E in terms of time complexity, we have made
improvements in how the condensed graph is evaluated, saving time, especially in the evaluation of larger-scale condensed
graphs, thereby further enhancing the efficiency of our method. Concretely, the assessment of condensed graph-free data
involves training a GNN model with it. The improved test performance of the GNN model in node classification at a
particular meta-matching step suggests superior quality of the condensed data at that stage.

Consequently, this evaluation process requires training a GNN model from the ground up while evaluating the GNN’s per-
formance at each epoch of training, which in turn incurs increased time and computational cost. To lower the computational
cost, SFGC choose to use a Graph Neural Feature Score to evaluate the condensed graph. However, the Graph Neural
Feature Score can only work in an extremely low condensation ratio, the greater the condensation ratio, the less pronounced
the advantages of the Graph Neural Feature Score become.

Aiming to enhance the efficiency of evaluating the condensed graph, we analyze the root causes of efficiency issues with the
original evaluation method. Firstly, since the size of the condensed graph is much smaller compared to the original graph
dataset, as we mentioned in our time complexity analysis, the time taken for the condensed graph to forward on a GCN is
very short. The majority of the time spent in the original method of training a GNN from scratch was due to testing on the
original dataset’s test set in each training epoch, to determine the best-performing training epoch for the final performance.

Therefore, we design a short-term interval training evaluation to assess the performance of the condensed graph. Specifically,
we do not require the GNN trained with the condensed graph to reach a well-trained state, but instead, we try to reduce the
number of training epochs (e.g., training only for 200 epochs on Ogbn-arxiv) and compare the performance of condensed
graphs within the same training epochs. Also, during training on condensed graphs, we do not evaluate the GNN at every
epoch but do so after a considerable number of training intervals, e.g., an interval of 20 epochs. By adopting this approach,
we significantly reduce computational time and enhance the efficiency of evaluating the condensed graph. All experiments
are conducted five times on one single Nvidia-A100-SXM4-80GB GPU. We provide the running time of our method and
SFGC in Fig. 6.

F. Analysis of Matching Range
In exploring the effects of different ranges of long-term matching, we present the impacts of various step combinations of q
steps (student) and p steps (expert) on the Ogbn-arxiv dataset, with r = 0.5%. The results, displayed in Fig. 7, show that

14

Graph Condensation via Expanding Window Matching

(a) (b)

Figure 6. Comparison of methods for evaluating and storing condensed graphs.

the optimal step combination exists for 2100 student steps (q) and 1900 expert steps (p). Under this setup, the condensed
graph exhibits the best node classification performance. Additionally, the quality and expressiveness of the condensed data
moderately vary with different step combinations, but the variance is not overly drastic.

Moreover, regarding the different step combinations of p and q, we observe that without using soft labels, GEOM exhibits
properties similar to SFGC, where the optimal value of q is usually smaller. In the choice of p, due to the adoption of a
curriculum learning approach and expanding window matching, a smaller p can often be set during the condensation.

In cases where soft labels are used, we find that increasing q under the same p settings generally yields better results.
One potential reason is that the information in soft labels is more complex compared to hard labels and requires more
optimization steps (Guo et al., 2023). Concurrently, we eliminate unnecessary storage of student model parameters, thereby
avoiding excessive memory demands caused by increasing q.

Figure 7. Performance with different step combinations of q student steps and expert p steps on Ogbn-arxiv (r = 0.5%).

G. Implementation Details
For the condensation ratio (r) choices, we adhere to the settings from previous studies for smaller datasets such as Cora,
Citeseer, and Flickr, where our method effortlessly achieves lossless compression. Specifically, we choose 1.30%, 2.60%,
5.20% for Cora, 0.90%, 1.80%, 3.60% for Citeseer, and 0.10%, 0.50%, 0.10% for Flickr. However, for the Ogbn-arxiv
and Reddit datasets, we found that the previously set condensation ratios were insufficient to involve enough information
to get lossless (Jin et al., 2021). Therefore, after conducting numerous experiments, we introduce two additional sets of
condensation experiment settings for these two datasets. Specifically, we choose 0.10%, 0.50%, 1.00%, 2.50%, 5.00% for
Ogbn-arxiv and 0.05%, 0.10%, 0.20%, 3.00%, 5.00% for Reddit.

In the process of training an expert trajectory, we primarily adjust three parameters to control the process of incorporating
simple and difficult information: the number of epochs for training on the entire dataset (ζ), the initial proportion of easy
nodes (λ), and the method of gradually adding difficult nodes to the training data (Scheduler). It is worth noting that our
curriculum learning approach can not improve the final performance obviously; rather, it focuses on obtaining trajectories
that include clearer and more diverse information from the original graph.

