ENHANCING TIME-SERIES FORECASTING WITH ITER ATIVE DECOMPOSITION AND SEPARABLE TRAINING

Anonymous authors

Paper under double-blind review

ABSTRACT

Time series data, crucial for decision-making in fields like finance and healthcare, often presents challenges due to its inherent complexity, exacerbating the biasvariance tradeoff and leading to overfitting and underfitting in conventional forecasting models. While promising, state-of-the-art models like PatchTST, iTransformer, and DLinear are hindered by this tradeoff, limiting their ability to separate predictable patterns from noise. To resolve this, we propose the IDEAS framework, which reduces the bias-variance tradeoff to help models achieve optimal performance. IDEAS combines iterative residual decomposition, which reduces bias by extracting predictable patterns, and separable training, which reduces variance by independently optimizing each component. We provide theoretical proof and demonstrate through experiments that IDEAS significantly improves performance across four state-of-the-art models on nine complex benchmark datasets, offering a more robust solution for complex time series forecasting.

023

004

010 011

012

013

014

015

016

017

018

019

021

1 INTRODUCTION

025 026

027 Time series data plays an essential role in various fields such as weather forecasting, medical diagnosis, and traffic prediction. It is widely used to solve numerous real-world problems and has a 029 significant impact on our daily lives (Esling & Agon, 2012; Shumway et al., 2000). Due to the importance and necessity of time series research, numerous studies have been proposed in recent years for time series forecasting. In particular, unlike conventional prediction-focused studies, recent re-031 search has aimed to analyze and predict time series data from various perspectives. For instance, PatchTST (Nie et al., 2022) and iTransformer (Liu et al., 2023) focus on segmenting time series 033 data along the temporal axis or emphasize variable-centered learning. On the other hand, models 034 like DLinear (Zeng et al., 2023) and TimeMixer (Wang et al., 2024) aim to enhance learning by 035 decomposing time series data into individual components.

Despite these advancements, time series data remains particularly challenging due to its inherent 037 complexity, which is distinct from other types of sequential data like language or video. Time series data consists of multiple intertwined components, including long-term trends, seasonal patterns, and cycles, as well as unpredictable noise that often complicates the learning process. Unlike other types 040 of data, these components must be separated to accurately model the underlying patterns. This mix-041 ture of predictable and unpredictable patterns often leads to a bias-variance tradeoff, where models 042 either overfit to noise or underfit by failing to capture meaningful patterns (Ramasubramanian, 2007; 043 Chen et al., 2014). Conventional forecasting models attempt to learn all components of time series 044 data—both meaningful patterns and random noise—simultaneously. This approach often leads to overfitting, where models capture noise as if it were signal, or underfitting, missing important patterns (cf.Figure. 1). As a result, the models fail to generalize well on new data. Noise embedded 046 within the data exacerbates the problem, causing overfitting when models fail to effectively dis-047 tinguish between noise and meaningful patterns (Ying, 2019). Even when noise is excluded, the 048 simultaneous learning of multiple components can still result in sub-optimal learning due to the 049 model's inability to focus on each component's unique characteristics. These limitations emphasize the need for a more fundamental solution that directly addresses the complexity and inherent 051 bias-variance tradeoff in time series data, rather than just optimizing model performance. 052

To address the challenges of the bias-variance tradeoff in time series forecasting, we propose a novel and effective framework called Iterative residual **DE**composition **And Seperable** training (IDEAS).

Figure 1: Visualization results of state-of-the-art models, DLinear, PatchTST, and iTransformer on the Weather dataset. Each model achieves impressive MSE values of 0.176, 0.149, and 0.174, respectively. When visualized over a long sequence, all models closely follow the ground truth. However, as highlighted in the zoomed-in pink box, there are noticeable discrepancies between the predictions (green line) and the ground truth (blue line). Applying IDEAS (orange line) reduces these gaps, resulting in predictions that align more closely with the ground truth.

This comprehensive framework provides a robust and systematic solution by directly tackling the inherent bias-variance tradeoff through two key and complementary components: (i) iterative residual decomposition, which primarily reduces bias and confidently acts as an unbiased estimator, and (ii) separable training, which effectively minimizes variance. The IDEAS framework progressively handles the inherent complexity of time series data by isolating the predictable patterns from unpredictable noise, and ultimately enabling more efficient learning.

075 The first component, iterative residual decomposition, is specifically designed as an unbiased esti-076 mator that iteratively and systematically separates predictable patterns from unpredictable noise in 077 a detailed, step-by-step manner. By consistently treating the residuals as approximate white noise 078 in the theoretical limit of infinite iterations, this robust approach ensures that the model captures all 079 significant and meaningful patterns without inadvertently introducing any bias, gradually and consistently enhancing prediction accuracy. This process allows for a clearer and more accurate extrac-081 tion of the underlying structure of the time series, ultimately leading to more reliable and confident forecasting. The second component, separable training, directly addresses variance by training each decomposed component independently and distinctly. This independent training strategy effectively 083 minimizes the overall impact of residual noise during the training process, further reducing the risk 084 of potential overfitting and significantly enhancing the model's overall generalization ability. 085

By combining these two components, our approach achieves an optimal balance of the bias-variance
tradeoff, resulting in more accurate and reliable predictions, even with complex and noisy datasets.
Moreover, the IDEAS framework is highly adaptable and can be integrated with various existing
time series decomposition methods and forecasting models, making it applicable across a wide
range of fields, including finance, meteorology, and healthcare. Our main contributions of IDEAS
are as follows:

- We propose a novel method, iterative residual decomposition, which iteratively decomposes time series data into multiple predictable patterns and unpredictable patterns (noise). By progressively focusing on predictable components, the method effectively reduces bias and enhances the model's ability to capture the true underlying patterns in the data.
- 2. The predictable patterns obtained from the iterative residual decomposition are then trained independently, using separable training to reduce variance. We support this approach with mathematical analysis that demonstrates how separable training minimizes the influence of noise and overcomes the bias-variance tradeoff, leading to more efficient learning.
- 3. Our proposed framework, IDEAS, is versatile and can be applied to a wide range of time series decomposition algorithms and forecasting models. We validate the effectiveness of IDEAS through experiments on 9 datasets and 4 state-of-the-art models, achieving significant performance improvements.
- 104

092

094

095

096

098

099

062

These contributions represent a significant step forward in addressing the fundamental bias-variance tradeoff and the complexity of noise present in time series data. By focusing on this core challenge, IDEAS improves model performance and enhances the overall ability to generalize across various forecasting tasks, offering a more robust and accurate solution for time series forecasting.

¹⁰⁸ 2 RELATED WORKS

109 110 111

112

2.1 BIAS-VARIANCE TRADEOFF IN TIME SERIES FORECASTING MODEL

In time series forecasting, the bias-variance tradeoff is a fundamental challenge, especially with the increasing complexity of datasets. Models with high bias tend to underfit, missing critical patterns in the data, while models with high variance overfit, capturing noise along with the true signal. This tradeoff becomes even more pronounced in time series data due to temporal dependencies, noise, and dynamic patterns (Geman et al., 1992; Baek & Kim, 2018). As the data's complexity grows, the difficulty of finding a model that appropriately balances bias and variance increases, making it crucial to develop advanced techniques to handle these challenges.

Although recent approaches such as Transformer-based models have reduced overfitting to some extent, they often fail to balance the bias-variance tradeoff in more complex or noisy datasets. To mitigate this, our proposed method integrates the iterative residual decomposition and separable training. By isolating noise and training components separately, we aim to minimize overfitting while ensuring the model captures essential time-dependent patterns, thus addressing the bias-variance tradeoff more effectively. This balanced approach not only enhances model performance but also ensures that predictions are more reliable, even in the presence of intricate temporal patterns.

127 128

129

2.2 TIME SERIES DECOMPOSITION

130 Conventional time series decomposition methods, like STL or STR (Wen et al., 2019), break down 131 data into trend, seasonality, and residual components to simplify analysis and forecasting. While ef-132 fective in capturing patterns, these methods struggle with the growing complexity and non-linearity 133 of modern datasets. As the scale and diversity of data increase, traditional decompositions may not 134 adapt well, leading to loss of critical information in the residuals. Residuals, often treated as noise, 135 can still contain valuable and predictive information. Research shows that residuals with autocorrelation or non-zero mean suggest models have missed capturing important underlying patterns(Dama 136 & Sinoquet, 2021; Mauricio, 2008), underscoring the urgent need for improved and more advanced 137 decomposition techniques. Therefore, enhancing decomposition methods is essential to extract more 138 meaningful and actionable insights from increasingly complex time series data. 139

To address these issues, we propose the iterative residual decomposition method, which iteratively
 applies decomposition to residuals. This helps separate predictable patterns from noise, reducing
 data complexity and improving forecasting accuracy where conventional methods fall short.

143 144

146

145 2.3 TIME SERIES FORECASTING MODELS

Recent models such as Autoformer, DLinear (Zeng et al., 2023), and TimeMixer (Wang et al., 2024)
employ decomposition techniques to capture underlying patterns in complex time series data. At the
same time, models like PatchTST (Nie et al., 2022) and iTransformer (Liu et al., 2023) emphasize
variable-centered learning and temporal segmentation to handle multivariate time series. These
approaches have led to significant improvements in managing different types of time series data,
highlighting the importance of decomposition and segmentation in improving forecasting accuracy.

However, a persistent challenge is overfitting. Although these models successfully capture intricate patterns, they often struggle to fully differentiate between meaningful signals and noise, which
diminishes their ability to generalize effectively in real-world scenarios. This issue is particularly
prevalent in datasets with high variability and noise, where models inadvertently learn irrelevant
fluctuations alongside actual patterns, ultimately degrading their performance.

To address these challenges, we propose a novel approach that combines iterative residual decomposition with separable learning. Iterative residual decomposition progressively separates predictable patterns from residual noise, systematically reducing bias in the bias-variance tradeoff. The combination of these techniques not only resolves the overfitting problem but also offers a scalable solution to manage the increased complexity and variability inherent in modern time series data.

Figure 2: (a) shows that conventional time series forecasting models, regardless of their structure, aim to minimize the loss between the unified prediction \hat{Y}_{out} and Y_{out} , treating the time series as a single entity. In contrast, (b) illustrates how separate learning is applied to each component, which helps prevent overfitting and underfitting by optimizing each part individually.

PROPOSED METHODS

Despite recent significant advancements in time series forecasting models, the inherent complexity of time series data continues to make the mitigation of overfitting, driven by the bias-variance trade-off (Assandri et al., 2023; Baidya & Lee, 2024), a challenging issue. In this section, we introduce a novel method, IDEAS, designed to address this problem. We first present the overall workflow of IDEAS, followed by a detailed description of its two main architectures with theoretical proofs. The detailed learning algorithm is given in the Appendix F, and the algorithm for iterative residual decomposition method is given in Algorithm 1.

3.1 OVERALL WORKFLOW

Figure 2 (b) shows the detailed design of our method, IDEAS. The overall workflow is as follows:

- 1. The input sequence X_{In} is decomposed into unpredictable patterns $U^{(i)}$ (such as residuals) and predictable patterns $P^{(i)}$ using any time series decomposition method.
- 2. We iteratively apply the time series decomposition to the unpredictable pattern $U^{(i)}$ to obtain the noise-like unpredictable pattern $U^{(N)}$ and the meaningful predictable patterns $P^{(i)}$ obtained at each step *i*.
- 3. In our proposed separable training, the predictable patterns $\{P^{(i)}\}_{i=1}^{N}$ obtained from the iterative residual decomposition is used to train, at each step *i*, any arbitrary model (such as DLinear, PatchTST, etc.) to predict future value $P_{out}^{(i)}$.

