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ABSTRACT

We propose the GraGR framework, which leverages gradients as reasoning sig-
nals to address two intertwined challenges in GNNs: (1) node-level gradient
inconsistency across neighbors, and (2) interpretability misalignment between
model training and explanations. GraGR’s core modules detect and smooth con-
flicting per-node gradients via a conflict loss and Laplacian-based smoothing, and
convert pairwise gradient inner-products into attention weights for message pass-
ing. We further introduce a meta-gradient scaling scheme (learnable task weights
updated by hypergradients) to balance heterogeneous objectives when multiple
tasks are present. Together, these components reduce local gradient misalignment
and yield more stable, faithful explanations. We extend GraGR to GraGR++
by adding multi-pathway routing (parallel routing pathways) and an adaptive
training scheduler that gates gradient reasoning until base convergence. Impor-
tantly, we define six gradient-derived node features that quantitatively character-
ize a node’s learning dynamics and offer interpretable insights. Experiments on
benchmark datasets (Cora, Citeseer, PubMed, OGB-MolHIV) show that GraGR/-
GraGR++ improve predictive performance and explanation coherence compared
to baselines, while significantly reducing the proposed conflict energy. This work
unifies optimization and interpretability in GNNs under a gradient-as-reasoning
paradigm, making node-level dynamics both correctable and explainable.

1 INTRODUCTION

Graph neural networks (GNNs) excel at leveraging both structure and features for node- and graph-
level prediction. Yet, their training often suffers from a subtle but critical failure mode: node-level
gradient inconsistency. Why should two neighboring nodes, tightly linked in the same graph,
push the parameters in conflicting directions? Even within a single objective, per-node gradients
can differ in magnitude, direction, and temporal stability, producing oscillations and fragile updates
(Liu et al.l 2021). Such misalignment not only destabilizes optimization but also undermines in-
terpretability: post-hoc explanations may highlight features that did not actually drive parameter
updates. While prior work has linked gradient misalignment to multi-task learning interference
(e.g., MGDA Désidérif (2012), PCGrad [Yu et al.| (2020), GradNorm |Chen et al.| (2018))), we argue
that the more fundamental issue lies at the node level: how within-task and across-neighbor gra-
dients interact. Our goal is a unified mechanism that both corrects these local conflicts and makes
the correction signals themselves visible as interpretable, per-node reasoning. Recent advances in
ante-hoc self-explanation (e.g., X-Node (Sengupta & Rekik] 2025))) reinforce the value of building
structured, node-level contexts for faithful and human-readable explanations.

At the same time, GNN interpretability has become critical in high-stakes domains. Post-hoc ex-
plainers (e.g. GNNExplainer Ying et al.| (2019), PGExplainer |Luo et al.| (2020)) identify subgraphs
and features responsible for predictions, but these are often decoupled from the model’s training dy-
namics. In practice, explanations may be unstable or disconnected from how the GNN was actually
trained. For instance, two instances of similar classes may receive very different explanations even
if their gradients were similar during training. This disconnect raises concerns about interpretability
misalignment. Recent works attempt more structured explanations (e.g., XGNN Yuan et al.| (2020),
LOGICXGNN |Geng et al.|(2025)), or gradient-adjusted GEAR [Zhang et al.[(2024)), but none jointly
align training gradients with explanatory structure.
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These observations motivate GraGR: a unified gradient-as-reasoning framework. We hypothesize
that leveraging gradient information directly in the GNN can both resolve training conflicts and
produce aligned, interpretable representations. Concretely, GraGR inserts gradient-guided modules
into GNN layers. These modules detect and smooth out conflicting gradients (via a novel conflict
loss and Laplacian smoothing), and use gradient inner-products to form an attention-like weighting
over edges. Additionally, meta-learned scaling parameters adaptively re-weight tasks. Intuitively,
GraGR treats gradients not just as optimization signals but as latent explanations that guide mes-
sage passing. By coupling gradient alignment with reasoning, we aim to produce a GNN whose
optimization trajectory is inherently interpretable.

2 PROBLEM STATEMENT AND HYPOTHESIS

Consider a GNN tasked with T" objectives (e.g., T classification or regression losses) on a graph G.
Let {£;}L | denote the task-specific losses. At a node v, define g;(v) = Vy,L; as the gradient of
task ¢ with respect to the node’s representation h,,. We identify two intertwined problems:

* Task-level gradient conflict: Gradients {g;} may point in divergent directions. Formally,
tasks 4, j conflict if g, g; < 0. In expectation over data, conflicting tasks hinder conver-
gence to a joint optimum. We define a gradient conflict energy as

T,
Eeonf = Zmax (0, _9i9i ) ,

T/ g1

which is positive when the cosine similarity is negative. Prior work |Yu et al.[ (2020) Liu
et al. (2021) shows that large Fons slows multi-task learning.

* Node-level gradient inconsistency: Within a single task, gradient magnitudes or direc-
tions may vary widely across neighboring nodes, especially in irregular graphs. This leads
to unstable optimization, akin to overshooting or oscillation. It also causes explanation
disconnect: an explainer may attribute importance to features that did not actually drive
training on that instance. In particular, if gradients are noisy, post-hoc explanations (based
on e.g. saliency) may not align with model reasoning.

We propose the hypothesis that aligning and feeding back structured gradient information into
the GNN can unify optimization and explanation. Concretely, if we encourage gradients across
nodes to be aligned, the network will both converge more smoothly and produce predictions with
built-in, gradient-consistent explanations.

3 RELATED WORK

Recent graph neural network (GNN) studies identify a common problem: conflicting learning
signals across nodes and scales. In multi-objective or multi-task settings (e.g. node-level vs.
graph-level tasks or multiple self-supervised losses), gradients from different parts of the graph
can point in opposing directions, destabilizing training. For example, [Désidéri| (2012) showed that
self-supervised GNNs with diverse pretext tasks require multi-gradient descent (MGDA) to “min-
imize potential conflicts” among gradients. Similarly, Zhang et al.| (2024)) observe that explainers
for GNNs must balance multiple objectives (fidelity, sparsity, connectivity, etc.), and that “conflicts
between the gradients” of these objectives can lead to suboptimal solutions. In practice, conflicting
node-wise signals can cause instability (oscillating or vanishing updates) during training.

