Eliminating Positional Bias in LLLMs via Attention Weight Averaging

Anonymous ACL submission

Abstract

Positional bias in LLMs means that changing
the order of input sentences leads to seman-
tic inconsistency in the output. Positional bias
occurs even though the overall meaning of the
input remains the same. Recent studies have ob-
served and verified that positional bias is preva-
lent across various LLMs and tasks. Our study
proposes the Average Attention Infer module,
which starts from the calculation of the atten-
tion mechanism and aims to reduce positional
bias by computing the average attention weight
of different arrangements. We design experi-
ments to verify the module’s effectiveness in
mitigating positional bias. It is also verified that
the LLMs can still maintain their language func-
tions after debiasing, which makes our module
easy to extend to other tasks. Methods for se-
lecting layers and permutations are provided
to accelerate the module’s computation further.
We release the code' and hope this research can
inspire the design and research of a new genera-
tion of attention modules, thereby contributing
to the fundamental elimination of positional
bias.

1 Introduction

Positional bias in large language models (LLMs)
can be interpreted differently depending on the con-
text. In the MCQA setting, Wang et al. (2023) in-
terprets it as the model’s inherent preference for
certain positional options. The issue we study, how-
ever, is a type of positional bias that occurs in text
generation models. Figure 1 specifically illustrates
the meaning of this kind of positional bias. Simply
put, positional bias, which is studied in our paper,
refers to the phenomenon where the semantic out-
put of the model changes significantly, even though
there are changes in position but minimal changes
in semantics in the model’s input.

!Code and results are available at https://anonymous.
4open.science/r/Average-Attention-Infer-BD1D/.

Question: Which of the following best describes the structure
that collects urine in the body?

Option: Option:
Bladder Kidney
Kidney Bladder
Ureter Ureter
Urethra Urethra
Answer: Answer:
Bladder Kidney

(a) positional bias in MCQA

Question: What government position was held by the woman
who portrayed Corliss Archer in the film Kiss and Tell?

Facts: Facts:

Kiss and Tell is a ... Kiss and Tell is a ...

Shirley Temple ... Meet Corliss Archer...
Meet Corliss Archer... A Kiss for Corliss...

A Kiss for Corliss... Shirley Temple ...

Answer:Chief of Protocol Answer:Shirley Temple

(b) positional bias in open-ended QA

Figure 1: Positional bias in MCQA and open-ended QA.
Position-changed words are marked in yellow.

The existence of positional bias significantly un-
dermines the usability of LLMs in various domains.
For example, in the evaluation task, which uses
LLMs to compare and evaluate multiple candi-
dates, and in multi-condition question answering,
which requires LLMs to reason and respond based
on given conditions. Positional bias is frequently
studied in the context of multiple-choice question
answering (MCQA) because MCQA naturally con-
tains commutative parts. The order of options in
MCQA is generally considered not to influence
the final result, as stated in Wang et al. (2024a),
A LLM can be deemed proficient in answering a
specific MCQA-format question only if it consis-
tently predicts the same correct answer across all
permutations of option orders. This should also
be followed in open-ended QA tasks (Chen et al.,
2024), where answers of LLMs can not be clas-
sified by options in MCQA. Positional bias is an
inherent robustness issue within LLMs that needs


https://anonymous.4open.science/r/Average-Attention-Infer-BD1D/
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to be addressed.

Contemporary mainstream LLMs are predomi-
nantly based on the attention mechanism of trans-
former architecture (Vaswani et al., 2017; Jiang
et al., 2023; Touvron et al., 2023). Attention com-
putation constitutes a significant portion of the over-
all calculation of output logits. During the atten-
tion computation process, the attention weight is
often interpreted as the degree to which the model
focuses on different parts of the input text (Shin
et al., 2024; Hao et al., 2021; Voita et al., 2019).
Intuitively, one can hypothesize that if LLMs cor-
rectly understand the commutative part, the atten-
tion weight on different options should shift corre-
spondingly with their positions.

We test the attention weights of the same option
in different permutations and observe that the rela-
tive magnitude of the attention weights of tokens
following the options does not shift accordingly
with the permutation changes. Therefore, it is rea-
sonable to believe that one possible cause of posi-
tional bias is that the attention weights of the same
option change with different permutations.

