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Abstract

Positional bias in LLMs means that changing001
the order of input sentences leads to seman-002
tic inconsistency in the output. Positional bias003
occurs even though the overall meaning of the004
input remains the same. Recent studies have ob-005
served and verified that positional bias is preva-006
lent across various LLMs and tasks. Our study007
proposes the Average Attention Infer module,008
which starts from the calculation of the atten-009
tion mechanism and aims to reduce positional010
bias by computing the average attention weight011
of different arrangements. We design experi-012
ments to verify the module’s effectiveness in013
mitigating positional bias. It is also verified that014
the LLMs can still maintain their language func-015
tions after debiasing, which makes our module016
easy to extend to other tasks. Methods for se-017
lecting layers and permutations are provided018
to accelerate the module’s computation further.019
We release the code1 and hope this research can020
inspire the design and research of a new genera-021
tion of attention modules, thereby contributing022
to the fundamental elimination of positional023
bias.024

1 Introduction025

Positional bias in large language models (LLMs)026

can be interpreted differently depending on the con-027

text. In the MCQA setting, Wang et al. (2023) in-028

terprets it as the model’s inherent preference for029

certain positional options. The issue we study, how-030

ever, is a type of positional bias that occurs in text031

generation models. Figure 1 specifically illustrates032

the meaning of this kind of positional bias. Simply033

put, positional bias, which is studied in our paper,034

refers to the phenomenon where the semantic out-035

put of the model changes significantly, even though036

there are changes in position but minimal changes037

in semantics in the model’s input.038

1Code and results are available at https://anonymous.
4open.science/r/Average-Attention-Infer-BD1D/.

Question: Which of the following best describes the structure 
that collects urine in the body?

Option:
Bladder
Kidney
Ureter
Urethra

Answer:
Bladder

Option:
Kidney
Bladder
Ureter
Urethra

Answer:
Kidney

(a) positional bias in MCQA

Question: What government position was held by the woman 
who portrayed Corliss Archer in the film Kiss and Tell?
Facts:
Kiss and Tell is a ...
Shirley Temple ...
Meet Corliss Archer...
A Kiss for Corliss...

Answer:Chief of Protocol

Facts:
Kiss and Tell is a ...
Meet Corliss Archer...
A Kiss for Corliss...
Shirley Temple ...

Answer:Shirley Temple

(b) positional bias in open-ended QA

Figure 1: Positional bias in MCQA and open-ended QA.
Position-changed words are marked in yellow.

The existence of positional bias significantly un- 039

dermines the usability of LLMs in various domains. 040

For example, in the evaluation task, which uses 041

LLMs to compare and evaluate multiple candi- 042

dates, and in multi-condition question answering, 043

which requires LLMs to reason and respond based 044

on given conditions. Positional bias is frequently 045

studied in the context of multiple-choice question 046

answering (MCQA) because MCQA naturally con- 047

tains commutative parts. The order of options in 048

MCQA is generally considered not to influence 049

the final result, as stated in Wang et al. (2024a), 050

A LLM can be deemed proficient in answering a 051

specific MCQA-format question only if it consis- 052

tently predicts the same correct answer across all 053

permutations of option orders. This should also 054

be followed in open-ended QA tasks (Chen et al., 055

2024), where answers of LLMs can not be clas- 056

sified by options in MCQA. Positional bias is an 057

inherent robustness issue within LLMs that needs 058
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to be addressed.059

