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ABSTRACT

We propose the GraGR framework, which leverages gradients as reasoning sig-
nals to address two intertwined challenges in GNNs: (1) node-level gradient
inconsistency across neighbors, and (2) interpretability misalignment between
model training and explanations. GraGR’s core modules detect and smooth con-
flicting per-node gradients via a conflict loss and Laplacian-based smoothing, and
convert pairwise gradient inner-products into attention weights for message pass-
ing. We further introduce a meta-gradient scaling scheme (learnable task weights
updated by hypergradients) to balance heterogeneous objectives when multiple
tasks are present. Together, these components reduce local gradient misalignment
and yield more stable, faithful explanations. We extend GraGR to GraGR++
by adding multi-pathway routing (parallel routing pathways) and an adaptive
training scheduler that gates gradient reasoning until base convergence. Impor-
tantly, we define six gradient-derived node features that quantitatively character-
ize a node’s learning dynamics and offer interpretable insights. Experiments on
benchmark datasets (Cora, Citeseer, PubMed, OGB-MolHIV) show that GraGR/-
GraGR++ improve predictive performance and explanation coherence compared
to baselines, while significantly reducing the proposed conflict energy. This work
unifies optimization and interpretability in GNNs under a gradient-as-reasoning
paradigm, making node-level dynamics both correctable and explainable.

1 INTRODUCTION

Graph neural networks (GNNs) excel at leveraging both structure and features for node- and graph-
level prediction. Yet, their training often suffers from a subtle but critical failure mode: node-level
gradient inconsistency. Why should two neighboring nodes, tightly linked in the same graph,
push the parameters in conflicting directions? Even within a single objective, per-node gradients
can differ in magnitude, direction, and temporal stability, producing oscillations and fragile updates
(Liu et al., 2021). Such misalignment not only destabilizes optimization but also undermines in-
terpretability: post-hoc explanations may highlight features that did not actually drive parameter
updates. While prior work has linked gradient misalignment to multi-task learning interference
(e.g., MGDA Désidéri (2012), PCGrad Yu et al. (2020), GradNorm Chen et al. (2018)), we argue
that the more fundamental issue lies at the node level: how within-task and across-neighbor gra-
dients interact. Our goal is a unified mechanism that both corrects these local conflicts and makes
the correction signals themselves visible as interpretable, per-node reasoning. Recent advances in
ante-hoc self-explanation (e.g., X-Node (Sengupta & Rekik, 2025)) reinforce the value of building
structured, node-level contexts for faithful and human-readable explanations.

At the same time, GNN interpretability has become critical in high-stakes domains. Post-hoc ex-
plainers (e.g. GNNExplainer Ying et al. (2019), PGExplainer Luo et al. (2020)) identify subgraphs
and features responsible for predictions, but these are often decoupled from the model’s training dy-
namics. In practice, explanations may be unstable or disconnected from how the GNN was actually
trained. For instance, two instances of similar classes may receive very different explanations even
if their gradients were similar during training. This disconnect raises concerns about interpretability
misalignment. Recent works attempt more structured explanations (e.g., XGNN Yuan et al. (2020),
LOGICXGNN Geng et al. (2025), or gradient-adjusted GEAR Zhang et al. (2024)), but none jointly
align training gradients with explanatory structure.
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These observations motivate GraGR: a unified gradient-as-reasoning framework. We hypothesize
that leveraging gradient information directly in the GNN can both resolve training conflicts and
produce aligned, interpretable representations. Concretely, GraGR inserts gradient-guided modules
into GNN layers. These modules detect and smooth out conflicting gradients (via a novel conflict
loss and Laplacian smoothing), and use gradient inner-products to form an attention-like weighting
over edges. Additionally, meta-learned scaling parameters adaptively re-weight tasks. Intuitively,
GraGR treats gradients not just as optimization signals but as latent explanations that guide mes-
sage passing. By coupling gradient alignment with reasoning, we aim to produce a GNN whose
optimization trajectory is inherently interpretable.

2 PROBLEM STATEMENT AND HYPOTHESIS

Consider a GNN tasked with T objectives (e.g., T classification or regression losses) on a graph G.
Let {Li}Ti=1 denote the task-specific losses. At a node v, define gi(v) = ∇hv

Li as the gradient of
task i with respect to the node’s representation hv . We identify two intertwined problems:

• Task-level gradient conflict: Gradients {gi} may point in divergent directions. Formally,
tasks i, j conflict if g⊤i gj < 0. In expectation over data, conflicting tasks hinder conver-
gence to a joint optimum. We define a gradient conflict energy as

Econf =
∑
i<j

max

(
0, − g⊤i gj

∥gi∥ ∥gj∥

)
,

which is positive when the cosine similarity is negative. Prior work Yu et al. (2020) Liu
et al. (2021) shows that large Econf slows multi-task learning.

• Node-level gradient inconsistency: Within a single task, gradient magnitudes or direc-
tions may vary widely across neighboring nodes, especially in irregular graphs. This leads
to unstable optimization, akin to overshooting or oscillation. It also causes explanation
disconnect: an explainer may attribute importance to features that did not actually drive
training on that instance. In particular, if gradients are noisy, post-hoc explanations (based
on e.g. saliency) may not align with model reasoning.

We propose the hypothesis that aligning and feeding back structured gradient information into
the GNN can unify optimization and explanation. Concretely, if we encourage gradients across
nodes to be aligned, the network will both converge more smoothly and produce predictions with
built-in, gradient-consistent explanations.

3 RELATED WORK

Recent graph neural network (GNN) studies identify a common problem: conflicting learning
signals across nodes and scales. In multi-objective or multi-task settings (e.g. node-level vs.
graph-level tasks or multiple self-supervised losses), gradients from different parts of the graph
can point in opposing directions, destabilizing training. For example, Désidéri (2012) showed that
self-supervised GNNs with diverse pretext tasks require multi-gradient descent (MGDA) to “min-
imize potential conflicts” among gradients. Similarly, Zhang et al. (2024) observe that explainers
for GNNs must balance multiple objectives (fidelity, sparsity, connectivity, etc.), and that “conflicts
between the gradients” of these objectives can lead to suboptimal solutions. In practice, conflicting
node-wise signals can cause instability (oscillating or vanishing updates) during training.