216

217	Algorithm 1: Iterative residual decomposition method	
218	Input: Input time series data X_{In} , Any forecasting model θ_f , residual iteration number max_iter =	N
210	$i i \leftarrow 1;$	
219	2 Decompose X_{In} into $P^{(1)}$ and $U^{(1)}$;	
220	$i \in 2;$	
221	4 while $i < max_{iter}$ do	
222	5 Decompose $U^{(i-1)}$ into $P^{(i)}$ and $U^{(i)}$;	
223	<pre>/* Can be use various decomposition methods(STR,STL,etc.)</pre>	*/
224	$6 i \leftarrow i+1;$	
225	7 return $\{\hat{P}^{(i)}\}_{i=1}^{N}$	

226 227 228

229

230

231 232

254 255

258 259 4. During this separable training procedure, the loss function (which is in red box) is defined for each step *i*, allowing for individual learning at each step *i*.

5. The prediction \hat{Y}_{out} is obtained by summing the predicted outputs $\{\hat{P}_{out}^{(i)}\}_{i=1}^{N}$.

3.2 ITERATIVE RESIDUAL DECOMPOSITION 233

234 To effectively address the bias-variance tradeoff in time series forecasting, we propose an itera-235 tive residual decomposition method that iteratively extracts predictable patterns while reducing the 236 impact of noise throughout the training process. This approach enhances the model's ability to 237 generalize by separating meaningful patterns from noise at each step, thereby reducing the risk of 238 overfitting or underfitting as demonstrated in Theorem 1 and Theorem 2.

239 Traditional decomposition methods, such as STL or STR (Dokumentov et al., 2015; Hyndman & 240 Athanasopoulos, 2018), often leave residuals containing overlooked predictable patterns, which can 241 still contribute to the bias-variance tradeoff. Our iterative residual decomposition method addresses 242 this by repeatedly applying a decomposition process to extract these overlooked patterns, refining the 243 residuals over multiple iterations. This systematic extraction ensures that residuals converge toward 244 white noise, functioning as an unbiased estimator in the limit of infinite iterations. Consequently, 245 our approach effectively separates predictable patterns from unpredictable patterns and mitigates the 246 inherent bias introduced when models fail to capture all relevant patterns during training, resulting 247 in improved forecasting accuracy.

248 Figure 3 clearly demonstrates how the iterative decomposition progressively refines the residuals 249 towards a Gaussian distribution, validating the effectiveness of our method. In the iterative residual 250 decomposition, the initial decomposition of the input time series data X_{In} follows standard methods 251 like STL or STR, which separate the time series into predictable components $P^{(1)}$ (e.g., trend, 252 seasonality) and unpredictable residuals $U^{(1)}$ (e.g., noise): 253

$$U^{(1)} = X_{In} - P^{(1)},\tag{1}$$

At each subsequent step, the residual $U^{(N-1)}$ is further decomposed to extract any remaining pre-256 dictable patterns $P^{(N)}$, progressively refining the residuals: 257

$$U^{(N)} = U^{(N-1)} - P^{(N)}.$$
(2)

260 where $P^{(N)}$ represents the N-th set of predictable patterns extracted during the decomposition pro-261 cess. For instance, in the first decomposition step, $P^{(1)}$ may capture large-scale patterns like trends, 262 while in later steps, $P^{(N)}$ captures more subtle predictable patterns, leaving the residuals $U^{(N)}$ to 263 approach random noise as more predictable patterns are removed. As observed in Figure 3, the resid-264 uals (blue bars) progressively become more similar to a normal distribution (red dashed line) over 265 successive iterations, confirming the iterative refinement of the residuals toward a more Gaussian-266 like distribution. As the number of iterations N increases and approaches infinity $(N \to \infty)$, the residuals $U^{(N)}$ are expected to converge to pure white noise, characterized by zero mean, constant 267 variance, and no autocorrelation (cf. Figure 4). This convergence demonstrates that the iterative 268 residual decomposition method ultimately yields an unbiased estimation of the predictable compo-269 nents, effectively separating the signal from the noise in the time series data.

275

270

271

276 277 278

279

281

283

284

287

289

285 Figure 3: Visualization of the residual distributions over successive iterations for the ETTh1 and 286 ILL datasets. As the iteration process progresses, the residuals (blue bars) increasingly resemble a normal distribution (red dashed line), indicating that STL decomposition method iteratively refines 288 the residuals towards a more Gaussian-like distribution. More figures are in Appendix H.1

3.2.1 UNBIASEDNESS OF ITERATIVE RESIDUAL DECOMPOSITION 290

291 We assume that residuals will eventually converge to noise if each iteration successfully removes 292 predictable patterns, even in complex datasets with nonlinearity or non-stationarity. This assump-293 tion is consistent with traditional methods like STR and STL, which are designed to handle nonstationary time series, making it a mild assumption.

295 To empirically validate this assumption, we propose using statistical tests such as the Shapiro-Wilk 296 test for normality and autocorrelation tests (e.g., ACF or Durbin-Watson) to assess whether the 297 residuals exhibit characteristics of noise after each iteration, as shown in Figure 4. 298

Theorem 1 (Unbiasedness of iterative residual decomposition). Let X_{In} be a non-stationary time 299 series. Assume X_{in} can be iteratively decomposed into predictable components $P^{(i)}$ and residual 300 components $U^{(i)}$. As the number of iterations $N \to \infty$, the expected value of the final residuals 301 $U^{(N)}$ will converge to white noise, indicating the iterative residual decomposition process yields an 302 asymptotically unbiased estimator of the predictable components of X_{In} .

303 304

Remark: In the limit as $N \to \infty$, the iterative residual decomposition process is an unbiased 305 estimator of the predictable components of X_{In} . Practically, we observe that with a finite number 306 of iterations, $U^{(N)}$ closely approximates white noise, demonstrating consistent evidence of near-307 unbiasedness across diverse real-world applications and datasets.

308 The iterative residual decomposition not only theoretically proves unbiasedness but also empirically 309 validates this through real-world testing. The theoretical proof of Theorem 1 is provided in Appendix 310 A. To complement this theoretical analysis, we empirically validate Theorem 1 by conducting ACF 311 and Durbin-Watson tests across multiple iterations of the iterative residual decomposition. As shown 312 in Figure 4, the Durbin-Watson statistic (blue line) approaches the ideal value of 2.0 (red dashed 313 line), and the ACF statistic (orange line) converges towards 0.0 (pink dashed line) as the number 314 of iterations increases. This convergence indicates that the residuals become progressively closer to 315 white noise, supporting our theorem. More visualization of Figure 4 are in Appendix H.2.

- 316
- 317 3.3 SEPARABLE TRAINING 318

319 To address the limitations of conventional training methods in time series forecasting, we propose a 320 separable training approach that optimizes each component individually, thus enhancing the model's 321 learning effectiveness and overall forecasting accuracy. Unlike conventional methods that train on all components simultaneously, our approach ensures that each component—such as trend, seasonality, 322 and cycles—is trained separately, allowing the model to capture the distinct information contained 323 within each component more effectively.

Figure 4: Empirical validation showing that as iterations increase, the residuals approach white noise, demonstrated by the Durbin-Watson and ACF statistics converging towards their expectation.

Time series data consists of various components, such as trend, seasonality, and cycles, each carrying distinct information (Baidya & Lee, 2024). Unlike image or language data, where components are often treated as a whole, each component in time series data has a specific meaning. For example, the trend captures long-term movements, while seasonality highlights periodic fluctuations.

Conventional forecasting models often lead to sub-optimal performance or overfitting by training
on all these components simultaneously (Assandri et al., 2023; Gelman & Hill, 2007; Liu & Wang,
2024). In contrast, separable training allows the model to optimize each component independently,
avoiding these issues. Rather than introducing a completely new approach, separable training generalizes and extends the conventional methods by allowing the model to optimize for each component
separately, thus enhancing learning effectiveness for each aspect of the data.

With separable training, the model can focus on learning each component more effectively, which leads to improved forecasting performance, as demonstrated in our experiments. Mathematically, we independently optimize each component $P_{out}^{(1)}, P_{out}^{(2)}, \dots, P_{out}^{(N)}$, ensuring that the training process for each component is more tailored and precise, as shown below:

(_ T

353 354

355 356 357

348

335

336 337 338

339

340

341

$$\theta_{P_{out}^{(1)}} := \theta_{P_{out}^{(1)}} - \eta \left(\frac{2}{T} \sum_{t=1}^{T} (P_{out,t}^{(1)} - \hat{P}_{out,t}^{(1)}(\theta_{P_{out}^{(1)}})) \nabla_{\theta_{P_{out}^{(1)}}} \hat{P}_{out,t}^{(1)}(\theta_{P_{out}^{(1)}}) \right),$$

$$\theta_{P_{out}^{(2)}} := \theta_{P_{out}^{(2)}} - \eta \left(\frac{2}{T} \sum_{t=1}^{T} (P_{out,t}^{(2)} - \hat{P}_{out,t}^{(2)}(\theta_{P_{out}^{(2)}})) \nabla_{\theta_{P_{out}^{(2)}}} \hat{P}_{out,t}^{(2)}(\theta_{P_{out}^{(2)}}) \right),$$

$$\dots$$

$$(3)$$

1

$$\theta_{P_{out}^{(N)}} := \theta_{P_{out}^{(N)}} - \eta \left(\frac{2}{T} \sum_{t=1}^{T} (P_{out,t}^{(N)} - \hat{P}_{out,t}^{(N)}(\theta_{P_{out}^{(N)}})) \nabla_{\theta_{P_{out}^{(N)}}} \hat{P}_{out,t}^{(N)}(\theta_{P_{out}^{(N)}}) \right)$$

361 362

364

365

366

367

368

359 360

> In Theorem.2, we demonstrate how separable training improves the model's ability to handle complex time series data by reducing the overall model variance and enhancing predictive accuracy. This approach helps the model achieve better overall performance by avoiding the limitations of unified training approaches. By learning each component independently, the model can avoid overfitting to dominant components or noise, resulting in a more robust and accurate forecasting process.

Theorem 2 (Bias-Variance Tradeoff improvement with separable training). Let a time series X_{In} be decomposed into N components $P^{(1)}, P^{(2)}, \ldots, P^{(N)}$, each representing distinct patterns. Separable training optimizes each component individually, reducing the overall model variance by eliminating the covariance between components, which leads to improved forecasting performance.

Remark: The separable training paradigm decouples the interactions between components, significantly reducing the overall variance $\sigma_{X_{In}}^2$. By removing the covariance terms between components, the model becomes more resilient to overfitting, improving its generalization capability to unseen data. This decoupling mechanism addresses the bias-variance tradeoff, enabling the model to achieve higher predictive accuracy and overall performance in time series forecasting.

378 3.3.1 BETTER BIAS-VARIANCE TRADEOFF 379

380 A significant advantage of separable training is its ability to effectively manage the bias-variance tradeoff, a crucial factor in balancing model complexity and generalization. By training each com-381 ponent independently, separable training reduces variance while maintaining low bias, resulting in 382 more accurate and generalized forecasting. 383

384 In conventional unified training, all components of the time series-trend, seasonality, and noise—are optimized together. This introduces significant variance, as the model attempts to fit all 386 components at once, often leading to overfitting to noisy patterns and underfitting of subtle trends.

