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ABSTRACT

Time series data, crucial for decision-making in fields like finance and healthcare,
often presents challenges due to its inherent complexity, exacerbating the bias-
variance tradeoff and leading to overfitting and underfitting in conventional fore-
casting models. While promising, state-of-the-art models like PatchTST, iTrans-
former, and DLinear are hindered by this tradeoff, limiting their ability to separate
predictable patterns from noise. To resolve this, we propose the IDEAS frame-
work, which reduces the bias-variance tradeoff to help models achieve optimal
performance. IDEAS combines iterative residual decomposition, which reduces
bias by extracting predictable patterns, and separable training, which reduces vari-
ance by independently optimizing each component. We provide theoretical proof
and demonstrate through experiments that IDEAS significantly improves perfor-
mance across four state-of-the-art models on nine complex benchmark datasets,
offering a more robust solution for complex time series forecasting.

1 INTRODUCTION

Time series data plays an essential role in various fields such as weather forecasting, medical di-
agnosis, and traffic prediction. It is widely used to solve numerous real-world problems and has a
significant impact on our daily lives (Esling & Agon, 2012; Shumway et al., 2000). Due to the im-
portance and necessity of time series research, numerous studies have been proposed in recent years
for time series forecasting. In particular, unlike conventional prediction-focused studies, recent re-
search has aimed to analyze and predict time series data from various perspectives. For instance,
PatchTST (Nie et al., 2022) and iTransformer (Liu et al., 2023) focus on segmenting time series
data along the temporal axis or emphasize variable-centered learning. On the other hand, models
like DLinear (Zeng et al., 2023) and TimeMixer (Wang et al., 2024) aim to enhance learning by
decomposing time series data into individual components.

Despite these advancements, time series data remains particularly challenging due to its inherent
complexity, which is distinct from other types of sequential data like language or video. Time series
data consists of multiple intertwined components, including long-term trends, seasonal patterns, and
cycles, as well as unpredictable noise that often complicates the learning process. Unlike other types
of data, these components must be separated to accurately model the underlying patterns. This mix-
ture of predictable and unpredictable patterns often leads to a bias-variance tradeoff, where models
either overfit to noise or underfit by failing to capture meaningful patterns (Ramasubramanian, 2007;
Chen et al., 2014). Conventional forecasting models attempt to learn all components of time series
data—both meaningful patterns and random noise—simultaneously. This approach often leads to
overfitting, where models capture noise as if it were signal, or underfitting, missing important pat-
terns (cf.Figure. 1). As a result, the models fail to generalize well on new data. Noise embedded
within the data exacerbates the problem, causing overfitting when models fail to effectively dis-
tinguish between noise and meaningful patterns (Ying, 2019). Even when noise is excluded, the
simultaneous learning of multiple components can still result in sub-optimal learning due to the
model’s inability to focus on each component’s unique characteristics. These limitations empha-
size the need for a more fundamental solution that directly addresses the complexity and inherent
bias-variance tradeoff in time series data, rather than just optimizing model performance.

To address the challenges of the bias-variance tradeoff in time series forecasting, we propose a novel
and effective framework called Iterative residual DEcomposition And Seperable training (IDEAS).
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(a) DLinear

� �� ��� ��� 	�� 	�� 
��
����

����
���	
����
����
���

����
���	
���

��
��
��

�
�

� 	� 
� �� ��
 ����

 ��
�

 ��
�

 ����

 ����

 ����

 ����

 ��
�

������������
����������������
��������

(b) PatchTST
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(c) iTransformer

Figure 1: Visualization results of state-of-the-art models, DLinear, PatchTST, and iTransformer
on the Weather dataset. Each model achieves impressive MSE values of 0.176, 0.149, and 0.174,
respectively. When visualized over a long sequence, all models closely follow the ground truth.
However, as highlighted in the zoomed-in pink box, there are noticeable discrepancies between the
predictions (green line) and the ground truth (blue line). Applying IDEAS (orange line) reduces
these gaps, resulting in predictions that align more closely with the ground truth.

This comprehensive framework provides a robust and systematic solution by directly tackling the
inherent bias-variance tradeoff through two key and complementary components: (i) iterative resid-
ual decomposition, which primarily reduces bias and confidently acts as an unbiased estimator, and
(ii) separable training, which effectively minimizes variance. The IDEAS framework progressively
handles the inherent complexity of time series data by isolating the predictable patterns from unpre-
dictable noise, and ultimately enabling more efficient learning.

The first component, iterative residual decomposition, is specifically designed as an unbiased esti-
mator that iteratively and systematically separates predictable patterns from unpredictable noise in
a detailed, step-by-step manner. By consistently treating the residuals as approximate white noise
in the theoretical limit of infinite iterations, this robust approach ensures that the model captures all
significant and meaningful patterns without inadvertently introducing any bias, gradually and con-
sistently enhancing prediction accuracy. This process allows for a clearer and more accurate extrac-
tion of the underlying structure of the time series, ultimately leading to more reliable and confident
forecasting. The second component, separable training, directly addresses variance by training each
decomposed component independently and distinctly. This independent training strategy effectively
minimizes the overall impact of residual noise during the training process, further reducing the risk
of potential overfitting and significantly enhancing the model’s overall generalization ability.

By combining these two components, our approach achieves an optimal balance of the bias-variance
tradeoff, resulting in more accurate and reliable predictions, even with complex and noisy datasets.
Moreover, the IDEAS framework is highly adaptable and can be integrated with various existing
time series decomposition methods and forecasting models, making it applicable across a wide
range of fields, including finance, meteorology, and healthcare. Our main contributions of IDEAS
are as follows:

1. We propose a novel method, iterative residual decomposition, which iteratively decom-
poses time series data into multiple predictable patterns and unpredictable patterns (noise).
By progressively focusing on predictable components, the method effectively reduces bias
and enhances the model’s ability to capture the true underlying patterns in the data.

2. The predictable patterns obtained from the iterative residual decomposition are then trained
independently, using separable training to reduce variance. We support this approach with
mathematical analysis that demonstrates how separable training minimizes the influence of
noise and overcomes the bias-variance tradeoff, leading to more efficient learning.

3. Our proposed framework, IDEAS, is versatile and can be applied to a wide range of time
series decomposition algorithms and forecasting models. We validate the effectiveness of
IDEAS through experiments on 9 datasets and 4 state-of-the-art models, achieving signifi-
cant performance improvements.

These contributions represent a significant step forward in addressing the fundamental bias-variance
tradeoff and the complexity of noise present in time series data. By focusing on this core challenge,
IDEAS improves model performance and enhances the overall ability to generalize across various
forecasting tasks, offering a more robust and accurate solution for time series forecasting.
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2 RELATED WORKS

2.1 BIAS-VARIANCE TRADEOFF IN TIME SERIES FORECASTING MODEL

In time series forecasting, the bias-variance tradeoff is a fundamental challenge, especially with the
increasing complexity of datasets. Models with high bias tend to underfit, missing critical patterns
in the data, while models with high variance overfit, capturing noise along with the true signal. This
tradeoff becomes even more pronounced in time series data due to temporal dependencies, noise,
and dynamic patterns (Geman et al., 1992; Baek & Kim, 2018). As the data’s complexity grows,
the difficulty of finding a model that appropriately balances bias and variance increases, making it
crucial to develop advanced techniques to handle these challenges.

Although recent approaches such as Transformer-based models have reduced overfitting to some ex-
tent, they often fail to balance the bias-variance tradeoff in more complex or noisy datasets. To miti-
gate this, our proposed method integrates the iterative residual decomposition and separable training.
By isolating noise and training components separately, we aim to minimize overfitting while ensur-
ing the model captures essential time-dependent patterns, thus addressing the bias-variance tradeoff
more effectively. This balanced approach not only enhances model performance but also ensures
that predictions are more reliable, even in the presence of intricate temporal patterns.

2.2 TIME SERIES DECOMPOSITION

Conventional time series decomposition methods, like STL or STR (Wen et al., 2019), break down
data into trend, seasonality, and residual components to simplify analysis and forecasting. While ef-
fective in capturing patterns, these methods struggle with the growing complexity and non-linearity
of modern datasets. As the scale and diversity of data increase, traditional decompositions may not
adapt well, leading to loss of critical information in the residuals. Residuals, often treated as noise,
can still contain valuable and predictive information. Research shows that residuals with autocorre-
lation or non-zero mean suggest models have missed capturing important underlying patterns(Dama
& Sinoquet, 2021; Mauricio, 2008), underscoring the urgent need for improved and more advanced
decomposition techniques. Therefore, enhancing decomposition methods is essential to extract more
meaningful and actionable insights from increasingly complex time series data.

To address these issues, we propose the iterative residual decomposition method, which iteratively
applies decomposition to residuals. This helps separate predictable patterns from noise, reducing
data complexity and improving forecasting accuracy where conventional methods fall short.