Multi-task learning in GNNs: Training GNNs with multiple objectives often leads to gradient
interference Liu et al. (2021). Techniques like the Multiple Gradient Descent Algorithm (MGDA)
seek Pareto-optimal solutions Désidéri (2012), while PCGrad performs “gradient surgery” to project
conflicting gradients onto compatible directions Yu et al. (2020). GradNorm adaptively balances task
losses via gradient magnitudes Chen et al. (2018). In graph domains, recent works explore multi-
task self-supervision: e.g., ParetoGNN Ju et al. (2023) uses MGDA to reconcile diverse pretext
tasks. However, these methods treat gradients only as optimization signals and do not integrate
interpretability.
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Gradient smoothing and topology-aware methods: It is well-known that graph convolutions per-
form Laplacian smoothing of node representations Park & Kim (2024), which can both help and
hurt training (oversmoothing). Some works modify graph topology (e.g. rewiring or adding edges)
to alleviate bottlenecks. Our Laplacian Gradient Alignment component similarly diffuses gradient
signals along the graph structure, smoothing out local conflicts. This is related in spirit to tech-
niques that apply graph Laplacians for denoising or improving gradient flow, though GraGR uses
the Laplacian to align multi-task gradients. Also, recent works apply meta-learning to multi-task
weighting. For instance, MetaBalance adapts auxiliary loss weights by controlling gradients via a
meta-objective He et al. (2022). GraGR’s meta-gradient scaling is in this vein: we introduce learn-
able task scalars γi updated by hyper-gradients, which effectively learn how to balance tasks during
optimization.

GNN interpretability: Post-hoc explainers identify important subgraphs or features. GNNEx-
plainer Ying et al. (2019) finds a compact subgraph maximizing mutual information with predic-
tions. PGExplainer Luo et al. (2020) uses a parametric generator network to output explanatory
masks for multiple instances. Model-level methods like XGNN Yuan et al. (2020) train a graph
generator (via RL) to find prototypical patterns, while LOGICXGNN Geng et al. (2025) extracts
human-readable logic rules from a GNN. These approaches, however, often ignore gradient dy-
namics during training. Recently, GEAR Zhang et al. (2024) introduced gradient adjustment for
explainers: it identifies conflicts among fidelity, sparsity, and connectivity objectives and refines
gradients to improve explanation optimization. GraGR is distinct in that it embeds gradient feed-
back into the GNN itself, aligning learning with reasoning. More recently, ante-hoc node-level
explainable methods such as X-Node construct compact per-node contexts and decode them into
natural-language rationales, highlighting the value of structured node representations for faithful
explanations (Sengupta & Rekik, 2025).

4 METHODOLOGY

Gradient-Guided Graph Reasoner (GraGR) framework treats gradients as explicit reasoning sig-
nals for graph neural networks (GNNs) and subsequently GraGR++ which comes with adaptive
scheduling and mult-pathways optimization. GraGR augments standard GNN training with modules
that detect, align, re-weight, and schedule gradient flows, yielding more stable optimization and in-
terpretable reasoning. Formally, let G = (V,E) be a graph with |V | = n nodes, |E| = m edges, and
let h(l)v ∈ Rd denote the embedding of node v at layer l. The loss function is L =

∑
i Li, where each

Li may represent a task-specific objective. We denote the per-node gradient as gv = ∇hv
L ∈ Rd.

During GNN training, GraGR monitors per-node gradients and enforces alignment across the graph
and is built upon six key components as illustrated in Fig 1.

4.1 GRADIENT-AWARE CONFLICT DETECTION

The first step is to explicitly identify nodes whose gradients oppose the global learning direction.
For node v, we define a contextual gradient gctx(v), e.g. the average of neighbor gradients or the
dominant principal gradient of the graph:

gctx(v) =
1

|N (v)|
∑

u∈N (v)

gu.

A node v is flagged as conflicting if (See Appendix A.1 for examples)
∥gv∥ > τmag ∧ cos(gv, gctx(v)) < τcos, (1)

where τmag, τcos are thresholds. Negative cosine similarity indicates destructive interference. We
define a conflict loss to quantify disagreement:

Lconf =
∑

(i,j)∈E

max(0,−g⊤i gj). (2)

Large Lconf signals widespread gradient misalignment. For each conflicting node v, we project its
gradient to remove the opposing component:

g′v = gv −
g⊤v gctx(v)

∥gctx(v)∥2
gctx(v). (3)

3
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Figure 1: GraGR architecture and its extension to GraGR++ with adaptive scheduling and multi-
pathway routing.

Lemma 1 (Conflict Projection Validity) If cos(gv, gctx) < 0, then the projected gradient g′v sat-
isfies cos(g′v, gctx) ≥ 0. [Thus only conflict nodes are corrected, preserving non-conflict updates.]
(See Appendix F)

4.2 TOPOLOGY-INFORMED GRADIENT ALIGNMENT

To enforce global coherence, we smooth gradients across the graph topology. Let L = D − A
denote the combinatorial Laplacian of G, with degree matrix D and adjacency A (See Fig 5 and 7 in
Appendix A.3). We seek adjusted gradients {g′v} by solving:

min
{g′

v}

∑
v

∥g′v − gv∥2 + λ
∑

(i,j)∈E

∥g′i − g′j∥2. (4)

The optimality condition yields:

(I + λL)g′ = g ⇒ g′ = (I + λL)−1g,

which corresponds to low-pass filtering of gradients on the graph.

Iterative Approximation. We approximate the solution of (I + λL)g′ = g via Jacobi iteration.
Writing (I + λL) = D +R, the update is

g(k+1) = D−1
(
g −Rg(k)

)
,

which converges under standard spectral radius conditions (see Appendix F).

Lemma 2 (Gradient Smoothing Convergence) Under mild spectral conditions (e.g., ρ(D−1R) <
1), the Jacobi iteration converges to the unique minimizer g⋆ = (I + λL)−1g. (See Appendix F)
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This smoothing eliminates local conflicts while preserving global structure. Since GCNs already
implicitly smooth features, applying smoothing to gradients aligns them analogously. We incorpo-
rate one step of Laplacian smoothing per layer in GraGR. The step costs O(|E|) per gradient pass.
For scalability on large graphs, sparse Jacobi or multigrid approximations can be used.