Contemporary mainstream LLMs are predomi-060

nantly based on the attention mechanism of trans-061

former architecture (Vaswani et al., 2017; Jiang062

et al., 2023; Touvron et al., 2023). Attention com-063

putation constitutes a significant portion of the over-064

all calculation of output logits. During the atten-065

tion computation process, the attention weight is066

often interpreted as the degree to which the model067

focuses on different parts of the input text (Shin068

et al., 2024; Hao et al., 2021; Voita et al., 2019).069

Intuitively, one can hypothesize that if LLMs cor-070

rectly understand the commutative part, the atten-071

tion weight on different options should shift corre-072

spondingly with their positions.073

We test the attention weights of the same option074

in different permutations and observe that the rela-075

tive magnitude of the attention weights of tokens076

following the options does not shift accordingly077

with the permutation changes. Therefore, it is rea-078

sonable to believe that one possible cause of posi-079

tional bias is that the attention weights of the same080

option change with different permutations.081

Based on this hypothesis, we propose a debias-082

ing module called Average Attention Infer (AAT)083

to compute unbiased attention weights for each op-084

tion, thereby internally eliminating the positional085

bias introduced by the attention mechanism. We086

demonstrate that AAT achieves superior debias-087

ing effectiveness to strong baselines, especially in088

small models with fewer permutations. We further089

test AAT on open-ended QA tasks. The results con-090

firm that our approach works well and has minimal091

detrimental effects on language abilities,092

We further investigate the impact of selecting093

different layers and permutation sets on the effec-094

tiveness of AAT and make trade-offs between per-095

formance and latency. We observe that for different096

models, only certain layers are order-sensitive.097

Summary of Contributions (1) We observed098

and validated that the variation of attention weights099

with permutations is a major cause of positional100

bias; (2) We proposed a training-free plugin module101

to correct positional bias in LLMs with attention102

mechanisms, achieving significant effectiveness;103

(3) Our experiments revealed that positional bias is104

model-specific and relatively stable, leading to the105

development of a more efficient module based on106

this insight.107

2 Method 108

We formulate the problem of positional bias in 109

LLMs and introduce our method in this part. 110

2.1 Problem Formulation 111

In this section, we provide a definition of the po- 112

sitional bias in LLM. We make the definition as 113

general as possible to fit it into more tasks. 114

Question with commutative part Positional 115

bias is significant only if the input contains some 116

parts whose permutations make little difference to 117

the ground truth answer. It’s similar to the com- 118

mutative property in math, so we name the part as 119

commutative part. 120

C is a composition of sentences C = 121

c1c2c3...cn ⊆ Q, Q is the question. ci is called 122

a commutative unit. AQ = Answer(Q) repre- 123

sents the set of all ground truth answer of Q. I is 124

the set of full permutations of {1, 2, 3, ..., n}. 125

Definition 2.1 (commutative part) ∀I ∈ I, the 126

corresponding part CI satisfy commutative term 127
|AQCI

∩AQC
|

|AQCI
∪AQC

| ≥ ϵ, then C is called an ϵ- 128

commutative part, noted as C ∈ Cϵ(Q). ϵ ∈ [0, 1] 129

is the threshold. 130

As the ϵ is closer to 1, the constraint is more strict. 131

Questions with commutative parts can be defined 132

as questions that hold one or more commutative 133

parts. 134

One may wonder why we give such an abstract ϵ 135

rather than restricting the space of ground truth 136

answers to the same one. This setting is moti- 137

vated by the consistency of semantic space. The 138

set of ground truth answers can only be partially 139

unchangeable under the open-ended QA setting 140

where the model gives answers from the whole se- 141

mantic space. Thus, there should always be this 142

kind of ground truth answers that My answer is 143

apple, the third answer. and My answer is apple, 144

the second answer. for different permutations. The 145

two answers are not the same in semantic space, 146

so we can’t say that the two ground truth semantic 147

spaces of permutations are the same. It means that 148

ϵ = 1 is almost impossible. 149

Another concern is how to set the value of ϵ. 150

As we mentioned above, what we expect is that 151

ground truth answers without information about the 152

position should belong to both AQCI1
and AQCI2

. 153

However, estimating ϵ in the infinite semantic space 154

is hard. The threshold is defined for generalisation. 155
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Figure 2: The framework of Average Attention Infer (AAT); AAT will first generate the permutation according to
option position input and align the attention weight on semantic granularity.

We also cancel the symbol of option in MCQA to156

avoid the token bias, which can be explained by157

the same pattern as before. This paper’s follow-158

ing studies about MCQA are all in the no-symbol159

setting.160

The commutative term can be different in prac-161

tice. While we define it as a kind of Intersection162

over Union (IoU), one can set different semantic163

similarity functions for different purposes. For164

MCQA, the option part can be naturally treated as165

commutative part after removing cases including166

options like None of above choices and A and B.167

The semantic space of answers can be classed into168

option labels.169

Positional bias We then introduce the positional170

bias in questions holding commutative parts. The171

positional bias intuitively indicates the situation172

that when we replace the A(Q) with M(Q) of a173

model M , it will break the definition of commuta-174

tive part.175

To make positional bias more practical, we intro-176

duce a label function Label : Rd → R to map an177

answer A to a class. Now, we can give a simplified178

but practical version of positional bias.179

Definition 2.2 (positional bias) ∃I, J ∈ IQC
∧180

I ̸= J → Label(M(QCI
)) ̸= Label(M(QCJ

))181

IQC
is the full permutations set of commutative182

part C ⊆ Q. We provide two main metrics to183

evaluate a model’s performance on a dataset D184

from the perspective of positional bias. We will first185

test M on the full permutations of D and evaluate186

the results.187

The first is called the top-k vector. It’s the ex- 188

pected distribution of the label proportion in de- 189

scending order among one full permutation batch 190

for all cases in the dataset. 191

Definition 2.3 (top-k vector)