Multi-task learning in GNNs: Training GNNs with multiple objectives often leads to gradient
interference |[Liu et al.| (2021). Techniques like the Multiple Gradient Descent Algorithm (MGDA)
seek Pareto-optimal solutions|Désidéri|(2012), while PCGrad performs “gradient surgery” to project
conflicting gradients onto compatible directions|Yu et al.[(2020). GradNorm adaptively balances task
losses via gradient magnitudes (Chen et al. (2018). In graph domains, recent works explore multi-
task self-supervision: e.g., ParetoGNN |Ju et al| (2023)) uses MGDA to reconcile diverse pretext
tasks. However, these methods treat gradients only as optimization signals and do not integrate
interpretability.
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Gradient smoothing and topology-aware methods: It is well-known that graph convolutions per-
form Laplacian smoothing of node representations |[Park & Kim| (2024), which can both help and
hurt training (oversmoothing). Some works modify graph topology (e.g. rewiring or adding edges)
to alleviate bottlenecks. Our Laplacian Gradient Alignment component similarly diffuses gradient
signals along the graph structure, smoothing out local conflicts. This is related in spirit to tech-
niques that apply graph Laplacians for denoising or improving gradient flow, though GraGR uses
the Laplacian to align multi-task gradients. Also, recent works apply meta-learning to multi-task
weighting. For instance, MetaBalance adapts auxiliary loss weights by controlling gradients via a
meta-objective He et al.| (2022). GraGR’s meta-gradient scaling is in this vein: we introduce learn-
able task scalars ~; updated by hyper-gradients, which effectively learn how to balance tasks during
optimization.

GNN interpretability: Post-hoc explainers identify important subgraphs or features. GNNEx-
plainer [Ying et al| (2019) finds a compact subgraph maximizing mutual information with predic-
tions. PGExplainer |[Luo et al.| (2020) uses a parametric generator network to output explanatory
masks for multiple instances. Model-level methods like XGNN [Yuan et al.| (2020) train a graph
generator (via RL) to find prototypical patterns, while LOGICXGNN |Geng et al.| (2025) extracts
human-readable logic rules from a GNN. These approaches, however, often ignore gradient dy-
namics during training. Recently, GEAR |Zhang et al.| (2024) introduced gradient adjustment for
explainers: it identifies conflicts among fidelity, sparsity, and connectivity objectives and refines
gradients to improve explanation optimization. GraGR is distinct in that it embeds gradient feed-
back into the GNN itself, aligning learning with reasoning. More recently, ante-hoc node-level
explainable methods such as X-Node construct compact per-node contexts and decode them into
natural-language rationales, highlighting the value of structured node representations for faithful
explanations (Sengupta & Rekikl [2025).

4 METHODOLOGY

Gradient-Guided Graph Reasoner (GraGR) framework treats gradients as explicit reasoning sig-
nals for graph neural networks (GNNs) and subsequently GraGR++ which comes with adaptive
scheduling and mult-pathways optimization. GraGR augments standard GNN training with modules
that detect, align, re-weight, and schedule gradient flows, yielding more stable optimization and in-
terpretable reasoning. Formally, let G = (V, E)) be a graph with |V | = n nodes, | E| = m edges, and

let h{" € R? denote the embedding of node v at layer L. The loss function is L = 3, £;, where each

L; may represent a task-specific objective. We denote the per-node gradient as g, = Vj,, L € R9.
During GNN training, GraGR monitors per-node gradients and enforces alignment across the graph
and is built upon six key components as illustrated in Fig|[T]

4.1 GRADIENT-AWARE CONFLICT DETECTION
The first step is to explicitly identify nodes whose gradients oppose the global learning direction.

For node v, we define a contextual gradient g.x(v), e.g. the average of neighbor gradients or the
dominant principal gradient of the graph:

1
gctx(v) = m Z Gu-

ueN (v)
A node v is flagged as conflicting if (See Appendix A.1 for examples)
lgoll > Tmag A €08(9u, gex (V) < Teos, (1)

where T, Teos are thresholds. Negative cosine similarity indicates destructive interference. We
define a conflict loss to quantify disagreement:

Lcrmf = Z Hl&X(O, 79:9]) (2)
(i.4)eE
Large Lo signals widespread gradient misalignment. For each conflicting node v, we project its
gradient to remove the opposing component:

.
Gy Gerx (V) ). 3)

I — —
P TI g ()
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Figure 1: GraGR architecture and its extension to GraGR++ with adaptive scheduling and multi-
pathway routing.

Lemma 1 (Conflict Projection Validity) If cos(g,, gen) < 0, then the projected gradient g, sat-
isfies cos(g.,, gerx) > 0. [Thus only conflict nodes are corrected, preserving non-conflict updates. ]
(See Appendix F)

4.2 TOPOLOGY-INFORMED GRADIENT ALIGNMENT

To enforce global coherence, we smooth gradients across the graph topology. Let L = D — A
denote the combinatorial Laplacian of G, with degree matrix D and adjacency A (See Fig[3and([7]in
Appendix A.3). We seek adjusted gradients {g, } by solving:

min Y g, = gul>+ X D lgi - gjlI*. )
{90} iy
v (i,5)eE
The optimality condition yields:
(I+AL)g' =g = ¢ =I+AIL)"g,
which corresponds to low-pass filtering of gradients on the graph.

Iterative Approximation. We approximate the solution of (I + AL)g’ = g via Jacobi iteration.
Writing (I + AL) = D + R, the update is

g(k+1) _ Dil(g _ Rg(k)),

which converges under standard spectral radius conditions (see Appendix F).

Lemma 2 (Gradient Smoothing Convergence) Under mild spectral conditions (e.g., p(D™'R) <
1), the Jacobi iteration converges to the unique minimizer g* = (I + A\L)~1g. (See Appendix F)
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This smoothing eliminates local conflicts while preserving global structure. Since GCNs already
implicitly smooth features, applying smoothing to gradients aligns them analogously. We incorpo-
rate one step of Laplacian smoothing per layer in GraGR. The step costs O(|E|) per gradient pass.
For scalability on large graphs, sparse Jacobi or multigrid approximations can be used.

4.3 GRADIENT-BASED ATTENTION

We propose a novel gradient-attention mechanism that converts gradients into reasoning signals

in the forward pass. At layer [, suppose nodes u,v are connected. For each task i, let gl( )( )

O]

and g, (v) denote the smoothed gradients with respect to the node representations. We define the

attention weight as
l
L (Y >Tgf>< )
uv 1 .
Swentn 5P (810, () ot (w)

Here ZZ 1 gz ( )ngm(v) aggregates agreement across all tasks’ gradients. Intuitively, edges
where node gradients align receive higher weight, emphasizing pathways consistent with shared
learning signals and deemphasizing conflicting or noisy edges. (See Fig|[8|in Appendix A.3). The
message-passing rule then becomes

H(l+1):o( 3 ag;gwmhg“). ©)
veN (u)

®)

Theorem 1 (Attention Validity) For any finite graph G, the coefficients {afjﬂ} form a valid prob-

ability distribution over neighbors. Moreover, under mild smoothness and alignment assumptions,
@

reweighting by o, ensures a descent direction for the loss. (see Appendix F)

4.4 META-GRADIENT MODULATION

To adaptively balance heterogeneous signals, we associate each task (or node group) with a meta-
scalar ~y;. The overall training objective becomes

Ltotal - Z ’Ylﬁz + Aconchnnf- (7)

Here, ~; serves as a learnable weight that scales the contribution of each loss term, while Lot
penalizes misaligned gradients.