4.3 GRADIENT-BASED ATTENTION

We propose a novel gradient-attention mechanism that converts gradients into reasoning signals
in the forward pass. At layer l, suppose nodes u, v are connected. For each task i, let g(l)i (u)

and g(l)i (v) denote the smoothed gradients with respect to the node representations. We define the
attention weight as

α(l)
uv =

exp
(
β
∑T

i=1 g
(l)
i (u)⊤g

(l)
i (v)

)∑
w∈N (u) exp

(
β
∑T

i=1 g
(l)
i (u)⊤g

(l)
i (w)

) . (5)

Here
∑T

i=1 g
(l)
i (u)⊤g

(l)
i (v) aggregates agreement across all tasks’ gradients. Intuitively, edges

where node gradients align receive higher weight, emphasizing pathways consistent with shared
learning signals and deemphasizing conflicting or noisy edges. (See Fig 8 in Appendix A.3). The
message-passing rule then becomes

H(l+1) = σ
( ∑

v∈N (u)

α(l)
uvW

(l)h(l)v

)
. (6)

Theorem 1 (Attention Validity) For any finite graph G, the coefficients {α(l)
uv} form a valid prob-

ability distribution over neighbors. Moreover, under mild smoothness and alignment assumptions,
reweighting by α(l)

uv ensures a descent direction for the loss. (see Appendix F)

4.4 META-GRADIENT MODULATION

To adaptively balance heterogeneous signals, we associate each task (or node group) with a meta-
scalar γi. The overall training objective becomes

Ltotal =
∑
i

γiLi + λconfLconf. (7)

Here, γi serves as a learnable weight that scales the contribution of each loss term, while Lconf
penalizes misaligned gradients.

Hypergradient Update. Unlike fixed weights, γi is updated by hypergradient descent. After each
parameter update, we evaluate a validation objective Lval and compute

γi ← γi − η
∂Lval

∂γi
. (8)

This treats γ as hyperparameters in a bi-level optimization: the inner loop updates model weights,
while the outer loop updates γ to improve validation performance. In effect, γi learns to suppress
losses that generate conflicting gradients and amplify those that yield reliable progress.

Alternative Interpretation. Instead of Lval, one may use the conflict objective Lconf for hypergra-
dient updates:

γi ← γi − η
∂Lconf

∂γi
.

This perspective emphasizes γ as local gradient modulators, directly tuned to reduce variance be-
tween node updates. Conceptually, this resembles GradNorm Chen et al. (2018) and related meta-
balancing schemes, but here the modulation arises from explicit hyper-optimization.

Theorem 2 (Meta-Scaling Convergence) Under standard smoothness and stability assumptions
(see Appendix F), the hypergradient update on γ converges to a stationary point of the validation
objective, corresponding to a Pareto-stationary task balance.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

This meta-scaling allows GraGR to dynamically reweight signals during training. By amplifying in-
formative objectives and suppressing harmful ones, the system learns a Pareto-stable tradeoff across
tasks. Empirically, we will show that this modulation reduces gradient conflict energy Econf and
improves multi-objective convergence.

5 GRAGR++: ENHANCING ROBUSTNESS

5.1 MULTI-PATHWAY ROUTING FOR CONDITIONAL REASONING

Training graph neural networks (GNNs) with reasoning modules often suffers from two challenges:
(i) sensitivity to random initialization, leading to unstable optimization, and (ii) the difficulty of
dynamically activating appropriate reasoning mechanisms across heterogeneous graph regions. We
propose the Multiple Pathways framework, which integrates a two-stage training strategy with a
multipathway reasoning architecture. This design ensures both stability (by selecting favorable
training trajectories) and interpretability (by enabling conditional reasoning).

Figure 2: Seed-Level Selection. Validation accuracy trajectories across multiple random seeds on
the Citeseer dataset. At the plateau boundary (T1, dashed vertical line), the seed with the highest
validation accuracy (s∗) is selected for subsequent training.

Stage 1: Pathway Selection Across Random Seeds. At initialization, different random seeds s ∈
{1, 2, . . . , S} generate diverse optimization trajectories. For each seed s and epoch t ∈ {1, . . . , T1},
we record the validation loss:

ℓs(t) ∈ R. (9)
Each trajectory is summarized by its final validation loss at T1:

Ls = ℓs(T1). (10)

We then select the best-performing trajectory:

s∗ = arg min
s∈{1,...,S}

Ls. (11)

This ensures that subsequent reasoning is applied only to a trajectory with sufficient convergence
signal, reducing the risk of over-correcting noisy representations (see Fig. 2 for seed-level selection).
In essence, reasoning must be earned, not assumed.

Stage 2: Multipathway Reasoning Within the Model. Once a stable seed trajectory s∗ is cho-
sen, we extend the GNN with a specialized reasoning pathway for conflict-resolution, following
the GraGR++ method. While other reasoning pathways (e.g., fidelity-preservation, connectivity-
enhancement) are conceptually possible, they are not implemented in this work. Let P denote the

6
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set of logical pathways (e.g., conflict-resolution, fidelity-preservation, connectivity-enhancement).
At layer l, each pathway p ∈ P has parameters W (l)

p and computes an output:

H(l+1)
p = fp

(
H(l), Ap;W

(l)
p

)
, (12)

where Ap is an adjacency mask or feature filter specific to pathway p. The representation at layer
l + 1 is updated via a gating mechanism for the conflict-resolution pathway pconf:

H(l+1) = (1− β(l))H
(l+1)
base + β(l)H

(l+1)
conf , (13)

where H(l+1)
base is the standard GNN update and H(l+1)

conf is the GraGR++ conflict-resolution update.
The gating weight β(l) is dynamically increased when the conflict energy Econf exceeds a threshold.
During training of the selected trajectory s∗, we track Econf over epochs. The GraGR++ pathway
is activated only at epochs where Econf exceeds a predefined threshold, allowing targeted conflict
resolution without affecting stable updates.