V i
top−k = Desc(

∑
I∈I

Qi
C

Label(M(Qi
CI
))) (1) 192

193
Vtop−k = Softmax(Ei∈D(V

i
top−k)) (2) 194

Desc indicates the descending sort function, and 195

the Label function in top-k should be in one-hot 196

encoding format. The top-k vector only cares 197

about how consistent the model’s answers are in 198

a batch (full permutation of one case). Intuitively, 199∑
Vtop−k = 1. The theoretical upper bound of top- 200

k is a zero-like vector except for the first position. 201

The second is called permutation invariant ratio, 202

indicating the proportion of examples in a dataset 203

D where model M shows no positional bias on 204

them. 205

Definition 2.4 (PIR)

PIR =

∑|D|
i I(V i

top−k[2] = 0)

|D|
(3) 206

I is the indicator function and V i
top−k[2] represents 207

the top-2 value of top-k vector. When the top-2 208

value is 0, the top-k vector achieves the optimal 209

[1, 0, 0, ..., 0]. This also indicates that the model’s 210

answers to permutations of one case are labelled 211

into the same class. The upper bound of PIR is 1 212

without doubt. 213
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2.2 Attention Weight214

In this part, we introduce our motivation and the215

important finding about attention weight. LLMs216

based on transformer can be modelled as a se-217

quence of some transformer blocks. Every block218

calculates an attention weight. Concretely, Aw =219

Softmax(QKT ). Aw refers to attention weight.220

Attention is derived from Aw and the value matrix221

then. After this, attention should be added to the222

residual and normalised as the input of the feed-223

forward layer. In the classic scaled dot-product224

attention, Aw is often treated as how much atten-225

tion the model pays to other tokens in some studies226

of interpretability about LLMs (Vashishth et al.,227

2019; Serrano and Smith, 2019; Mrini et al., 2020).228

An intuitive thought is that despite the permutation,229

LLMs should pay the same proportion of attention230

weight among all commutative units.231

To verify if attention weights change as expect,232

we test a random case from CosmosQA (Huang233

et al., 2019) on Llama2-13b-chat (Touvron et al.,234

2023).235

Figure 3: Attention weights of the full permutation of
one case in CosmosQA, forwarded by Llama2-13b-chat;
sum on all layers and all heads.

Figure 3 shows attention weights of different236

choices among different permutations in one case.237

Attention weights are forwarded through a softmax238

function among all four options. The left in Figure239

3 shows that option ’I would ...’ and ’None of ...’ get240

dynamic attention weights which vary from 0.75241

to 0.1. The right part of Figure 3 indicates that in242

permutation 1, the model pays the most attention243

to option ’None of ...’ while in permutations 2 and244

3, the option ’I would ..’ is the focused one.245

According to the results above, attention weights246

sometimes change differently. The softmax value247

of an option’s attention weight changes as the per-248

mutation changes. This demonstrates that posi-249

tional bias has been introduced when we calculate250

attention weights. 251

2.3 Average Attention Infer 252

We then propose our method, Average Attention 253

Infer (AAT for short). Figure 2 demonstrates AAT. 254

The method is straightforward. AAT gets an exter- 255

nal input called option’s position, generally speak- 256

ing, positions of commutative units. AAT then 257

averages attention weights of these positions on 258

semantic granularity and replaces them with the 259

corresponding averaged values. 260

Algorithm 1 Attention Weight Alignment

Input: WA, Pos, Perm
Output: W d

A

1: Nc = len(Pos[1]), Bsz = len(WA)
2: SA = [0] ∗Nc

3: for each i ∈ [1, Bsz] do
4: for each j ∈ [1, Nc] do

SA[Perm[i][j]]+ = WA[i][Pos[i][j]]
5: end for
6: end for
7: SA = SA/Bsz
8: W d

A = FillAtt(SA,WA, Pos, Perm)
9: return W d

A

Algorithm 1 shows how we calculate the de- 261

biased attention weight. WA refers to attention 262

weights of a batch of full permutations of one ques- 263

tion. Pos is the position of commutative units in 264

each permutation of the batch. Perm contains the 265

information of every permutation in the batch. The 266

corresponding index is related to the origin order 267

of every commutative unit. Outputs are debiased 268

attention weights attending the following calcula- 269

tion. 270

The latency mainly comes from external calcula- 271

tions on different permutations and several layers. 272

Obviously, the additional time is CNPNLO(n) for 273

a question with n commutative parts, where C is 274

the number of commutative units in every commu- 275

tative part (suppose they are the same), NP and NL 276

are the size of the permutation set and the number 277

of layers. For every single layer, the time complex- 278

ity of Algorithm 1 is CNPO(n). 279

We mainly try three kinds of permutation sets. k 280

refers to the number of commutative units. 281

single permutation Choose one permutation as 282

the anchored permutation (always the origin per- 283

mutation) and apply it to all other permutations. 284

IQC
= {(1, 2, 3, 4, ..., k)} 285
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cyclic permutation Following the work in Zheng286