Based on this hypothesis, we propose a debias-
ing module called Average Attention Infer (AAT)
to compute unbiased attention weights for each op-
tion, thereby internally eliminating the positional
bias introduced by the attention mechanism. We
demonstrate that AAT achieves superior debias-
ing effectiveness to strong baselines, especially in
small models with fewer permutations. We further
test AAT on open-ended QA tasks. The results con-
firm that our approach works well and has minimal
detrimental effects on language abilities,

We further investigate the impact of selecting
different layers and permutation sets on the effec-
tiveness of AAT and make trade-offs between per-
formance and latency. We observe that for different
models, only certain layers are order-sensitive.

Summary of Contributions (1) We observed
and validated that the variation of attention weights
with permutations is a major cause of positional
bias; (2) We proposed a training-free plugin module
to correct positional bias in LLMs with attention
mechanisms, achieving significant effectiveness;
(3) Our experiments revealed that positional bias is
model-specific and relatively stable, leading to the
development of a more efficient module based on
this insight.

2 Method

We formulate the problem of positional bias in
LLMs and introduce our method in this part.

2.1 Problem Formulation

In this section, we provide a definition of the po-
sitional bias in LLM. We make the definition as
general as possible to fit it into more tasks.

Question with commutative part Positional
bias is significant only if the input contains some
parts whose permutations make little difference to
the ground truth answer. It’s similar to the com-
mutative property in math, so we name the part as
commutative part.

C is a composition of sentences C =
ci1cocs...cp, C @, Q is the question. ¢; is called
a commutative unit. Ay = Answer(Q) repre-
sents the set of all ground truth answer of Q). 7 is
the set of full permutations of {1,2,3,...,n}.

Definition 2.1 (commutative part) VI € Z, the
corresponding part Cy satisfy commutative term
e, NAqc| S
Aoe, UAgs] = ©
commutative part, noted as C' € C.(Q). € € [0, 1]
is the threshold.

then C is called an e-

As the € is closer to 1, the constraint is more strict.
Questions with commutative parts can be defined
as questions that hold one or more commutative
parts.

One may wonder why we give such an abstract €
rather than restricting the space of ground truth
answers to the same one. This setting is moti-
vated by the consistency of semantic space. The
set of ground truth answers can only be partially
unchangeable under the open-ended QA setting
where the model gives answers from the whole se-
mantic space. Thus, there should always be this
kind of ground truth answers that My answer is
apple, the third answer. and My answer is apple,
the second answer. for different permutations. The
two answers are not the same in semantic space,
so we can’t say that the two ground truth semantic
spaces of permutations are the same. It means that
€ = 1 is almost impossible.

Another concern is how to set the value of e.
As we mentioned above, what we expect is that
ground truth answers without information about the
position should belong to both AQC,1 and AQ% .
However, estimating € in the infinite semantic space
is hard. The threshold is defined for generalisation.
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Figure 2: The framework of Average Attention Infer (AAT); AAT will first generate the permutation according to
option position input and align the attention weight on semantic granularity.

We also cancel the symbol of option in MCQA to
avoid the token bias, which can be explained by
the same pattern as before. This paper’s follow-
ing studies about MCQA are all in the no-symbol
setting.

The commutative term can be different in prac-
tice. While we define it as a kind of Intersection
over Union (IoU), one can set different semantic
similarity functions for different purposes. For
MCQA, the option part can be naturally treated as
commutative part after removing cases including
options like None of above choices and A and B.
The semantic space of answers can be classed into
option labels.

Positional bias We then introduce the positional
bias in questions holding commutative parts. The
positional bias intuitively indicates the situation
that when we replace the A(Q) with M (Q) of a
model M, it will break the definition of commuta-
tive part.

To make positional bias more practical, we intro-
duce a label function Label : R* — R to map an
answer A to a class. Now, we can give a simplified
but practical version of positional bias.

Definition 2.2 (positional bias) 3/,J € g, A
I # J — Label(M(Qc,)) # Label(M(Qc,))

1y, is the full permutations set of commutative
part C C (). We provide two main metrics to
evaluate a model’s performance on a dataset D
from the perspective of positional bias. We will first
test M on the full permutations of D and evaluate
the results.

The first is called the top-k vector. It’s the ex-
pected distribution of the label proportion in de-
scending order among one full permutation batch
for all cases in the dataset.

