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Abstract

Approximate inference for overparameterized Bayesian models appears challenging, due to
the complex structure of the posterior. To address this issue, a recent line of work has
investigated the possibility of directly conducting approximate inference in the “function
space”, the space of prediction functions. This paper provides an alternative perspective to
this problem, by showing that for many models — including a simplified neural network model
— Langevin dynamics in the overparameterized “weight space” induces equivalent function-
space trajectories to certain Langevin dynamics procedures in function space. Thus, the
former can already be viewed as a function-space inference algorithm, with its convergence
unaffected by overparameterization. We provide simulations on Bayesian neural network
models and discuss the implication of the results.

1 Introduction

Consider a common Bayesian predictive modeling setting, where we are provided with i.i.d. observations D :=
{(z4,y:)}, a likelihood model p({y;} | {=:},0) = [1;—, p(y;i | f(;0)) determined by a prediction function
f(30), and a prior ms(df). We are interested in the predictive distribution p(y. | ., D) = [ mo1p(d0)p(ys |
4, 0), induced by the posterior myp.

Modern machine learning models are often overparameterized, meaning that multiple parameters may define
the same likelihood. For example, in Bayesian neural network (BNN) models where §# € R? denote the
network weights, we can obtain a combinatorial number of equivalent parameters by reordering the neurons,
after which f(-;8), and thus the likelihood, remain unchanged. Consequently, the posterior measure exhibits
complex structures and becomes hard to approximate; for example, its Lebesgue density may contain a large
number of global maxima.

Starting from Sun et al. (2019); Wang et al. (2019); Ma et al. (2019), a recent literature investigates the
possibility of simplifying inference by approximating a function-space posterior. Concretely, let A : R4 —
F C RI* 9 f(-;0) denote a “parameterization map”. Then

p(y. | .. D) = / 7oip(d9) plys | F(24:0)) = / (o) (AF) plys | £lz2)) = / wrio(dF) Py | (),

where Ay (-) refers to the pushforward, and 74 p denotes the function-space posterior defined by the prior
Ayumg =: my and likelihood p(y | =, f) = p(y | f(x)). As shown above, 7sp is sufficient for prediction.
Moreover, it often has simpler structures: for example, for ultrawide BNN models with a Gaussian my, 7
may converge to a Gaussian process (GP) prior (Lee et al., 2018; Matthews et al., 2018; Yang, 2019), in
which case 7y p will also converge to a GP posterior. Thus, it is natural to expect approximate inference to
be easier in function space.

While the intuition has been appealing, existing works on function-space inference tend to be limited by the-
oretical issues: principled applications may require full-batch training (Sun et al., 2019), Gaussian likelihood
(Shi et al., 2019), or specifically constructed models (Ma et al., 2019; Ma & Hernéndez-Lobato, 2021). Many
approaches rely on approximations to the function-space prior, which can make the functional KL divergence
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unbounded (Burt et al., 2020). Additionally, there is a lack of understanding about optimization convergence,
or the expressivity of the variational families used. In contrast, gradient-based MCMC methods, such as
Hamiltonian Monte Carlo (HMC) or Langevin dynamics (LD)-based algorithms, can be applied to a broad
range of models. Their convergence behaviors are well-understood (Roberts & Tweedie, 1996; Villani, 2009),
and intriguingly, their performance often appears to be satisfying on massively overparameterized models
(Zhang et al., 2019; Izmailov et al., 2021), even though they are implemented in weight space.

This paper bridges the two lines of approaches by showing that

o In various overparameterized models, including a simplified BNN model, weight-space Langevin dynamics
(LD) is equivalent to a reflected / Riemannian LD procedure in function space, defined by the pushforward
metric.

o For practical feed-forward network models, the equivalence still appears to hold in simulations: weight-
space LD still produces predictive distributions that appears to approach the functional posterior, at a
rate that does not depend on the degree of overparameterization.

The equivalence has important implications: it means that principled function-space inference has always
been possible and in use. Thus, explicit consideration of function-space posteriors alone will not be sufficient
to guarantee improvement over existing approaches, and more careful analyses are necessary to justify
possible improvement.