et al. (2024), the cyclic permutation is chosen as287

below. Every commutative unit shows up at every288

position only once.289

IQC
= {(i, i+ 1, ..., k, 1, ..., i− 1)}ki=1290

full permutation The full permutation.291

3 Experiment292

In this section, we will first test the effectiveness293

of AAT on multiple transformer-based open-source294

LLMs, as well as on two multiple-choice question295

answering (MCQA) datasets, MMLU (Hendrycks296

et al., 2020) and CosmosQA (Huang et al., 2019),297

to verify AAT’s ability to eliminate positional bias.298

The metrics include accuracy, PIR and top-1 value.299

In order to reduce the time consumed by AAT, we300

investigate the impact of different layers and per-301

mutations on AAT. To assess the disruptive impact302

of our method on text, we test the effectiveness of303

AAT in the context of text-based multiple-choice304

question answering (MCQA). Finally, we demon-305

strate how to adapt AAT to open-ended question-306

answering tasks and evaluate its effectiveness.307

All tests are conducted in a 0-shot setting. Ad-308

ditionally, to eliminate bias caused by option la-309

belling, all tests are carried out with labels removed310

from the options. More details can be found in Ap-311

pendix C.312

3.1 Debiasing Results313

We first test AAT on all layers and the full permu-314

tations. Results are shown in Table 1. Since top-1315

and PIR are used to measure the consistency of a316

model across different permutations of questions,317

the results of majority vote on both top-1 and PIR318

metrics are guaranteed to achieve the theoretical319

optimal value of 1. This is because the majority320

vote directly assigns a single answer to the entire321

set of permutations. Even if the assignment is made322

randomly, the responses are guaranteed to be con-323

sistent.324

According to the results in Table 1, we find that325

the proposed method effectively enhances both PIR326

and top-1 values, thereby also achieving an increase327

in ACC. The test results across multiple datasets328

and models approach the theoretical optimal value329

of 1. This confirms our hypothesis that bias in330

attention weights is one of the primary sources331

of positional bias. Consequently, it validates the332

effectiveness of AAT.333

The test results on ChatGLM3 indicate that the 334

Acc of AAT even surpasses that of the majority 335

vote. This suggests that AAT may have a significant 336

advantage over the majority vote when the model 337

size is smaller or when the model’s accuracy is low. 338

Both the majority vote and AAT methods en- 339

hance the original model’s accuracy. To explore 340

the inner difference between these two methods, 341

we additionally calculate average difference, repre- 342

senting the proportion of debiased answers by the 343

method, along with the proportions of three types 344

of modifications (T->F, F->F, F->T). Due to space 345

limitations, we only show results on CosmosQA. 346

Results on MMLU are in Appendix D.1. 347

The results in Table 2 indicate that AAT’s ad- 348

vantage over the majority vote lies in its ability to 349

perform bias reduction when the permutation is 350

relatively small. In contrast, the effectiveness of 351

the majority vote improves as the number of per- 352

mutations increases. However, the majority vote 353

will introduce more latency than AAT as AAT only 354

computes several attention weights, while the ma- 355

jority vote needs to go through the whole network. 356

For smaller-sized models, such as the 357

ChatGLM3-6b, AAT outperforms the majority 358

vote across all permutations. In summary, AAT 359

generally outperforms the majority vote method 360

when used with smaller permutations and models 361

with smaller parameter sizes. Conversely, majority 362

vote has advantages on larger models and when 363

permutations involve full permutations. More 364

experiments about model size are shown in 365

Appendix D. 366

3.2 Layer and Permutation 367

Although ATT achieves commendable results in 368

eliminating positional bias, its substantial cost lim- 369

its its applicability. The additional cost mainly 370

comes from the permutation size and the calcula- 371

tion on every layer. We test on different layers 372

and permutations to study how these two factors 373

make differences in AAT. Only the heatmaps of 374

Llama2-13b-chat’s ∆PIR are reported below due 375

to the space. The full results are in Appendix D. 376

Since Llama2 and Qwen1.5 both have 40 layers, 377

we conducted sliding tests with a step size of 5 and 378

a window size of 10. For ChatGLM3, which has 28 379

layers, we set both the step size and window size 380

to 4. We choose 6 different permutation sizes. 1, 4 381

and 24 are the same as before. Other permutations 382

are formed by one original permutation and n− 1 383

random permutations from the full permutation set. 384
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Model Method
CosmosQA MMLU

Acc Top-1 PIR Acc Top-1 PIR

Llama2 (Touvron et al., 2023)

origin 0.5780 0.8119 0.3010 0.5109 0.7753 0.3140
MV 0.6211 1.0000 1.0000 0.5526 1.0000 1.0000
AAT 0.5906 0.9691 0.8729 0.5461 0.9383 0.7579