2.3 TIME SERIES FORECASTING MODELS

Recent models such as Autoformer, DLinear (Zeng et al., 2023), and TimeMixer (Wang et al., 2024)
employ decomposition techniques to capture underlying patterns in complex time series data. At the
same time, models like PatchTST (Nie et al., 2022) and iTransformer (Liu et al., 2023) emphasize
variable-centered learning and temporal segmentation to handle multivariate time series. These
approaches have led to significant improvements in managing different types of time series data,
highlighting the importance of decomposition and segmentation in improving forecasting accuracy.

However, a persistent challenge is overfitting. Although these models successfully capture intri-
cate patterns, they often struggle to fully differentiate between meaningful signals and noise, which
diminishes their ability to generalize effectively in real-world scenarios. This issue is particularly
prevalent in datasets with high variability and noise, where models inadvertently learn irrelevant
fluctuations alongside actual patterns, ultimately degrading their performance.

To address these challenges, we propose a novel approach that combines iterative residual decompo-
sition with separable learning. Iterative residual decomposition progressively separates predictable
patterns from residual noise, systematically reducing bias in the bias-variance tradeoff. The combi-
nation of these techniques not only resolves the overfitting problem but also offers a scalable solution
to manage the increased complexity and variability inherent in modern time series data.
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(a) Conventional models

(b) IDEAS

Figure 2: (a) shows that conventional time series forecasting models, regardless of their structure,
aim to minimize the loss between the unified prediction Ŷout and Yout, treating the time series as a
single entity. In contrast, (b) illustrates how separate learning is applied to each component, which
helps prevent overfitting and underfitting by optimizing each part individually.

3 PROPOSED METHODS

Despite recent significant advancements in time series forecasting models, the inherent complexity
of time series data continues to make the mitigation of overfitting, driven by the bias-variance trade-
off (Assandri et al., 2023; Baidya & Lee, 2024), a challenging issue. In this section, we introduce
a novel method, IDEAS, designed to address this problem. We first present the overall workflow
of IDEAS, followed by a detailed description of its two main architectures with theoretical proofs.
The detailed learning algorithm is given in the Appendix F, and the algorithm for iterative residual
decomposition method is given in Algorithm 1.

3.1 OVERALL WORKFLOW

Figure 2 (b) shows the detailed design of our method, IDEAS. The overall workflow is as follows:

1. The input sequence XIn is decomposed into unpredictable patterns U (i) (such as residuals)
and predictable patterns P (i) using any time series decomposition method.

2. We iteratively apply the time series decomposition to the unpredictable pattern U (i) to
obtain the noise-like unpredictable pattern U (N) and the meaningful predictable patterns
P (i) obtained at each step i.

3. In our proposed separable training, the predictable patterns {P (i)}Ni=1 obtained from the
iterative residual decomposition is used to train, at each step i, any arbitrary model (such
as DLinear, PatchTST, etc.) to predict future value P

(i)
out.
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Algorithm 1: Iterative residual decomposition method
Input: Input time series data XIn, Any forecasting model θf , residual iteration number max iter = N

1 i← 1;
2 Decompose XIn into P (1) and U (1);
3 i← 2;
4 while i < max iter do
5 Decompose U (i−1) into P (i) and U (i);

/* Can be use various decomposition methods(STR,STL,etc.) */
6 i← i+ 1;
7 return {P̂ (i)}Ni=1

4. During this separable training procedure, the loss function (which is in red box) is defined
for each step i, allowing for individual learning at each step i.

5. The prediction Ŷout is obtained by summing the predicted outputs {P̂ (i)
out}Ni=1.

3.2 ITERATIVE RESIDUAL DECOMPOSITION

To effectively address the bias-variance tradeoff in time series forecasting, we propose an itera-
tive residual decomposition method that iteratively extracts predictable patterns while reducing the
impact of noise throughout the training process. This approach enhances the model’s ability to
generalize by separating meaningful patterns from noise at each step, thereby reducing the risk of
overfitting or underfitting as demonstrated in Theorem 1 and Theorem 2.

Traditional decomposition methods, such as STL or STR (Dokumentov et al., 2015; Hyndman &
Athanasopoulos, 2018), often leave residuals containing overlooked predictable patterns, which can
still contribute to the bias-variance tradeoff. Our iterative residual decomposition method addresses
this by repeatedly applying a decomposition process to extract these overlooked patterns, refining the
residuals over multiple iterations. This systematic extraction ensures that residuals converge toward
white noise, functioning as an unbiased estimator in the limit of infinite iterations. Consequently,
our approach effectively separates predictable patterns from unpredictable patterns and mitigates the
inherent bias introduced when models fail to capture all relevant patterns during training, resulting
in improved forecasting accuracy.

Figure 3 clearly demonstrates how the iterative decomposition progressively refines the residuals
towards a Gaussian distribution, validating the effectiveness of our method. In the iterative residual
decomposition, the initial decomposition of the input time series data XIn follows standard methods
like STL or STR, which separate the time series into predictable components P (1) (e.g., trend,
seasonality) and unpredictable residuals U (1) (e.g., noise):

U (1) = XIn − P (1), (1)

At each subsequent step, the residual U (N−1) is further decomposed to extract any remaining pre-
dictable patterns P (N), progressively refining the residuals:

U (N) = U (N−1) − P (N), (2)

where P (N) represents the N -th set of predictable patterns extracted during the decomposition pro-
cess. For instance, in the first decomposition step, P (1) may capture large-scale patterns like trends,
while in later steps, P (N) captures more subtle predictable patterns, leaving the residuals U (N) to
approach random noise as more predictable patterns are removed. As observed in Figure 3, the resid-
uals (blue bars) progressively become more similar to a normal distribution (red dashed line) over
successive iterations, confirming the iterative refinement of the residuals toward a more Gaussian-
like distribution. As the number of iterations N increases and approaches infinity (N → ∞), the
residuals U (N) are expected to converge to pure white noise, characterized by zero mean, constant
variance, and no autocorrelation (cf. Figure 4). This convergence demonstrates that the iterative
residual decomposition method ultimately yields an unbiased estimation of the predictable compo-
nents, effectively separating the signal from the noise in the time series data.
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Figure 3: Visualization of the residual distributions over successive iterations for the ETTh1 and
ILL datasets. As the iteration process progresses, the residuals (blue bars) increasingly resemble a
normal distribution (red dashed line), indicating that STL decomposition method iteratively refines
the residuals towards a more Gaussian-like distribution. More figures are in Appendix H.1

3.2.1 UNBIASEDNESS OF ITERATIVE RESIDUAL DECOMPOSITION

We assume that residuals will eventually converge to noise if each iteration successfully removes
predictable patterns, even in complex datasets with nonlinearity or non-stationarity. This assump-
tion is consistent with traditional methods like STR and STL, which are designed to handle non-
stationary time series, making it a mild assumption.

To empirically validate this assumption, we propose using statistical tests such as the Shapiro-Wilk
test for normality and autocorrelation tests (e.g., ACF or Durbin-Watson) to assess whether the
residuals exhibit characteristics of noise after each iteration, as shown in Figure 4.

Theorem 1 (Unbiasedness of iterative residual decomposition). Let XIn be a non-stationary time
series. Assume Xin can be iteratively decomposed into predictable components P (i) and residual
components U (i). As the number of iterations N → ∞, the expected value of the final residuals
U (N) will converge to white noise, indicating the iterative residual decomposition process yields an
asymptotically unbiased estimator of the predictable components of XIn.

Remark: In the limit as N → ∞, the iterative residual decomposition process is an unbiased
estimator of the predictable components of XIn. Practically, we observe that with a finite number
of iterations, U (N) closely approximates white noise, demonstrating consistent evidence of near-
unbiasedness across diverse real-world applications and datasets.

The iterative residual decomposition not only theoretically proves unbiasedness but also empirically
validates this through real-world testing. The theoretical proof of Theorem 1 is provided in Appendix
A. To complement this theoretical analysis, we empirically validate Theorem 1 by conducting ACF
and Durbin-Watson tests across multiple iterations of the iterative residual decomposition. As shown
in Figure 4, the Durbin-Watson statistic (blue line) approaches the ideal value of 2.0 (red dashed
line), and the ACF statistic (orange line) converges towards 0.0 (pink dashed line) as the number
of iterations increases. This convergence indicates that the residuals become progressively closer to
white noise, supporting our theorem. More visualization of Figure 4 are in Appendix H.2.

3.3 SEPARABLE TRAINING

To address the limitations of conventional training methods in time series forecasting, we propose a
separable training approach that optimizes each component individually, thus enhancing the model’s
learning effectiveness and overall forecasting accuracy. Unlike conventional methods that train on all
components simultaneously, our approach ensures that each component—such as trend, seasonality,
and cycles—is trained separately, allowing the model to capture the distinct information contained
within each component more effectively.
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(b) Weather
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(c) ILL

Figure 4: Empirical validation showing that as iterations increase, the residuals approach white
noise, demonstrated by the Durbin-Watson and ACF statistics converging towards their expectation.