387 By separating the training process, separable training eliminates the covariance between unpre-388 dictable and predictable patterns, leading to a reduced overall variance. This independent training 389 process ensures that each component is optimized more effectively, contributing to a more balanced 390 and accurate forecasting model. Mathematically, the variance in a conventional model can be ex-391 pressed as: 392

$$\sigma_{X_{In}}^2 = \sigma_{P_{out}^{(1)}}^2 + \sigma_{P_{out}^{(2)}}^2 + \dots + \sigma_{P_{out}^{(N)}}^2 + \sigma_{U^{(N)}}^2 + 2 \cdot \Sigma(P_{out}^{(1)}, P_{out}^{(2)}, \dots, P_{out}^{(N)}, U^{(N)})$$
(4)

The covariance term, $2 \cdot \Sigma(P_{out}^{(1)}, P_{out}^{(2)}, \cdots, P_{out}^{(N)}, U^{(N)})$, represents the interaction between the 396 noise and the meaningful components, which can increase the overall variance and lead to overfit-397 ting. 398

By separating the training process, separable training effectively removes these covariance terms, leading to a reduction in the model's overall variance:

$$\sigma_{X_{In}}^2 = \sigma_{P_{out}}^{(1)} + \sigma_{P_{out}}^{(2)} + \cdots \sigma_{P_{out}}^{(N)}$$
(5)

This reduction in variance helps mitigate the risk of overfitting, while the independent optimization of each component maintains low bias. As a result, separable training effectively balances the 405 bias-variance tradeoff, leading to improved generalization and forecasting performance compared to 406 conventional unified training methods.

407 408 409

393 394

399

404

EXPERIMENTS 4

410 411

412

413 414

416

417

In this section, we present the experimental results of IDEAS on mainstream LTSF benchmarks. We also discuss the efficiency advantages introduced by the proposed IDEAS method. We conduct ablation studies and analyses to further demonstrate the effectiveness of the IDEAS approach.

415 4.1 EXPERIMENTAL SETTINGS

We list all the descriptions of datasets, baselines and detailed experimental settings in Appendix D.

418 Datasets: We conducted experiments on 9 mainstream LTSF datasets, including Weather, Ex-419 change rate, ETTh1, ETTh2, ETTm1, ETTm2, Electricity, Traffic, and National illness (ILL). The 420 details of these datasets are presented in Appendix D.2. Additionally, we conducted stationarity 421 testing on each benchmarked dataset using time series stationarity tests, including the Augmented 422 Dickey-Fuller (ADF) test (Mushtaq, 2011) and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) 423 test (Baum, 2018). The tests were performed for each variable, and the overall characteristics of sta-424 tionarity were documented accordingly (detailed results of stationarity testing are in Appendix C). 425 Based on the statistical test results, we classify the datasets into non-stationary (Weather, Exchange, ETTh1, ETTm1) and weak non-stationary (ETTh2, ETTm2, Electricity, Traffic, ILL) categories. 426

- 427 428
- 4.2 MAIN RESULTS
- 429

In particular, non-stationary time series data are more complex due to evolving patterns, such as 430 changing trends and seasonality. The IDEAS framework is designed to handle such complexity, 431 making it highly effective for real-world time series data where non-stationarity is prevalent.

Table 1: Stationarity testing results on benchmarked dataset. X indicates that both ADF and KPSS tests consider non-stationary, while \triangle denotes that at least one of the test consider it non-stationary. We refer to cases marked with \triangle as weak non-stationary.

	Weather	Exchange	ETTh1, ETTm1	ETTh2, ETTm2	Electricity	Traffic	ILL
Stationarity	X	X	X	\triangle	Δ	\triangle	Δ

Table 2: Experimental results on 9 benchmark datasets. Results where the IDEAS method improved the performance of a base model are highlighted in **bold**, and the best performance w.r.t. a pair of (dataset, horizon h) among all is marked in **blue**. h refers to the prediction horizon (or length).

Datasets	s	Wea	ather	Excl	hange	ET	Th1	ET	Tm1	ET	Th2	ET	Tm2	Elec	tricity	Tra	affic		П	L
	h	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	h	MSE	MAE
	96	0.176	0.237	0.081	0.203	0.375	0.399	0.299	0.343	0.289	0.353	0.167	0.260	0.140	0.237	0.410	0.282	24	2.215	1.081
23)	192	0.220	0.282	0.157	0.293	0.405	0.416	0.335	0.365	0.383	0.418	0.224	0.303	0.153	0.249	0.423	0.287	36	1.963	0.963
8 <u>5</u>	336	0.265	0.319	0.305	0.414	0.439	0.443	0.369	0.386	0.448	0.465	0.281	0.342	0.169	0.267	0.436	0.296	48	2.130	1.024
-	720	0.323	0.362	0.643	0.601	0.472	0.490	0.425	0.421	0.605	0.551	0.397	0.421	0.203	0.301	0.466	0.315	60	2.368	1.096
(n =	96	0.143	0.206	0.073	0.194	0.240	0.334	0.245	0.318	0.270	0.336	0.144	0.241	0.123	0.227	0.339	0.281	24	1.776	0.956
EA	192	0.199	0.266	0.159	0.293	0.314	0.377	0.283	0.338	0.342	0.395	0.222	0.302	0.142	0.246	0.397	0.298	36	1.374	0.801
미금	336	0.255	0.315	0.304	0.413	0.359	0.420	0.317	0.360	0.427	0.457	0.270	0.339	0.158	0.263	0.435	0.315	48	1.415	0.825
	720	0.320	0.367	0.632	0.635	0.385	0.449	0.405	0.418	0.612	0.554	0.398	0.421	0.194	0.296	0.457	0.317	60	1.585	0.878
Imp.(Avg.)		8.25%	4.66%	2.66%	-0.24%	23.8%	9.81%	13.1%	5.53%	5.20%	2.87%	4.58%	2.13%	7.57%	2.15%	2.15%	-2.63%		29.1%	16.9%
E.	96	0.149	0.198	0.093	0.218	0.370	0.400	0.290	0.342	0.274	0.336	0.165	0.255	0.129	0.222	0.360	0.249	24	1.319	0.754
123 123	192	0.194	0.241	0.208	0.332	0.413	0.429	0.332	0.369	0.339	0.379	0.220	0.292	0.147	0.240	0.379	0.256	36	1.007	0.870
(20 (21	336	0.245	0.282	0.359	0.440	0.422	0.440	0.366	0.392	0.329	0.384	0.274	0.329	0.163	0.259	0.392	0.264	48	1.553	0.815
_	720	0.314	0.334	1.194	0.815	0.447	0.468	0.416	0.420	0.379	0.422	0.362	0.385	0.197	0.290	0.432	0.286	60	1.016	0.788
sta	96	0.128	0.182	0.066	0.176	0.264	0.343	0.240	0.311	0.260	0.322	0.163	0.251	0.115	0.217	0.358	0.247	24	1.063	0.700
EA	192	0.178	0.225	0.165	0.287	0.303	0.368	0.282	0.339	0.338	0.375	0.225	0.295	0.143	0.234	0.377	0.254	36	1.118	0.728
D ac	336	0.235	0.273	0.328	0.415	0.334	0.400	0.308	0.359	0.327	0.377	0.272	0.327	0.158	0.249	0.392	0.263	48	1.298	0.755
	720	0.301	0.325	0.875	0.695	0.348	0.416	0.354	0.388	0.378	0.418	0.364	0.384	0.192	0.287	0.437	0.288	60	1.260	0.753
Imp.(Avg.)		7.64%	5.15%	21.3%	13.3%	24.6%	12.2%	15.8%	8.31%	1.57%	1.99%	-0.22%	0.35%	4.79%	2.41%	0.21%	0.31%		0.20%	8.629
mer	96	0.174	0.214	0.086	0.206	0.386	0.405	0.334	0.368	0.297	0.349	0.180	0.264	0.148	0.240	0.395	0.268	24	2.085	0.953
024	192	0.221	0.254	0.177	0.299	0.441	0.436	0.377	0.391	0.380	0.400	0.250	0.309	0.162	0.253	0.417	0.276	36	1.973	0.947
9 <u>1</u>	336	0.278	0.296	0.331	0.417	0.487	0.458	0.426	0.420	0.428	0.432	0.311	0.348	0.178	0.269	0.433	0.283	48	2.124	1.018
E	720	0.358	0.347	0.847	0.691	0.503	0.491	0.491	0.459	0.427	0.445	0.412	0.407	0.225	0.317	0.467	0.302	60	2.164	1.032
S	96	0.139	0.187	0.071	0.183	0.292	0.359	0.269	0.343	0.295	0.345	0.182	0.265	0.141	0.242	0.317	0.260	24	1.790	0.910
sfo	192	0.194	0.238	0.168	0.286	0.329	0.38/	0.325	0.380	0.576	0.401	0.248	0.308	0.160	0.261	0.383	0.2/1	36	1.548	0.863
비를	336	0.249	0.280	0.326	0.412	0.364	0.424	0.348	0.395	0.408	0.427	0.309	0.344	0.174	0.270	0.415	0.282	48	1.579	0.865
Imp (Avg.)	720	12.7%	6.66%	0.724	5.840	24.1%	0.451	18.0%	6.07%	1.42%	0.450	0.412	0.408	4 27%	0.302	9.07%	0.511	60	21.0%	10.06
	06	0.163	0.00%	0.002	0.212	0.275	0.400	0.320	0.357	0.280	0.23%	0.175	0.212.0	0.152	0.07%	0.462	0.285	24	1 460	0.70
(f)	102	0.208	0.209	0.174	0.212	0.375	0.400	0.361	0.381	0.207	0.392	0.237	0.200	0.166	0.247	0.402	0.205	36	1.900	0.867
202	336	0.251	0.250	0.1/4	0.426	0.427	0.458	0.300	0.404	0.386	0.372	0.207	0.340	0.185	0.250	0.498	0.296	48	1.895	0.007
Ξ.	720	0.339	0.341	1.065	0.770	0.498	0.482	0.454	0.441	0.412	0.434	0.391	0.396	0.225	0.310	0.506	0.313	60	1.955	0.980
н	96	0 148	0 194	0.087	0 209	0.255	0 341	0 248	0 323	0.278	0 349	0.151	0 247	0 114	0.214	0 337	0.285	24	1 317	0.762
AS fixe	192	0.200	0.243	0.172	0.294	0.329	0.382	0.248	0.348	0.345	0.384	0.236	0.298	0.150	0.246	0.399	0.308	36	1.062	0.69
DE.	336	0.242	0.278	0.346	0.423	0.333	0.391	0.317	0.372	0.377	0.411	0.298	0.342	0.169	0.262	0.428	0.314	48	1.151	0.747
ΞĒ	720	0.334	0.340	0.946	0.724	0.385	0.434	0.372	0.404	0.413	0.434	0.380	0.398	0.212	0.304	0.438	0.320	60	1.427	0.801
Imp.(Avg.)		4.53%	3.35%	4.98%	1.43%	27.3%	12.2%	20.3%	8.62%	3.35%	0.10%	4.24%	0.88%	12.4%	6.15%	17.5%	-3.09%		30.0%	15.6%
1																				

> Table 2 compares the performance of 4 state-of-the-art models with and without the IDEAS method. As discussed in (Shao et al., 2023), the effectiveness of each model varies depending on the characteristics of the time series dataset. For instance, Transformer models perform better on stationary datasets with clear and stable patterns, while Linear models may suffer from underfitting in such cases. Conversely, Linear models excel on non-stationary datasets with unclear patterns and significant distribution shifts, where Transformer models are more prone to overfitting.

Experimental results show that IDEAS can significantly improve the performance of existing models
by addressing the bias-variance trade-off. For the highly abnormal ETTh1 dataset, all four models
achieve about 25% improvement. In contrast, for the weak non-stationary Traffic dataset, the overall
improvement is less than 10%. For the weak non-sationary ILL dataset, most models improve by
more than 20% except PatchTST, which achieves only a small gain of 0.2%, indicating that it has
already achieved the optimal performance. Overall, IDEAS effectively alleviates the limitations of
the bias-variance trade-off and achieves the optimal performance of existing models.

4.3 SENSITIVITY AND ABLATION STUDIES

Various time-series decomposition with IDEAS: Table 3 presents a sensitivity analysis of IDEAS performance based on different time series decomposition methods. We compare results

487

504

505

506

507

508

509

510

526

527

528

529 530 531

532

Table 3: Ablation studies on various time-series decomposition with IDEAS. The best results are in **bold** and the second best are underlined.