Hypergradient Update. Unlike fixed weights, v; is updated by hypergradient descent. After each
parameter update, we evaluate a validation objective Ly, and compute

(®)

This treats vy as hyperparameters in a bi-level optimization: the inner loop updates model weights,
while the outer loop updates v to improve validation performance. In effect, ; learns to suppress
losses that generate conflicting gradients and amplify those that yield reliable progress.

Alternative Interpretation. Instead of L.,, one may use the conflict objective Lo for hypergra-
dient updates:

Yi < Vi —

This perspective emphasizes y as local gradient modulators, directly tuned to reduce variance be-
tween node updates. Conceptually, this resembles GradNorm Chen et al.| (2018)) and related meta-
balancing schemes, but here the modulation arises from explicit hyper-optimization.

Theorem 2 (Meta-Scaling Convergence) Under standard smoothness and stability assumptions
(see Appendix F), the hypergradient update on ~y converges to a stationary point of the validation
objective, corresponding to a Pareto-stationary task balance.
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This meta-scaling allows GraGR to dynamically reweight signals during training. By amplifying in-
formative objectives and suppressing harmful ones, the system learns a Pareto-stable tradeoff across
tasks. Empirically, we will show that this modulation reduces gradient conflict energy Econ¢ and
improves multi-objective convergence.

5 GRAGR++: ENHANCING ROBUSTNESS

5.1 MULTI-PATHWAY ROUTING FOR CONDITIONAL REASONING

Training graph neural networks (GNNs) with reasoning modules often suffers from two challenges:
(1) sensitivity to random initialization, leading to unstable optimization, and (ii) the difficulty of
dynamically activating appropriate reasoning mechanisms across heterogeneous graph regions. We
propose the Multiple Pathways framework, which integrates a two-stage training strategy with a
multipathway reasoning architecture. This design ensures both stability (by selecting favorable
training trajectories) and interpretability (by enabling conditional reasoning).

080 GraGR++ Stage 1: Seed-Level Selection (Citeseer)

0.75

Selection at epoch 23..

Validation Accuracy
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Figure 2: Seed-Level Selection. Validation accuracy trajectories across multiple random seeds on
the Citeseer dataset. At the plateau boundary (77, dashed vertical line), the seed with the highest
validation accuracy (s*) is selected for subsequent training.

Stage 1: Pathway Selection Across Random Seeds. At initialization, different random seeds s €
{1,2,...,S} generate diverse optimization trajectories. For each seed s and epoch ¢ € {1,...,T1},
we record the validation loss:

Ls(t) € R. 9
Each trajectory is summarized by its final validation loss at 77 :
L, =45(Th). (10)
We then select the best-performing trajectory:
s* =ar min L,. 11
gse{l,...,S} (in

This ensures that subsequent reasoning is applied only to a trajectory with sufficient convergence
signal, reducing the risk of over-correcting noisy representations (see Fig. [2|for seed-level selection).
In essence, reasoning must be earned, not assumed.

Stage 2: Multipathway Reasoning Within the Model. Once a stable seed trajectory s* is cho-
sen, we extend the GNN with a specialized reasoning pathway for conflict-resolution, following
the GraGR++ method. While other reasoning pathways (e.g., fidelity-preservation, connectivity-
enhancement) are conceptually possible, they are not implemented in this work. Let P denote the
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set of logical pathways (e.g., conflict-resolution, fidelity-preservation, connectivity-enhancement).
At layer [, each pathway p € P has parameters Wél) and computes an output:

HTD = §, (H“% Ap; ng)) , (12)

where A,, is an adjacency mask or feature filter specific to pathway p. The representation at layer
I + 1is updated via a gating mechanism for the conflict-resolution pathway pcons:
H(l-‘rl) _ (1 _ B(l))H(H—l) + ﬁ(l)H(H_l) (13)

base conf

where Héi:;l) is the standard GNN update and H s(l):}l) is the GraGR++ conflict-resolution update.
The gating weight () is dynamically increased when the conflict energy E.oq; exceeds a threshold.
During training of the selected trajectory s*, we track s over epochs. The GraGR++ pathway
is activated only at epochs where E,,r exceeds a predefined threshold, allowing fargeted conflict

resolution without affecting stable updates.

Lemma 3 (Path Selection Criterion) If the update direction d,~ chosen by minimizing conflict (or

maximizing agreement) satisfies VLLuldp* < 0, then dy- is a descent direction for L. (See
Appendix F)

5.2 ADAPTIVE SCHEDULING FOR EFFICIENT TRAINING

Running gradient reasoning at every epoch can be unnecessary, and even harmful, in the early stages
of training when the base GNN is still learning low-level representations. We therefore introduce
a scheduler ~(t) that activates reasoning only once the base model has plateaued, ensuring stable
embeddings before applying more complex corrections.

Gate Definition. Let Ly, (t) denote the loss of the base GNN at epoch ¢, and define the one-step
improvement

AACbase(t) = £base<t - 1) - Ebase(t)~
The reasoning gate is then

V(t) _ 1, Aﬁbase(t) < Nihwesh A T 2 Tmin,
0, otherwise,

where npresh 1S @ small threshold (detecting plateau) and ¢,,,;, is a warm-up period to allow the base
GNN to stabilise.

(14)

Training with Gating. When ~(¢) = 1, conflict detection, alignment, and gradient-based reasoning
are applied; otherwise, training proceeds with the base GNN alone:

(L(RORR(), () = 1,
Leon(t) = {cbm@, A1) = 0.

This prevents reasoning parameters from being updated prematurely, and saves computation when-
ever y(t) = 0. (See Appendix D for full algorithm)

6 RESULTS AND BENCHMARKS

Across the six node-classification benchmarks (Refer Table H) in Appendix), GraGR and GraGR++
consistently boost baseline GNNs, with most improvements evident in GCN and SAGE models
(Table [T). Gains are particularly pronounced on challenging datasets such as Cornell, Texas, and
Wisconsin, where vanilla baselines converge to much lower accuracies, while GraGR++ models
achieve substantially higher validation and test scores. GIN shows less stability, with GraGR occa-
sionally underperforming, suggesting sensitivity to architecture-specific dynamics. The validation
accuracy curves in Figure 4| (See Appendix A.2) further illustrate this trend: GraGR and GraGR++
converge faster and to higher plateaus than baselines, especially in high-variance datasets like Cor-
nell and CiteSeer. Notably, GraGR++ occasionally underperforms relative to GraGR, which may
be attributed to its added complexity and higher sensitivity to noisier datasets. (see Appendix E for
Ablation Studies and Appendix G for Computational Analysis)
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Table 1: Results of baseline GNNs vs GraGR vs GraGR++ models across 6 datasets. Best Test/Val
values within each model family are highlighted in green.