Time series data consists of various components, such as trend, seasonality, and cycles, each carrying
distinct information (Baidya & Lee, 2024). Unlike image or language data, where components are
often treated as a whole, each component in time series data has a specific meaning. For example,
the trend captures long-term movements, while seasonality highlights periodic fluctuations.

Conventional forecasting models often lead to sub-optimal performance or overfitting by training
on all these components simultaneously (Assandri et al., 2023; Gelman & Hill, 2007; Liu & Wang,
2024). In contrast, separable training allows the model to optimize each component independently,
avoiding these issues. Rather than introducing a completely new approach, separable training gener-
alizes and extends the conventional methods by allowing the model to optimize for each component
separately, thus enhancing learning effectiveness for each aspect of the data.

With separable training, the model can focus on learning each component more effectively, which
leads to improved forecasting performance, as demonstrated in our experiments. Mathematically,
we independently optimize each component P (1)

out, P
(2)
out, . . . , P

(N)
out , ensuring that the training process

for each component is more tailored and precise, as shown below:

θ
P

(1)
out

:= θ
P

(1)
out
− η

(
2

T

T∑
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(P
(1)
out,t − P̂
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out
))∇θ

P
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)
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P
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out
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P
(2)
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out
)

)
,

· · ·

θ
P

(N)
out

:= θ
P

(N)
out
− η

(
2

T

T∑
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(P
(N)
out,t − P̂

(N)
out,t(θP (N)

out
))∇θ

P
(N)
out

P̂
(N)
out,t(θP (N)

out
)

)
(3)

In Theorem.2, we demonstrate how separable training improves the model’s ability to handle com-
plex time series data by reducing the overall model variance and enhancing predictive accuracy. This
approach helps the model achieve better overall performance by avoiding the limitations of unified
training approaches. By learning each component independently, the model can avoid overfitting to
dominant components or noise, resulting in a more robust and accurate forecasting process.

Theorem 2 (Bias-Variance Tradeoff improvement with separable training). Let a time series XIn

be decomposed into N components P (1), P (2), . . . , P (N), each representing distinct patterns. Sepa-
rable training optimizes each component individually, reducing the overall model variance by elim-
inating the covariance between components, which leads to improved forecasting performance.

Remark: The separable training paradigm decouples the interactions between components, signif-
icantly reducing the overall variance σ2

XIn
. By removing the covariance terms between compo-

nents, the model becomes more resilient to overfitting, improving its generalization capability to
unseen data. This decoupling mechanism addresses the bias-variance tradeoff, enabling the model
to achieve higher predictive accuracy and overall performance in time series forecasting.
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3.3.1 BETTER BIAS-VARIANCE TRADEOFF

A significant advantage of separable training is its ability to effectively manage the bias-variance
tradeoff, a crucial factor in balancing model complexity and generalization. By training each com-
ponent independently, separable training reduces variance while maintaining low bias, resulting in
more accurate and generalized forecasting.

In conventional unified training, all components of the time series—trend, seasonality, and
noise—are optimized together. This introduces significant variance, as the model attempts to fit all
components at once, often leading to overfitting to noisy patterns and underfitting of subtle trends.

By separating the training process, separable training eliminates the covariance between unpre-
dictable and predictable patterns, leading to a reduced overall variance. This independent training
process ensures that each component is optimized more effectively, contributing to a more balanced
and accurate forecasting model. Mathematically, the variance in a conventional model can be ex-
pressed as:

σ2
XIn

= σ2

P
(1)
out

+ σ2

P
(2)
out

+ · · ·σ2

P
(N)
out

+ σ2
U(N) + 2 · Σ(P (1)

out, P
(2)
out, · · · , P

(N)
out , U

(N)) (4)

The covariance term, 2 · Σ(P (1)
out, P

(2)
out, · · · , P

(N)
out , U

(N)), represents the interaction between the
noise and the meaningful components, which can increase the overall variance and lead to overfit-
ting.

By separating the training process, separable training effectively removes these covariance terms,
leading to a reduction in the model’s overall variance:

σ2
XIn

= σ2

P
(1)
out

+ σ2

P
(2)
out

+ · · ·σ2

P
(N)
out

(5)

This reduction in variance helps mitigate the risk of overfitting, while the independent optimiza-
tion of each component maintains low bias. As a result, separable training effectively balances the
bias-variance tradeoff, leading to improved generalization and forecasting performance compared to
conventional unified training methods.

4 EXPERIMENTS

In this section, we present the experimental results of IDEAS on mainstream LTSF benchmarks.
We also discuss the efficiency advantages introduced by the proposed IDEAS method. We conduct
ablation studies and analyses to further demonstrate the effectiveness of the IDEAS approach.

4.1 EXPERIMENTAL SETTINGS

We list all the descriptions of datasets, baselines and detailed experimental settings in Appendix D.

Datasets: We conducted experiments on 9 mainstream LTSF datasets, including Weather, Ex-
change rate, ETTh1, ETTh2, ETTm1, ETTm2, Electricity, Traffic, and National illness (ILL). The
details of these datasets are presented in Appendix D.2. Additionally, we conducted stationarity
testing on each benchmarked dataset using time series stationarity tests, including the Augmented
Dickey-Fuller (ADF) test (Mushtaq, 2011) and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS)
test (Baum, 2018). The tests were performed for each variable, and the overall characteristics of sta-
tionarity were documented accordingly (detailed results of stationarity testing are in Appendix C).
Based on the statistical test results, we classify the datasets into non-stationary (Weather, Exchange,
ETTh1, ETTm1) and weak non-stationary (ETTh2, ETTm2, Electricity, Traffic, ILL) categories.

4.2 MAIN RESULTS

In particular, non-stationary time series data are more complex due to evolving patterns, such as
changing trends and seasonality. The IDEAS framework is designed to handle such complexity,
making it highly effective for real-world time series data where non-stationarity is prevalent.
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Table 1: Stationarity testing results on benchmarked dataset. X indicates that both ADF and KPSS
tests consider non-stationary, while △ denotes that at least one of the test consider it non-stationary.
We refer to cases marked with △ as weak non-stationary.

Weather Exchange ETTh1, ETTm1 ETTh2, ETTm2 Electricity Traffic ILL

Stationarity X X X △ △ △ △

Table 2: Experimental results on 9 benchmark datasets. Results where the IDEAS method improved
the performance of a base model are highlighted in bold, and the best performance w.r.t. a pair of
(dataset, horizon h) among all is marked in blue. h refers to the prediction horizon (or length).

Datasets Weather Exchange ETTh1 ETTm1 ETTh2 ETTm2 Electricity Traffic ILL

h MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE h MSE MAE

D
L

in
ea

r
(2

02
3)

96 0.176 0.237 0.081 0.203 0.375 0.399 0.299 0.343 0.289 0.353 0.167 0.260 0.140 0.237 0.410 0.282 24 2.215 1.081
192 0.220 0.282 0.157 0.293 0.405 0.416 0.335 0.365 0.383 0.418 0.224 0.303 0.153 0.249 0.423 0.287 36 1.963 0.963
336 0.265 0.319 0.305 0.414 0.439 0.443 0.369 0.386 0.448 0.465 0.281 0.342 0.169 0.267 0.436 0.296 48 2.130 1.024
720 0.323 0.362 0.643 0.601 0.472 0.490 0.425 0.421 0.605 0.551 0.397 0.421 0.203 0.301 0.466 0.315 60 2.368 1.096

ID
E

A
S

D
L

in
ea

r 96 0.143 0.206 0.073 0.194 0.240 0.334 0.245 0.318 0.270 0.336 0.144 0.241 0.123 0.227 0.339 0.281 24 1.776 0.956
192 0.199 0.266 0.159 0.293 0.314 0.377 0.283 0.338 0.342 0.395 0.222 0.302 0.142 0.246 0.397 0.298 36 1.374 0.801
336 0.255 0.315 0.304 0.413 0.359 0.420 0.317 0.360 0.427 0.457 0.270 0.339 0.158 0.263 0.435 0.315 48 1.415 0.825
720 0.320 0.367 0.632 0.635 0.385 0.449 0.405 0.418 0.612 0.554 0.398 0.421 0.194 0.296 0.457 0.317 60 1.585 0.878

Imp.(Avg.) 8.25% 4.66% 2.66% -0.24% 23.8% 9.81% 13.1% 5.53% 5.20% 2.87% 4.58% 2.13% 7.57% 2.15% 2.15% -2.63% 29.1% 16.9%

Pa
tc

hT
ST

(2
02

3)