Definition 2.3 (top-k vector)

Vi = Desc( > Label(M(Qg,)) (1)

I€T
Qe

Viop—i = Softmaz(Eicp(Vigp 1)) (2)

Desc indicates the descending sort function, and
the Label function in top-k should be in one-hot
encoding format. The top-k vector only cares
about how consistent the model’s answers are in
a batch (full permutation of one case). Intuitively,
> Viop—k = 1. The theoretical upper bound of top-
k is a zero-like vector except for the first position.

The second is called permutation invariant ratio,
indicating the proportion of examples in a dataset
D where model M shows no positional bias on
them.

Definition 2.4 (PIR)

3)

[is the indicator function and Vj,, ,[2] represents
the top-2 value of top-k vector. When the top-2
value is 0, the top-k vector achieves the optimal
[1,0,0,...,0]. This also indicates that the model’s
answers to permutations of one case are labelled
into the same class. The upper bound of P/ R is 1
without doubt.



2.2 Attention Weight

In this part, we introduce our motivation and the
important finding about attention weight. LLMs
based on transformer can be modelled as a se-
quence of some transformer blocks. Every block
calculates an attention weight. Concretely, A,, =
Softmaz(QKT). A, refers to attention weight.
Attention is derived from A,, and the value matrix
then. After this, attention should be added to the
residual and normalised as the input of the feed-
forward layer. In the classic scaled dot-product
attention, A,, is often treated as how much atten-
tion the model pays to other tokens in some studies
of interpretability about LLMs (Vashishth et al.,
2019; Serrano and Smith, 2019; Mrini et al., 2020).
An intuitive thought is that despite the permutation,
LLMs should pay the same proportion of attention
weight among all commutative units.

To verify if attention weights change as expect,
we test a random case from CosmosQA (Huang
et al., 2019) on Llama2-13b-chat (Touvron et al.,
2023).
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Figure 3: Attention weights of the full permutation of
one case in CosmosQA, forwarded by Llama2-13b-chat;
sum on all layers and all heads.

Figure 3 shows attention weights of different
choices among different permutations in one case.
Attention weights are forwarded through a softmax
function among all four options. The left in Figure
3 shows that option "I would ...’ and ’None of ... get
dynamic attention weights which vary from 0.75
to 0.1. The right part of Figure 3 indicates that in
permutation 1, the model pays the most attention
to option 'None of ...” while in permutations 2 and
3, the option "I would ..’ is the focused one.

According to the results above, attention weights
sometimes change differently. The softmax value
of an option’s attention weight changes as the per-
mutation changes. This demonstrates that posi-
tional bias has been introduced when we calculate

attention weights.

2.3 Average Attention Infer

We then propose our method, Average Attention
Infer (AAT for short). Figure 2 demonstrates AAT.
The method is straightforward. AAT gets an exter-
nal input called option’s position, generally speak-
ing, positions of commutative units. AAT then
averages attention weights of these positions on
semantic granularity and replaces them with the
corresponding averaged values.

Algorithm 1 Attention Weight Alignment

Input: Wy, Pos, Perm
Output: W4
N. = len(Pos[l]), Bsz = len(Wa4)
Sa =[0] x N,
for each i € [1, Bsz| do
for each j € [1, N, do
SalPermlil[jll+ = Wali|[Poslillj]
end for
end for
Sa=S4/Bsz
W4 = FillAtt(Sa, Wa, Pos, Perm)
return W4

sw =

R R A

Algorithm 1 shows how we calculate the de-
biased attention weight. W4 refers to attention
weights of a batch of full permutations of one ques-
tion. Pos is the position of commutative units in
each permutation of the batch. Perm contains the
information of every permutation in the batch. The
corresponding index is related to the origin order
of every commutative unit. Outputs are debiased
attention weights attending the following calcula-
tion.

The latency mainly comes from external calcula-
tions on different permutations and several layers.
Obviously, the additional time is C Np N1, O(n) for
a question with n commutative parts, where C' is
the number of commutative units in every commu-
tative part (suppose they are the same), Np and Ny,
are the size of the permutation set and the number
of layers. For every single layer, the time complex-
ity of Algorithm 1 is CNpO(n).

We mainly try three kinds of permutation sets. k
refers to the number of commutative units.

single permutation Choose one permutation as
the anchored permutation (always the origin per-
mutation) and apply it to all other permutations.
To., =1{(1,2,3,4,....,k)}



cyclic permutation Following the work in Zheng
et al. (2024), the cyclic permutation is chosen as
below. Every commutative unit shows up at every
position only once.