Model CiteSeer Cora

Test Val F1 AUC Test Val F1 AUC
GCN 54.02 60.27 51.03 86.01 72.95 71.68 72.94 92.97
GCN + GraGR 65.01 67.43 61.12 86.57 79.82 78.82 78.22 94.98
GCN + GraGR++ 67.21 67.83 63.23 88.22 77.11 78.01 75.92 94.56
GAT 65.72 67.63 60.83 85.87 77.55 76.63 77.01 95.83
GAT + GraGR 63.74 65.21 59.85 83.61 78.82 77.63 77.45 95.34
GAT + GraGR++ 67.62 67.84 63.32 84.91 67.41 68.41 68.15 9291
GIN 50.01 50.21 47.85 77.94 66.25 63.41 64.13 89.32
GIN + GraGR 25.32 23.62 9.94 51.71 4221 39.61 37.42 83.96
GIN + GraGR++ 23.23 26.25 16.45 56.87 52.03 52.22 54.91 85.13
SAGE 60.71 64.02 57.45 84.31 78.55 76.81 76.91 94.63
SAGE + GraGR 67.15 68.01 61.34 86.59 79.26 76.67 79.19 94.23
SAGE + GraGR++ 67.44 68.92 62.93 82.83 79.64 79.23 79.12 94.82
Model Cornell PubMed

Test Val F1 AUC Test Val F1 AUC
GCN 35.11 52.52 21.65 62.15 68.15 66.02 66.51 87.12
GCN + GraGR 29.72 51.93 9.42 50.12 77.22 79.62 76.41 90.26
GCN + GraGR++ 51.44 55.91 24.92 51.65 76.91 79.02 76.32 88.94
GAT 37.82 54.23 13.75 56.52 76.73 78.62 75.23 87.26
GAT + GraGR 43.21 55.91 17.42 58.43 77.05 81.42 76.21 89.62
GAT + GraGR++ 40.51 55.63 14.53 49.02 76.62 80.21 75.41 89.13
GIN 45.93 57.34 36.55 67.41 49.13 49.83 42.63 67.25
GIN + GraGR 40.53 52.55 11.41 36.01 63.42 66.02 62.32 80.04
GIN + GraGR++ 5141 58.91 24.65 46.34 68.53 67.41 66.62 81.05
SAGE 51.42 55.91 24.74 48.92 73.42 73.82 7091 85.02
SAGE + GraGR 54.11 67.81 38.32 67.92 74.31 77.62 72.93 85.42
SAGE + GraGR++ 75.72 81.42 66.43 81.61 74.52 78.22 73.63 85.83
Model Texas Wisconsin

Test Val F1 AUC Test Val F1 AUC
GCN 48.62 61.01 22.31 62.04 39.22 50.03 21.31 56.61
GCN + GraGR 64.92 59.32 19.72 63.94 52.94 55.03 29.94 64.32
GCN + GraGR++ 59.51 62.72 19.65 61.04 53.32 57.51 31.91 61.22
GAT 59.51 54.22 15.22 62.95 52.94 57.51 13.85 68.71
GAT + GraGR 64.92 52.51 20.01 63.84 49.02 60.01 19.12 63.12
GAT + GraGR++ 67.63 59.31 29.92 65.92 54.91 60.31 19.41 63.81
GIN 51.42 54.42 17.92 62.91 45.13 52.53 17.92 51.82
GIN + GraGR 64.92 52.53 19.72 61.91 51.01 56.32 27.12 60.91
GIN + GraGR++ 65.81 57.52 21.74 65.94 54.03 57.23 29.62 65.21
SAGE 73.01 77.92 66.21 72.01 45.12 55.02 14.75 42.34
SAGE + GraGR 75.71 79.23 48.54 74.12 64.71 76.32 42.82 82.15
SAGE + GraGR++ 56.83 66.12 27.74 68.01 65.83 77.53 44.52 84.92

We evaluated GraGR’s Multi-task learning on three classification datasets: OGB-MolHIV, PRO-
TEINS, and MUTAG, each configured with five tasks. Table summarises the results. On MolHIV,
GraGR achieves the highest accuracy (0.626), clearly outperforming all baselines, while CAGrad
provides the second-best performance (0.545). On PROTEINS, PCGrad yields the strongest accu-

Table 2: Multi-task classification results on OGB-MolHIV, TUDataset PROTEINS, and TUDataset
MUTAG. Best results are highlighted in dark green; second-best in light green.

Method Final Loss | Accuracy Method Final Loss | Accuracy
Vanilla Average 4.535 0.350 Vanilla Average 4427 0.332
CAGrad 4.538 0.545 CAGrad 4.426 0.372
GradNorm 4.563 0.429 GradNorm 4.460 0.295
PCGrad 4.538 0.361 PCGrad 4.430 0.507
GraGR 4.575 0.626 GraGR 4.436 0.333
GraGR++ 4.620 0.299 GraGR++ 4.436 0.374
OGB-MOolIHIV (5 tasks) TUDataset PROTEINS (5 tasks)

Method Final Loss Accuracy

Vanilla Average 4.885 0.411

CAGrad 4.888 0.473

GradNorm 4.903 0.355

PCGrad 4.874 0.225

GraGR 4.906 0.480

GraGR++ 4.865 0.571

TUDataset MUTAG (5 tasks)
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racy (0.507), with GraGR++ ranking closely as the second-best (0.374). On the smaller MUTAG
dataset, GraGR++ stands out with the highest accuracy (0.571), followed by GraGR (0.480). These
results highlight that GraGR variants are highly competitive across tasks, consistently securing top
or second-best positions, while baseline methods such as MGDA and GradNorm often lag behind.

7 FROM GRADIENT DYNAMICS TO INTERPRETABLE FEATURES

While GraGR primarily addresses gradient conflict in GNN optimization, its deeper contribution
lies in rendering gradients into interpretable signals. If gradients encode how each node contributes
to learning, then constraining and decomposing them provides not only stability but also human-
understandable insights into the model’s behaviour. Prior work in vision has shown that gradients
can reveal salient input features Xuanyuan et al|(2022), and initial GNN explainers have explored
gradient-based attribution |Simonyan et al.| (2014). GraGR enables an interpretability-aware train-
ing regime: the same gradients used for optimization can be re-purposed to explain what the model
learns, when, and where in the graph. This is aligned with recent calls for explanation-aware train-
ing Sengupta & Rekik!(2025), but extended here to gradient dynamics. (Refer Appendix B)

7.1 INTERPRETABLE GRADIENT CONTEXTS AND LLM DECODING

To produce per-node, human-readable explanations grounded in training dynamics, we summarize
each node v using six gradient-derived features (see Appendix B for full definitions). We collect
these into a compact context vector

Cy = [wconﬂict(v)a ¢stability(v)v Vinfluence (), Yeconfidence (V); Vrole(V), 1/)rec:eptiverless(vﬂ € RS (15)

This context is mapped through a lightweight Reasoner network (MLP) to obtain an explanation
embedding
e, = Reasonery(c,) = Wo o(Wic, + b1) + ba, (16)

which serves as both (i) an auxiliary signal for the GNN classifier and (ii) structured input for a large
language model (LLM). Given a prediction ¥,,, we query the LLM with a formatted prompt:

T, = LLM (prompt(cv, Qv)), (17

yielding a natural-language explanation 7, for node v.