It should be noted that in several scenarios, it has been established that overparameterization does not
necessarily hinder the convergence of LD. Moitra & Risteski (2020) proves that polynomial convergence can
be possible for a family of locally overparameterized models, despite the non-convexity introduced by the
overparameterization.! Dimensionality-independent convergence has also been established for infinite-width
NNs in the mean-field regime (e.g., Mei et al., 2019), even though its implication for practical, finite-
width models is less clear. We are unaware of strict equivalence results as provided in this paper, but we
should also emphasize that it is not their technical sophistication that makes them interesting; it is rather
their implications for BNN inference, which appear underappreciated: the results justify the use of LD as
an effective function space inference procedure, in settings that match or generalize previous work. For
example, Example 2.1 covers overparameterized linear models, and many popular approaches (e.g., Osband
et al., 2018; He et al., 2020) are only justified in this setting.

Our results contribute to the understanding of the real-world performance of BNN models, as they provide
a theoretical support for the hypothesis that inference may be good enough in many applications, and is not
necessarily the limiting factor in a predictive modeling workflow. In this aspect, our results complement a
long line of existing work which examined the influence of likelihood, prior and data augmentation in BNN
applications, with an emphasis on classification tasks with clean labels; see Aitchison (2020); Wenzel et al.
(2020); Fortuin et al. (2021), to name a few.

2 Equivalence between Weight and Function-Space Langevin Dynamics

2.1 A Warm-up Example

Suppose the prior measure 7y is supported on an open subset of R? and has Lebesgue density pg. The weight-
space posterior myp can be recovered as the stationary measure of the (weight-space) Langevin dynamics

d6; = Vg(logp(Y | 04, X) + log pe(6,))dt + v2d By, (WLD)
where we write X := {z;}1"1,Y := {y;}}_, for brevity.

The pushforward measure Aumg =: 7y provides a prior in function space. Combining 7y and the likelihood
leads to a posterior, 7yp. When the function space F := supp 7y can be equipped with a Riemannian

IThis result is still not fully unimpeded by overparameterization, as it quantifies convergence to the weight-space posterior,
which necessarily requires traversal through all symmetric regions.
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manifold structure of dimensionality k < d, it is intuitive that we could sample from 7 p by simulating a
Riemannian Langevin dynamics on F (Girolami & Calderhead, 2011). In coordinate form:

dfy = V(fo)dt ++/2G-1(f)dB,, (FLD)

where f; € R is the coordinate of f, € F, G~'(f) = (g7); ; is the inverse of the coordinate matrix of the
metric, dB; is the standard Brownian motion, and

dﬂ'f

V() = g0 (togp(Y | £(F), ) +1og 7L ()~ <&

2

)—|—<9jgij.

ur denotes the corresponding Riemannian measure.

We are interested in possible equivalences between the induced function-space trajectory of (WLD), {A46;},
and the trajectory of possibly generalized versions of (FLD), with metric defined as the pushforward of the
Euclidean metric by A or its generalization. The easiest example is the following:

Example 2.1 (equivalence in linear models). Suppose the map A is linear. For expository simplicity, further
assume that 79 = N(0,1), and that the input space X = {x,... ,x|X|} has finite cardinality, so that any
function can be identified as a |X| dimensional vector (f(x1),..., f(x)x]))-

(i) If A is a bijection, the above vector representation will provide a coordinate for F. In this coordinate,
the pushforward metric has coordinate (AAT)™! (see e.g., Bai et al., 2022), where A denote the
coordinate matriz of A. (FLD) with this metric reduces to

- - 1 -
dfy = (AAT)V; (logp(Y | f,X) — 2||A—1f§) dt + V2AATAB,.

(Derivation for the prior term may be found in Appendix A.1.) By Ito’s lemma, the above SDE also
describes the evolution of Ay, for 0, following (WLD).