Toe = {(,i+ 1,k 1,0 — 1)},

full permutation The full permutation.

3 Experiment

In this section, we will first test the effectiveness
of AAT on multiple transformer-based open-source
LLMs, as well as on two multiple-choice question
answering (MCQA) datasets, MMLU (Hendrycks
et al., 2020) and CosmosQA (Huang et al., 2019),
to verify AAT’s ability to eliminate positional bias.
The metrics include accuracy, PIR and top-1 value.
In order to reduce the time consumed by AAT, we
investigate the impact of different layers and per-
mutations on AAT. To assess the disruptive impact
of our method on text, we test the effectiveness of
AAT in the context of text-based multiple-choice
question answering (MCQA). Finally, we demon-
strate how to adapt AAT to open-ended question-
answering tasks and evaluate its effectiveness.

All tests are conducted in a 0-shot setting. Ad-
ditionally, to eliminate bias caused by option la-
belling, all tests are carried out with labels removed
from the options. More details can be found in Ap-
pendix C.

3.1 Debiasing Results

We first test AAT on all layers and the full permu-
tations. Results are shown in Table 1. Since top-1
and PIR are used to measure the consistency of a
model across different permutations of questions,
the results of majority vote on both top-1 and PIR
metrics are guaranteed to achieve the theoretical
optimal value of 1. This is because the majority
vote directly assigns a single answer to the entire
set of permutations. Even if the assignment is made
randomly, the responses are guaranteed to be con-
sistent.

According to the results in Table 1, we find that
the proposed method effectively enhances both PIR
and top-1 values, thereby also achieving an increase
in ACC. The test results across multiple datasets
and models approach the theoretical optimal value
of 1. This confirms our hypothesis that bias in
attention weights is one of the primary sources
of positional bias. Consequently, it validates the
effectiveness of AAT.

The test results on ChatGLM3 indicate that the
Acc of AAT even surpasses that of the majority
vote. This suggests that AAT may have a significant
advantage over the majority vote when the model
size is smaller or when the model’s accuracy is low.

Both the majority vote and AAT methods en-
hance the original model’s accuracy. To explore
the inner difference between these two methods,
we additionally calculate average difference, repre-
senting the proportion of debiased answers by the
method, along with the proportions of three types
of modifications (T->F, F->F, F->T). Due to space
limitations, we only show results on CosmosQA.
Results on MMLU are in Appendix D.1.

The results in Table 2 indicate that AAT’s ad-
vantage over the majority vote lies in its ability to
perform bias reduction when the permutation is
relatively small. In contrast, the effectiveness of
the majority vote improves as the number of per-
mutations increases. However, the majority vote
will introduce more latency than AAT as AAT only
computes several attention weights, while the ma-
jority vote needs to go through the whole network.

For smaller-sized models, such as the
ChatGLM3-6b, AAT outperforms the majority
vote across all permutations. In summary, AAT
generally outperforms the majority vote method
when used with smaller permutations and models
with smaller parameter sizes. Conversely, majority
vote has advantages on larger models and when
permutations involve full permutations. More
experiments about model size are shown in
Appendix D.

3.2 Layer and Permutation

Although ATT achieves commendable results in
eliminating positional bias, its substantial cost lim-
its its applicability. The additional cost mainly
comes from the permutation size and the calcula-
tion on every layer. We test on different layers
and permutations to study how these two factors
make differences in AAT. Only the heatmaps of
Llama2-13b-chat’s APIR are reported below due
to the space. The full results are in Appendix D.
Since Llama2 and Qwenl.5 both have 40 layers,
we conducted sliding tests with a step size of 5 and
a window size of 10. For ChatGLM3, which has 28
layers, we set both the step size and window size
to 4. We choose 6 different permutation sizes. 1, 4
and 24 are the same as before. Other permutations
are formed by one original permutation and n — 1
random permutations from the full permutation set.