LLM Prompt for Gradient Context

Node ID: v; Context vector: ¢,

Prediction: ¢,; True label: y, (Optional)

Task: Generate a short natural-language explanation of the prediction based on the context
vector. If the context indicates low reliability, suggest a possible corrective action.

The outputs of this prompt are concise, node-level explanations that expose how each node’s gradient
dynamics shaped its prediction. Illustrative examples, including both conflict-prone (Node 42) and
stable node (Node 17), are provided in Appendix B.1 (Interpretability Explanations).

8 CONCLUSION

We introduced GraGR, a gradient-as-reasoning framework that unifies optimization stability and
interpretability in GNNs. By aligning gradients, GraGR/GraGR++ not only reduce conflict energy
but also yield ante-hoc, node-level explanations via interpretable gradient contexts. Experiments
across benchmarks show consistent gains in both performance and explanation coherence. This
work moves toward trustworthy, explanation-aware graph learning, where gradients act as both
optimization signals and human-readable reasoning.

Looking ahead, we ask: can gradient contexts be extended to capture causal influences in dynamic
or heterogeneous graphs? Exploring such directions Mukherjee et al|(2025) may bring us closer to
models that not only predict reliably but also reason in forms humans can follow
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REPRODUCIBILITY AND DEMOS

Our implementation of GraGR/GraGR++, along with scripts to reproduce all experiments, is pub-
licly available at: https://anonymous.4open.science/r/GraGR-30D7. Comprehen-
sive experimental settings, including dataset details, preprocessing, evaluation models, hyperpa-
rameter values, fine-tuning techniques, and hardware/software configurations, are provided in the
Appendix section in Table 5.

We also release visual demonstrations of GraGR’s behavior, such as gradient transformation and
conflict healing animations. (Videos must be downloaded to view, as they do not play directly in-
browser.)

e https://anonymous.4open.science/r/GraGR-30D7/visualizations/
gragr_transformationl.mp4

* https://anonymous.4open.science/r/GraGR-30D7/visualizations/
gragr_healing_graph.mp4

Further time and space complexities are illustrated in Appendix C, while computational analysis
included in Appendix G.

REFERENCES

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. GradNorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In Jennifer Dy and Andreas
Krause (eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 794-803. PMLR, 10-15 Jul 2018. URL
https://proceedings.mlr.press/v80/chenl8a.htmll

Jean-Antoine Désidéri. Multiple-gradient descent algorithm (mgda) for multiobjective optimiza-
tion. Comptes Rendus Mathematique, 350(5):313-318, 2012. ISSN 1631-073X. doi: https://doi.
org/10.1016/j.crma.2012.03.014. URL https://www.sciencedirect.com/science/
article/pii/S1631073X12000738.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel
programming for hyperparameter optimization and meta-learning. In Jennifer Dy and Andreas
Krause (eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 1568-1577. PMLR, 2018. URL https:
//proceedings.mlr.press/v80/franceschil8a.html.

Chuqin Geng, Ziyu Zhao, Zhaoyue Wang, Haolin Ye, and Xujie Si. Extracting interpretable logic
rules from graph neural networks, 2025. URL https://arxiv.org/abs/2503.19476,

Yun He, Xue Feng, Cheng Cheng, Geng Ji, Yunsong Guo, and James Caverlee. Metabalance:
Improving multi-task recommendations via adapting gradient magnitudes of auxiliary tasks. In
Proceedings of the ACM Web Conference 2022, WWW °22, pp. 2205-2215, New York, NY, USA,
2022. Association for Computing Machinery. ISBN 9781450390965. doi: 10.1145/3485447.
3512093. URL https://doi.org/10.1145/3485447.3512093.

Mingxuan Ju, Tong Zhao, Qianlong Wen, Wenhao Yu, Neil Shah, Yanfang Ye, and Chuxu Zhang.
Multi-task self-supervised graph neural networks enable stronger task generalization. In ICLR,
2023. URL https://openreview.net/forum?id=1tHAZRgftM.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gra-
dient descent for multi-task learning. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
PS. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Pro-
cessing Systems, volume 34, pp. 18878-18890. Curran Associates, Inc., 2021. URL
https://proceedings.neurips.cc/paper_files/paper/2021/file/
9d27£df2477ffbff837d73ef7ae23db9-Paper.pdfl

10


https://anonymous.4open.science/r/GraGR-30D7
https://anonymous.4open.science/r/GraGR-30D7/visualizations/gragr_transformation1.mp4
https://anonymous.4open.science/r/GraGR-30D7/visualizations/gragr_transformation1.mp4
https://anonymous.4open.science/r/GraGR-30D7/visualizations/gragr_healing_graph.mp4
https://anonymous.4open.science/r/GraGR-30D7/visualizations/gragr_healing_graph.mp4
https://proceedings.mlr.press/v80/chen18a.html
https://www.sciencedirect.com/science/article/pii/S1631073X12000738
https://www.sciencedirect.com/science/article/pii/S1631073X12000738
https://proceedings.mlr.press/v80/franceschi18a.html
https://proceedings.mlr.press/v80/franceschi18a.html
https://arxiv.org/abs/2503.19476
https://doi.org/10.1145/3485447.3512093
https://openreview.net/forum?id=1tHAZRqftM
https://proceedings.neurips.cc/paper_files/paper/2021/file/9d27fdf2477ffbff837d73ef7ae23db9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/9d27fdf2477ffbff837d73ef7ae23db9-Paper.pdf

Under review as a conference paper at ICLR 2026

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang
Zhang. Parameterized explainer for graph neural network. In Proceedings of the 34th Interna-
tional Conference on Neural Information Processing Systems, NIPS *20, Red Hook, NY, USA,
2020. Curran Associates Inc. ISBN 9781713829546.

Kunal Mukherjee, Zachary Harrison, and Saeid Balaneshinkordan. Z-REx: Human-interpretable
GNN explanations for real estate recommendations. In Machine Learning on Graphs in the Era
of Generative Artificial Intelligence, 2025. URL https://openreview.net/forum?id=
dLMX1iTI1Xhx.

MoonJeong Park and Dongwoo Kim. Taming gradient oversmoothing and expansion in graph neural
networks, 2024. URL https://arxiv.org/abs/2410.04824.

Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In Maria Florina Bal-
can and Kilian Q. Weinberger (eds.), Proceedings of the 33rd International Conference on Ma-
chine Learning, volume 48 of Proceedings of Machine Learning Research, pp. 737-746. PMLR,
2016. URL https://proceedings.mlr.press/v48/pedregosal6.html.