Lemma 3 (Path Selection Criterion) If the update direction dp∗ chosen by minimizing conflict (or
maximizing agreement) satisfies ∇L⊤

totaldp∗ < 0, then dp∗ is a descent direction for Ltotal. (See
Appendix F)

5.2 ADAPTIVE SCHEDULING FOR EFFICIENT TRAINING

Running gradient reasoning at every epoch can be unnecessary, and even harmful, in the early stages
of training when the base GNN is still learning low-level representations. We therefore introduce
a scheduler γ(t) that activates reasoning only once the base model has plateaued, ensuring stable
embeddings before applying more complex corrections.

Gate Definition. Let Lbase(t) denote the loss of the base GNN at epoch t, and define the one-step
improvement

∆Lbase(t) = Lbase(t− 1)− Lbase(t).

The reasoning gate is then

γ(t) =

{
1, ∆Lbase(t) ≤ ηthresh ∧ t ≥ tmin,

0, otherwise,
(14)

where ηthresh is a small threshold (detecting plateau) and tmin is a warm-up period to allow the base
GNN to stabilise.

Training with Gating. When γ(t) = 1, conflict detection, alignment, and gradient-based reasoning
are applied; otherwise, training proceeds with the base GNN alone:

Lcorr(t) =

{
L
(
hGraGR(t)

)
, γ(t) = 1,

Lbase(t), γ(t) = 0.

This prevents reasoning parameters from being updated prematurely, and saves computation when-
ever γ(t) = 0. (See Appendix D for full algorithm)

6 RESULTS AND BENCHMARKS

Across the six node-classification benchmarks (Refer Table 4) in Appendix), GraGR and GraGR++
consistently boost baseline GNNs, with most improvements evident in GCN and SAGE models
(Table 1). Gains are particularly pronounced on challenging datasets such as Cornell, Texas, and
Wisconsin, where vanilla baselines converge to much lower accuracies, while GraGR++ models
achieve substantially higher validation and test scores. GIN shows less stability, with GraGR occa-
sionally underperforming, suggesting sensitivity to architecture-specific dynamics. The validation
accuracy curves in Figure 4 (See Appendix A.2) further illustrate this trend: GraGR and GraGR++
converge faster and to higher plateaus than baselines, especially in high-variance datasets like Cor-
nell and CiteSeer. Notably, GraGR++ occasionally underperforms relative to GraGR, which may
be attributed to its added complexity and higher sensitivity to noisier datasets. (see Appendix E for
Ablation Studies and Appendix G for Computational Analysis)

7
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Table 1: Results of baseline GNNs vs GraGR vs GraGR++ models across 6 datasets. Best Test/Val
values within each model family are highlighted in green.

Model CiteSeer Cora
Test Val F1 AUC Test Val F1 AUC

GCN 54.02 60.27 51.03 86.01 72.95 71.68 72.94 92.97
GCN + GraGR 65.01 67.43 61.12 86.57 79.82 78.82 78.22 94.98
GCN + GraGR++ 67.21 67.83 63.23 88.22 77.11 78.01 75.92 94.56
GAT 65.72 67.63 60.83 85.87 77.55 76.63 77.01 95.83
GAT + GraGR 63.74 65.21 59.85 83.61 78.82 77.63 77.45 95.34
GAT + GraGR++ 67.62 67.84 63.32 84.91 67.41 68.41 68.15 92.91
GIN 50.01 50.21 47.85 77.94 66.25 63.41 64.13 89.32
GIN + GraGR 25.32 23.62 9.94 51.71 42.21 39.61 37.42 83.96
GIN + GraGR++ 23.23 26.25 16.45 56.87 52.03 52.22 54.91 85.13
SAGE 60.71 64.02 57.45 84.31 78.55 76.81 76.91 94.63
SAGE + GraGR 67.15 68.01 61.34 86.59 79.26 76.67 79.19 94.23
SAGE + GraGR++ 67.44 68.92 62.93 82.83 79.64 79.23 79.12 94.82

Model Cornell PubMed
Test Val F1 AUC Test Val F1 AUC

GCN 35.11 52.52 21.65 62.15 68.15 66.02 66.51 87.12
GCN + GraGR 29.72 51.93 9.42 50.12 77.22 79.62 76.41 90.26
GCN + GraGR++ 51.44 55.91 24.92 51.65 76.91 79.02 76.32 88.94
GAT 37.82 54.23 13.75 56.52 76.73 78.62 75.23 87.26
GAT + GraGR 43.21 55.91 17.42 58.43 77.05 81.42 76.21 89.62
GAT + GraGR++ 40.51 55.63 14.53 49.02 76.62 80.21 75.41 89.13
GIN 45.93 57.34 36.55 67.41 49.13 49.83 42.63 67.25
GIN + GraGR 40.53 52.55 11.41 36.01 63.42 66.02 62.32 80.04
GIN + GraGR++ 51.41 58.91 24.65 46.34 68.53 67.41 66.62 81.05
SAGE 51.42 55.91 24.74 48.92 73.42 73.82 70.91 85.02
SAGE + GraGR 54.11 67.81 38.32 67.92 74.31 77.62 72.93 85.42
SAGE + GraGR++ 75.72 81.42 66.43 81.61 74.52 78.22 73.63 85.83

Model Texas Wisconsin
Test Val F1 AUC Test Val F1 AUC

GCN 48.62 61.01 22.31 62.04 39.22 50.03 21.31 56.61
GCN + GraGR 64.92 59.32 19.72 63.94 52.94 55.03 29.94 64.32
GCN + GraGR++ 59.51 62.72 19.65 61.04 53.32 57.51 31.91 61.22
GAT 59.51 54.22 15.22 62.95 52.94 57.51 13.85 68.71
GAT + GraGR 64.92 52.51 20.01 63.84 49.02 60.01 19.12 63.12
GAT + GraGR++ 67.63 59.31 29.92 65.92 54.91 60.31 19.41 63.81
GIN 51.42 54.42 17.92 62.91 45.13 52.53 17.92 51.82
GIN + GraGR 64.92 52.53 19.72 61.91 51.01 56.32 27.12 60.91
GIN + GraGR++ 65.81 57.52 21.74 65.94 54.03 57.23 29.62 65.21
SAGE 73.01 77.92 66.21 72.01 45.12 55.02 14.75 42.34
SAGE + GraGR 75.71 79.23 48.54 74.12 64.71 76.32 42.82 82.15
SAGE + GraGR++ 56.83 66.12 27.74 68.01 65.83 77.53 44.52 84.92

We evaluated GraGR’s Multi-task learning on three classification datasets: OGB-MolHIV, PRO-
TEINS, and MUTAG, each configured with five tasks. Table 2 summarises the results. On MolHIV,
GraGR achieves the highest accuracy (0.626), clearly outperforming all baselines, while CAGrad
provides the second-best performance (0.545). On PROTEINS, PCGrad yields the strongest accu-

Table 2: Multi-task classification results on OGB-MolHIV, TUDataset PROTEINS, and TUDataset
MUTAG. Best results are highlighted in dark green; second-best in light green.