96 0.149 0.198 0.093 0.218 0.370 0.400 0.290 0.342 0.274 0.336 0.165 0.255 0.129 0.222 0.360 0.249 24 1.319 0.754
192 0.194 0.241 0.208 0.332 0.413 0.429 0.332 0.369 0.339 0.379 0.220 0.292 0.147 0.240 0.379 0.256 36 1.007 0.870
336 0.245 0.282 0.359 0.440 0.422 0.440 0.366 0.392 0.329 0.384 0.274 0.329 0.163 0.259 0.392 0.264 48 1.553 0.815
720 0.314 0.334 1.194 0.815 0.447 0.468 0.416 0.420 0.379 0.422 0.362 0.385 0.197 0.290 0.432 0.286 60 1.016 0.788

ID
E

A
S

Pa
tc

hT
ST

96 0.128 0.182 0.066 0.176 0.264 0.343 0.240 0.311 0.260 0.322 0.163 0.251 0.115 0.217 0.358 0.247 24 1.063 0.706
192 0.178 0.225 0.165 0.287 0.303 0.368 0.282 0.339 0.338 0.375 0.225 0.295 0.143 0.234 0.377 0.254 36 1.118 0.728
336 0.235 0.273 0.328 0.415 0.334 0.400 0.308 0.359 0.327 0.377 0.272 0.327 0.158 0.249 0.392 0.263 48 1.298 0.755
720 0.301 0.325 0.875 0.695 0.348 0.416 0.354 0.388 0.378 0.418 0.364 0.384 0.192 0.287 0.437 0.288 60 1.260 0.753

Imp.(Avg.) 7.64% 5.15% 21.3% 13.3% 24.6% 12.2% 15.8% 8.31% 1.57% 1.99% -0.22% 0.35% 4.79% 2.41% 0.21% 0.31% 0.20% 8.62%

iT
ra

ns
fo

rm
er

(2
02

4)

96 0.174 0.214 0.086 0.206 0.386 0.405 0.334 0.368 0.297 0.349 0.180 0.264 0.148 0.240 0.395 0.268 24 2.085 0.953
192 0.221 0.254 0.177 0.299 0.441 0.436 0.377 0.391 0.380 0.400 0.250 0.309 0.162 0.253 0.417 0.276 36 1.973 0.947
336 0.278 0.296 0.331 0.417 0.487 0.458 0.426 0.420 0.428 0.432 0.311 0.348 0.178 0.269 0.433 0.283 48 2.124 1.018
720 0.358 0.347 0.847 0.691 0.503 0.491 0.491 0.459 0.427 0.445 0.412 0.407 0.225 0.317 0.467 0.302 60 2.164 1.032

ID
E

A
S

iT
ra

ns
fo

rm
er 96 0.139 0.187 0.071 0.183 0.292 0.359 0.269 0.343 0.295 0.345 0.182 0.265 0.141 0.242 0.317 0.260 24 1.790 0.910

192 0.194 0.238 0.168 0.286 0.329 0.387 0.325 0.380 0.376 0.401 0.248 0.308 0.160 0.261 0.383 0.271 36 1.548 0.863
336 0.249 0.280 0.326 0.412 0.364 0.424 0.348 0.395 0.408 0.427 0.309 0.344 0.174 0.270 0.415 0.282 48 1.579 0.865
720 0.329 0.339 0.724 0.645 0.395 0.451 0.390 0.419 0.430 0.450 0.412 0.408 0.205 0.302 0.466 0.311 60 1.600 0.874

Imp.(Avg.) 12.7% 6.66% 9.64% 5.84% 24.1% 9.54% 18.0% 6.07% 1.42% 0.23% 0.08% 0.212% 4.27% 0.09% 8.07% 0.54% 21.9% 10.9%

Ti
m

eM
ix

er
(2

02
4)

96 0.163 0.209 0.093 0.212 0.375 0.400 0.320 0.357 0.289 0.341 0.175 0.258 0.153 0.247 0.462 0.285 24 1.469 0.798
192 0.208 0.250 0.174 0.297 0.429 0.421 0.361 0.381 0.372 0.392 0.237 0.299 0.166 0.256 0.473 0.296 36 1.890 0.867
336 0.251 0.287 0.349 0.426 0.484 0.458 0.390 0.404 0.386 0.414 0.298 0.340 0.185 0.277 0.498 0.296 48 1.885 0.924
720 0.339 0.341 1.065 0.770 0.498 0.482 0.454 0.441 0.412 0.434 0.391 0.396 0.225 0.310 0.506 0.313 60 1.955 0.980

ID
E

A
S

Ti
m

eM
ix

er 96 0.148 0.194 0.087 0.209 0.255 0.341 0.248 0.323 0.278 0.349 0.151 0.247 0.114 0.214 0.337 0.285 24 1.317 0.762
192 0.200 0.243 0.172 0.294 0.329 0.382 0.282 0.348 0.345 0.384 0.236 0.298 0.150 0.246 0.399 0.308 36 1.062 0.690
336 0.242 0.278 0.346 0.423 0.333 0.391 0.317 0.372 0.377 0.411 0.298 0.342 0.169 0.262 0.428 0.314 48 1.151 0.747
720 0.334 0.340 0.946 0.724 0.385 0.434 0.372 0.404 0.413 0.434 0.380 0.398 0.212 0.304 0.438 0.320 60 1.427 0.801

Imp.(Avg.) 4.53% 3.35% 4.98% 1.43% 27.3% 12.2% 20.3% 8.62% 3.35% 0.10% 4.24% 0.88% 12.4% 6.15% 17.5% -3.09% 30.0% 15.6%

Table 2 compares the performance of 4 state-of-the-art models with and without the IDEAS method.
As discussed in (Shao et al., 2023), the effectiveness of each model varies depending on the char-
acteristics of the time series dataset. For instance, Transformer models perform better on stationary
datasets with clear and stable patterns, while Linear models may suffer from underfitting in such
cases. Conversely, Linear models excel on non-stationary datasets with unclear patterns and signifi-
cant distribution shifts, where Transformer models are more prone to overfitting.

Experimental results show that IDEAS can significantly improve the performance of existing models
by addressing the bias-variance trade-off. For the highly abnormal ETTh1 dataset, all four models
achieve about 25% improvement. In contrast, for the weak non-stationary Traffic dataset, the overall
improvement is less than 10%. For the weak non-sationary ILL dataset, most models improve by
more than 20% except PatchTST, which achieves only a small gain of 0.2%, indicating that it has
already achieved the optimal performance. Overall, IDEAS effectively alleviates the limitations of
the bias-variance trade-off and achieves the optimal performance of existing models.

4.3 SENSITIVITY AND ABLATION STUDIES

Various time-series decomposition with IDEAS: Table 3 presents a sensitivity analysis of
IDEAS performance based on different time series decomposition methods. We compare results

9
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Table 3: Ablation studies on various time-series decomposition with IDEAS. The best results are in
bold and the second best are underlined.

decomposition
method

ETTh1 ILL
DLinear PatchTST iTransformer TimeMixer DLinear PatchTST iTransformer TimeMixer

Original model 0.375 0.370 0.386 0.375 2.215 1.319 2.085 1.469
IDEAS (STR) 0.317 0.313 0.339 0.339 1.886 1.255 2.150 1.496
IDEAS (STL) 0.240 0.264 0.292 0.255 1.776 1.063 1.790 1.317
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(c) Traffic

Figure 5: Sensitivity to iteration number N of separable training. More figures are in Appendix H.3.

on a non-stationary dataset (ETTh1) and a weak non-stationary dataset (ILL) to assess the effect of
decomposition choice on forecasting accuracy. While the specific decomposition method influences
the model’s effectiveness, the application of IDEAS consistently enhances performance compared
to the original models. In particular, for weak non-stationary datasets, the improvement achieved
by IDEAS heavily depends on the selected decomposition technique, with certain methods yielding
significant gains, while others may offer marginal or no improvements over the original models.

4500 4600 4700 4800 4900 5000
0.0085
0.0090
0.0095
0.0100
0.0105
0.0110
0.0115

Original Series

4500 4600 4700 4800 4900 50000.0085
0.0090
0.0095
0.0100
0.0105
0.0110 Iteration 1

4500 4600 4700 4800 4900 5000−5
−4
−3
−2
−1

0
1
2
3

1e−5

Iteration 3

4500 4600 4700 4800 4900 5000
Time

−3
−2
−1

0
1
2
3

1e−5

Iteration 5

Figure 6: Visualization of the original time series
(top) and the predictable patterns at each iteration
of the iterative residual decomposition (from iter-
ation 1 to 5). More figures are in Appendix H.4

Sensitivity on separable training iterations:
Figure 5 demonstrates how MSE decreases pro-
gressively as the number of iterations in the
iterative residual decomposition and separable
training increases within the IDEAS frame-
work. Across datasets like ETTh1, Exchange,
and Traffic, repeated iterations consistently
reduce MSE, improving forecasting accuracy
compared to the original models (dotted line),
highlighting the effectiveness of IDEAS. The
framework iteratively learns from predictable
patterns extracted at each decomposition stage,
as shown in Figure 6, capturing the data’s un-
derlying structures. This process incrementally
refines the model’s ability to separate patterns
from noise, addressing the bias-variance trade-
off more efficiently. The consistent reduction
in MSE across iterations confirms IDEAS’s ro-
bustness in enhancing time series forecasting.