AAT+MV 0.6020 1.0000 1.0000 0.5456 1.0000 1.0000
AAT EF 0.5994 0.9472 0.7860 0.5278 0.9183 0.6912

ChatGLM3 (Du et al., 2022)

origin 0.4801 0.7504 0.2274 0.4804 0.7694 0.2684
MV 0.5284 1.0000 1.0000 0.5053 1.0000 1.0000
AAT 0.5471 0.9509 0.7793 0.5203 0.9512 0.8123

AAT+MV 0.5552 1.0000 1.0000 0.5228 1.0000 1.0000
AAT EF 0.5330 0.9144 0.6321 0.4980 0.9296 0.7316

Qwen1.5 (Bai et al., 2023)

origin 0.7251 0.8800 0.5552 0.6341 0.8240 0.4211
MV 0.7513 1.0000 1.0000 0.6719 1.0000 1.0000
AAT 0.7288 0.9627 0.8528 0.6621 0.9560 0.8298

AAT+MV 0.7291 1.0000 1.0000 0.6702 1.0000 1.0000
AAT EF 0.7189 0.9606 0.8328 0.6676 0.9624 0.8456

Table 1: Debiasing results on three models and two MCQA datasets. MV refers to majority vote explained in B.
The parameter numbers of Llama2, ChatGLM3 and Qwen1.5 are 13b, 6b and 14b. All three models are tested on
the chat version. ATT EF 3.2 refers to choosing only efficient layers and average on cyclic permutation. The best
values of each model are in bold.

CosmosQA MMLU

Figure 4: Heatmap of ∆PIR (∆PIR = PIR(debiased)− PIR(origin)) on different layer and permutation set;
the last line indicates the full layer. Only Llama2-13b-chat results are shown. Full results are in Appendix D.
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Model Method PM T->F% ↓ F->F(%) F->T(%)↑ Avg Diff(%)

Llama2

MV 1 40.7 29.5 29.8 27.1
AAT 1 36.3 29.8 33.8 24.2
MV 4 29.0 30.5 40.5 20.9
AAT 4 28.6 29.6 41.7 18.3
MV 24 24.4 30.1 45.4 19.4
AAT 24 24.8 28.0 47.3 17.1

ChatGLM3

MV 1 30.5 34.4 35.1 32.3
AAT 1 28.9 35.1 36.0 29.8
MV 4 24.0 35.3 40.7 26.9
AAT 4 23.4 32.8 43.8 30.3
MV 24 24.5 32.5 43.0 26.0
AAT 24 21.8 33.5 44.6 29.5

Qwen1.5

MV 1 42.9 26.2 31.0 16.2
AAT 1 38.8 25.4 35.8 15.8
MV 4 35.9 27.6 36.5 13.2
AAT 4 36.6 30.8 32.6 15.2
MV 24 26.6 27.2 46.2 12.3
AAT 24 34.3 28.8 36.9 14.3

Table 2: The breakdown results of models’ difference
from the origin on CosmosQA. PM=1 for single permu-
tation, 4 for cyclic permutation and 24 for full permuta-
tion