CosmosQA MMLU

Acc Top-1 PIR Acc Top-1 PIR

origin 0.5780 0.8119 0.3010 0.5109 0.7753 0.3140

MV 0.6211 1.0000 1.0000 0.5526 1.0000 1.0000

Llama2 (Touvron et al., 2023) AAT 0.5906 0.9691 0.8729 0.5461 0.9383 0.7579
AAT+MV 0.6020 1.0000 1.0000 0.5456 1.0000 1.0000
AAT EF  0.5994 0.9472 0.7860 0.5278 0.9183 0.6912
origin 0.4801 0.7504 0.2274 0.4804 0.7694 0.2684
MV 0.5284 1.0000 1.0000 0.5053 1.0000 1.0000
AAT 0.5471 0.9509 0.7793 0.5203 0.9512 0.8123
AAT+MV  0.5552 1.0000 1.0000 0.5228 1.0000 1.0000
AAT EF  0.5330 0.9144 0.6321 0.4980 0.9296 0.7316
origin 0.7251 0.8800 0.5552 0.6341 0.8240 0.4211
MV 0.7513 1.0000 1.0000 0.6719 1.0000 1.0000
AAT 0.7288 0.9627 0.8528 0.6621 0.9560 0.8298
AAT+MV 0.7291 1.0000 1.0000 0.6702 1.0000 1.0000
AATEF 0.7189 0.9606 0.8328 0.6676 0.9624 0.8456

Model Method

ChatGLM3 (Du et al., 2022)

Qwenl.5 (Bai et al., 2023)

Table 1: Debiasing results on three models and two MCQA datasets. MV refers to majority vote explained in B.
The parameter numbers of Llama2, ChatGLM3 and Qwenl.5 are 13b, 6b and 14b. All three models are tested on
the chat version. ATT EF 3.2 refers to choosing only efficient layers and average on cyclic permutation. The best
values of each model are in bold.
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Figure 4: Heatmap of APIR (APIR = PIR(debiased) — PIR(origin)) on different layer and permutation set;
the last line indicates the full layer. Only Llama2-13b-chat results are shown. Full results are in Appendix D.



Model ~ Method PM T->F% | F->F(%) F->T(%)! Avg Diff(%)
MV 1 40.7 295 29.8 27.1
AAT 1 36.3 29.8 338 242
Liama2 MV 4 29.0 30.5 40.5 209
AAT 4 28.6 29.6 417 18.3
MV 24 244 30.1 454 19.4
AAT 24 248 28.0 473 17.1
MV 1 305 344 35.1 323
AAT 1 28.9 35.1 36.0 29.8
MV 4 24.0 353 40.7 26.9
ChatGLM3 — yr 4 234 32.8 438 30.3
MV 24 245 325 43.0 26.0
AAT 24 218 335 44.6 295
MV 1 429 26.2 31.0 16.2
AAT 1 388 254 358 15.8
Qwents MV 4 359 276 365 132
AAT 4 36.6 30.8 326 152
MV 24 266 272 46.2 12.3
AAT 24 343 28.8 36.9 14.3

Table 2: The breakdown results of models’ difference
from the origin on CosmosQA. PM=1 for single permu-
tation, 4 for cyclic permutation and 24 for full permuta-
tion

According to Figure 4, some findings are con-
ducted below.

Only several layers contribute to positional bias
in the result. The results from the three models
on the two datasets indicate that only certain lay-
ers contribute significantly to the final positional
bias. This insight prompts us to optimise AAT to
target specific layers rather than debiasing across
all layers.

Different model holds differently effective lay-
ers despite the dataset. The experimental results
suggest that different models actually consist of
varying effective layers. According to Figure 7,
for Llama2, layers between 10 and 30 are primar-
ily responsible for generating positional bias. For
Qwenl.5, the first 10 layers appear to be more
significant. In the case of ChatGLM, the key lay-
ers are concentrated between 16 and 24. Further-
more, by comparing layer characteristics across
different datasets, we find that layer features are
model-specific. This indicates that we can initially
estimate which layers are more crucial for reduc-
ing positional bias using a small dataset, thereby
achieving high debiasing effectiveness with low
latency.

Cyclic permutation is enough. Almost all
heatmaps indicate that the benefits of increas-
ing permutations beyond four become marginal,
achieving 90% of the effectiveness of a complete
permutation on APIR metrics. In some settings,
such as Qwen1.5 on the MMLU APIR chart shown
in Figure 7, a permutation of four even surpasses

the full permutation. This suggests that cyclic per-
mutation is entirely sufficient. However, when per-
mutation is set to two, its performance is inferior
to that of cyclic permutation in most settings. This
is expected, as cyclic permutation includes one per-
mutation of each option at every position, whereas
permutation=2 simply adds one random permuta-
tion in addition to the original, conveying signifi-
cantly less information than cyclic permutations.