Figure 5: Sensitivity to iteration number N of separable training. More figures are in Appendix H.3.

on a non-stationary dataset (ETTh1) and a weak non-stationary dataset (ILL) to assess the effect of decomposition choice on forecasting accuracy. While the specific decomposition method influences the model's effectiveness, the application of IDEAS consistently enhances performance compared to the original models. In particular, for weak non-stationary datasets, the improvement achieved by IDEAS heavily depends on the selected decomposition technique, with certain methods yielding significant gains, while others may offer marginal or no improvements over the original models.

Figure 6: Visualization of the original time series (top) and the predictable patterns at each iteration of the iterative residual decomposition (from iteration 1 to 5). More figures are in Appendix H.4

Figure 5 demonstrates how MSE decreases progressively as the number of iterations in the iterative residual decomposition and separable training increases within the IDEAS framework. Across datasets like ETTh1, Exchange, and Traffic, repeated iterations consistently reduce MSE, improving forecasting accuracy compared to the original models (dotted line), highlighting the effectiveness of IDEAS. The framework iteratively learns from predictable patterns extracted at each decomposition stage, as shown in Figure 6, capturing the data's underlying structures. This process incrementally refines the model's ability to separate patterns from noise, addressing the bias-variance tradeoff more efficiently. The consistent reduction in MSE across iterations confirms IDEAS's robustness in enhancing time series forecasting.

5 CONCLUSION

533 In this paper, we introduce IDEAS, a novel framework that enhances time series forecasting by ad-534 dressing the bias-variance tradeoff through iterative residual decomposition and separable learning. Our experiments demonstrate significant improvements on various benchmark datasets, particularly 536 on non-stationary data where existing methods struggle with overfitting or underfitting. By sep-537 arating predictable patterns from noise to reduce bias and minimizing variance, IDEAS achieves more accurate and robust forecasts, making it a promising solution for complex, noisy time series 538 data. Future work could explore integrating IDEAS with other techniques and applying it to broader domains where accurate forecasting is essential.

Ethics Statement The IDEAS framework and associated time series forecasting models presented
 in this paper are designed to improve the accuracy and robustness of predictions in various domains,
 including finance, healthcare, and other sectors where decision-making based on time series data is
 critical. In applying these models, we acknowledge the importance of transparency, fairness, and ac countability, especially when predictions have significant real-world consequences. Furthermore, no
 human subjects were involved in this research, and the datasets used are publicly available, ensuring
 compliance with relevant data privacy regulations.

Reproducibility Statement To ensure the reproducibility and completeness of this paper, we make our code available at https://drive.google.com/drive/folders/
 1mIItRegJiPSLbixG_EogsjCsixLDQBYk?usp=drive_link. We give details on our experimental protocol in the Appendix D.4.

552 553

547

554

555

556

564

565 566

567

574

575

576

- References
- Valentino Assandri, Sam Heshmati, Burhaneddin Yaman, Anton Iakovlev, and Ariel Emiliano Repetur. Deep double descent for time series forecasting: Avoiding undertrained models. *arXiv* preprint arXiv:2311.01442, 2023.
- Yujin Baek and Ha Young Kim. Modaugnet: A new forecasting framework for stock market index
 value with an overfitting prevention lstm module and a prediction lstm module. *Expert Systems with Applications*, 113:457–480, 2018.
- Ranjai Baidya and Sang-Woong Lee. Addressing the non-stationarity and complexity of time series data for long-term forecasts. *Applied Sciences*, 14(11):4436, 2024.
 - Christopher Baum. Kpss: Stata module to compute kwiatkowski-phillips-schmidt-shin test for stationarity. 2018.
 - Min Chen, Shiwen Mao, and Yunhao Liu. Big data: A survey. *Mobile networks and applications*, 19:171–209, 2014.
- Fatoumata Dama and Christine Sinoquet. Time series analysis and modeling to forecast: A survey.
 arXiv preprint arXiv:2104.00164, 2021.
- Alexander Dokumentov, Rob J Hyndman, et al. Str: A seasonal-trend decomposition procedure
 based on regression. *Monash econometrics and business statistics working papers*, 13(15):2015–13, 2015.
 - Philippe Esling and Carlos Agon. Time-series data mining. ACM Computing Surveys (CSUR), 45 (1):1–34, 2012.
- Andrew Gelman and Jennifer Hill. *Data analysis using regression and multilevel/hierarchical mod-* Cambridge university press, 2007.
- Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and the bias/variance dilemma.
 Neural computation, 4(1):1–58, 1992.
- 582 Rob J Hyndman and George Athanasopoulos. *Forecasting: principles and practice*. OTexts, 2018.
- Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term temporal patterns with deep neural networks. In *The 41st international ACM SIGIR conference on research & development in information retrieval*, pp. 95–104, 2018.
- 587 Xinhe Liu and Wenmin Wang. Deep time series forecasting models: A comprehensive survey.
 588 Mathematics, 12(10):1504, 2024.
- Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
 itransformer: Inverted transformers are effective for time series forecasting. *arXiv preprint arXiv:2310.06625*, 2023.
- 593 José Alberto Mauricio. Computing and using residuals in time series models. *Computational statistics & data analysis*, 52(3):1746–1763, 2008.

Rizwan Mushtaq. Augmented dickey fuller test. 2011.

- Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
 words: Long-term forecasting with transformers. *arXiv preprint arXiv:2211.14730*, 2022.
- ⁵⁹⁸ V Ramasubramanian. Time series analysis. *New Delhi*, 2007.
- Zezhi Shao, Fei Wang, Yongjun Xu, Wei Wei, Chengqing Yu, Zhao Zhang, Di Yao, Guangyin Jin,
 Xin Cao, Gao Cong, et al. Exploring progress in multivariate time series forecasting: Compre hensive benchmarking and heterogeneity analysis. *arXiv preprint arXiv:2310.06119*, 2023.
- Robert H Shumway, David S Stoffer, and David S Stoffer. *Time series analysis and its applications*, volume 3. Springer, 2000.
- Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang, and Jun Zhou. Timemixer: Decomposable multiscale mixing for time series forecasting. *arXiv* preprint arXiv:2405.14616, 2024.
- Qingsong Wen, Jingkun Gao, Xiaomin Song, Liang Sun, Huan Xu, and Shenghuo Zhu. Robuststl:
 A robust seasonal-trend decomposition algorithm for long time series. In *Proceedings of the AAAI* conference on artificial intelligence, volume 33, pp. 5409–5416, 2019.
- Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans formers with auto-correlation for long-term series forecasting. *Advances in neural information processing systems*, 34:22419–22430, 2021.
- Kue Ying. An overview of overfitting and its solutions. In *Journal of physics: Conference series*, volume 1168, pp. 022022. IOP Publishing, 2019.
- Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series forecasting? In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp. 11121–11128, 2023.
- Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *The Thirty- Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Conference*, volume 35, pp. 11106–11115. AAAI Press, 2021.

648 A PROOF OF THEOREM 1

Theorem 1 (Unbiasedness of iterative residual decomposition). Let X_{In} be a non-stationary time series. Assume X_{In} can be iteratively decomposed into predictable components $P^{(i)}$ and residual components $U^{(i)}$. As the number of iterations $N \to \infty$, the expected value of the final residuals $U^{(N)}$ will converge to white noise, indicating that the iterative residual decomposition process yields an asymptotically unbiased estimator of the predictable components of X_{In} .

656 *Proof.* The proposed iterative residual decomposition method is designed to iteratively extract and 657 eliminate predictable patterns from the time series data, ultimately isolating pure noise as the it-658 eration count approaches infinity. This proof establishes that the iterative residual decomposition 659 serves as an asymptotically unbiased estimator of the predictable components and that the residuals 660 progressively converge towards the properties of white noise.

We begin by decomposing the input time series X_{In} using a standard decomposition method, such as STL or STR:

$$X_{In} = P^{(1)} + U^{(1)}, (6)$$

where $P^{(1)}$ denotes the first extracted predictable pattern (e.g., trend, seasonality), and $U^{(1)}$ represents the initial residual component.

667 At each iteration *i*, the residual $U^{(i-1)}$ is further decomposed into:

$$U^{(i-1)} = P^{(i)} + U^{(i)}, (7)$$

where $P^{(i)}$ captures the most predictable structure within $U^{(i-1)}$. This iterative process continues, with each subsequent iteration *i* progressively removing additional predictable components from the residuals.

As the number of iterations $N \to \infty$, all predictable patterns are effectively eliminated, leading to residuals $U^{(N)}$ that comprise solely unpredictable elements or pure noise. In this asymptotic limit, the expectation of the residuals converges to zero:

$$\lim_{N \to \infty} \mathbb{E}[U^{(N)}] = 0.$$
(8)

This convergence implies that the residuals become entirely unbiased, signifying that the iterative residual decomposition method serves as an asymptotically unbiased estimator for the predictable components within X_{In} .

To further substantiate the convergence of residuals $U^{(N)}$ towards white noise, we consider the Central Limit Theorem (CLT), which states that the sum of a sufficiently large number of independent and identically distributed random variables approximates a normal distribution. We express the residual $U^{(N)}$ in terms of an aggregation of various random components:

$$U^{(N)} = \sum_{i=1}^{n} X_i(t),$$
(9)

⁶⁸⁹ where $X_i(t)$ denotes the individual random components at iteration *i*.

By invoking the CLT, as $n \to \infty$, the standardized sum of these components converges towards a normal distribution:

$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i(t) \approx \mathcal{N}(0, \sigma^2).$$
(10)

694 695

693

655

663

664

669

677 678

686 687 688

690

⁶⁹⁶ This result confirms that the residuals $U^{(N)}$ progressively conform to a normal distribution with mean 0 and variance σ^2 , thereby acquiring the attributes of white noise.

Additionally, the autocorrelation function (ACF) of the residuals $U^{(N)}$ at lag h is defined as:

700
701
$$\rho_{U^{(N)}}(h) = \frac{\mathbb{E}[(U^{(N)}(t) - \mu_{U^{(N)}})(U^{(N)}(t+h) - \mu_{U^{(N)}})]}{\sigma_{U^{(N)}}^2},$$
(11)

where $\mu_{U^{(N)}}$ and $\sigma_{U^{(N)}}^2$ are the mean and variance of $U^{(N)}$, respectively. As $N \to \infty$, since $\mu_{U^{(N)}} \approx 0$, it follows that:

$$\rho_{U^{(N)}}(h) \approx 0 \quad \text{for} \quad h \neq 0. \tag{12}$$

706 707 This dem

705

708

714 715

716 717

718

719

720

721 722

723

724

This demonstrates that the residuals $U^{(N)}$ become uncorrelated over iterations, thereby exhibiting the characteristics of white noise.

 In conclusion, the iterative residual decomposition process not only acts as an asymptotically unbiased estimator but also ensures that residuals exhibit white noise properties as iterations increase. This theoretical foundation confirms the robustness and efficacy of the iterative residual decomposition method in managing the bias-variance tradeoff and enhancing the generalization capability of time series models in complex and noisy environments.

B PROOF OF THEOREM 2

Theorem 2 (Bias-Variance Tradeoff improvement with separable training). Let a time series X_{In} be decomposed into N components $P^{(1)}, P^{(2)}, \ldots, P^{(N)}$, each representing distinct patterns. Separable training optimizes each component individually and reduces the overall model variance by eliminating the covariance between components.

Proof. In the conventional unified training paradigm, all components of the time series X_{In} are trained simultaneously, resulting in an accumulation of both individual variances and covariance interactions among these components. The total variance of X_{In} in this unified setting can be expressed as:

729

742 743 744

747

748

$$\sigma_{X_{In}}^2 = \sum_{i=1}^N \sigma_{P^{(i)}}^2 + 2 \sum_{1 \le i < j \le N} \operatorname{Cov}(P^{(i)}, P^{(j)}),$$
(13)

where $\sigma_{P^{(i)}}^2$ denotes the variance of each individual component $P^{(i)}$, and $\text{Cov}(P^{(i)}, P^{(j)})$ represents the covariance between different components $P^{(i)}$ and $P^{(j)}$.