According to Figure 4, some findings are con-385

ducted below.386

Only several layers contribute to positional bias387

in the result. The results from the three models388

on the two datasets indicate that only certain lay-389

ers contribute significantly to the final positional390

bias. This insight prompts us to optimise AAT to391

target specific layers rather than debiasing across392

all layers.393

Different model holds differently effective lay-394

ers despite the dataset. The experimental results395

suggest that different models actually consist of396

varying effective layers. According to Figure 7,397

for Llama2, layers between 10 and 30 are primar-398

ily responsible for generating positional bias. For399

Qwen1.5, the first 10 layers appear to be more400

significant. In the case of ChatGLM, the key lay-401

ers are concentrated between 16 and 24. Further-402

more, by comparing layer characteristics across403

different datasets, we find that layer features are404

model-specific. This indicates that we can initially405

estimate which layers are more crucial for reduc-406

ing positional bias using a small dataset, thereby407

achieving high debiasing effectiveness with low408

latency.409

Cyclic permutation is enough. Almost all410

heatmaps indicate that the benefits of increas-411

ing permutations beyond four become marginal,412

achieving 90% of the effectiveness of a complete413

permutation on ∆PIR metrics. In some settings,414

such as Qwen1.5 on the MMLU ∆PIR chart shown415

in Figure 7, a permutation of four even surpasses416

the full permutation. This suggests that cyclic per- 417

mutation is entirely sufficient. However, when per- 418

mutation is set to two, its performance is inferior 419

to that of cyclic permutation in most settings. This 420

is expected, as cyclic permutation includes one per- 421

mutation of each option at every position, whereas 422

permutation=2 simply adds one random permuta- 423

tion in addition to the original, conveying signifi- 424

cantly less information than cyclic permutations. 425

Based on the previous analysis, we select spe- 426

cific layers for the three models—layers 10 to 30 427

for Llama2, layers 0 to 10 for ChatGLM, and layers 428

16 to 24 for Qwen—and test them with a permuta- 429

tion of 4 on two datasets. The results are presented 430

in row AAT EF of Table 1. 431

AAT EF achieved 90% of AAT’s performance 432

under all settings with less than 4x latency (AAT 433

only needs the permutation’s attention weight). 434

AAT EF even surpassed AAT in tests conducted 435

on the Qwen1.5-14b-chat model on the MMLU 436

dataset. 437

3.3 AAT on Text 438

We first test AAT on MMLU with text setting, 439

which means we filter the answer from the words 440

generated by LLM. We use the greedy decoding 441

strategy by setting do-sample to false to avoid bias 442

from randomness. Invalid ratio refers to the pro- 443

portion of invalid answers. Llama2’s heatmaps are 444

shown in Figure 8 due to space limitations. Accord- 445

ing to Figure 8, Llama2-13b-chat introduces less 446

than 5% invalid ratio on layer intervals 15-25 and 447

20-30. However, on 10-20 layers, 23% invalid ratio 448

is introduced, which inspires us that the best inter- 449

val of Llama2 may not be 10-30 but 15-30. This 450

also indicates that arbitrarily altering the attention 451

weights of certain layers in a model could greatly 452

affect its usability, even though these layers may 453

not significantly impact the final debiasing effect 454

in a probabilistic setting. 455

In practice, one should select layers carefully 456

according to several metrics to ensure AAT EF’s 457

performance. 458

Our method can actually be extended to more 459

tasks. This aspect will be tested on the HotpotQA 460

(Yang et al., 2018) dataset to evaluate the debiasing 461

effect of AAT. We filter the facts in the original 462

dataset into only 4 facts and input them as the con- 463

text. Thus, permutation is built by changing the 464

order of facts. In open-ended question answering, 465

the number of semantic classes is not sure. Thus 466

we simply divide the answer into true and false. 467
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We only detect instances where at least one cor-468

rect answer is present among the fully permuted469

responses. These cases are called potential cases.470

Potential permutation invariant ratio (PPIR) refers471

to the number of instances where all answers are472

correct divided by the number of potential cases.473

Results are shown in Table 3. These conclusions474

remain valid and even perform better in few-shot475

scenarios. Few-shot results are in Appendix D.476

Model Method Acc PPIR

Llama2
origin 0.3242 0.2233

AAT EF 0.3786 0.4324

ChatGLM3
origin 0.5675 0.3043

AAT EF 0.5157 0.3853

Qwen1.5
origin 0.7788 0.6177

AAT EF 0.7828 0.8520

Table 3: AAT EF on open-ended QA task (HotpotQA).