Based on the previous analysis, we select spe-
cific layers for the three models—Ilayers 10 to 30
for Llama2, layers O to 10 for ChatGLM, and layers
16 to 24 for Qwen—and test them with a permuta-
tion of 4 on two datasets. The results are presented
in row AAT EF of Table 1.

AAT EF achieved 90% of AAT’s performance
under all settings with less than 4x latency (AAT
only needs the permutation’s attention weight).
AAT EF even surpassed AAT in tests conducted
on the Qwenl.5-14b-chat model on the MMLU
dataset.

3.3 AAT on Text

We first test AAT on MMLU with text setting,
which means we filter the answer from the words
generated by LLM. We use the greedy decoding
strategy by setting do-sample to false to avoid bias
from randomness. Invalid ratio refers to the pro-
portion of invalid answers. Llama2’s heatmaps are
shown in Figure 8 due to space limitations. Accord-
ing to Figure 8, Llama2-13b-chat introduces less
than 5% invalid ratio on layer intervals 15-25 and
20-30. However, on 10-20 layers, 23% invalid ratio
is introduced, which inspires us that the best inter-
val of Llama2 may not be 10-30 but 15-30. This
also indicates that arbitrarily altering the attention
weights of certain layers in a model could greatly
affect its usability, even though these layers may
not significantly impact the final debiasing effect
in a probabilistic setting.

In practice, one should select layers carefully
according to several metrics to ensure AAT EF’s
performance.

Our method can actually be extended to more
tasks. This aspect will be tested on the HotpotQA
(Yang et al., 2018) dataset to evaluate the debiasing
effect of AAT. We filter the facts in the original
dataset into only 4 facts and input them as the con-
text. Thus, permutation is built by changing the
order of facts. In open-ended question answering,
the number of semantic classes is not sure. Thus
we simply divide the answer into true and false.



We only detect instances where at least one cor-
rect answer is present among the fully permuted
responses. These cases are called potential cases.
Potential permutation invariant ratio (PPIR) refers
to the number of instances where all answers are
correct divided by the number of potential cases.
Results are shown in Table 3. These conclusions
remain valid and even perform better in few-shot
scenarios. Few-shot results are in Appendix D.

Model Method  Acc PPIR
i O 0
ChatGLM3 A(leglli:lF 82?;; 832‘;
Quenl:s  XTER 07628 08520

Table 3: AAT EF on open-ended QA task (HotpotQA).

According to the results in Table 3, AAT EF
still performs very well under the Qwen1.5 model,
but its performance on Llama2 and ChatGLM3 is
not as good as on MCQA. This may be due to
the length of the commutative parts. The attention
weight will finally be softmax, which means every
word will get less attention weight than in MCQA.
As aresult, the debiasing effect of AAT is diluted.

4 Related Work

Attention Interpretability Attention (Vaswani
et al., 2017) in LLMs holds a significant position
in the study of LLM interpretability. The inter-
pretability of attention (Serrano and Smith, 2019;
Mrini et al., 2020; Wiegreffe and Pinter, 2019) can
generally be summarized in two points: 1. The
magnitude of attention weights should correlate
positively with the importance of the correspond-
ing positional information; 2. Input units with high
weights should have a decisive effect on the output
results. Our motivation stems from the first point.

Positional Bias Recent research on positional
bias in LLMs has been increasing. In Wang et al.
(2023), positional bias is categorised as a part of
selection bias. However, its focus is limited to
the MCQA (Multiple Choice Question Answering)
setting. Another study (Chen et al., 2024) inves-
tigates positional bias, or the order sensitivity of
models, in mathematical reasoning. It finds that
the sequence of rules significantly impacts the final
reasoning outcomes, demonstrating that positional

bias is an inherent issue in models across multiple
tasks. This inspires us to eliminate positional bias
from within the model itself.

Debiasing Method Most work attempts to elim-
inate positional bias from a training perspective.
Xiang et al. (2024) tries to eliminate positional bias
in in-context learning, where the part of in-context
examples is naturally commutative. They introduce
a new token-level objective function. Zhang et al.
(2024) make the relative position of every token as
an external input beside positional embedding to
fine-tune LLM.