5 CONCLUSION

In this paper, we introduce IDEAS, a novel framework that enhances time series forecasting by ad-
dressing the bias-variance tradeoff through iterative residual decomposition and separable learning.
Our experiments demonstrate significant improvements on various benchmark datasets, particularly
on non-stationary data where existing methods struggle with overfitting or underfitting. By sep-
arating predictable patterns from noise to reduce bias and minimizing variance, IDEAS achieves
more accurate and robust forecasts, making it a promising solution for complex, noisy time series
data. Future work could explore integrating IDEAS with other techniques and applying it to broader
domains where accurate forecasting is essential.
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Ethics Statement The IDEAS framework and associated time series forecasting models presented
in this paper are designed to improve the accuracy and robustness of predictions in various domains,
including finance, healthcare, and other sectors where decision-making based on time series data is
critical. In applying these models, we acknowledge the importance of transparency, fairness, and ac-
countability, especially when predictions have significant real-world consequences. Furthermore, no
human subjects were involved in this research, and the datasets used are publicly available, ensuring
compliance with relevant data privacy regulations.

Reproducibility Statement To ensure the reproducibility and completeness of this pa-
per, we make our code available at https://drive.google.com/drive/folders/
1mIItRegJiPSLbixG_EogsjCsixLDQBYk?usp=drive_link. We give details on our ex-
perimental protocol in the Appendix D.4.
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A PROOF OF THEOREM 1

Theorem 1 (Unbiasedness of iterative residual decomposition). Let XIn be a non-stationary time
series. Assume XIn can be iteratively decomposed into predictable components P (i) and residual
components U (i). As the number of iterations N → ∞, the expected value of the final residuals
U (N) will converge to white noise, indicating that the iterative residual decomposition process yields
an asymptotically unbiased estimator of the predictable components of XIn.

Proof. The proposed iterative residual decomposition method is designed to iteratively extract and
eliminate predictable patterns from the time series data, ultimately isolating pure noise as the it-
eration count approaches infinity. This proof establishes that the iterative residual decomposition
serves as an asymptotically unbiased estimator of the predictable components and that the residuals
progressively converge towards the properties of white noise.

We begin by decomposing the input time series XIn using a standard decomposition method, such
as STL or STR:

XIn = P (1) + U (1), (6)

where P (1) denotes the first extracted predictable pattern (e.g., trend, seasonality), and U (1) repre-
sents the initial residual component.

At each iteration i, the residual U (i−1) is further decomposed into:

U (i−1) = P (i) + U (i), (7)

where P (i) captures the most predictable structure within U (i−1). This iterative process continues,
with each subsequent iteration i progressively removing additional predictable components from the
residuals.

As the number of iterations N → ∞, all predictable patterns are effectively eliminated, leading to
residuals U (N) that comprise solely unpredictable elements or pure noise. In this asymptotic limit,
the expectation of the residuals converges to zero:

lim
N→∞

E[U (N)] = 0. (8)

This convergence implies that the residuals become entirely unbiased, signifying that the iterative
residual decomposition method serves as an asymptotically unbiased estimator for the predictable
components within XIn.

To further substantiate the convergence of residuals U (N) towards white noise, we consider the Cen-
tral Limit Theorem (CLT), which states that the sum of a sufficiently large number of independent
and identically distributed random variables approximates a normal distribution. We express the
residual U (N) in terms of an aggregation of various random components:

U (N) =

n∑
i=1

Xi(t), (9)

where Xi(t) denotes the individual random components at iteration i.

By invoking the CLT, as n → ∞, the standardized sum of these components converges towards a
normal distribution:

lim
n→∞

1√
n

n∑
i=1

Xi(t) ≈ N (0, σ2). (10)

This result confirms that the residuals U (N) progressively conform to a normal distribution with
mean 0 and variance σ2, thereby acquiring the attributes of white noise.

Additionally, the autocorrelation function (ACF) of the residuals U (N) at lag h is defined as:

ρU(N)(h) =
E[(U (N)(t)− µU(N))(U (N)(t+ h)− µU(N))]

σ2
U(N)

, (11)
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where µU(N) and σ2
U(N) are the mean and variance of U (N), respectively. As N → ∞, since

µU(N) ≈ 0, it follows that:

ρU(N)(h) ≈ 0 for h ̸= 0. (12)

This demonstrates that the residuals U (N) become uncorrelated over iterations, thereby exhibiting
the characteristics of white noise.

In conclusion, the iterative residual decomposition process not only acts as an asymptotically unbi-
ased estimator but also ensures that residuals exhibit white noise properties as iterations increase.
This theoretical foundation confirms the robustness and efficacy of the iterative residual decompo-
sition method in managing the bias-variance tradeoff and enhancing the generalization capability of
time series models in complex and noisy environments.

B PROOF OF THEOREM 2

Theorem 2 (Bias-Variance Tradeoff improvement with separable training). Let a time series XIn

be decomposed into N components P (1), P (2), . . . , P (N), each representing distinct patterns. Sep-
arable training optimizes each component individually and reduces the overall model variance by
eliminating the covariance between components.

Proof. In the conventional unified training paradigm, all components of the time series XIn are
trained simultaneously, resulting in an accumulation of both individual variances and covariance
interactions among these components. The total variance of XIn in this unified setting can be
expressed as:

σ2
XIn

=

N∑
i=1

σ2
P (i) + 2

∑
1≤i<j≤N

Cov(P (i), P (j)), (13)

where σ2
P (i) denotes the variance of each individual component P (i), and Cov(P (i), P (j)) represents

the covariance between different components P (i) and P (j).

In unified training, the covariance term 2
∑

1≤i<j≤N Cov(P (i), P (j)) is typically non-zero due to
the simultaneous optimization of all components. This leads to an interdependence among compo-
nents, where the model inadvertently captures interactions or spurious correlations between different
components P (i) and P (j). As a result, the unified training process often leads to an inflated vari-
ance, increasing the risk of overfitting as the model attempts to capture not only the true signal but
also the noise embedded in these interactions.

In contrast, the proposed separable training approach trains each component P (i) independently,
such that:

P̂
(i)
out = argmin

θ(i)

1

T

T∑
t=1

(P (i)(t)− P̂
(i)
out(t; θ

(i)))2, (14)

where P̂
(i)
out(t; θ

(i)) represents the model’s prediction for component P (i) at time t with parameter
set θ(i).

By optimizing each component P (i) separately, the covariance terms Cov(P (i), P (j)) for i ̸= j are
effectively nullified. Thus, under the separable training paradigm, the total variance simplifies to:

σ2
XIn

=

N∑
i=1

σ2
P (i) , (15)

since Cov(P (i), P (j)) = 0 for all i ̸= j under separable training.

To further quantify the impact of separable training on variance reduction, we introduce the concept
of a variance reduction ratio R, defined as the ratio of the total variance under separable training
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σ2
XIn

sep to that under unified training σ2
XIn

uni:

R =

∑N
i=1 σ

2
P (i)∑N

i=1 σ
2
P (i) + 2

∑
1≤i<j≤N Cov(P (i), P (j))

. (16)

Since
∑

i<j Cov(P (i), P (j)) ≥ 0, it follows that R ≤ 1. This inequality directly implies that sepa-
rable training results in a lower or, at worst, equivalent variance compared to unified training. The
greater the sum of covariances 2

∑
i<j Cov(P (i), P (j)), the more significant the variance reduction

achieved through separable training.

The elimination of these covariance terms in separable training not only reduces overall variance
but also mitigates the model’s tendency to overfit. This is because the absence of inter-component
interactions prevents the model from capturing noise or spurious correlations that do not contribute
to the true signal, thereby enhancing the generalization capability of the model.

Moreover, the preservation of independent optimization for each component ensures that each P (i)

is learned to its mean value accurately without interference from other components, thereby main-
taining the model’s unbiased nature. Consequently, separable training effectively manages the bias-
variance tradeoff by significantly reducing variance while maintaining low bias.

In statistical learning theory, this translates to a model that adheres more closely to the oracle prop-
erty, where each component P (i) is estimated as if the others were known in advance. This property
reinforces the idea that separable training provides a more efficient and theoretically grounded ap-
proach to handling complex time series data, thereby achieving an optimal balance between bias and
variance.