(i) The equivalence continue to hold in the overparameterized case (e.g., when d > |X|): consider the
decomposition R? = Ran(A") @ Ker(A). Then the evolution of 6, in (WLD) “factorizes” along
the decomposition: the likelihood gradient is fully contained in Ran(AT) and thus only influences
Projgan(at)ft, whereas Projye,(a)0: has no influence on Ab;. Therefore, we can describe the evolution
of the former independently, thereby reducing to the eractly parameterized case.

The second case above provides the first intuition on why (WLD) is not necessarily influenced by overpa-
rameterization. While technically simple, it is relevant as it covers random feature models, which (formally)
include infinitely wide DNNs in the “kernel regime” (Jacot et al., 2018), where the pushforward metric
converges to a constant value.

2.2 Overparameterization via Group Actions

It is often the case that overparameterization can be characterized by group actions; in other words, there
exists some group H on R? s.t. any two parameters 0,0 € R? induce the same function A0 = A6’ if and
only if they belong to the same orbit. In such cases, we can identify F as the quotient space R?/H and the
map A : R? — F as the quotient map, and it is desirable to connect (WLD) to possibly generalized versions
of (FLD) on F. This subsection presents such results.

To introduce our results, we first recall some basic notions in group theory. Let H be a Lie group, i.e., H is
both a group and a smooth manifold. An action of H on R is a map (p,p) + ¢ -p with ¢ € H and p € RY,
s.t. for all p1,¢0 € H and p € R, we have e-p = p, 1 - (92 - p) = (p192) - p where e € H denotes the
identity. For any ¢ € H, introduce the map Iy, : R? = R% p + ¢ - p. Then the action is free if I', has no
fixed point for all ¢ # e, proper if the preimage of any compact set of the map (p, p) — ¢ p is also compact,
and smooth if T, is smooth for each ¢ € H. An orbit is defined as H - p:= {p-p: ¢ € H} where p € R%.
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Analysis of free group actions The quotient manifold theorem (Lee, 2012, Theorem 21.10) guarantees
that R?/H is a smooth manifold if the action is smooth, proper and free. To define the pushforward metric
on F, we further assume that the action is isometric, i.e., I',, is an isometry for every ¢ € H. Under this
condition, a metric on F can be defined as?

(dA|pu, dAlpv)r,, 7 = (u,v)ga, Vp € F, u,v € T,(H -p)* c R%

The following proposition establishes the equivalence under discrete group action.

Proposition 2.1 (proof in Appendix A.1). Suppose H is a discrete group acting smoothly, freely, properly
on R, and A is such that A9 = A0 if and only if &' € H - 0. If either (a) the prior py is constant and the
group action is isometric; or (b) H = {e} is trivial, then the equivalence between (WLD) and (FLD) will
continue to hold.

Remark 2.1. For continuous groups that act freely, the situation is more complicated, and depends on how
the orbits are embedded in the ambient space R%. For example, a drift term depending on the mean curvature
vector of the orbit may be introduced when pushing a Brownian motion using the quotient map (JE, 1990),
and when the mean curvature vanishes, the equivalence will continue to hold, as shown in our Example 2.1 (ii).
Analysis for non-free group actions is primarily complicated by the fact that the quotient space is no longer
a manifold in general (Satake, 1956). Still, as we show in Example 2.3, similar equivalence results can be
established under the action of symmetric groups.

It is intuitive that simulation of (FLD) should constitute an efficient function-space inference algorithm, in
light of the established guarantees of (Riemannian) LD. Thus, the established equivalences provide strong
justifications for the use of (WLD) in practice.