Wang et al. (2023) tries to mitigate selection
bias based on majority vote. The positional bias
they mentioned is the model’s preference on some
positions. They try to estimate the bias distribution
and achieve nearly optimal results of majority vote.
Li and Gao (2024) tries to eliminate what they
called anchored bias by swapping the ground truth
label’s hidden state with token detected preference.
Differences are obvious between our method AAT
and these studies. We focus on attention weight and
align them at the commutative units’ granularity
level.

5 Conclusion

This work primarily investigates the issue of posi-
tional bias, which is pervasive across various tasks
in LLMs. Positional bias causes LLMs to generate
significantly different semantic responses to seman-
tically identical inputs arranged in different orders.
The problem is formally defined in our study in a
general style.

Through extensive empirical analyses, we pro-
pose and verify that irregularities in attention
weights are one of the primary sources of positional
bias. Our proposed debiasing method, AAT, elimi-
nates positional bias by aligning attention weights
of specific layers and specific permutations. It
achieves excellent results across multiple datasets
and models. We emphasize the generality of the
AAT method through additional experiments on
text, and an analysis of time efficiency also shows
that AAT outperforms statistical algorithms, such
as majority vote. We hope the empirical analyses
in this work and our debiasing method can inspire
future research on the bias and robustness of LLMs.
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A Limitations

Need extra position of commutative parts. To
calculate the average attention weight of one com-
mutative unit in one permutation of commutative
part, we need to calculate the token position in this
permutation first. This could be different according
to different tokenizers.

Different model has different biased layers.
Different models exhibit positional bias predomi-
nantly in different layers. It is necessary to estimate
this based on the specific model in question.

10

AAT is only verified on Scaled Dot-Product At-
tention. This paper only validated the effective-
ness of the method on the Scaled Dot-Product At-
tention (Vaswani et al., 2017) and did not verify its
effectiveness on other attention mechanisms. There
was no comparison of the effects of different atten-
tion mechanisms on positional bias.

Only works on open-source LLMs. Our method
can only be applied to open-source large models be-
cause it operates from within the model, requiring
modifications to the model’s attention weights.

B Majority Vote

To standardise the model’s responses across var-
ious problem permutations, the simplest method
is to select one answer as the final response. This
approach effectively eliminates positional bias, as
the answer remains consistent across all tested per-
mutations. The PIR and top-k reach the theoretical
upper bound. A strong permutation-based debias-
ing baseline is shown in Wang et al. (2023); Zheng
et al. (2023). It averages the model’s prediction
distributions under various commutative unit per-
mutations. It’s a kind of majority vote method often
used to improve the accuracy of models. We refer
to this method as a majority vote in the following
studies.

C Experiment setup

Both MCQA datasets we used in our experiments
are organized in a 4-option format. MMLU en-
compasses expertise and questions from various
fields, while CosmosQA requires the LLM to make
selections based on a given passage. All prompts
used are shown in Appendix E. Due to the neces-
sity of testing every permutation of each data point,
the data volume will be expanded by a factor of
24. Consequently, we selected the first 299 data
points from the validation split of CosmosQA and
10 data points from each of the 57 subcategories
in the test split of MMLU, amounting to 570 in
total. Therefore, the respective volumes of data
tested are 7176 and 13680. Except for assessing
the disruptive impact, all experiments on MCQA
are calculated with the cumulative probability val-
ues of the option content (Wang et al., 2024b). All
experiments were conducted on 4x A100 GPUs.
Except for the 70b model, which was loaded with
int8 precision, all models were loaded with bf16
precision.
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D Additional Results

‘We will show the full results and some additional
results in this part.

D.1 Difference breakdown on MMLU.

Results of difference on MMLU are shown in Table
5. The result still remains on MMLU.

D.2 Model size results.

We then test AAT on Llama2 with different sizes.
7b, 13b and 70b results are reported in Figure 5.

Results show that AAT’s effect causes a disrup-
tion in Llama2-70b. The cause behind this can be
that we load 70b model in int8 but bf16. Another
reasonable explanation is attention weight has less
influence on the final output when the dimension
of the hidden state gets huge.

D.3 Full results of permutation and layer.
D.4 Full-text results.

D.5 Few-shot learning.

We further test how Llama2-13b-chat performs on
the 5-shot setting. Results are shown in Table 4.

AAT works better under few-shot setting accord-
ing to Table 4.