In unified training, the covariance term $2\sum_{1 \le i < j \le N} \text{Cov}(P^{(i)}, P^{(j)})$ is typically non-zero due to the simultaneous optimization of all components. This leads to an interdependence among components, where the model inadvertently captures interactions or spurious correlations between different components $P^{(i)}$ and $P^{(j)}$. As a result, the unified training process often leads to an inflated variance, increasing the risk of overfitting as the model attempts to capture not only the true signal but also the noise embedded in these interactions.

⁷³⁹ In contrast, the proposed *separable training* approach trains each component $P^{(i)}$ independently, such that:

$$\hat{P}_{out}^{(i)} = \arg\min_{\theta^{(i)}} \frac{1}{T} \sum_{t=1}^{T} (P^{(i)}(t) - \hat{P}_{out}^{(i)}(t; \theta^{(i)}))^2,$$
(14)

where $\hat{P}_{out}^{(i)}(t; \theta^{(i)})$ represents the model's prediction for component $P^{(i)}$ at time t with parameter set $\theta^{(i)}$.

By optimizing each component $P^{(i)}$ separately, the covariance terms $\text{Cov}(P^{(i)}, P^{(j)})$ for $i \neq j$ are effectively nullified. Thus, under the separable training paradigm, the total variance simplifies to:

$$\sigma_{X_{In}}^2 = \sum_{i=1}^N \sigma_{P^{(i)}}^2,$$
(15)

since $\operatorname{Cov}(P^{(i)}, P^{(j)}) = 0$ for all $i \neq j$ under separable training.

To further quantify the impact of separable training on variance reduction, we introduce the concept of a *variance reduction ratio* R, defined as the ratio of the total variance under separable training

756 $\sigma_{X_{In}}^2$ sep to that under unified training $\sigma_{X_{In}}^2$ uni:

758 759

760 761 $R = \frac{\sum_{i=1}^{N} \sigma_{P^{(i)}}^2}{\sum_{i=1}^{N} \sigma_{P^{(i)}}^2 + 2\sum_{1 \le i < j \le N} \operatorname{Cov}(P^{(i)}, P^{(j)})}.$ (16)

762 Since $\sum_{i < j} \text{Cov}(P^{(i)}, P^{(j)}) \ge 0$, it follows that $R \le 1$. This inequality directly implies that sepa-763 rable training results in a lower or, at worst, equivalent variance compared to unified training. The 764 greater the sum of covariances $2\sum_{i < j} \text{Cov}(P^{(i)}, P^{(j)})$, the more significant the variance reduction 765 achieved through separable training.

The elimination of these covariance terms in separable training not only reduces overall variance
 but also mitigates the model's tendency to overfit. This is because the absence of inter-component
 interactions prevents the model from capturing noise or spurious correlations that do not contribute
 to the true signal, thereby enhancing the generalization capability of the model.

Moreover, the preservation of independent optimization for each component ensures that each $P^{(i)}$ is learned to its mean value accurately without interference from other components, thereby maintaining the model's unbiased nature. Consequently, separable training effectively manages the biasvariance tradeoff by significantly reducing variance while maintaining low bias.

In statistical learning theory, this translates to a model that adheres more closely to the *oracle property*, where each component $P^{(i)}$ is estimated as if the others were known in advance. This property reinforces the idea that separable training provides a more efficient and theoretically grounded approach to handling complex time series data, thereby achieving an optimal balance between bias and variance.

780 781

782 783

C STATIONARITY TEST ON BENCHMARKED DATASETS

Table 4: Stationarity testing result on weather each variable using ADF and KPSS tests

Variable		ADF			KPSS	
variable	Statistic	p-value	Stationarity	Statistic	p-value	Stationarity
p (mbar)	-8.140	1.04e-12	0	0.9420	0.01	Х
T (degC)	-8.407	2.15e-13	0	8.1786	0.01	Х
Tpot (K)	-8.430	1.88e-13	0	8.1251	0.01	Х
Tdew (degC)	-6.505	1.14e-08	0	10.2832	0.01	Х
rh (%)	-17.053	8.04e-30	0	8.1633	0.01	Х
VPmax (mbar)	-9.398	6.31e-16	0	7.9154	0.01	Х
VPact (mbar)	-6.155	7.39e-08	0	9.3269	0.01	Х
VPdef (mbar)	-16.633	1.66e-29	0	5.0522	0.01	Х
sh (g/kg)	-6.177	6.58e-08	0	9.2933	0.01	Х
H2OC (mmol/mol)	-6.175	6.65e-08	0	9.3067	0.01	Х
rho (g/m ³)	-7.944	3.26e-12	0	7.5689	0.01	Х
wv (m/s)	-229.279	0.0	0	0.0207	0.1	0
max. wv (m/s)	-22.467	0.0	0	3.2738	0.01	Х
wd (deg)	-18.273	2.32e-30	0	0.8335	0.01	Х
rain (mm)	-29.619	0.0	0	0.1776	0.1	0
raining (s)	-21.262	0.0	0	0.1328	0.1	0
SWDR (W/m ²)	-35.205	0.0	0	7.2054	0.01	Х
PAR (µmol/m ² /s)	-35.376	0.0	0	7.3854	0.01	Х
max. PAR (µmol/m ² /s)	-34.085	0.0	0	7.6197	0.01	Х
Tlog (degC)	-8.614	6.37e-14	0	8.3066	0.01	Х
OT	-25.113	0.0	0	0.2279	0.1	0

800 801

802 803

804

806

D EXPERIMENTAL SETTINGS

805 D.1 Environment Setting

We conduct experiments on multivariate time series forecasting. All experiments were conducted in the same software and hardware environments. UBUNTU 18.04 LTS, PYTHON 3.8.0,
NUMPY 1.22.3, SCIPY 1.10.1, MATPLOTLIB 3.6.2, PYTORCH 2.0.1, CUDA 11.4, NVIDIA Driver 470.182.03 i9 CPU, and NVIDIA RTX A5000.

Variable		ADF			KPSS	KPSS		
variable	Statistic	p-value	Stationarity	Statistic	p-value	Stationarity		
0	-1.665	0.4492	Х	5.2917	0.01	Х		
1	-2.150	0.2250	Х	1.2468	0.01	Х		
2	-1.353	0.6048	Х	5.3135	0.01	Х		
3	-1.587	0.4903	Х	10.5355	0.01	Х		
4	-2.869	0.0491	0	2.4475	0.01	Х		
5	-2.120	0.2365	Х	3.9282	0.01	Х		
6	-1.748	0.4067	Х	7.9789	0.01	Х		
OT	-1.728	0.4166	Х	7.0661	0.01	Х		

Table 5: Stationarity testing result on exchange rate each variable using ADF and KPSS tests

Table 6: Stationarity testing result on ETTh1 each variable using ADF and KPSS tests

Variable		ADF		KPSS					
variable	Statistic	p-value	Stationarity	Statistic	p-value	Stationarity			
HUFL	-8.5505	9.25e-14	0	6.4781	0.01	х			
HULL	-5.1691	1.02e-05	0	2.2266	0.01	Х			
MUFL	-8.6212	6.10e-14	0	9.0633	0.01	Х			
MULL	-4.9641	2.61e-05	0	1.7190	0.01	Х			
LUFL	-5.7969	4.73e-07	0	2.0147	0.01	Х			
LULL	-4.7727	6.13e-05	0	1.1559	0.01	Х			
OT	-3 4880	0.0083	0	9 4621	0.01	x			

D.2 DATASETS

- 1. Weather dataset consists of measurements for 21 weather indicators, such as temperature and humidity, collected every 10 minutes throughout the year 2020 (Wu et al., 2021).
- 2. Exchange dataset includes exchange rate data among 8 different countries (Lai et al., 2018).
- ETT (Electricity Transformer Temperature) comprises four datasets: two with hourly granularity and two with 15-minute granularity, recorded between July 2016 and July 2018. Each dataset contains seven features related to oil and load conditions of transformers (Zhou et al., 2021).
- 4. Electricity dataset tracks the hourly electricity consumption of 321 clients from 2012 to 2014.
- 5. Traffic dataset represents the road occupancy rates, capturing hourly data recorded by sensors on the San Francisco freeways between 2015 and 2016.
- 6. ILL (Influenza-like Illness) dataset is provided by the Centers for Disease Control and Prevention (CDC) of the United States, covering the period from 2002 to 2021.

D.3 BASELINES

We evaluated our model compared to the following state-of-the-art baselines:

- 1. DLinear (Zeng et al., 2023) (Decomposition Linear) paper investigates the effectiveness of Transformer-based models for long-term time series forecasting (LTSF). The authors challenge the dominance of Transformers by introducing a simple one-layer linear model, LTSF-Linear, which surprisingly outperforms Transformer-based LTSF models on nine real-life datasets. They argue that Transformers may not be ideal for LTSF because of the temporal information loss caused by the permutation-invariant self-attention mechanism. Their experiments demonstrate that LTSF-Linear, with its simple structure and trend-seasonality decomposition, achieves superior performance compared to complex Transformer models, suggesting that simpler models could be more suitable for certain time series forecasting tasks.
- 2. PatchTST (Nie et al., 2022) is a Transformer-based model designed for multivariate time series forecasting and self-supervised representation learning. It introduces two key components: patching, where time series data is segmented into subseries-level patches to serve as input tokens, enhancing local semantic information and reducing computation; and channel-independence, where each channel contains a univariate time series that shares

Variable		ADF			KPSS	KPSS		
variable	Statistic	p-value	Stationarity	Statistic	p-value	Stationarity		
HUFL	-6.5264	1.01e-08	0	8.8581	0.01	Х		
HULL	-4.5542	0.0002	0	12.7572	0.01	Х		
MUFL	-4.0446	0.0012	0	1.2424	0.01	Х		
MULL	-4.4530	0.0002	0	8.1632	0.01	Х		
LUFL	-2.4355	0.1320	Х	16.5272	0.01	Х		
LULL	-3.3408	0.0132	0	1.0814	0.01	Х		
OT	-3.5971	0.0058	0	1.8443	0.01	Х		

Table 7: Stationarity testing result on ETTh2 each variable using ADF and KPSS tests

Table 8: Stationarity testing result on electricity each variable using ADF and KPSS tests (showing statistics for a sample of 20 out of the total 321 variables).

Variable		ADF		KPSS					
variable	Statistic	p-value	Stationarity	Statistic	p-value	Stationarity			
0	-6.8575	1.63e-09	0	1.0495	0.01	Х			
1	-7.0165	6.71e-10	0	1.7130	0.01	Х			
2	-5.0386	1.86e-05	0	4.6124	0.01	Х			
3	-6.1206	8.87e-08	0	15.8351	0.01	Х			
4	-4.9192	3.20e-05	0	1.3654	0.01	Х			
5	-4.6755	9.35e-05	0	1.4239	0.01	Х			
6	-6.6138	6.28e-09	0	0.6762	0.0157	Х			
7	-12.2476	9.70e-23	0	1.2862	0.01	Х			
8	-10.6022	6.13e-19	0	1.3742	0.01	Х			
9	-12.0190	3.05e-22	0	1.2859	0.01	Х			
10	-5.0968	1.42e-05	0	1.0898	0.01	Х			
11	-22.8691	0.0	0	8.1358	0.01	Х			
12	-15.0668	8.84e-28	0	0.6601	0.0172	Х			
13	-7.5981	2.43e-11	0	0.7042	0.0132	Х			
14	-6.5456	9.11e-09	0	0.8886	0.01	Х			
15	-11.2439	1.78e-20	0	0.8630	0.01	Х			
16	-8.4163	2.04e-13	0	6.2602	0.01	Х			
17	-7.3335	1.11e-10	0	8.7768	0.01	Х			
18	-8.7300	3.21e-14	0	2.9707	0.01	Х			
19	-14.8180	1.98e-27	0	3.8465	0.01	х			

the same embedding and Transformer weights across all series. This approach allows PatchTST to handle longer look-back windows and capture essential temporal information, leading to significant improvements in long-term forecasting accuracy over other Transformer-based models, particularly when dealing with large datasets.