C STATIONARITY TEST ON BENCHMARKED DATASETS

Table 4: Stationarity testing result on weather each variable using ADF and KPSS tests

Variable ADF KPSS
Statistic p-value Stationarity Statistic p-value Stationarity

p (mbar) -8.140 1.04e-12 O 0.9420 0.01 X
T (degC) -8.407 2.15e-13 O 8.1786 0.01 X
Tpot (K) -8.430 1.88e-13 O 8.1251 0.01 X

Tdew (degC) -6.505 1.14e-08 O 10.2832 0.01 X
rh (%) -17.053 8.04e-30 O 8.1633 0.01 X

VPmax (mbar) -9.398 6.31e-16 O 7.9154 0.01 X
VPact (mbar) -6.155 7.39e-08 O 9.3269 0.01 X
VPdef (mbar) -16.633 1.66e-29 O 5.0522 0.01 X

sh (g/kg) -6.177 6.58e-08 O 9.2933 0.01 X
H2OC (mmol/mol) -6.175 6.65e-08 O 9.3067 0.01 X

rho (g/m3) -7.944 3.26e-12 O 7.5689 0.01 X
wv (m/s) -229.279 0.0 O 0.0207 0.1 O

max. wv (m/s) -22.467 0.0 O 3.2738 0.01 X
wd (deg) -18.273 2.32e-30 O 0.8335 0.01 X
rain (mm) -29.619 0.0 O 0.1776 0.1 O
raining (s) -21.262 0.0 O 0.1328 0.1 O

SWDR (W/m2) -35.205 0.0 O 7.2054 0.01 X
PAR (µmol/m2/s) -35.376 0.0 O 7.3854 0.01 X

max. PAR (µmol/m2/s) -34.085 0.0 O 7.6197 0.01 X
Tlog (degC) -8.614 6.37e-14 O 8.3066 0.01 X

OT -25.113 0.0 O 0.2279 0.1 O

D EXPERIMENTAL SETTINGS

D.1 ENVIRONMENT SETTING

We conduct experiments on multivariate time series forecasting. All experiments were con-
ducted in the same software and hardware environments. UBUNTU 18.04 LTS, PYTHON 3.8.0,
NUMPY 1.22.3, SCIPY 1.10.1, MATPLOTLIB 3.6.2, PYTORCH 2.0.1, CUDA 11.4, NVIDIA Driver
470.182.03 i9 CPU, and NVIDIA RTX A5000.
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Table 5: Stationarity testing result on exchange rate each variable using ADF and KPSS tests

Variable ADF KPSS
Statistic p-value Stationarity Statistic p-value Stationarity

0 -1.665 0.4492 X 5.2917 0.01 X
1 -2.150 0.2250 X 1.2468 0.01 X
2 -1.353 0.6048 X 5.3135 0.01 X
3 -1.587 0.4903 X 10.5355 0.01 X
4 -2.869 0.0491 O 2.4475 0.01 X
5 -2.120 0.2365 X 3.9282 0.01 X
6 -1.748 0.4067 X 7.9789 0.01 X

OT -1.728 0.4166 X 7.0661 0.01 X

Table 6: Stationarity testing result on ETTh1 each variable using ADF and KPSS tests

Variable ADF KPSS
Statistic p-value Stationarity Statistic p-value Stationarity

HUFL -8.5505 9.25e-14 O 6.4781 0.01 X
HULL -5.1691 1.02e-05 O 2.2266 0.01 X
MUFL -8.6212 6.10e-14 O 9.0633 0.01 X
MULL -4.9641 2.61e-05 O 1.7190 0.01 X
LUFL -5.7969 4.73e-07 O 2.0147 0.01 X
LULL -4.7727 6.13e-05 O 1.1559 0.01 X

OT -3.4880 0.0083 O 9.4621 0.01 X

D.2 DATASETS

1. Weather dataset consists of measurements for 21 weather indicators, such as temperature
and humidity, collected every 10 minutes throughout the year 2020 (Wu et al., 2021).

2. Exchange dataset includes exchange rate data among 8 different countries (Lai et al., 2018).

3. ETT (Electricity Transformer Temperature) comprises four datasets: two with hourly gran-
ularity and two with 15-minute granularity, recorded between July 2016 and July 2018.
Each dataset contains seven features related to oil and load conditions of transform-
ers (Zhou et al., 2021).

4. Electricity dataset tracks the hourly electricity consumption of 321 clients from 2012 to
2014.

5. Traffic dataset represents the road occupancy rates, capturing hourly data recorded by sen-
sors on the San Francisco freeways between 2015 and 2016.

6. ILL (Influenza-like Illness) dataset is provided by the Centers for Disease Control and
Prevention (CDC) of the United States, covering the period from 2002 to 2021.

D.3 BASELINES

We evaluated our model compared to the following state-of-the-art baselines:

1. DLinear (Zeng et al., 2023) (Decomposition Linear) paper investigates the effectiveness
of Transformer-based models for long-term time series forecasting (LTSF). The authors
challenge the dominance of Transformers by introducing a simple one-layer linear model,
LTSF-Linear, which surprisingly outperforms Transformer-based LTSF models on nine
real-life datasets. They argue that Transformers may not be ideal for LTSF because of
the temporal information loss caused by the permutation-invariant self-attention mecha-
nism. Their experiments demonstrate that LTSF-Linear, with its simple structure and trend-
seasonality decomposition, achieves superior performance compared to complex Trans-
former models, suggesting that simpler models could be more suitable for certain time
series forecasting tasks.

2. PatchTST (Nie et al., 2022) is a Transformer-based model designed for multivariate time
series forecasting and self-supervised representation learning. It introduces two key com-
ponents: patching, where time series data is segmented into subseries-level patches to serve
as input tokens, enhancing local semantic information and reducing computation; and
channel-independence, where each channel contains a univariate time series that shares
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Table 7: Stationarity testing result on ETTh2 each variable using ADF and KPSS tests

Variable ADF KPSS
Statistic p-value Stationarity Statistic p-value Stationarity

HUFL -6.5264 1.01e-08 O 8.8581 0.01 X
HULL -4.5542 0.0002 O 12.7572 0.01 X
MUFL -4.0446 0.0012 O 1.2424 0.01 X
MULL -4.4530 0.0002 O 8.1632 0.01 X
LUFL -2.4355 0.1320 X 16.5272 0.01 X
LULL -3.3408 0.0132 O 1.0814 0.01 X

OT -3.5971 0.0058 O 1.8443 0.01 X

Table 8: Stationarity testing result on electricity each variable using ADF and KPSS tests (showing
statistics for a sample of 20 out of the total 321 variables).

Variable ADF KPSS
Statistic p-value Stationarity Statistic p-value Stationarity

0 -6.8575 1.63e-09 O 1.0495 0.01 X
1 -7.0165 6.71e-10 O 1.7130 0.01 X
2 -5.0386 1.86e-05 O 4.6124 0.01 X
3 -6.1206 8.87e-08 O 15.8351 0.01 X
4 -4.9192 3.20e-05 O 1.3654 0.01 X
5 -4.6755 9.35e-05 O 1.4239 0.01 X
6 -6.6138 6.28e-09 O 0.6762 0.0157 X
7 -12.2476 9.70e-23 O 1.2862 0.01 X
8 -10.6022 6.13e-19 O 1.3742 0.01 X
9 -12.0190 3.05e-22 O 1.2859 0.01 X
10 -5.0968 1.42e-05 O 1.0898 0.01 X
11 -22.8691 0.0 O 8.1358 0.01 X
12 -15.0668 8.84e-28 O 0.6601 0.0172 X
13 -7.5981 2.43e-11 O 0.7042 0.0132 X
14 -6.5456 9.11e-09 O 0.8886 0.01 X
15 -11.2439 1.78e-20 O 0.8630 0.01 X
16 -8.4163 2.04e-13 O 6.2602 0.01 X
17 -7.3335 1.11e-10 O 8.7768 0.01 X
18 -8.7300 3.21e-14 O 2.9707 0.01 X
19 -14.8180 1.98e-27 O 3.8465 0.01 X

the same embedding and Transformer weights across all series. This approach allows
PatchTST to handle longer look-back windows and capture essential temporal informa-
tion, leading to significant improvements in long-term forecasting accuracy over other
Transformer-based models, particularly when dealing with large datasets.

3. iTransformer (Liu et al., 2023) is a modified Transformer architecture designed specifically
for time series forecasting. Unlike traditional Transformers that embed multiple time se-
ries variables as temporal tokens, iTransformer takes an inverted approach by embedding
each time series as variate tokens. This method allows the attention mechanism to capture
multivariate correlations more effectively, while a feed-forward network learns nonlinear
representations of individual time series. By focusing on the relationships among variates,
iTransformer achieves enhanced performance, generalization across different variates, and
improved handling of longer lookback windows, making it highly effective for complex
multivariate time series forecasting tasks.

4. TimeMixer (Wang et al., 2024) is a neural network architecture designed for long-term time
series forecasting. It employs a hierarchical design that captures temporal dependencies at
multiple scales, efficiently modeling both short-term and long-term dependencies in time
series data. The architecture consists of multiple layers of specialized blocks, each han-
dling different temporal scales, which allows the model to capture complex patterns across
varying time intervals. By combining these blocks, TimeMixer achieves state-of-the-art
performance on benchmark datasets, demonstrating its ability to handle diverse time series
forecasting tasks effectively.