Method Final Loss Accuracy
Vanilla Average 4.535 0.350
CAGrad 4.538 0.545
GradNorm 4.563 0.429
PCGrad 4.538 0.361
GraGR 4.575 0.626
GraGR++ 4.620 0.299

OGB-MolHIV (5 tasks)

Method Final Loss Accuracy
Vanilla Average 4.427 0.332
CAGrad 4.426 0.372
GradNorm 4.460 0.295
PCGrad 4.430 0.507
GraGR 4.436 0.333
GraGR++ 4.436 0.374

TUDataset PROTEINS (5 tasks)

Method Final Loss Accuracy
Vanilla Average 4.885 0.411
CAGrad 4.888 0.473
GradNorm 4.903 0.355
PCGrad 4.874 0.225
GraGR 4.906 0.480
GraGR++ 4.865 0.571

TUDataset MUTAG (5 tasks)

8
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racy (0.507), with GraGR++ ranking closely as the second-best (0.374). On the smaller MUTAG
dataset, GraGR++ stands out with the highest accuracy (0.571), followed by GraGR (0.480). These
results highlight that GraGR variants are highly competitive across tasks, consistently securing top
or second-best positions, while baseline methods such as MGDA and GradNorm often lag behind.

7 FROM GRADIENT DYNAMICS TO INTERPRETABLE FEATURES

While GraGR primarily addresses gradient conflict in GNN optimization, its deeper contribution
lies in rendering gradients into interpretable signals. If gradients encode how each node contributes
to learning, then constraining and decomposing them provides not only stability but also human-
understandable insights into the model’s behaviour. Prior work in vision has shown that gradients
can reveal salient input features Xuanyuan et al. (2022), and initial GNN explainers have explored
gradient-based attribution Simonyan et al. (2014). GraGR enables an interpretability-aware train-
ing regime: the same gradients used for optimization can be re-purposed to explain what the model
learns, when, and where in the graph. This is aligned with recent calls for explanation-aware train-
ing Sengupta & Rekik (2025), but extended here to gradient dynamics. (Refer Appendix B)

7.1 INTERPRETABLE GRADIENT CONTEXTS AND LLM DECODING

To produce per-node, human-readable explanations grounded in training dynamics, we summarize
each node v using six gradient-derived features (see Appendix B for full definitions). We collect
these into a compact context vector

cv =
[
ψconflict(v), ψstability(v), ψinfluence(v), ψconfidence(v), ψrole(v), ψreceptiveness(v)

]
∈ R6. (15)

This context is mapped through a lightweight Reasoner network (MLP) to obtain an explanation
embedding

ev = Reasonerϕ(cv) =W2 σ(W1cv + b1) + b2, (16)

which serves as both (i) an auxiliary signal for the GNN classifier and (ii) structured input for a large
language model (LLM). Given a prediction ŷv , we query the LLM with a formatted prompt:

Tv = LLM
(
prompt(cv, ŷv)

)
, (17)

yielding a natural-language explanation Tv for node v.

LLM Prompt for Gradient Context

Node ID: v; Context vector: cv
Prediction: ŷv; True label: yv (Optional)
Task: Generate a short natural-language explanation of the prediction based on the context
vector. If the context indicates low reliability, suggest a possible corrective action.

The outputs of this prompt are concise, node-level explanations that expose how each node’s gradient
dynamics shaped its prediction. Illustrative examples, including both conflict-prone (Node 42) and
stable node (Node 17), are provided in Appendix B.1 (Interpretability Explanations).

8 CONCLUSION

We introduced GraGR, a gradient-as-reasoning framework that unifies optimization stability and
interpretability in GNNs. By aligning gradients, GraGR/GraGR++ not only reduce conflict energy
but also yield ante-hoc, node-level explanations via interpretable gradient contexts. Experiments
across benchmarks show consistent gains in both performance and explanation coherence. This
work moves toward trustworthy, explanation-aware graph learning, where gradients act as both
optimization signals and human-readable reasoning.

Looking ahead, we ask: can gradient contexts be extended to capture causal influences in dynamic
or heterogeneous graphs? Exploring such directions Mukherjee et al. (2025) may bring us closer to
models that not only predict reliably but also reason in forms humans can follow

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY AND DEMOS

Our implementation of GraGR/GraGR++, along with scripts to reproduce all experiments, is pub-
licly available at: https://anonymous.4open.science/r/GraGR-30D7. Comprehen-
sive experimental settings, including dataset details, preprocessing, evaluation models, hyperpa-
rameter values, fine-tuning techniques, and hardware/software configurations, are provided in the
Appendix section in Table 5.

We also release visual demonstrations of GraGR’s behavior, such as gradient transformation and
conflict healing animations. (Videos must be downloaded to view, as they do not play directly in-
browser.)

• https://anonymous.4open.science/r/GraGR-30D7/visualizations/
gragr_transformation1.mp4

• https://anonymous.4open.science/r/GraGR-30D7/visualizations/
gragr_healing_graph.mp4

Further time and space complexities are illustrated in Appendix C, while computational analysis
included in Appendix G.
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A ADDITIONAL PROOFS AND QUALITATIVE EXAMPLES

A.1 EMBEDDING PLOTS SHOWING DETECTION OF CONFLICT NODES

(a) Epoch 10 (b) Epoch 20

(c) Epoch 30 (d) Epoch 40

Figure 3: Embedding space of PubMed dataset showing detection of conflict nodes after GraGR++
getting activated at Epoch 30 (due to the adaptive scheduler concept).