- 3. iTransformer (Liu et al., 2023) is a modified Transformer architecture designed specifically for time series forecasting. Unlike traditional Transformers that embed multiple time series variables as temporal tokens, iTransformer takes an inverted approach by embedding each time series as variate tokens. This method allows the attention mechanism to capture multivariate correlations more effectively, while a feed-forward network learns nonlinear representations of individual time series. By focusing on the relationships among variates, iTransformer achieves enhanced performance, generalization across different variates, and improved handling of longer lookback windows, making it highly effective for complex multivariate time series forecasting tasks.
- 4. TimeMixer (Wang et al., 2024) is a neural network architecture designed for long-term time series forecasting. It employs a hierarchical design that captures temporal dependencies at multiple scales, efficiently modeling both short-term and long-term dependencies in time series data. The architecture consists of multiple layers of specialized blocks, each handling different temporal scales, which allows the model to capture complex patterns across varying time intervals. By combining these blocks, TimeMixer achieves state-of-the-art performance on benchmark datasets, demonstrating its ability to handle diverse time series forecasting tasks effectively.

915 D.4 HYPERPARAMETERS

- 1. h: forecasting horizon length
 - 2. *I* : input sequence length

Variable		ADF			KPSS	KPSS		
variable	Statistic	p-value	Stationarity	Statistic	p-value	Stationarity		
0	-15.1612	6.59e-28	0	1.1652	0.01	X		
1	-15.8957	8.44e-29	0	0.2681	0.1	0		
2	-15.0168	1.04e-27	0	0.9598	0.01	Х		
3	-19.1828	0.00	0	0.6013	0.0225	Х		
4	-16.9776	9.06e-30	0	0.1101	0.1	0		
5	-18.1970	2.41e-30	0	1.1706	0.01	Х		
6	-20.0680	0.00	0	1.8860	0.01	Х		
7	-16.0007	6.52e-29	0	0.6163	0.0212	Х		
8	-14.8895	1.57e-27	0	5.0434	0.01	Х		
9	-15.2753	4.66e-28	0	1.1001	0.01	Х		
10	-16.6232	1.69e-29	0	0.4720	0.0480	Х		
11	-14.2461	1.51e-26	0	2.9375	0.01	Х		
12	-16.9995	8.75e-30	0	1.6541	0.01	Х		
13	-17.3764	5.10e-30	0	3.2661	0.01	Х		
14	-17.3334	5.39e-30	0	2.8093	0.01	Х		
15	-16.2227	3.88e-29	0	2.7122	0.01	Х		
16	-10.2786	3.83e-18	0	3.0002	0.01	Х		
17	-13.0770	1.90e-24	0	3.4275	0.01	Х		
18	-15.6792	1.48e-28	0	2.6290	0.01	Х		
19	-13.6018	1.95e-25	0	1.4351	0.01	Х		

Table 9: Stationarity testing result on traffic each variable using ADF and KPSS tests (showing statistics for a sample of 20 out of the total 883 variables).

Table 10: Stationarity testing result on national illness(ILL) each variable using ADF and KPSS tests

Variable		ADF			KPSS	
variable	Statistic	p-value	Stationarity	Statistic	p-value	Stationarity
% WEIGHTED	-7.846	5.75e-12	0	0.1857	0.1	0
% UNWEIGHTED	-7.747	1.03e-11	0	0.3008	0.1	0
AGE 0-4	-6.507	1.12e-08	0	1.6179	0.01	Х
AGE 5-24	-6.383	2.20e-08	0	1.2751	0.01	Х
ILITOTAL	-6.161	7.16e-08	0	1.7705	0.01	Х
OF PROVIDERS	-1.713	0.4243	Х	3.6161	0.01	Х
OT	-0.982	0.7598	Х	4.0449	0.01	Х

3. K: kernel size of time-series decomposition method

4. p: period length of time-series decomposition method

5. λ : learning rate

6. decomp.method : decomposition method

E COMPUTATIONAL TIME AND MODEL USAGE

This section compares the time per epoch and memory usage between the original model and the proposed IDEAS framework during the training process (cf. Table 15 and Table E). The proposed IDEAS applies separable training, where multiple stages of training are conducted. For instance, if the model undergoes 3 iterations, it learns 3 distinct predictable patterns separately. In this process, the time taken per epoch is similar to or shorter than that of the original model because the training data is processed in a more compact form than the raw data. Furthermore, since each predictable pattern becomes simpler for the model to learn, fewer epochs are required for convergence at each stage. For example, if a model originally requires a total of 50 epochs for training, in separable training, each stage may converge within 10 to 15 epochs. Thus, even with training across 3 stages, only about 45 epochs in total are required, leading to a reduction in overall computation time.

- F ALGORITHM OF IDEAS
- In this section, we provide the IDEAS algorithm along with the overall architecture diagram to help you understand the detailed algorithm of the proposed method.