Yousef Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2003.

Prajit Sengupta and Islem Rekik. X-node: Self-explanation is all we need, 2025. URL https:
//arxiv.org/abs/2508.10461l

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps, 2014. URL https://arxiv.
org/abs/1312.6034.

Han Xuanyuan, Pietro Barbiero, Dobrik Georgiev, Lucie Magister, and Pietro Li6. Global
concept-based interpretability for graph neural networks via neuron analysis. arXiv preprint
arXiv:2208.10609, 2022.

Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. GNNExplainer:
generating explanations for graph neural networks. Curran Associates Inc., Red Hook, NY,
USA, 2019.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. In Proceedings of the 34th International Conference on
Neural Information Processing Systems, NIPS *20, Red Hook, NY, USA, 2020. Curran Associates
Inc. ISBN 9781713829546.

Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. Xgnn: Towards model-level explanations of
graph neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery amp; Data Mining, KDD 20, pp. 430-438. ACM, August 2020. doi:
10.1145/3394486.3403085. URL http://dx.doi.org/10.1145/3394486.3403085.

Youmin Zhang, Qun Liu, Guoyin Wang, William Cheung, and Li Liu. Gear: Learning graph neural
network explainer via adjusting gradients. Knowledge-Based Systems, 302:112368, 08 2024. doi:
10.1016/j.knosys.2024.112368.

11


https://openreview.net/forum?id=dLMXiIlXhx
https://openreview.net/forum?id=dLMXiIlXhx
https://arxiv.org/abs/2410.04824
https://proceedings.mlr.press/v48/pedregosa16.html
https://arxiv.org/abs/2508.10461
https://arxiv.org/abs/2508.10461
https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/1312.6034
http://dx.doi.org/10.1145/3394486.3403085

Under review as a conference paper at ICLR 2026

A ADDITIONAL PROOFS AND QUALITATIVE EXAMPLES

A.1 EMBEDDING PLOTS SHOWING DETECTION OF CONFLICT NODES
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Figure 3: Embedding space of PubMed dataset showing detection of conflict nodes after GraGR++
getting activated at Epoch 30 (due to the adaptive scheduler concept).

A.2 VALIDATION ACCURACY PLOTS

100 PubMed Dataset Cora Dataset

Validation Accuracy (%)
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Figure 4: Validation accuracy over 100 epochs for 4 datasets (PubMed, Cora, CiteSeer, Cornell).
GraGR and GraGR++ consistently achieve higher and faster convergence compared to baselines.
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A.3 GRAGR COMPONENTS EFFECT ANALYSIS - CORA DATASET
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Figure 5: Node embeddings on the Cora dataset after Laplacian smoothing in a Single Epoch. Top:
after conflict reduction using GraGR.
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Cora Dataset: Gradient Alignment Component Effect

Alignment Improvement: +0.0193
Better alignment — smoother gradients

% B Before Alignment (Mean: 0.815)
g Bmm  After Alignment (Mean: 0.834)
A

0.5 0.6

0.7 0.8 0.9
Neighborhood Alignment Score

Figure 6: Gradient Alignment. Distribution of neighborhood alignment scores before and after

applying GraGR. This highlights how gradient alignment improves local consistency in node repre-
sentations.

Cora Dataset: Topology-Informed Conflict Analysis
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Figure 7: Topology-Informed Processing. Scatter plot of node degree versus clustering coefficient,

illustrating how conflict nodes relate to graph topology. This demonstrates GraGR’s topology-aware
conflict detection.
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Before: Uniform Message Passing
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Figure 8: Gradient-Based Attention component of GraGR. The upper image shows uniform mes-

sage passing where all edges have equal weight (grey) to the conflict node. The lower image illus-

trates how gradient-based attention reweights the edges, thereby altering the message aggregation to

the conflict node.
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B INTERPRETABILITY

To understand how and where GNNs learn, we propose mapping each node’s raw gradient into a
six-dimensional feature space: (1) conflict intensity, (2) trajectory stability, (3) multi-hop influence,
(4) confidence—gradient alignment, (5) topological learning role, and (6) correction receptiveness.
These features can be monitored ante-hoc (during training) or post-hoc (after training), enabling
continuous interpretability of the learning process.

a. Gradient Conflict Intensity (¢coniict) This feature quantifies local disagreement between a
node’s learning signal and its neighbors. Formally:

Veonttict (1) = Hg llgill (1 — cos(g:, &:)) (13)
Here |g;| is the ¢3 norm of the gradient at node 4, g; = m >_jen(i) 95 18 the average neighbor gra-
dient, and py = & Zj\]:l |g;| is the global mean magnitude. The function cos(a, b) = a'b/(|a|(b])

denotes cosine similarity.

b. Learning Trajectory Stability (}saabitity) This feature measures coherence of gradient direc-
tions among a node’s neighbors, reflecting neighborhood harmony. We define:

. 1 .
wstability(z) = N Z COS(gj,gk) (19)
( 2 ) J,kEN ()
i<k

where §; = g;/|g;| are unit gradients. In words: N(2): set of neighbors of 7. |N(7)|: number of

neighbors. The denominator (‘Néi)‘) normalizes by the number of unordered neighbor pairs. g;:
normalized (unit) gradient of neighbor ;.

c. Multi-hop Influence Strength (infience) We quantify how strongly a node’s gradient propa-
gates to distant parts of the graph. Using adjacency powers:

1

winﬂuence(l) = W

([4%llel]; + 0.5 [4%g],) (20)
where: A is the graph’s adjacency matrix (binary or weighted). (A2|g|); and (A3|g|); are the ith
entries of A2|g| and A3|g|, capturing 2-hop and 3-hop aggregated gradient magnitudes. |g| is the
vector of all node gradient norms |g;|. deg(?) is the degree of 3.

d. Confidence—Gradient Relationship (¢confidence) This feature connects model confidence with
the learning signal. Let ¢; = maxy, softmax(z;) be the predicted class probability at node 4, and let
Gi = (|lgi| — min; |g;|)/(max; |g;| — min; |g;|) be the min-max—normalized gradient magnitude.
We compute:

wconﬁdence(i) = - COS(C; g) (21)
where c and g are the vectors of ¢; and g; values over all nodes. In practice this yields a single scalar
correlation, then we assign it per-node for analysis.

e. Topological Learning Role (¢oe) We classify nodes into functional “roles” based on degree
and gradient behavior:

2.0, if Hub: deg(i) > Pso(deg) A [lgill > Pro(llgll)
Yrore(i) = 1.5, if Bridge: Pyo(deg) < deg(i) < Pgo(deg) A cos(gi, &) < 0.5 22)
role ) 1.0, if Follower: cos(g;,g;) > 0.7

0.5, otherwise (Outlier)

Here, Py (X) denotes the kth percentile of a distribution, e.g., Pgo(deg) is the 80th percentile of
node degrees. In other words:

* Hub (score 2.0): Top-tier degree and large gradient. These nodes are structural centers
driving learning.
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* Bridge (1.5): Moderately high degree but low alignment (neighbors have differing gradi-
ents); they connect subgraphs.