A.2 VALIDATION ACCURACY PLOTS

Figure 4: Validation accuracy over 100 epochs for 4 datasets (PubMed, Cora, CiteSeer, Cornell).
GraGR and GraGR++ consistently achieve higher and faster convergence compared to baselines.
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A.3 GRAGR COMPONENTS EFFECT ANALYSIS - CORA DATASET

Figure 5: Node embeddings on the Cora dataset after Laplacian smoothing in a Single Epoch. Top:
embeddings before conflict reduction, with conflicted nodes highlighted in red. Bottom: embeddings
after conflict reduction using GraGR.
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Figure 6: Gradient Alignment. Distribution of neighborhood alignment scores before and after
applying GraGR. This highlights how gradient alignment improves local consistency in node repre-
sentations.

Figure 7: Topology-Informed Processing. Scatter plot of node degree versus clustering coefficient,
illustrating how conflict nodes relate to graph topology. This demonstrates GraGR’s topology-aware
conflict detection.
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Figure 8: Gradient-Based Attention component of GraGR. The upper image shows uniform mes-
sage passing where all edges have equal weight (grey) to the conflict node. The lower image illus-
trates how gradient-based attention reweights the edges, thereby altering the message aggregation to
the conflict node.
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B INTERPRETABILITY

To understand how and where GNNs learn, we propose mapping each node’s raw gradient into a
six-dimensional feature space: (1) conflict intensity, (2) trajectory stability, (3) multi-hop influence,
(4) confidence–gradient alignment, (5) topological learning role, and (6) correction receptiveness.
These features can be monitored ante-hoc (during training) or post-hoc (after training), enabling
continuous interpretability of the learning process.

a. Gradient Conflict Intensity (ψconflict) This feature quantifies local disagreement between a
node’s learning signal and its neighbors. Formally:

ψconflict(i) = µg ∥gi∥ (1− cos(gi, ḡi)) (18)

Here |gi| is the ℓ2 norm of the gradient at node i, ḡi = 1
|N(i)|

∑
j∈N(i) gj is the average neighbor gra-

dient, and µg = 1
N

∑N
j=1 |gj | is the global mean magnitude. The function cos(a, b) = a⊤b/(|a||b|)

denotes cosine similarity.

b. Learning Trajectory Stability (ψstability) This feature measures coherence of gradient direc-
tions among a node’s neighbors, reflecting neighborhood harmony. We define:

ψstability(i) =
1(|N (i)|
2

) ∑
j,k∈N (i)

j<k

cos(ĝj , ĝk) (19)

where ĝj = gj/|gj | are unit gradients. In words: N(i): set of neighbors of i. |N(i)|: number of
neighbors. The denominator

(|N(i)|
2

)
normalizes by the number of unordered neighbor pairs. ĝj :

normalized (unit) gradient of neighbor j.

c. Multi-hop Influence Strength (ψinfluence) We quantify how strongly a node’s gradient propa-
gates to distant parts of the graph. Using adjacency powers:

ψinfluence(i) =
1

deg(i) + 1

([
A2∥g∥

]
i
+ 0.5

[
A3∥g∥

]
i

)
(20)

where: A is the graph’s adjacency matrix (binary or weighted). (A2|g|)i and (A3|g|)i are the ith
entries of A2|g| and A3|g|, capturing 2-hop and 3-hop aggregated gradient magnitudes. |g| is the
vector of all node gradient norms |gj |. deg(i) is the degree of i.

d. Confidence–Gradient Relationship (ψconfidence) This feature connects model confidence with
the learning signal. Let ci = maxk softmax(zi)k be the predicted class probability at node i, and let
g̃i = (|gi| − minj |gj |)/(maxj |gj | − minj |gj |) be the min-max–normalized gradient magnitude.
We compute:

ψconfidence(i) = − cos(c, g̃) (21)
where c and g̃ are the vectors of ci and g̃i values over all nodes. In practice this yields a single scalar
correlation, then we assign it per-node for analysis.

e. Topological Learning Role (ψrole) We classify nodes into functional “roles” based on degree
and gradient behavior:

ψrole(i) =


2.0, if Hub: deg(i) > P80(deg) ∧ ∥gi∥ > P70(∥g∥)
1.5, if Bridge: P40(deg) < deg(i) ≤ P80(deg) ∧ cos(gi, ḡi) < 0.5

1.0, if Follower: cos(gi, ḡi) > 0.7

0.5, otherwise (Outlier)

(22)

Here, Pk(X) denotes the kth percentile of a distribution, e.g., P80(deg) is the 80th percentile of
node degrees. In other words:

• Hub (score 2.0): Top-tier degree and large gradient. These nodes are structural centers
driving learning.
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• Bridge (1.5): Moderately high degree but low alignment (neighbors have differing gradi-
ents); they connect subgraphs.

• Follower (1.0): Strongly aligned with neighbors (high cosine similarity) – they simply
mimic local updates.

• Outlier (0.5): None of the above, indicating isolated or noisy nodes.

f. Correction Receptiveness (ψreceptive) This feature predicts how much a node stands to benefit
from a gradient-based correction. It combines normalized gradient size, misalignment, and neigh-
borhood variance:

ψreceptive(i) = 0.4 · normGrad(i) + 0.35 ·misalign(i) + 0.25 · variance(i) (23)
where:

normGrad(i) =
|gi| −minj |gj |

maxj |gj | −minj |gj |
(24)

misalign(i) = 1− cos(gi, ḡi) (25)
variance(i) = Var ({|gj | | j ∈ N (i)}) (26)

B.1 INTERPRETABILITY EXPLANATIONS

To concretize our interpretability framework, we present examples of node-level gradient feature
analysis. The structured outputs can be visualized in shaded analysis boxes, where each node’s
statistics are linked to a natural language explanation generated by a large language model (LLM).
This extends the X-Node paradigm to gradient dynamics. Node-wise examples of explanations for
both the conflict node and the normal node are provided as follows.