1007 1008 1009

1010

	Tab	le 11: [DLinear	r (IDEA	S) Hyp	perpara	meters	used f	or each	n dataset	t.	
Datasets		W	eather			Exc	hange			E	Th1	
h	96	192	336	720	96	192	336	720	96	192	336	72
I	336	336	336	480	336	336	336	336	336	336	192	3
k	19	48	54	60	60	60	60	60	13	25	48	2
p	12	6	6	36	7	7	7	7	12	12	24	1
λ	0.001	0.001	0.001	0.00125	0.005	0.005	0.005	0.005	0.005	0.000125	0.000125	0.00
Decomp. method	SIK	51K	51K	51K	SIK	51K	SIK The	SIK	SIL	SIL	51K T2	3
balasets	- 06	102	336	720		102	336	720	- 06	102	336	
	226	226	226	226	226	226	226	226	226	226	226	
l k	24	12	12	12	42	36	42	42	48	48	48	
p	48	24	24	24	12	24	12	12	48	48	48	
$\hat{\lambda}$	0.0025	0.00025	0.0002	5 0.0025	0.005	0.0025	0.005	0.005	0.0025	0.0025	0.0025	0.0
Decomp. method	STR	STR	STR	STR	STL	STR	STL	STL	STR	STR	STR	S
Datasets		Ele	ctricity			Tr	affic			1	LL	
h	96	192	336	720	96	192	336	720	24	36	48	(
I	336	336	336	336	336	720	336	336	104	104	104	1
k	25	25	49	49	12	3	12	5	12	12	12	
$p \\ \lambda$	0.0025	0.001	0.005	0.001	0.001	0.00024	5 0 001	0 025	0.005	0 005	0.005	0
Decomp. method	STL	STL	STL	STL	STL	STR	STL	STL	STL	STL	STL	S
	Tabl	e 12: P	atchTS	T (IDEA	AS) Hy	yperpar	rameter	s used	for eac	h datas	et	
Datasets	Tabl	e 12: Pa Weath	atchTS	T (IDEA	AS) Hy	yperpar _{Excha}	rameter	s used	for eac	h datase	et TTh1	
Datasets h	Tabl	e 12: Pa Weath	atchTS	T (IDEA	AS) Hy 96	yperpar Excha	nge 336	rs used	for eac	eh datase E	et TTh1 336	
Datasets h I	Tabl	e 12: Pa Weath 192 336 42	atchTS	T (IDEA	96 336	Excha 192 336 20	nge 336 336	720 720	for eac	Eh datasu E 192 336 25	et TTh1 336 336 25	
Datasets h I k p	Tabl	e 12: Pa Weath 192 336 42 14	atchTS her 336 42 35	T (IDEA	96 336 36 24	Excha 192 336 30 6	nge 336 336 6 7	720 720 336 12 6	for eac	Eh datase 192 336 25 12	et TTh1 <u>336</u> <u>336</u> 25 12	
Datasets h I k p λ	Tabl	e 12: Pa Weath 192 336 42 14 0.00001	atchTS her 336 42 35 0.0005	T (IDEA 720 42 28 0.0005 0.0	96 336 36 24 00001	Excha 192 336 30 6 0.00025	rameter nge 336 336 6 7 0.000025	720 720 336 12 6 0.00025	for eac 96 336 25 12 0.00002:	Eh datase 192 336 25 12 5 0.00002	et TTh1 <u>336</u> <u>336</u> 25 12 5 0.000025	0.
Datasets h I k p λ Decomp. method	Tabl	e 12: Pa Weath 192 336 42 14 0.00001 STR	atchTS her 336 42 35 0.0005 STR	T (IDEA 720 720 28 0.0005 0.0 STR S	96 336 36 24 00001 (5TR	Excha 192 336 30 6 0.00025 STR	nge 336 336 6 7 0.000025 STR	720 720 336 12 6 0.00025 STR	for eac 96 336 25 12 0.00002: STL	Eh datase 192 336 25 12 5 0.00002 STL	et TTh1 336 25 12 5 0.000025 STR	0.
Datasets h I k p λ Decomp. method Datasets	Tabl 96 336 35 42 0.0001 STR	e 12: Pa Weath 192 336 42 14 0.00001 STR ETTr	ner 336 336 42 35 0.0005 STR nl	T (IDEA 720 720 28 0.0005 0.0 STR S	96 96 336 36 24 90001 (5TR	Excha 192 336 6 0.00025 STR ETTI	nge 336 6 7 0.000025 STR h2	720 720 336 12 6 0.00025 STR	for eac 96 336 25 12 0.00002: STL	Eh datase 192 336 25 0.00002 STL E	et TTh1 <u>336</u> 25 12 5 0.000025 STR TTm2	0.
Datasets h I k p λ Decomp. method Datasets h -	Tabl 96 336 35 42 0.0001 STR 96 96	e 12: Pa Weath 192 336 42 14 0.00001 STR ETTr 192	atchTS ner 336 336 42 35 0.0005 STR nl 336 235 0.0005 STR	T (IDEA 720 720 42 28 0.0005 0.0 STR S 720 720	96 336 24 00001 (5TR 96	Excha 192 336 30 6 0.00025 STR ETTI 192 225	nge 336 336 7 0.000025 STR h2 336	720 720 336 12 6 0.00025 STR 720	for eac 96 336 25 12 0.00002: STL 96 96	E datase 192 336 25 5 0.00002 STL E 192	et TTh1 336 336 25 12 5 0.000025 STR TTm2 336 336	0.
Datasets h I k p λ Decomp. method Datasets h I L	96 336 35 42 0.0001 STR 96 336 7	e 12: Pa Weath 192 336 42 14 0.00001 STR ETTr 192 336 7	atchTS her 336 336 42 35 0.0005 STR nl 336 336 7	T (IDEA 720 720 720 720 720 720 720 720 720 720	96 336 24 00001 (5TR 96 336 42	Excha 192 336 30 6 0.00025 STR ETTI 192 336 9	nge 336 336 6 7 0.000025 STR h2 336 336 23	720 336 12 6 0.00025 STR 720 336	for eac 96 336 25 12 0.00002: STL 96 336 11 96 336 11 96 336 12 12 12 12 12 12 12 12 12 12	E E 192 336 25 0.00002 STL E 192 336 11	et TTh1 336 25 5 0.000025 STR ITm2 336 336 336 11	0.
Datasets h I k p λ Decomp. method Datasets h I k p	96 336 35 42 0.0001 STR 96 336 7 12	e 12: Pa Weatt 192 336 42 14 0.00001 STR ETTr 192 336 7 12	atchTS atchTS 336 42 35 0.0005 STR n1 336 336 7 12	T (IDEA 720 2 42 28 0.0005 0.0 STR S 720 - 336 2 7 12	96 336 36 24 00001 0 5TR 96 336 42 24	Excha 192 336 30 6 0.00025 STR ETTI 192 336 9 12	rameter nge 336 6 7 0.000025 STR h2 336 336 336 23 12	720 336 12 6 0.00025 STR 720 336 19 12	for eac 96 336 25 12 0.0002: STL 96 336 11 12	Eh datase 192 336 25 5 0.00002 STL E 192 336 11 12	et TTh1 336 25 5 0.000025 STR TTm2 336 336 11 12	0.
$\begin{tabular}{c} \hline Datasets & $$$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $	96 336 35 42 0.0001 STR 96 336 7 12 0.001	e 12: Pa Weatt 192 336 42 14 0.00001 STR ETTr 192 336 7 12 0.001	ner 336 336 42 35 0.0005 STR n1 336 336 7 12 0.001	T (IDEA 720 720 720 720 720 720 720 720 720 720	96 336 36 24 00001 0 5TR 96 3336 42 24 00125	Excha 192 336 30 6 0.00025 STR ETTI 192 336 9 12 0.0001	rameter nge 336 6 7 0.000025 STR h2 336 336 23 336 23 12 0.00025	720 720 336 12 6 0.00025 STR 720 336 19 12 0.001	for eac 96 336 25 12 0.00022 STL 96 336 11 12 0.0025	E 192 336 25 5 0.00002 STL E 192 336 11 12 0.0025	et TTh1 336 25 12 5 0.000025 STR TTm2 336 336 11 12 0.0025	0.
Datasets h I k p λ Decomp. method Datasets h I k p λ Decomp. method	96 336 35 42 0.0001 STR 96 336 7 12 0.001 STR	e 12: Pa Weatt 192 336 42 14 0.00001 STR ETTr 192 336 7 12 0.0011 STR	ner 336 42 35 0.0005 STR 12 0.001 STR	T (IDEA 720	96 336 24 00001 0 5TR 96 336 42 24 00125 5TR	Excha 192 336 30 6 0.00025 STR ETTI 192 336 9 12 0.0001 STL	rameter nge 336 6 7 0.000025 STR h2 336 336 336 23 336 23 12 0.00025 STL	720 720 336 12 6 0.00025 STR 720 336 19 12 0.001 STL	for eac 96 336 25 12 0.00002: STL 96 336 11 12 0.0025 STR	E 192 336 25 5 0.00002 STL E 192 336 11 12 0.0025 STR	et TTh1 336 25 12 5 0.000025 STR TTm2 336 336 11 12 0.0025 STR	0
$\begin{array}{c} \text{Datasets} \\ h \\ I \\ k \\ p \\ \lambda \\ \text{Decomp. method} \\ \hline \text{Datasets} \\ h \\ I \\ k \\ p \\ \lambda \\ \hline \text{Decomp. method} \\ \hline \text{Datasets} \\ \end{array}$	96 336 35 42 0.0001 STR 96 336 7 12 0.001 STR	e 12: Pa Weatt 192 336 42 14 0.0001 STR Electri Electri	atchTS are 336 336 42 35 0.0005 STR 12 0.001 STR city	T (IDEA 720 720 720 720 720 720 720 720 720 720	AS) Hy 96 336 24 00001 (5TR 96 336 42 24 00125 5TR	Excha 192 336 30 6 0.00025 STR ETTI 192 336 9 12 0.0001 STL Traff	rameter nge 336 6 7 0.000025 STR h2 336 336 336 23 336 23 336 5TR h2 336 5TR h2 336 5TR h2 h2 h2 h2 h2 h2 h2 h2 h2 h2	720 720 336 12 6 0.00025 STR 720 336 19 12 0.001 STL	for eac 96 336 25 12 0.00002: STL 96 336 11 12 0.0025 STR	E E 192 336 25 5 0.00002 STL E 192 336 11 12 0.0025 STR	et TTh1 336 25 12 5 0.000025 STR TTm2 336 11 12 0.0025 STR ILL	0.
Datasets h I k p λ Decomp. method Datasets h I k p λ Decomp. method Datasets h Datasets h	96 336 35 42 0.0001 STR 96 336 7 12 0.001 STR 96 336 7 12 0.001 STR 96	e 12: Pa Weatl 192 336 42 14 0.0001 STR Electri 192 336 7 12 0.001 STR Electri 192	atchTS her 336 42 35 0.0005 STR nl 336 336 7 12 0.001 STR city 336	T (IDEA 720	AS) Hy 96 336 24 00001 (5TR 96 336 42 24 000125 5TR 96	Excha 192 336 6 0.00025 STR ETTI 192 336 9 12 0.0001 STL Traff 192	rameter nge 336 6 7 0.000025 STR h2 336 336 336 23 12 0.00025 STL fic 336 336 336 336 336 336 336 33	720 720 336 12 6 0.00025 STR 720 336 19 12 0.001 STL 720 720	for eac 96 336 25 12 0.00002: STL 96 336 11 12 0.0025 STR 24	E E 192 336 25 5 0.00002 STL 192 336 11 12 0.0025 STR 36 11 12 336 11 12 336 11 12 336 12 336 12 336 12 5 0.00002 STL 12 336 12 5 0.00002 STL 12 336 12 336 12 336 12 336 12 336 12 336 12 336 12 336 12 336 12 336 12 336 12 336 12 336 12 336 12 336 12 336 12 336 11 12 336 11 12 336 11 12 336 11 12 336 11 12 336 11 12 336 11 12 336 11 12 336 11 12 336 11 12 336 11 12 336 11 12 336 336 11 12 336 336 11 12 336 336 11 12 336 336 11 12 336 336 336 336 336 336 336 33	et TTh1 336 25 12 5 0.000025 STR TTm2 336 336 11 12 0.0025 STR ILL 48	0.
Datasets h I k p λ Decomp. method Datasets h I k p λ Decomp. method Datasets h L k p λ λ λ λ λ λ λ λ	96 336 35 42 0.0001 STR 96 336 7 12 0.001 STR 96 336 313	e 12: Pa Weatt 192 336 42 14 0.00001 STR Electrit 192 336 7 12 0.001 STR Electrit 192 336 12 0.001 STR	atchTS her 336 42 35 0.0005 STR 0.0001 STR city 336 336 336 12 0.001 STR 12 12 12 12 12 12 12 12 12 12	T (IDEA 720 720 720 720 720 720 720 720 720 720	AS) Hy 96 336 24 00001 (5TR 96 336 42 24 000125 5TR 96 336 7	Excha 192 336 6 0.00025 STR ETTI 192 336 9 12 0.0001 STL Traff 192 336 7	rameter nge 336 6 7 0.000025 STR h2 336 23 12 0.00025 STL fic 336 336 7 336 336 23 12 0.00025 STL	720 336 12 6 0.00025 STR 720 336 19 12 0.001 STL 720 336 7 720 336 7 720 336 7 7 720 336 7 7 7 7 7 7 7 7 7 7 7 7 7	for eac 96 336 25 12 0.00002: STL 96 336 11 12 0.0025 STR 24 104 96	Eh datase 192 336 25 5 0.00002 STL E 192 336 11 12 0.0025 STR 36 10 4 9 36 10 10 10 10 10 10 10 10 10 10	et TTh1 336 25 12 5 0.000025 STR TTm2 336 336 11 12 0.0025 STR ILL 48 104 7	0.
$\begin{tabular}{c} \hline Datasets & h \\ \hline I \\ k \\ p \\ λ \\ \hline Decomp. method \\ \hline Datasets & h \\ \hline I \\ k \\ p \\ λ \\ \hline Decomp. method \\ \hline Datasets & h \\ \hline I \\ k \\ p \\ \hline I \\ k \\ p \\ \hline I \\ \hline k \\ p \\ \hline T \\ \hline k \\ p \\ \hline k \\ p \\ \hline t \hline t \\ \hline t \hline t \\ \hline t \hline t \hline t \\ \hline t \hline t \\ \hline t $	96 336 35 0.0001 STR 96 336 7 12 0.001 STR 96 336 7 12 96 336 13 12	e 12: P Weath 192 336 42 14 0.00001 STR ETTr 192 336 7 12 0.001 STR Electri 192 336 7 12 0.001 STR Electri 192 336 13 12	atchTS her 336 336 42 336 42 336 5TR n1 336 7 12 0.0015 7 12 0.0015 336 7 12 0.0015 336 336 7 12 0.0015 336 336 13 12 12 12 12 12 12 12 12 12 12	T (IDEA 720 720 42 28 0.0005 0.0 STR S 7 7 12 0.001 0.0 STR S 7 7 12 0.001 0.0 STR S 7 7 12 0.001 0.0 STR S 7 12 0.001 0.0 STR S 7 12 0.000 0.0 STR S 7 12 0.001 0.0 STR S 7 12 0.000 0.0 STR S 7 12 12 0.000 0.0 STR S 7 7 12 0.000 0.0 STR S 7 7 12 336 0.0 STR S 7 7 12 336 0.0 STR S 7 7 20 336 0.0 STR S 7 20 STR S 7 20 STR S 7 20 STR S 7 STR S STR S 7 STR S STR S STR S 7 STR S 7 STR S STR STR S STR STR S STR STR STR STR STR STR STR STR STR STR	AS) Hy 96 336 24 00001 (5TR 96 336 42 24 000125 5TR 96 336 7 12	Excha 192 336 30 6 0.00025 STR ETTI 192 336 9 12 Traff 192 336 7 12	rameter nge 336 336 6 7 0.000025 STR h2 336 336 23 12 0.00025 STL fic 336 336 7 12	720 336 12 6 0.00025 STR 720 336 19 12 0.001 STL 720 336 7 12 336 7 12 336 7 12 336 7 12 336 7 19 12 336 7 19 12 336 19 12 12 19 12 19 12 19 12 19 12 12 10 10 11 19 12 19 12 19 12 12 12 12 12 13 13 12 12 12 12 12 12 12 12 12 12	for eac 96 336 25 12 0.00002: STL 96 336 11 12 0.0025 STR 96 336 11 12 0.0002 STL 96 10 10 10 10 10 10 10 10 10 10	End tatase 192 336 12 336 12 0.00002 STL E 192 336 11 12 0.0025 STR 36 104 9 12	et TTh1 336 25 12 5 0.000025 STR TTm2 336 336 11 12 0.0025 STR ILL 48 104 7 12	0.
$\begin{tabular}{c} \hline Datasets & h & \\ \hline I & k & \\ p & \\ \lambda & \\ \hline Datasets & \\ h & \\ \hline I & \\ k & \\ p & \\ \lambda & \\ \hline Datasets & \\ h & \\ \hline Datasets & \\ h & \\ \hline I & \\ k & \\ p & \\ \lambda & \\ \hline \end{bmatrix} \begin{tabular}{c} \hline \end{tabular}$	Tabl 96 336 35 42 0.0001 STR 96 336 7 12 0.001 STR 96 336 13 12 0.0025	e 12: P Weath 192 336 42 14 000001 STR ETTr 192 336 7 12 0.001 STR Electri 192 336 7 12 0.001 STR 20001 2000 200001 20000 20000 20000 20000 20000 200000 200000 200000 200000 20000 200001 20000 20000 200000 20000 200000 20000 200000 200000 200000 200000 200000 200000 200000 2000	atchTS atchTS 336 42 35 STR nl 336 7 12 0.001 STR city 336 336 7 12 0.001 STR 336 336 7 12 0.001 STR 13 13 12 0.001 STR 13 13 12 0.001 STR 13 12 0.001 STR 13 12 0.001 STR 13 12 0.001 STR 13 12 0.002 STR 13 12 0.002 STR 13 12 0.002 STR 13 12 0.002 STR 12 0.002 STR 13 12 0.002 STR 13 12 0.002 STR 13 12 0.002 STR 13 12 0.002 STR 13 12 0.002 STR 13 12 0.002 STR 13 12 0.002 STR 13 12 0.002 STR 13 12 0.002 STR 13 12 12 12 12 12 12 12 12 12 12	T (IDEA 720 720 720 720 72 42 28 7 7 12 0.001 0.00 STR S 7 12 0.001 0.00 STR S 7 12 0.001 0.00 STR S 7 12 12 0.001 0.00 STR S 7 12 12 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AS) Hy 96 3336 36 24 00001 0 5TR 96 336 7 12 .001	yperpar Excha 192 336 30 6 0.00025 STR ETTI 192 336 9 12 0.0001 STL Traff 192 336 7 12 0.001	rameter nge 336 6 7 0,00025 STR h2 336 336 23 12 0,00025 STL fic 336 336 7 12 0,001	rs used 720 336 12 6 0.00025 STR 720 336 19 12 0.001 STL 720 336 7 12 0.001 STL 720 336 7 12 0.001 STL	for eac 96 336 25 12 0.0002: STI 96 336 11 12 0.0025 STR 24 104 9 12 0.025	Eh datasu 192 192 336 25 0.00002 STL E 192 336 11 12 0.0025 STR 36 104 9 12 0.025	et TTh1 336 25 5 0.000025 STR TTm2 336 336 11 12 0.0025 STR ILL 48 104 7 12 0.025	0.