* Follower (1.0): Strongly aligned with neighbors (high cosine similarity) — they simply
mimic local updates.

* Qutlier (0.5): None of the above, indicating isolated or noisy nodes.

f. Correction Receptiveness (¢)receptive) This feature predicts how much a node stands to benefit
from a gradient-based correction. It combines normalized gradient size, misalignment, and neigh-
borhood variance:

Yreceptive () = 0.4 - normGrad (%) + 0.35 - misalign(¢) + 0.25 - variance(7) (23)
where:
normGrad(i) = &l mmj.|gj| 24)
max; |g;| — min; [g;|
misalign (i) = 1 — cos(g;, &) (25)
variance(z) = Var ({|g;| |7 € N(i)}) (26)

B.1 INTERPRETABILITY EXPLANATIONS

To concretize our interpretability framework, we present examples of node-level gradient feature
analysis. The structured outputs can be visualized in shaded analysis boxes, where each node’s
statistics are linked to a natural language explanation generated by a large language model (LLM).
This extends the X-Node paradigm to gradient dynamics. Node-wise examples of explanations for
both the conflict node and the normal node are provided as follows.

Node-17 Feature Analysis (Normal Node)

Node Information:
* Node ID: 17
* Dataset: WikiCS Citation Network
¢ True Label: 7
* Predicted Label: 7
Gradient Feature Extracted:

1. Conflict Intensity (0.0252): Low value indicates the node’s learning aligns well
with its neighbors, showing coherent local learning.

2. Trajectory Stability (1.0000): High stability reflects smooth and consistent gradi-
ent directions among neighboring nodes.

3. Multi-hop Influence (261.4381): Strong gradient propagation across the graph,
indicating the node has a global impact on learning dynamics.

4. Confidence-Gradient Correlation (0.0055): Slight misalignment between confi-
dence and gradient magnitude, suggests calibration.

5. Correction Receptiveness (N/A): Low expected benefit from gradient correction.

LLM Explanation: The correct classification of Node 17 can be attributed to the model’s
ability to capture both local and global dynamics within the citation network. The low con-
flict intensity (0.0252) indicates that the node’s learning is highly aligned with its neighbors,
reflecting a well-structured local research cluster. The trajectory stability of 1.0000 further
confirms that gradient directions among neighbors are coherent, supporting consistent up-
dates. The node’s high multi-hop influence (261.4381) suggests that its learning signal prop-
agates strongly across the graph, highlighting its importance in shaping the model’s global
understanding of related research topics. Despite a small confidence—gradient misalignment
(0.0055), the model maintains high prediction reliability. The low correction receptiveness
implies that the node’s current learning is stable and would not significantly benefit from
gradient-based interventions.
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Node-42 Feature Analysis (Conflict Node)

Node Information:
* Node ID: 42
* Dataset: WikiCS Citation Network
* True Label: 3
¢ Predicted Label: 7
* Model Confidence: 0.541
Gradient Features:

1. Conflict Intensity (1.942): High; strongly misaligned with neighbors.
Trajectory Stability (0.231): Low; neighbors have incoherent updates.
Multi-hop Influence (48.7): Moderate; impact is localized.
Confidence-Gradient Correlation (-0.227): miscalibrated confidence.

2o B2

Correction Receptiveness (0.8): High expected benefit from gradient-based
correction.

LLM Explanation: Node 42 represents a misclassified case where gradient dynamics
highlight pronounced local instability. The high conflict intensity (1.942) shows that
its updates diverge sharply from its neighbors, while the low trajectory stability (0.231)
confirms that surrounding nodes are also updating in inconsistent directions. This suggests
that Node 42 lies near a boundary of overlapping communities, where the model cannot
resolve conflicting label signals. As a result, its representation drifts away from the true
class structure, leading to an incorrect prediction.

Its moderate multi-hop influence (48.7) indicates that these inconsistencies do not remain
isolated but spill into a local region of the graph, subtly affecting nearby representations. The
negative confidence—gradient correlation (-0.227) further reveals miscalibration: the model
assigns a moderate confidence (0.541) despite unstable evidence, pointing to overconfidence
in a weakly supported decision. Crucially, the high correction receptiveness suggests that
the node is particularly amenable to gradient-based interventions. Targeted strategies such
as neighborhood reweighting, local smoothing, or conflict-aware gradient adjustments could
realign Node 42 with its true label and stabilize its neighborhood. This makes it a key
candidate for correction, where improving one unstable node could propagate benefits across
its local cluster.
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C TiIME AND SPACE COMPLEXITIES

Understanding the computational efficiency of different gradient conflict resolution methods is cru-
cial when selecting an approach for multi-task learning. The table below highlights a clear
trade-off between simplicity and sophistication. The most efficient methods like Vanilla averaging,
GradNorm, and PCGrad which all run in linear time with respect to the number of tasks. They are
well suited for large-scale problems where efficiency matters, but their ability to properly resolve
conflicts is limited. GradNorm balances gradient magnitudes, and PCGrad removes direct conflicts,
but both still work with fairly local adjustments.

Table 3: Computational complexity of gradient conflict resolution methods. 7' denotes the number
of tasks and P the number of model parameters.

Time ace cales w.r.t.  Memor
Method Complexity Corsnpplexity ° Tasks Overhea)(ll
Vanilla Average (GD) O(T x P) O(T x P) Linear Low
GradNorm O(T x P) O(T x P) Linear Low
PCGrad O(T x P) O(T x P) Linear Low
CAGrad O(T? x P) O(T x P) Quadratic Low
GraGR O(T? x P) O(T x P) Quadratic Low
GraGR++ O(T*x P) O(T x P+ M)  Quadratic Medium

By contrast, CAGrad and the GraGR variants explicitly reason over task pairs, which makes them
more principled in handling gradient interference. However, this comes with a quadratic cost in the
number of tasks, making them less scalable as T" grows. GraGR++ goes a step further by adding
memory of past gradients, which could help stabilize training, but also introduces additional storage
requirements.

In practice, this means that linear methods are preferred when the task count is large or training
speed is critical, whereas GraGR-style approaches may be justified in smaller-scale settings where
resolving conflicts thoroughly is more important than speed.

D ADAPTIVE SCHEDULING ALGORITHM

Algorithm 1 GraGR with Adaptive Scheduling

1: fort =1to T do

2 Train base GNN; compute Lpyse ().

3:  Compute y(t).

4: ify(t) =1 then
5 Detect conflicts; apply alignment — gradient attention.
6: Update 6, ¢ with corrected loss.
7
8
9

10:

else
Update 6 with base gradients only.
end if
end for
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E ABLATION STUDIES

Table 6: Ablation study of GraGR. Best results in green; second-best in light green.