15

Graph Condensation via Expanding Window Matching

During the condensation phase, we build upon SFGC by introducing parameters to control the expanding window and KEE,
without specific mention, we adopt a 2-layer GCN with 256 hidden units as the GNN used for condensation. All other
parameters remain consistent with those publicly disclosed for SFGC. The specific parameter settings are outlined in Table
6, where U

′
represent the upper bounds of the expanding window, and U denotes the upper limit of the initial expanding

window, incremented by one after each condensation iteration. Notably, lr y set to 0 indicates the absence of soft labels.
An important experimental observation is that omitting early trajectory information across all datasets leads to suboptimal
results. Consequently, we set the start of the expanding window to 0 consistently.

In practical implementation, we observe that soft labels can sometimes lead to optimization process instability, especially for
certain small-scale condensed datasets. In such experimental scenarios, we use hard labels for the KEE process. Therefore,
we do not introduce additional loss computations on this dataset.

It is important to highlight that for condensed graphs derived from Reddit and Ogbn-arxiv with condensation ratios greater
than 1%, achieving optimal results requires fewer optimization iterations. A possible explanation is that when the scale of
the condensed graph is larger, the gap between it and the original data can be bridged with relatively minor adjustments.

In the selection of methods for evaluating and storing condensed datasets, we don’t use the graph kernel-based method
(GNTK) proposed by SFGC. This is because as the scale of condensed graphs increases, the computational time for the
GNTK metric grows exponentially. When the scale of the condensed dataset is large, the time consumed to compute this
metric is about six times that of training a GNN directly with the condensed graph, as illustrated in Fig. 6. Noting that to
achieve a fairer comparison, we use different random seeds for the evaluation function when choosing the condensed datasets
to save during the condensation phase and when assessing the performance of the condensed graphs after condensation.

Table 6. Hyper-parameters of the overall framework

Dataset Ratio ζ λ Scheduler U
′

U p q lr feat lr y α

Citeseer
0.90% 250 0.8 root 30 20 350 200 0.0001 0 0.1
1.80% 250 0.8 root 80 20 350 200 0.0007 0 0.05
3.60% 250 0.8 root 30 20 350 400 0.0001 0 0.1

Cora
1.30% 1500 0.75 geom 200 50 1400 2500 0.0001 0.00005 0.01
2.60% 1500 0.75 geom 200 50 1400 2500 0.0001 0.00005 0.01
5.20% 1500 0.75 geom 200 50 1500 2500 0.0001 0.00005 0.01

ogbn-arxiv

0.05% 1200 0.85 root 50 30 1100 650 0.25 0 0
0.25% 1200 0.85 root 200 100 1600 2100 0.05 0.001 0
0.50% 1200 0.85 root 200 100 1900 2100 0.03 0.001 0
2.50% 1200 0.85 root 350 300 1600 2200 0.03 0.001 0

5% 1200 0.85 root 400 300 1500 2000 0.05 0.001 0

Flickr
0.10% 100 0.95 root 30 10 600 600 0.07 0 0.3
0.50% 100 0.95 root 30 1 600 300 0.01 0 0.1

1% 100 0.95 root 70 10 70 300 0.07 0 0.3

Reddit

0.05% 800 0.9 linear 50 1 800 800 0.02 0 0.25
0.10% 800 0.9 linear 20 1 1000 1000 0.03 0 0.1
0.20% 800 0.9 linear 20 1 900 800 0.2 0 0.25

3% 800 0.9 linear 250 50 900 1300 0.001 0.0001 0.2
5% 800 0.9 linear 200 1 1000 1300 0.001 0.0001 0.25

H. Visualizations
We showcase t-SNE plots depicting the condensed graph-free data generated by GEOM across all datasets. Our condensed
graph-free data reveals a well-clustered pattern across Cora and Citeseer. Furthermore, larger-scale datasets exhibit some
implicit clusters within the same class. This indicates that our approach effectively learns representative representations
from the easy nodes of the original data while efficiently utilizing the difficult nodes. With the assistance of difficult nodes,
the patterns become enriched.

16

Graph Condensation via Expanding Window Matching

(a) Flickr, r = 1% (b) Ogbn-arxiv, r = 0.5%

(c) Ogbn-arxiv, r = 5% (d) Reddit, r = 5%

Figure 8. Visualization of t-SNE on condensed graphs

17