Node-17 Feature Analysis (Normal Node)

Node Information:
• Node ID: 17
• Dataset: WikiCS Citation Network
• True Label: 7
• Predicted Label: 7

Gradient Feature Extracted:
1. Conflict Intensity (0.0252): Low value indicates the node’s learning aligns well

with its neighbors, showing coherent local learning.
2. Trajectory Stability (1.0000): High stability reflects smooth and consistent gradi-

ent directions among neighboring nodes.
3. Multi-hop Influence (261.4381): Strong gradient propagation across the graph,

indicating the node has a global impact on learning dynamics.
4. Confidence–Gradient Correlation (0.0055): Slight misalignment between confi-

dence and gradient magnitude, suggests calibration.
5. Correction Receptiveness (N/A): Low expected benefit from gradient correction.

LLM Explanation: The correct classification of Node 17 can be attributed to the model’s
ability to capture both local and global dynamics within the citation network. The low con-
flict intensity (0.0252) indicates that the node’s learning is highly aligned with its neighbors,
reflecting a well-structured local research cluster. The trajectory stability of 1.0000 further
confirms that gradient directions among neighbors are coherent, supporting consistent up-
dates. The node’s high multi-hop influence (261.4381) suggests that its learning signal prop-
agates strongly across the graph, highlighting its importance in shaping the model’s global
understanding of related research topics. Despite a small confidence–gradient misalignment
(0.0055), the model maintains high prediction reliability. The low correction receptiveness
implies that the node’s current learning is stable and would not significantly benefit from
gradient-based interventions.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Node-42 Feature Analysis (Conflict Node)

Node Information:
• Node ID: 42
• Dataset: WikiCS Citation Network
• True Label: 3
• Predicted Label: 7
• Model Confidence: 0.541

Gradient Features:
1. Conflict Intensity (1.942): High; strongly misaligned with neighbors.
2. Trajectory Stability (0.231): Low; neighbors have incoherent updates.
3. Multi-hop Influence (48.7): Moderate; impact is localized.
4. Confidence–Gradient Correlation (-0.227): miscalibrated confidence.
5. Correction Receptiveness (0.8): High expected benefit from gradient-based

correction.

LLM Explanation: Node 42 represents a misclassified case where gradient dynamics
highlight pronounced local instability. The high conflict intensity (1.942) shows that
its updates diverge sharply from its neighbors, while the low trajectory stability (0.231)
confirms that surrounding nodes are also updating in inconsistent directions. This suggests
that Node 42 lies near a boundary of overlapping communities, where the model cannot
resolve conflicting label signals. As a result, its representation drifts away from the true
class structure, leading to an incorrect prediction.

Its moderate multi-hop influence (48.7) indicates that these inconsistencies do not remain
isolated but spill into a local region of the graph, subtly affecting nearby representations. The
negative confidence–gradient correlation (-0.227) further reveals miscalibration: the model
assigns a moderate confidence (0.541) despite unstable evidence, pointing to overconfidence
in a weakly supported decision. Crucially, the high correction receptiveness suggests that
the node is particularly amenable to gradient-based interventions. Targeted strategies such
as neighborhood reweighting, local smoothing, or conflict-aware gradient adjustments could
realign Node 42 with its true label and stabilize its neighborhood. This makes it a key
candidate for correction, where improving one unstable node could propagate benefits across
its local cluster.
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C TIME AND SPACE COMPLEXITIES

Understanding the computational efficiency of different gradient conflict resolution methods is cru-
cial when selecting an approach for multi-task learning. The table below (Table 3) highlights a clear
trade-off between simplicity and sophistication. The most efficient methods like Vanilla averaging,
GradNorm, and PCGrad which all run in linear time with respect to the number of tasks. They are
well suited for large-scale problems where efficiency matters, but their ability to properly resolve
conflicts is limited. GradNorm balances gradient magnitudes, and PCGrad removes direct conflicts,
but both still work with fairly local adjustments.

Table 3: Computational complexity of gradient conflict resolution methods. T denotes the number
of tasks and P the number of model parameters.

Method Time
Complexity

Space
Complexity

Scales w.r.t.
Tasks

Memory
Overhead

Vanilla Average (GD) O(T × P ) O(T × P ) Linear Low
GradNorm O(T × P ) O(T × P ) Linear Low
PCGrad O(T × P ) O(T × P ) Linear Low
CAGrad O(T 2 × P ) O(T × P ) Quadratic Low
GraGR O(T 2 × P ) O(T × P ) Quadratic Low
GraGR++ O(T 2 × P ) O(T × P +M) Quadratic Medium

By contrast, CAGrad and the GraGR variants explicitly reason over task pairs, which makes them
more principled in handling gradient interference. However, this comes with a quadratic cost in the
number of tasks, making them less scalable as T grows. GraGR++ goes a step further by adding
memory of past gradients, which could help stabilize training, but also introduces additional storage
requirements.

In practice, this means that linear methods are preferred when the task count is large or training
speed is critical, whereas GraGR-style approaches may be justified in smaller-scale settings where
resolving conflicts thoroughly is more important than speed.

D ADAPTIVE SCHEDULING ALGORITHM

Algorithm 1 GraGR with Adaptive Scheduling

1: for t = 1 to T do
2: Train base GNN; compute Lbase(t).
3: Compute γ(t).
4: if γ(t) = 1 then
5: Detect conflicts; apply alignment→ gradient attention.
6: Update θ, ϕ with corrected loss.
7: else
8: Update θ with base gradients only.
9: end if

10: end for
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E ABLATION STUDIES

Table 6: Ablation study of GraGR. Best results in green; second-best in light green.

Model Val Acc Test Acc
Baseline GCN 0.762 0.749
Baseline GAT 0.770 0.738
Baseline GIN 0.586 0.533
Baseline SAGE 0.780 0.754
GraGR (Full) 0.796 0.778
GraGR w/o Conflict 0.776 0.762
GraGR w/o Alignment 0.788 0.772
GraGR w/o Attention 0.788 0.767
GraGR w/o Meta 0.784 0.765
GraGR++ w/o Adaptive Scheduling 0.784 0.768
GraGR++ w/o Multiple Pathways 0.790 0.763

To better understand the contribution of each component in GraGR, we conducted an ablation study
on the PubMed dataset. Results are summarized in Table 6, with additional visualizations as in
Fig 9. Compared to baseline GNNs, GraGR provides consistent gains, pushing GCN from 74.9%
to 77.8% test accuracy and SAGE from 75.4% to 77.8%.