According to the results in Table 3, AAT EF477

still performs very well under the Qwen1.5 model,478

but its performance on Llama2 and ChatGLM3 is479

not as good as on MCQA. This may be due to480

the length of the commutative parts. The attention481

weight will finally be softmax, which means every482

word will get less attention weight than in MCQA.483

As a result, the debiasing effect of AAT is diluted.484

4 Related Work485

Attention Interpretability Attention (Vaswani486

et al., 2017) in LLMs holds a significant position487

in the study of LLM interpretability. The inter-488

pretability of attention (Serrano and Smith, 2019;489

Mrini et al., 2020; Wiegreffe and Pinter, 2019) can490

generally be summarized in two points: 1. The491

magnitude of attention weights should correlate492

positively with the importance of the correspond-493

ing positional information; 2. Input units with high494

weights should have a decisive effect on the output495

results. Our motivation stems from the first point.496

Positional Bias Recent research on positional497

bias in LLMs has been increasing. In Wang et al.498

(2023), positional bias is categorised as a part of499

selection bias. However, its focus is limited to500

the MCQA (Multiple Choice Question Answering)501

setting. Another study (Chen et al., 2024) inves-502

tigates positional bias, or the order sensitivity of503

models, in mathematical reasoning. It finds that504

the sequence of rules significantly impacts the final505

reasoning outcomes, demonstrating that positional506

bias is an inherent issue in models across multiple 507

tasks. This inspires us to eliminate positional bias 508

from within the model itself. 509

Debiasing Method Most work attempts to elim- 510

inate positional bias from a training perspective. 511

Xiang et al. (2024) tries to eliminate positional bias 512

in in-context learning, where the part of in-context 513

examples is naturally commutative. They introduce 514

a new token-level objective function. Zhang et al. 515

(2024) make the relative position of every token as 516

an external input beside positional embedding to 517

fine-tune LLM. 518

Wang et al. (2023) tries to mitigate selection 519

bias based on majority vote. The positional bias 520

they mentioned is the model’s preference on some 521

positions. They try to estimate the bias distribution 522

and achieve nearly optimal results of majority vote. 523

Li and Gao (2024) tries to eliminate what they 524

called anchored bias by swapping the ground truth 525

label’s hidden state with token detected preference. 526

Differences are obvious between our method AAT 527

and these studies. We focus on attention weight and 528

align them at the commutative units’ granularity 529

level. 530

5 Conclusion 531

This work primarily investigates the issue of posi- 532

tional bias, which is pervasive across various tasks 533

in LLMs. Positional bias causes LLMs to generate 534

significantly different semantic responses to seman- 535

tically identical inputs arranged in different orders. 536

The problem is formally defined in our study in a 537

general style. 538

Through extensive empirical analyses, we pro- 539

pose and verify that irregularities in attention 540

weights are one of the primary sources of positional 541

bias. Our proposed debiasing method, AAT, elimi- 542

nates positional bias by aligning attention weights 543

of specific layers and specific permutations. It 544

achieves excellent results across multiple datasets 545

and models. We emphasize the generality of the 546

AAT method through additional experiments on 547

text, and an analysis of time efficiency also shows 548

that AAT outperforms statistical algorithms, such 549

as majority vote. We hope the empirical analyses 550

in this work and our debiasing method can inspire 551

future research on the bias and robustness of LLMs. 552
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A Limitations710

Need extra position of commutative parts. To711

calculate the average attention weight of one com-712

mutative unit in one permutation of commutative713

part, we need to calculate the token position in this714

permutation first. This could be different according715

to different tokenizers.716

Different model has different biased layers.717

Different models exhibit positional bias predomi-718

nantly in different layers. It is necessary to estimate719

this based on the specific model in question.720

AAT is only verified on Scaled Dot-Product At- 721

tention. This paper only validated the effective- 722

ness of the method on the Scaled Dot-Product At- 723

tention (Vaswani et al., 2017) and did not verify its 724

effectiveness on other attention mechanisms. There 725

was no comparison of the effects of different atten- 726

tion mechanisms on positional bias. 727

Only works on open-source LLMs. Our method 728

can only be applied to open-source large models be- 729

cause it operates from within the model, requiring 730

modifications to the model’s attention weights. 731

B Majority Vote 732

To standardise the model’s responses across var- 733

ious problem permutations, the simplest method 734

is to select one answer as the final response. This 735

approach effectively eliminates positional bias, as 736

the answer remains consistent across all tested per- 737

mutations. The PIR and top-k reach the theoretical 738

upper bound. A strong permutation-based debias- 739

ing baseline is shown in Wang et al. (2023); Zheng 740

et al. (2023). It averages the model’s prediction 741

distributions under various commutative unit per- 742

mutations. It’s a kind of majority vote method often 743

used to improve the accuracy of models. We refer 744

to this method as a majority vote in the following 745

studies. 746

C Experiment setup 747

Both MCQA datasets we used in our experiments 748

are organized in a 4-option format. MMLU en- 749

compasses expertise and questions from various 750

fields, while CosmosQA requires the LLM to make 751

selections based on a given passage. All prompts 752

used are shown in Appendix E. Due to the neces- 753

sity of testing every permutation of each data point, 754

the data volume will be expanded by a factor of 755

24. Consequently, we selected the first 299 data 756

points from the validation split of CosmosQA and 757

10 data points from each of the 57 subcategories 758

in the test split of MMLU, amounting to 570 in 759

total. Therefore, the respective volumes of data 760

tested are 7176 and 13680. Except for assessing 761

the disruptive impact, all experiments on MCQA 762

are calculated with the cumulative probability val- 763

ues of the option content (Wang et al., 2024b). All 764

experiments were conducted on 4× A100 GPUs. 765

Except for the 70b model, which was loaded with 766

int8 precision, all models were loaded with bf16 767

precision. 768
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D Additional Results769

We will show the full results and some additional770

results in this part.771

D.1 Difference breakdown on MMLU.772

Results of difference on MMLU are shown in Table773

5. The result still remains on MMLU.774

D.2 Model size results.775

We then test AAT on Llama2 with different sizes.776

7b, 13b and 70b results are reported in Figure 5.777

Results show that AAT’s effect causes a disrup-778

tion in Llama2-70b. The cause behind this can be779

that we load 70b model in int8 but bf16. Another780

reasonable explanation is attention weight has less781

influence on the final output when the dimension782

of the hidden state gets huge.783

D.3 Full results of permutation and layer.784

D.4 Full-text results.785

D.5 Few-shot learning.786

We further test how Llama2-13b-chat performs on787

the 5-shot setting. Results are shown in Table 4.788

AAT works better under few-shot setting accord-789

ing to Table 4.790

E Prompts791
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Shot Num Method
Prob choice Text choice