D.4 HYPERPARAMETERS

1. h : forecasting horizon length

2. I : input sequence length
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Table 9: Stationarity testing result on traffic each variable using ADF and KPSS tests (showing
statistics for a sample of 20 out of the total 883 variables).

Variable ADF KPSS
Statistic p-value Stationarity Statistic p-value Stationarity

0 -15.1612 6.59e-28 O 1.1652 0.01 X
1 -15.8957 8.44e-29 O 0.2681 0.1 O
2 -15.0168 1.04e-27 O 0.9598 0.01 X
3 -19.1828 0.00 O 0.6013 0.0225 X
4 -16.9776 9.06e-30 O 0.1101 0.1 O
5 -18.1970 2.41e-30 O 1.1706 0.01 X
6 -20.0680 0.00 O 1.8860 0.01 X
7 -16.0007 6.52e-29 O 0.6163 0.0212 X
8 -14.8895 1.57e-27 O 5.0434 0.01 X
9 -15.2753 4.66e-28 O 1.1001 0.01 X

10 -16.6232 1.69e-29 O 0.4720 0.0480 X
11 -14.2461 1.51e-26 O 2.9375 0.01 X
12 -16.9995 8.75e-30 O 1.6541 0.01 X
13 -17.3764 5.10e-30 O 3.2661 0.01 X
14 -17.3334 5.39e-30 O 2.8093 0.01 X
15 -16.2227 3.88e-29 O 2.7122 0.01 X
16 -10.2786 3.83e-18 O 3.0002 0.01 X
17 -13.0770 1.90e-24 O 3.4275 0.01 X
18 -15.6792 1.48e-28 O 2.6290 0.01 X
19 -13.6018 1.95e-25 O 1.4351 0.01 X

Table 10: Stationarity testing result on national illness(ILL) each variable using ADF and KPSS
tests

Variable ADF KPSS
Statistic p-value Stationarity Statistic p-value Stationarity

% WEIGHTED -7.846 5.75e-12 O 0.1857 0.1 O
% UNWEIGHTED -7.747 1.03e-11 O 0.3008 0.1 O

AGE 0-4 -6.507 1.12e-08 O 1.6179 0.01 X
AGE 5-24 -6.383 2.20e-08 O 1.2751 0.01 X
ILITOTAL -6.161 7.16e-08 O 1.7705 0.01 X

OF PROVIDERS -1.713 0.4243 X 3.6161 0.01 X
OT -0.982 0.7598 X 4.0449 0.01 X

3. K : kernel size of time-series decomposition method

4. p : period length of time-series decomposition method

5. λ : learning rate

6. decomp.method : decomposition method

E COMPUTATIONAL TIME AND MODEL USAGE

This section compares the time per epoch and memory usage between the original model and the
proposed IDEAS framework during the training process (cf. Table 15 and Table E). The proposed
IDEAS applies separable training, where multiple stages of training are conducted. For instance, if
the model undergoes 3 iterations, it learns 3 distinct predictable patterns separately. In this process,
the time taken per epoch is similar to or shorter than that of the original model because the training
data is processed in a more compact form than the raw data. Furthermore, since each predictable
pattern becomes simpler for the model to learn, fewer epochs are required for convergence at each
stage. For example, if a model originally requires a total of 50 epochs for training, in separable
training, each stage may converge within 10 to 15 epochs. Thus, even with training across 3 stages,
only about 45 epochs in total are required, leading to a reduction in overall computation time.

F ALGORITHM OF IDEAS

In this section, we provide the IDEAS algorithm along with the overall architecture diagram to help
you understand the detailed algorithm of the proposed method.
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Table 11: DLinear (IDEAS) Hyperparameters used for each dataset.

Datasets Weather Exchange ETTh1

h 96 192 336 720 96 192 336 720 96 192 336 720
I 336 336 336 480 336 336 336 336 336 336 192 336
k 19 48 54 60 60 60 60 60 13 25 48 29
p 12 6 6 36 7 7 7 7 12 12 24 12
λ 0.001 0.001 0.001 0.00125 0.005 0.005 0.005 0.005 0.005 0.000125 0.000125 0.000125

Decomp. method STR STR STR STR STR STR STR STR STL STL STR STL
Datasets ETTm1 ETTh2 ETTm2

h 96 192 336 720 96 192 336 720 96 192 336 720
I 336 336 336 336 336 336 336 336 336 336 336 336
k 24 12 12 12 42 36 42 42 48 48 48 48
p 48 24 24 24 12 24 12 12 48 48 48 48
λ 0.0025 0.00025 0.00025 0.0025 0.005 0.0025 0.005 0.005 0.0025 0.0025 0.0025 0.0025

Decomp. method STR STR STR STR STL STR STL STL STR STR STR STR
Datasets Electricity Traffic ILL

h 96 192 336 720 96 192 336 720 24 36 48 60
I 336 336 336 336 336 720 336 336 104 104 104 104
k 25 25 49 49 7 3 7 5 7 7 7 7
p 12 12 12 12 12 12 12 12 12 12 12 12
λ 0.0025 0.001 0.005 0.001 0.001 0.00025 0.001 0.025 0.005 0.005 0.005 0.005

Decomp. method STL STL STL STL STL STR STL STL STL STL STL STL

Table 12: PatchTST (IDEAS) Hyperparameters used for each dataset

Datasets Weather Exchange ETTh1

h 96 192 336 720 96 192 336 720 96 192 336 720
I 336 336 336 720 336 336 336 336 336 336 336 336
k 35 42 42 42 36 30 6 12 25 25 25 24
p 42 14 35 28 24 6 7 6 12 12 12 24
λ 0.0001 0.00001 0.0005 0.0005 0.00001 0.00025 0.000025 0.00025 0.000025 0.000025 0.000025 0.00001

Decomp. method STR STR STR STR STR STR STR STR STL STL STR STL
Datasets ETTm1 ETTh2 ETTm2

h 96 192 336 720 96 192 336 720 96 192 336 720
I 336 336 336 336 336 336 336 336 336 336 336 336
k 7 7 7 7 42 9 23 19 11 11 11 11
p 12 12 12 12 24 12 12 12 12 12 12 12
λ 0.001 0.001 0.001 0.001 0.000125 0.0001 0.00025 0.001 0.0025 0.0025 0.0025 0.0025

Decomp. method STR STR STR STR STR STL STL STL STR STR STR STR
Datasets Electricity Traffic ILL

h 96 192 336 720 96 192 336 720 24 36 48 60
I 336 336 336 336 336 336 336 336 104 104 104 104
k 13 13 13 13 7 7 7 7 9 9 7 29
p 12 12 12 12 12 12 12 12 12 12 12 12
λ 0.0025 0.0025 0.0025 0.001 0.001 0.001 0.001 0.005 0.025 0.025 0.025 0.025

Decomp. method STL STL STL STL STL STL STL STL STL STL STL STL

Table 13: iTransformer (IDEAS) Hyperparameters used for each dataset

Datasets Weather Exchange ETTh1

h 96 192 336 720 96 192 336 720 96 192 336 720
I 192 192 192 336 336 336 336 336 336 336 192 336
k 48 48 48 48 60 60 60 60 9 23 24 24
p 6 6 6 6 7 7 28 7 12 12 24 24
λ 0.0005 0.005 0.005 0.005 0.000125 0.00025 0.001 0.001 0.000025 0.000125 0.000125 0.000125

Decomp. method STR STR STR — STR STR STR STR STL STL STR STR
Datasets ETTm1 ETTh2 ETTm2

h 96 192 336 720 96 192 336 720 96 192 336 720
I 336 336 336 336 336 336 336 336 336 336 336 336
k 30 30 30 30 42 42 42 42 24 24 24 24
p 24 24 24 24 24 24 24 24 24 24 24 24
λ 0.0025 0.001 0.0025 0.001 0.000025 0.000025 0.000025 0.001 0.001 0.001 0.001 —

Decomp. method STR STR STR STR STR STR STR STR STR STR STR STR
Datasets Electricity Traffic ILL

h 96 192 336 720 96 192 336 720 24 36 48 60
I 336 336 336 336 336 336 336 336 144 104 104 104
k 7 7 7 7 9 9 9 9 7 9 7 7
p 24 24 24 24 12 12 12 12 12 12 12 12
λ 0.0001 0.0001 0.0001 0.0001 0.005 0.005 0.005 0.005 0.005 0.000025 0.000025 0.000025

Decomp. method STR STR STR STR STL STL STL STL STL STL STL STL
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Table 14: TimeMixer (IDEAS) Hyperparameters used for each dataset