Table 13: iTransformer (IDEAS) Hyperparameters used for each dataset

1011													
	Datasets		Wea	ather			Excha	nge			ET	Γh1	
1012	h	96	192	336	720	96	192	336	720	96	192	336	720
1013	Ι	192	192	192	336	336	336	336	336	336	336	192	336
1011	k	48	48	48	48	60	60	60	60	9	23	24	24
1014	p	6	6	6	6	7	7	28	7	12	12	24	24
1015	λ	0.0005	0.005	0.005	0.005	0.000125	0.00025	0.001	0.001	0.000025	0.000125	0.000125	0.000125
1010	Decomp. method	STR	STR	STR	—	STR	STR	STR	STR	STL	STL	STR	STR
1016	Datasets		ETTI	h2			ETT	ſm2					
1017	h	96	192	336	720	96	192	336	720	96	192	336	720
1019	Ι	336	336	336	336	336	336	336	336	336	336	336	336
1010	k	30	30	30	30	42	42	42	42	24	24	24	24
1019	p	24	24	24	24	24	24	24	24	24	24	24	24
	λ	0.0025	0.001	0.0025	0.001	0.000025	0.000025	0.000025	0.001	0.001	0.001	0.001	_
1020	Decomp. method	STR	STR	STR	STR	STR	STR	STR	STR	STR	STR	STR	STR
1021	Datasets		Elect	ricity			Traff	ìc			IL	.L	
1022	h	96	192	336	720	96	192	336	720	24	36	48	60
1022	I	336	336	336	336	336	336	336	336	144	104	104	104
1023	k	7	7	7	7	9	9	9	9	7	9	7	7
1004	p	24	24	24	24	12	12	12	12	12	12	12	12
1024	$\hat{\lambda}$	0.0001	0.0001	0.0001	0.0001	0.005	0.005	0.005	0.005	0.005	0.000025	0.000025	0.000025
1025	Decomp. method	STR	STR	STR	STR	STL	STL	STL	STL	STL	STL	STL	STL

7														
8	Datasets	Weather					Exchange				ETTh1			
9	h	96	192	336	720	96	192	336	720	96	192	336	720	
0	Ι	96	96	192	96	336	96	96	96	336	336	336	336	
1	k	14	14	14	14	7	12	12	12	9	9	43	47	
	p	12	12	12	12	12	8	8	8	12	12	12	12	
	λ	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.001	0.001	0.005	0.005	
	Decomp. method	STR	STR	STR	STR	STL	STR	STR	STR	STL	STL	STL	STL	
	Datasets		ЕТ	Tm1			ET	Th2						
	h	96	192	336	720	96	192	336	720	96	192	336	720	
	Ι	336	336	336	336	336	336	336	336	336	336	336	336	
	k	24	24	24	24	48	9	23	9	47	47	47	47	
	p	12	12	12	12	12	12	12	12	12	12	12	12	
	λ	0.01	0.01	0.001	0.001	0.01	0.005	0.001	0.01	0.000125	0.001	0.001	0.001	
	Decomp. method	STR	STR	STR	STR	STR	STL	STL	STL	STR	STR	STR	STR	
	Datasets		Elec	etricity			Tra	iffic			ILL			
	h	96	192	336	720	96	192	336	720	24	36	48	60	
	Ι	336	336	336	336	336	336	336	336	144	144	104	104	
	k	7	7	7	7	7	7	7	7	43	23	9	23	
	p	12	12	12	12	12	12	12	12	24	12	12	12	
	λ	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.005	0.01	0.001	0.01	
	Decomp. method	STL	STL	STL	STL	STL	STL	STL	STL	STL	STL	STL	STL	

Table 14: TimeMixer (IDEAS) Hyperparameters used for each dataset

Table 15: Computational time per 1 epoch

Models	Weather	Exchange	ETTh1	ETTm1	ETTh2	ETTm2	Electricity	Traffic	ILL
DLinear	7.824	3.699	1.898	6.371	2.011	4.324	9.964	13.78	1.186
DLinear (IDEAS)	10.70	3.458	3.339	4.383	3.518	8.492	14.37	12.40	0.956
PatchTST	79.57	5.297	21.31	10.81	22.95	4.512	208.6	312.8	3.574
PatchTST (IDEAS)	75.42	5.391	3.881	11.27	2.967	3.812	218.9	316.7	2.002
iTransformer	21.30	7.254	16.84	30.28	6.782	35.91	42.88	89.84	6.884
iTransformer (IDEAS)	21.45	6.687	14.49	27.39	5.294	36.84	35.56	117.9	7.217
TimeMixer	48.51	11.90	31.88	201.8	49.21	72.81	314.9	901.5	5.073
TimeMixer (IDEAS)	40.65	5.179	15.27	76.11	16.20	25.31	213.7	673.1	1.544

Table 16: Model usage (MB)

Models	Weather	Exchange	ETTh1	ETTm1	ETTh2	ETTm2	Electricity	Traffic	ILL
DLinear	21.87	19.11	23.35	19.09	23.35	23.35	67.61	148.8	17.89
DLinear (IDEAS)	21.87	19.11	20.90	21.00	23.35	23.35	67.61	116.3	17.89
PatchTST	4,102	398.5	571.5	84.57	370.0	452.8	1,543	1,628	170.1
PatchTST (IDEAS)	4,071	401.4	569.0	80.82	367.4	468.5	1,058	1,540	63.05
iTransformer	35.53	98.21	121.8	123.7	128.7	122.9	601.8	3,821	80.21
iTransformer (IDEAS)	253.2	163.2	198.1	159.7	158.8	159.7	866.6	5,336	186.8
TimeMixer	2,011	902.4	5,803	178.5	101.8	614.9	980.4	6,109	140.8
TimeMixer (IDEAS)	2,338	1,129	7,483	253.4	127.3	828.2	1,268	8,546	165.0

1068 G COMPARISON WITH EXISTING APPROACHES

In this section, we provide a comprehensive comparison between the IDEAS framework and exist ing approaches that share some similarities in concept but differ in execution and objective. This
 comparison aims to highlight the unique aspects of the IDEAS methodology, particularly the com bination of iterative residual decomposition and Separable Training.

1075 Overview of existing residual-based methods: Residual-based methods, such as Boosting Algo 1076 rithms (e.g., Gradient Boosting, AdaBoost), iteratively learn from residuals by refining predictions
 1077 based on the errors of the previous models. These methods share a conceptual similarity with our
 1078 iterative residual decomposition approach, as both aim to minimize residual errors over successive
 1079 iterations. However, unlike iterative residual decomposition, which iteratively decomposes time series data to extract meaningful patterns, boosting algorithms primarily focus on reducing residuals

within machine learning models and do not perform decomposition iteratively on the time series itself.

1120

Separable training and ensemble learning approaches: Ensemble learning methods, such as Bagging and Stacking, train different models on various subsets or aspects of the data and then aggregate their predictions. While this shares the notion of training models separately, it fundamentally differs from IDEAS's separable training, which explicitly decomposes and trains individual time series components (e.g., trend, seasonality, residuals) independently. This ensures that each component is learned in a focused manner, unlike ensemble methods that do not distinguish between the underlying structures of the data.

1128

Recent time series decomposition models: Recent models like DLinear and Autoformer have
incorporated decomposition techniques to better handle the inherent complexity of time series data.
These models often decompose time series into different components for better prediction accuracy,
similar to our decomposition process. However, unlike the iterative nature of the iterative residual
decomposition in IDEAS, where decomposition is repeatedly applied to refine residuals until they
converge towards white noise, these models typically apply decomposition only once. This iterative

refinement sets IDEAS apart in its ability to extract and reduce overlooked predictable patterns more effectively.

Hybrid approaches in time series forecasting: Hybrid models combining ARIMA with deep learning models aim to leverage the strengths of both traditional statistical methods and modern machine learning techniques for time series forecasting. While they handle different aspects of the data, they do not achieve the systematic separation and independent training of components as in IDEAS's separable training. The iterative residual decomposition and Separable Training combination provides a more structured way of addressing noise and patterns than simply combining model outputs.

1144 In summary, while there exist approaches that share certain aspects with IDEAS, such as residual 1145 learning, ensemble learning, and decomposition-based methods, none of them achieve the same level 1146 of effectiveness in addressing the bias-variance tradeoff in time series forecasting. The iterative residual decomposition provides an unbiased, systematic extraction of predictable patterns, while 1147 separable training ensures that each component is learned without interference from others, leading 1148 to improved generalization and forecasting accuracy. This combination is unique to IDEAS and 1149 represents a significant advancement in handling the complexity and non-stationarity inherent in 1150 real-world time series data. 1151

1152

1154

1153 H VISUALIZATION

- 1155 H.1 RESIDUAL DISTRIBUTIONS
- 1156 1157 In Figure 7, we visualize the residual distributions on 7 datasets.
- 1158 1159 H.2 DURBIN-WATSON AND ACF

In Figure 8, we visualize the statistical measures(Durbin-Watson and ACF) on 6 datasets.

To complement this theoretical analysis, we empirically validate Theorem 1 by conducting ACF and Durbin-Watson tests across multiple iterations of the iterative residual decomposition. As shown in Figure 8, the Durbin-Watson statistic (blue line) approaches the ideal value of 2.0 (red dashed line), and the ACF statistic (orange line) converges towards 0.0 (pink dashed line) as the number of iterations increases. This convergence indicates that the residuals become progressively closer to white noise, supporting our theorem.

- 1168
- H.3 SENSITIVITY ON SEPARABLE TRAINING ITERATIONS

In Figure 9, we show the sensitivity to iteration number N of separable training on 6 datasets.

- 1172H.4VISUALIZAITON OF PREDICTABLE PATTERNS
- ¹¹⁷⁴ In Figure 10, we visualize the predictable patterns on 8 datasets.
- 1175
- 1176 1177
- 1178
- 1179
- 1180
- 1181 1182
- 1183
- 1184
- 1185
- 1186
- 1187

Figure 7: Visualization of the residual distributions over successive iterations for the 7 datasets. As
 the iteration process progresses, the residuals (blue bars) increasingly resemble a normal distribution (red dashed line), indicating that STL decomposition method iteratively refines the residuals towards a more Gaussian-like distribution.

Figure 8: Empirical validation showing that as iterations increase, the residuals approach white noise, demonstrated by the Durbin-Watson and ACF statistics converging towards their expectation.

Figure 9: Sensitivity to iteration number N of separable training.

Figure 10: Visualization of the original time series (top) and the predictable patterns at each iteration of the iterative residual decomposition.