Removing individual components reveals their importance: dropping conflict resolution or meta-
optimization reduces performance by 1–1.5%, while removing alignment or attention also leads to
noticeable drops as also shown in Fig 9.

Figure 9: Ablation study results on PubMed dataset. Line plot of accuracy trends over different vari-
ants. (GraGR (Full) achieves the best performance with 79.6% validation and 77.8% test accuracy).

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

F DETAILED PROOFS AND ADDITIONAL MATHEMATICAL CLARIFICATIONS

Notation and Preliminaries LetL denote the combinatorial graph Laplacian (symmetric, positive
semidefinite), and λ > 0. We sometimes write ∆max for the maximum graph degree. Scalars β,
δ, LF , and Lγ denote Lipschitz or alignment constants as used below. Vector norms are Euclidean
unless stated.

LEMMA 1: CONFLICT PROJECTION ORTHOGONALITY

Lemma 1 (Conflict projection validity). Let gv, gctx ∈ Rd with gctx ̸= 0. Define

g′v = gv −
g⊤v gctx
∥gctx∥2

gctx.

Then (g′v)
⊤gctx = 0, hence cos(g′v, gctx) = 0 provided g′v ̸= 0. In particular, if cos(gv, gctx) < 0,

then cos(g′v, gctx) ≥ 0.

Proof. A simple inner-product expansion shows:

(g′v)
⊤gctx = g⊤v gctx −

g⊤v gctx
∥gctx∥2

g⊤ctxgctx = 0.

Thus g′v is orthogonal to gctx, concluding the claim. □

Lemma 2: Gradient Smoothing via Regularization Let

F (g′) =
1

2
∥g′ − g∥2 + λ

2
(g′)⊤Lg′.

Its unique minimizer g⋆ satisfies
(I + λL) g⋆ = g.

Two iterative strategies converge to g⋆:

1. Gradient Descent (GD):

g′ t+1 = g′ t − η
[
g′ t − g + λLg′ t

]
.

This GD converges for 0 < η < 2/(1 + λλmax(L)). Noting λmax(L) ≤ 2∆max, a simple
sufficient bound is η < 1/(1 + 2λ∆max).

2. Jacobi Iteration: Write (I + λL) = D +R where D is its diagonal (invertible) and R its
off-diagonal part. The classical Jacobi update is:

g′ (k+1) = D−1
(
g −Rg′ (k)

)
,

which converges when the spectral radius ρ(D−1R) < 1, e.g., if the system is strictly
diagonally dominant Saad (2003).

Proof sketch. - GD convergence follows from the fact that ∇F = (I + λL)g′ − g is Lipschitz with
constant ∥I+λL∥2 = 1+λλmax(L). - Jacobi convergence is guaranteed under the classical spectral
radius condition. □

References for iterative solvers - Jacobi method and convergence: standard result that
ρ(D−1R) < 1 ensures convergence Saad (2003). - Bound λmax(L) ≤ 2∆max: standard spec-
tral graph theory.

Theorem 1: Attention-Based Descent Assume:

• The node-specific loss L(h) is β-smooth in hu;

• The message direction is du =
∑

v∈N(u) αuvW
(l)hv;

• There exists δ > 0 such that ∇huL · du ≤ −δ.
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Then for any step-size satisfying

0 < η <
2δ

β∥du∥2
,

the one-step update hu ← hu − ηdu strictly decreases L.

Proof. From the β-smoothness descent lemma:

L(hu − ηdu) ≤ L(hu)− η∇hu
L⊤du +

βη2

2
∥du∥2.

Since ∇huL
⊤du ≤ −δ, choose η small enough to ensure the RHS is strictly less than L(hu). □

Theorem 2: Meta-Scaling Convergence Under these assumptions:

1. The inner parameter θ⋆(γ) minimizing L(θ; γ) exists uniquely and is C1 in γ;
2. The validation loss J(γ) := Lval(θ

⋆(γ)) is differentiable with Lipschitz continuous gradi-
ent;

3. Hypergradients ∇γJ(γ) are computed exactly and are Lipschitz (constant Lγ).

Then gradient descent
γt+1 = γt − η∇γJ(γ

t)

converges to a stationary point if 0 < η < 2/Lγ .

Proof sketch. J is smooth and differentiable. Standard convergence of GD on such functions applies.
Existence and differentiability of θ⋆(γ) with valid hypergradients follow via implicit differentiation
(see Franceschi et al. (2018);Pedregosa (2016)) □.

Lemma 3: Path-Selection as Descent Let ∇Ltotal be the total loss gradient and for each path p,
dp the induced update direction. If for some path p⋆,

∇L⊤
totaldp⋆ < 0,

then dp⋆ is a descent direction; a sufficiently small negative step along −dp⋆ lowers the loss due to
the first-order Taylor result. □

Pathway Activation via Conflict Signals. We modulate β(l)
p dynamically using gradient-based

conflict measures. Recall that task gradients gi(v) = ∇hv
Li at node v may conflict when g⊤i gj < 0.

Define the conflict energy:

Econf =
∑
i<j

max

(
0,− g⊤i gj
∥gi∥ ∥gj∥

)
. (27)

If Econf or the variance of pairwise similarities Sij(v) exceeds a threshold, we increase the weight
β
(l)
p′ for a specialized pathway p′ (e.g., conflict resolution). This mechanism enables logical routing:

when losses plateau or oscillate, alternative reasoning routes are triggered.

G COMPUTATIONAL ANALYSIS

The computational analysis in Table 7 highlights a trade-off between accuracy gains and resource
demands. While GraGR and GraGR++ frequently converge faster than baselines, they occasion-
ally incur higher memory overheads, especially in smaller datasets where the added regularization
expands intermediate representations (e.g., GCN+GraGR on CiteSeer and GIN+GraGR on Texas).
This effect is less pronounced in larger benchmarks such as PubMed, where the structured regular-
ization stabilizes training and reduces runtime. Interestingly, GraGR++ often balances this trade-
off better, achieving lower epoch times in several settings while keeping memory usage moderate.
GraGR++ imposes additional constraints that can temporarily increase resource usage, but in most
cases it accelerates convergence and reduces training time in later epochs, reflecting its scalability
advantage.
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