Datasets Weather Exchange ETTh1

h 96 192 336 720 96 192 336 720 96 192 336 720
I 96 96 192 96 336 96 96 96 336 336 336 336
k 14 14 14 14 7 12 12 12 9 9 43 47
p 12 12 12 12 12 8 8 8 12 12 12 12
λ 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.001 0.001 0.005 0.005

Decomp. method STR STR STR STR STL STR STR STR STL STL STL STL
Datasets ETTm1 ETTh2 ETTm2

h 96 192 336 720 96 192 336 720 96 192 336 720
I 336 336 336 336 336 336 336 336 336 336 336 336
k 24 24 24 24 48 9 23 9 47 47 47 47
p 12 12 12 12 12 12 12 12 12 12 12 12
λ 0.01 0.01 0.001 0.001 0.01 0.005 0.001 0.01 0.000125 0.001 0.001 0.001

Decomp. method STR STR STR STR STR STL STL STL STR STR STR STR
Datasets Electricity Traffic ILL

h 96 192 336 720 96 192 336 720 24 36 48 60
I 336 336 336 336 336 336 336 336 144 144 104 104
k 7 7 7 7 7 7 7 7 43 23 9 23
p 12 12 12 12 12 12 12 12 24 12 12 12
λ 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.005 0.01 0.001 0.01

Decomp. method STL STL STL STL STL STL STL STL STL STL STL STL

Table 15: Computational time per 1 epoch

Models Weather Exchange ETTh1 ETTm1 ETTh2 ETTm2 Electricity Traffic ILL

DLinear 7.824 3.699 1.898 6.371 2.011 4.324 9.964 13.78 1.186
DLinear (IDEAS) 10.70 3.458 3.339 4.383 3.518 8.492 14.37 12.40 0.956

PatchTST 79.57 5.297 21.31 10.81 22.95 4.512 208.6 312.8 3.574
PatchTST (IDEAS) 75.42 5.391 3.881 11.27 2.967 3.812 218.9 316.7 2.002

iTransformer 21.30 7.254 16.84 30.28 6.782 35.91 42.88 89.84 6.884
iTransformer (IDEAS) 21.45 6.687 14.49 27.39 5.294 36.84 35.56 117.9 7.217

TimeMixer 48.51 11.90 31.88 201.8 49.21 72.81 314.9 901.5 5.073
TimeMixer (IDEAS) 40.65 5.179 15.27 76.11 16.20 25.31 213.7 673.1 1.544

Table 16: Model usage (MB)

Models Weather Exchange ETTh1 ETTm1 ETTh2 ETTm2 Electricity Traffic ILL

DLinear 21.87 19.11 23.35 19.09 23.35 23.35 67.61 148.8 17.89
DLinear (IDEAS) 21.87 19.11 20.90 21.00 23.35 23.35 67.61 116.3 17.89

PatchTST 4,102 398.5 571.5 84.57 370.0 452.8 1,543 1,628 170.1
PatchTST (IDEAS) 4,071 401.4 569.0 80.82 367.4 468.5 1,058 1,540 63.05

iTransformer 35.53 98.21 121.8 123.7 128.7 122.9 601.8 3,821 80.21
iTransformer (IDEAS) 253.2 163.2 198.1 159.7 158.8 159.7 866.6 5,336 186.8

TimeMixer 2,011 902.4 5,803 178.5 101.8 614.9 980.4 6,109 140.8
TimeMixer (IDEAS) 2,338 1,129 7,483 253.4 127.3 828.2 1,268 8,546 165.0

G COMPARISON WITH EXISTING APPROACHES

In this section, we provide a comprehensive comparison between the IDEAS framework and exist-
ing approaches that share some similarities in concept but differ in execution and objective. This
comparison aims to highlight the unique aspects of the IDEAS methodology, particularly the com-
bination of iterative residual decomposition and Separable Training.

Overview of existing residual-based methods: Residual-based methods, such as Boosting Algo-
rithms (e.g., Gradient Boosting, AdaBoost), iteratively learn from residuals by refining predictions
based on the errors of the previous models. These methods share a conceptual similarity with our
iterative residual decomposition approach, as both aim to minimize residual errors over successive
iterations. However, unlike iterative residual decomposition, which iteratively decomposes time se-
ries data to extract meaningful patterns, boosting algorithms primarily focus on reducing residuals
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Algorithm 2: IDEAS

Input: Input time series data XIn, Any forecasting model θ(i)f for each component i, MSE loss function
L, maximum residual iteration number max iter = N , maximum train iteration number
train iter = M

1 i← 1;
2 Decompose XIn into P (1) and U (1);
3 Initialize model parameters θ(1)f ;
4 while i ≤ max iter do
5 Train model θ(i)f on component P (i) using:

P̂
(i)
out = θ

(i)
f (P (i))

while j ≤ train iter do
6 Update model parameters θ(i)f using gradient descent with loss:

θ
(i)
f := θ

(i)
f − η∇

θ
(i)
f

L(P
(i)
out, P̂

(i)
out)

j ← j + 1;
7 Decompose U (i) into P (i+1) and U (i+1);
8 Initialize model parameters θ(i+1)

f ;
9 i← i+ 1;

10 return final prediction Ŷout =
∑N

i=1 P̂
(i)
out

within machine learning models and do not perform decomposition iteratively on the time series
itself.

Separable training and ensemble learning approaches: Ensemble learning methods, such as
Bagging and Stacking, train different models on various subsets or aspects of the data and then
aggregate their predictions. While this shares the notion of training models separately, it fundamen-
tally differs from IDEAS’s separable training, which explicitly decomposes and trains individual
time series components (e.g., trend, seasonality, residuals) independently. This ensures that each
component is learned in a focused manner, unlike ensemble methods that do not distinguish be-
tween the underlying structures of the data.

Recent time series decomposition models: Recent models like DLinear and Autoformer have
incorporated decomposition techniques to better handle the inherent complexity of time series data.
These models often decompose time series into different components for better prediction accuracy,
similar to our decomposition process. However, unlike the iterative nature of the iterative residual
decomposition in IDEAS, where decomposition is repeatedly applied to refine residuals until they
converge towards white noise, these models typically apply decomposition only once. This iterative

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

refinement sets IDEAS apart in its ability to extract and reduce overlooked predictable patterns more
effectively.

Hybrid approaches in time series forecasting: Hybrid models combining ARIMA with deep
learning models aim to leverage the strengths of both traditional statistical methods and modern
machine learning techniques for time series forecasting. While they handle different aspects of
the data, they do not achieve the systematic separation and independent training of components
as in IDEAS’s separable training. The iterative residual decomposition and Separable Training
combination provides a more structured way of addressing noise and patterns than simply combining
model outputs.

In summary, while there exist approaches that share certain aspects with IDEAS, such as residual
learning, ensemble learning, and decomposition-based methods, none of them achieve the same level
of effectiveness in addressing the bias-variance tradeoff in time series forecasting. The iterative
residual decomposition provides an unbiased, systematic extraction of predictable patterns, while
separable training ensures that each component is learned without interference from others, leading
to improved generalization and forecasting accuracy. This combination is unique to IDEAS and
represents a significant advancement in handling the complexity and non-stationarity inherent in
real-world time series data.

H VISUALIZATION

H.1 RESIDUAL DISTRIBUTIONS

In Figure 7, we visualize the residual distributions on 7 datasets.

H.2 DURBIN-WATSON AND ACF

In Figure 8, we visualize the statistical measures(Durbin-Watson and ACF) on 6 datasets.

To complement this theoretical analysis, we empirically validate Theorem 1 by conducting ACF and
Durbin-Watson tests across multiple iterations of the iterative residual decomposition. As shown
in Figure 8, the Durbin-Watson statistic (blue line) approaches the ideal value of 2.0 (red dashed
line), and the ACF statistic (orange line) converges towards 0.0 (pink dashed line) as the number
of iterations increases. This convergence indicates that the residuals become progressively closer to
white noise, supporting our theorem.

H.3 SENSITIVITY ON SEPARABLE TRAINING ITERATIONS

In Figure 9, we show the sensitivity to iteration number N of separable training on 6 datasets.

H.4 VISUALIZAITON OF PREDICTABLE PATTERNS

In Figure 10, we visualize the predictable patterns on 8 datasets.
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Figure 7: Visualization of the residual distributions over successive iterations for the 7 datasets. As
the iteration process progresses, the residuals (blue bars) increasingly resemble a normal distribution
(red dashed line), indicating that STL decomposition method iteratively refines the residuals towards
a more Gaussian-like distribution.
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Figure 8: Empirical validation showing that as iterations increase, the residuals approach white
noise, demonstrated by the Durbin-Watson and ACF statistics converging towards their expectation.
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(b) ETTm1
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(c) ETTh2
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(d) ETTm2
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(e) Electricity
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(f) ILL

Figure 9: Sensitivity to iteration number N of separable training.
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Figure 10: Visualization of the original time series (top) and the predictable patterns at each iteration
of the iterative residual decomposition.
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