E Prompts
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Prob choice Text choice

Acc Top-1 PIR Acc Top-1 PIR IR}

origin  0.5842 0.8119 0.3144 0.5812 0.7347 0.1940 0.0619

0-shot AAT 0.5928 0.9691 0.8729 0.5548 0.8611 0.5953 0.1176
AAT EF 0.5994 09472 0.7860 0.6324 0.8712 0.5619 0.0683

origin  0.6731 0.8434 0.4348 0.6678 0.8297 0.3712 0.0188

5-shot AAT 0.6970 0.9797 0.9097 0.6858 0.9508 0.8796 0.0438
AAT EF 0.6998 0.9567 0.7993 0.7111 0.9561 0.8428 0.0116

Shot Num Method

Table 4: AAT’s performance on few-shot; tested on CosmosQA

Model ~ Method PM T->F% | F->F(%) F->T(%)! Avg Diff(%)

MY 1 369 3.1 30.0 307
AAT 1 346 33.5 31.91 30.04

Ly MV 4 286 35.0 36.5 23.9
AAT 4 277 34.0 38.3 252

MV 24 244 33.1 42.5 23.1

AAT 24 262 33.0 40.8 243

MV 1 346 363 20.1 312

AAT 1 323 37.6 30.1 312

MV 4 306 36.6 32.8 247

ChatGLM3 a1 4 283 36.2 35.5 26.7
MV 24 265 36.5 37.0 23.5

AAT 24 249 34.6 40.5 25.6

MV 1 371 26.9 35.9 22.0

AAT 1 383 27.7 34.0 2.6

owenls MYV 4 282 253 46.5 18.8
AAT 4 284 25.9 45.7 19.4

MV 24 269 25.1 48.0 17.9

AAT 24 299 25.4 44.7 18.9

Table 5: The breakdown results of models’ difference from origin on MMLU. PM=1 for single permutation, 4 for
cyclic permutation and 24 for full permutation.
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Figure 5: Acc and PIR of different size models on MMLU; 3 permutations of AAT are reported.

CosmosQA

ChatGLM3-6b llama2-13b-chat Qwen1.5-14b-chat

delta_acc el acc deltacc

MMLU

Figure 6: Heatmap of AAcc (AAcc = Acc(debiased) — Acc(origin)) on different layer and permutation set; the
last line indicates the full layer.
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CosmosQA

ChatGLM3-6b llama2-13b-chat Qwen1.5-14b-chat

wwwwwwwwww

MMLU

Figure 7: Heatmap of APIR (APIR = PIR(debiased) — PIR(origin)) on different layer and permutation set;
the last line indicates the full layer.
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Choose the correct option to the question according to
the passage.

{ICL examples}

Passage:

Leaving my shift Thursday day shift | arrived the same
time as my partner just after six that evening and before
long the radio erupted in dispatch tones . A car fleeing the
police has crashed and landed on its roof with four
separate people entrapped inside . Our medic unit is
dispatched along with multiple other ambulances and
Rescue Companies .

Question:

What may have caused the radio to erupt with dispatch
tones ?

Option:

My partner needed a medic unit .

Someone was running from the ambulances after they got
into a wreck .

None of the above choices .

Someone was running from the cops and got into a wreck .

Answer: My partner needed a medic unit .

Figure 11: Prompt of CosmosQA used in the paper.
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The following are multiple choice questions about
{abstract_algebra}. You should directly answer the
guestion by choosing the correct option.

{ICL examples}

Question:

Find the degree for the given field extension Q(sqrt(2),
sgrt(3), sqrt(18)) over Q.

Option:

0

4

2

6

Answer: 4

Figure 12: Prompt of MMLU used in the paper.
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The following are facts and the question. You should
answer the question according to the facts directly.

{ICL examples}

Facts:

Ed Wood (film)

Ed Wood is a 1994 American biographical period comedy-
drama film directed and produced by ...

Scott Derrickson

Scott Derrickson (born July 16, 1966) is an ...

" Woodson, Arkansas

Woodson is a census-designated place (CDP) in ...

Ed Wood

Edward Davis Wood Jr. (October 10, 1924 — December 10,
1978) was an ...

Question:

Were Scott Derrickson and Ed Wood of the same
nationality?

Answer: yes

Figure 13: Prompt of HotpotQA used in the paper.
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