Acc Top-1 PIR Acc Top-1 PIR IR↓

0-shot
origin 0.5842 0.8119 0.3144 0.5812 0.7347 0.1940 0.0619
AAT 0.5928 0.9691 0.8729 0.5548 0.8611 0.5953 0.1176

AAT EF 0.5994 0.9472 0.7860 0.6324 0.8712 0.5619 0.0683

5-shot
origin 0.6731 0.8434 0.4348 0.6678 0.8297 0.3712 0.0188
AAT 0.6970 0.9797 0.9097 0.6858 0.9508 0.8796 0.0438

AAT EF 0.6998 0.9567 0.7993 0.7111 0.9561 0.8428 0.0116

Table 4: AAT’s performance on few-shot; tested on CosmosQA

Model Method PM T->F% ↓ F->F(%) F->T(%)↑ Avg Diff(%)

Llama2

MV 1 36.9 33.1 30.0 30.7
AAT 1 34.6 33.5 31.91 30.04
MV 4 28.6 35.0 36.5 23.9
AAT 4 27.7 34.0 38.3 25.2
MV 24 24.4 33.1 42.5 23.1
AAT 24 26.2 33.0 40.8 24.3

ChatGLM3

MV 1 34.6 36.3 29.1 31.2
AAT 1 32.3 37.6 30.1 31.2
MV 4 30.6 36.6 32.8 24.7
AAT 4 28.3 36.2 35.5 26.7
MV 24 26.5 36.5 37.0 23.5
AAT 24 24.9 34.6 40.5 25.6

Qwen1.5

MV 1 37.1 26.9 35.9 22.0
AAT 1 38.3 27.7 34.0 22.6
MV 4 28.2 25.3 46.5 18.8
AAT 4 28.4 25.9 45.7 19.4
MV 24 26.9 25.1 48.0 17.9
AAT 24 29.9 25.4 44.7 18.9

Table 5: The breakdown results of models’ difference from origin on MMLU. PM=1 for single permutation, 4 for
cyclic permutation and 24 for full permutation.
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Figure 5: Acc and PIR of different size models on MMLU; 3 permutations of AAT are reported.

Figure 6: Heatmap of ∆Acc (∆Acc = Acc(debiased)−Acc(origin)) on different layer and permutation set; the
last line indicates the full layer.
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Figure 7: Heatmap of ∆PIR (∆PIR = PIR(debiased)− PIR(origin)) on different layer and permutation set;
the last line indicates the full layer.
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Figure 8: ∆IR, PIR,Acc of Llama2-13b-chat heatmaps on MMLU;
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Figure 9: ∆IR, PIR,Acc of ChatGLM3-6b heatmaps on MMLU;
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Figure 10: ∆IR, PIR,Acc of Qwen1.5-14b-chat heatmaps on MMLU;
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Choose the correct option to the question according to 
the passage.
{ICL examples}
Passage:
Leaving my shift Thursday day shift I arrived the same 
time as my partner just after six that evening and before 
long the radio erupted in dispatch tones . A car fleeing the 
police has crashed and landed on its roof with four 
separate people entrapped inside . Our medic unit is 
dispatched along with multiple other ambulances and 
Rescue Companies .
Question:
What may have caused the radio to erupt with dispatch 
tones ?
Option:
My partner needed a medic unit .
Someone was running from the ambulances after they got 
into a wreck .
None of the above choices .
Someone was running from the cops and got into a wreck .
Answer: My partner needed a medic unit .

Figure 11: Prompt of CosmosQA used in the paper.

18



The following are multiple choice questions about 
{abstract_algebra}. You should directly answer the 
question by choosing the correct option.
{ICL examples}
Question:
Find the degree for the given field extension Q(sqrt(2), 
sqrt(3), sqrt(18)) over Q.
Option:
0
4
2
6
Answer: 4

Figure 12: Prompt of MMLU used in the paper.
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The following are facts and the question. You should 
answer the question according to the facts directly.
{ICL examples}
Facts:
Ed Wood (film) 
Ed Wood is a 1994 American biographical period comedy-
drama film directed and produced by ...
Scott Derrickson 
Scott Derrickson (born July 16, 1966) is an ...
" Woodson, Arkansas 
Woodson is a census-designated place (CDP) in ...
Ed Wood 
Edward Davis Wood Jr. (October 10, 1924 – December 10, 
1978) was an ...
Question: 
Were Scott Derrickson and Ed Wood of the same 
nationality? 
Answer: yes

Figure 13: Prompt of HotpotQA used in the paper.
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