Model Val Acc Test Acc
Baseline GCN 0.762 0.749
Baseline GAT 0.770 0.738
Baseline GIN 0.586 0.533
Baseline SAGE 0.780 0.754
GraGR (Full) 0.796 0.778
GraGR w/o Conflict 0.776 0.762
GraGR w/o Alignment 0.788 0.772
GraGR w/o Attention 0.788 0.767
GraGR w/o Meta 0.784 0.765
GraGR-++ w/o Adaptive Scheduling 0.784 0.768
GraGR++ w/o Multiple Pathways 0.790 0.763

To better understand the contribution of each component in GraGR, we conducted an ablation study
on the PubMed dataset. Results are summarized in Table [6] with additional visualizations as in
Fig[0] Compared to baseline GNNs, GraGR provides consistent gains, pushing GCN from 74.9%
to 77.8% test accuracy and SAGE from 75.4% to 77.8%.

Removing individual components reveals their importance: dropping conflict resolution or meta-
optimization reduces performance by 1-1.5%, while removing alignment or attention also leads to
noticeable drops as also shown in Fig[9]

1 2 3 4 5 6 7
0.80 - \ | | 1 | 1 )
=e=Validation Accuracy

Test Accuracy

0.79 -

Accuracy

0.77 =

0.76 -

0.75

Model Configuration

Figure 9: Ablation study results on PubMed dataset. Line plot of accuracy trends over different vari-
ants. (GraGR (Full) achieves the best performance with 79.6% validation and 77.8% test accuracy).
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F DETAILED PROOFS AND ADDITIONAL MATHEMATICAL CLARIFICATIONS

Notation and Preliminaries Let L denote the combinatorial graph Laplacian (symmetric, positive
semidefinite), and A > 0. We sometimes write A, for the maximum graph degree. Scalars 5,
0, Lp, and L., denote Lipschitz or alignment constants as used below. Vector norms are Euclidean
unless stated.

LEMMA 1: CONFLICT PROJECTION ORTHOGONALITY
Lemma 1 (Conflict projection validity). Let g,,, gty € R? with g, # 0. Define

/ g;rgctx
Gy = Gv — 5 Yetx-
HgCtXH

Then (g,) " getx = 0, hence cos(g’,, getx) = 0 provided g/, # 0. In particular, if cos(g,, getx) < 0,
then cos(g.,, getx) > 0.

Proof. A simple inner-product expansion shows:

(/T _ T _g;rgctx T -0
9y) Getx = Gy Getx PE YGotxGetx = U.
ctx

Thus g/, is orthogonal to gt, concluding the claim. O

Lemma 2: Gradient Smoothing via Regularization Let

1 A
F(g) =5l —al* + 5(9’)TL9’-

Its unique minimizer g* satisfies
(I+AL)g" =g.
Two iterative strategies converge to g*:

1. Gradient Descent (GD):
g/t+1 — g/t _ n[g/t _ g+ )\Lg/t]

This GD converges for 0 < 7 < 2/(1 + Amax(L)). Noting Apax(L) < 2Aax, a simple
sufficient bound is < 1/(1 4+ 2AAnax)-

2. Jacobi Iteration: Write (I + AL) = D + R where D is its diagonal (invertible) and R its
off-diagonal part. The classical Jacobi update is:

g/(k}-‘rl) — D_l(g o Rg/(k)),

which converges when the spectral radius p(D~'R) < 1, e.g., if the system is strictly
diagonally dominant Saad|(2003).

Proof sketch. - GD convergence follows from the fact that VF = (I + A\L)g’ — g is Lipschitz with
constant ||/ +AL|2 = 1+ A\nax(L). - Jacobi convergence is guaranteed under the classical spectral
radius condition. [

References for iterative solvers - Jacobi method and convergence: standard result that
p(D7'R) < 1 ensures convergence Saad| (2003). - Bound Apax(L) < 2Ap.x: standard spec-
tral graph theory.

Theorem 1: Attention-Based Descent Assume:

* The node-specific loss L(h) is S-smooth in h,;
* The message direction is d,, = ZUEN(u) Qo WO hys
* There exists ¢ > 0 such that Vj, L - d,, < —6.
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Then for any step-size satisfying

0< n < AAAEﬁigg,
Blldul?’

the one-step update h,, < h,, — nd,, strictly decreases L.

Proof. From the S-smoothness descent lemma:
T Bn? 2
L(hy —ndy) < L(ha) =1V, L' dy + THduH .
Since V},, L"d, < —4, choose 7 small enough to ensure the RHS is strictly less than L(h,,). O

Theorem 2: Meta-Scaling Convergence Under these assumptions:

1. The inner parameter 6* () minimizing L(#; v) exists uniquely and is C'* in ;
2. The validation loss J(7) := Lya1(6* (7)) is differentiable with Lipschitz continuous gradi-
ent;

3. Hypergradients V., .J(v) are computed exactly and are Lipschitz (constant L.).

Then gradient descent
Y =4t =0 VLI
converges to a stationary point if 0 < 7 < 2/L,.

Proof sketch. J is smooth and differentiable. Standard convergence of GD on such functions applies.
Existence and differentiability of 6* () with valid hypergradients follow via implicit differentiation
(see|Franceschi et al.| (2018)JPedregosal (2016)) L.

Lemma 3: Path-Selection as Descent Let V L, be the total loss gradient and for each path p,
d,, the induced update direction. If for some path p*,
VL

tota

(e <0,

then d) is a descent direction; a sufficiently small negative step along —d,,» lowers the loss due to
the first-order Taylor result. [

Pathway Activation via Conflict Signals. We modulate /31(7[) dynamically using gradient-based
conflict measures. Recall that task gradients g;(v) = V, £; at node v may conflict when g, g; < 0.
Define the conflict energy:

97 9;
Eeont = Y _ max (0, J) . (27)

Tgi ;]

If Eont or the variance of pairwise similarities S;;(v) exceeds a threshold, we increase the weight

BI()I,) for a specialized pathway p’ (e.g., conflict resolution). This mechanism enables logical routing:
when losses plateau or oscillate, alternative reasoning routes are triggered.

G COMPUTATIONAL ANALYSIS

The computational analysis in Table [7| highlights a trade-off between accuracy gains and resource
demands. While GraGR and GraGR++ frequently converge faster than baselines, they occasion-
ally incur higher memory overheads, especially in smaller datasets where the added regularization
expands intermediate representations (e.g., GCN+GraGR on CiteSeer and GIN+GraGR on Texas).
This effect is less pronounced in larger benchmarks such as PubMed, where the structured regular-
ization stabilizes training and reduces runtime. Interestingly, GraGR++ often balances this trade-
off better, achieving lower epoch times in several settings while keeping memory usage moderate.
GraGR++ imposes additional constraints that can temporarily increase resource usage, but in most
cases it accelerates convergence and reduces training time in later epochs, reflecting its scalability
advantage.
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