The pushforward metric used to define the equivalent (FLD) is often believed to encode a desirable inductive
bias, and has been used to characterize or design first-order optimization methods (e.g., Luk & Grosse,
2018; Lee et al., 2019). However, there are also models on which it may be unsuitable, such as very deep
feed-forward networks, for which the pushforward metric may degenerate (Jacot et al., 2019). It should also
be noted that VI and MCMC methods can have different behavior on overparameterized models: for VI
methods, it may still be necessary to explicitly account for overparameterization. While recent works have
made similar observations (e.g., Sun et al., 2019), and provided some examples (Wang et al., 2019; Kurle
et al., 2022), the following example may provide additional insight:

Example 2.2 (LD vs. particle-based VI on torus). Let A0 := ([01],...,[04]), where [a] :=a — |a] € [0,1).
Let mg, ¢ have constant densities, and the negative log likelihood be unimodal and locally strongly convex.
Then we have F = T¢, the d-dimensional torus, and by Proposition 2.1, (WLD) s equivalent to Riemannian
LD on F. As T? is a compact manifold, (FLD) enjoys exponential convergence (Villani, 2009), and so does
the induced function-space measure of (WLD).

Particle-based VI methods approzimate the weight-space posterior with an empirical distribution of particles
{00V M. " and update the particles iteratively. Consider the W-SGLD method in Chen et al. (2018): its
update rule resembles (WLD), but with the diffusion term replaced by a deterministic “repulsive force” term,
0¢(60)dt, where

54(8) = f: Voo kn(0,09) S Ve ki (6,09)
t . Zﬁil kh(g(j), 0(’@)) ivil kn (6, G(k))

j=1
and kp, is a radial kernel with bandwidth h. Formally, in the infinite-particle, continuous time limit, as
h — 0, both v,dt and the diffusion term implements the Wasserstein gradient of an entropy functional

(Carrillo et al., 2019), and W-SGLD and LD are formally equivalent (Chen et al., 2018).

The asymptotic equivalence between (WLD) and W-SGLD breaks down in this example: whereas (WLD)
induces a function-space measure that quickly converges to g p, this is not necessarily true for W-SGLD.

Indeed, its induced function-space measure may well collapse to a point mass around the MAP, regardless of
the number of particles. To see this, let §* € [0,1)% be any MAP solution so that Vglog p(Y | X, 0%)p(6*) = 0.

2Tt is well-defined since dAlp is an isomorphism between T}, (H - p)L and T4, F, and the isometry assumption ensures that
the definition is independent of the choice of p in the orbit (Lee, 2018).
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Then for any fivzed h = O(1), as M — oo, the configuration {6 = (100" 0,...,0) + 6* M. will
constitute an approximate stationary point for the W-SGLD update. This is because the posterior gradient
term is always zero, but the repulsive force term vanishes due to the very large distances between particles in
weight space.

Past works have noted the pathologies of particle-based VI in high dimensions (Zhuo et al., 2018; Ba et al.,
2021), but this example is interesting as it does not require an increasing dimensionality. Rather, it is global
overparameterization that breaks the asymptotic convergence to LD.

Analysis of non-free group actions As we have shown in Example 2.2, Proposition 2.1 already demon-
strates some equivalence between (WLD) and (FLD), in the presence of global overparameterization. It can
also be combined with Example 2.1 (ii) to construct models exhibiting both local and global overparam-
eterization. Still, we present a more relevant example below, which is a simplified BNN model exhibiting
permutational symmetry. We note that this model allows for a non-constant neural tangent kernel, which is
an important feature of realistic NN models (see e.g., Ghorbani et al., 2019; Wei et al., 2019).

Example 2.3 (simplified BNN model). Consider the model f(x;0) := Zle sin(0;x), which is a two-layer
BNN with the second layer frozen at initialization.

Let the prior support supp g be contained in (0,+00)?. Then by the linear independence of sine functions,
for A0 = A0’ to hold, 8’ must be a permutation of 6, and thus the symmetry in this model can be described
by the symmetric group Sq consisting of all permutations on the set {1,...,d}. The action of S, on the
weight space R? is non-free, and the function space is a manifold with boundary, namely a polyhedral cone
Cpi={0€R!: 0, <0y <--- <04}

Let p: denote the distribution of 0:. Appendiz A.2 proves that the pushforward distribution p; = Aup;
follows the Fokker-Planck equation with the Neumann boundary condition:

Oepe(0) = =V - (pe(0) Vo (log p(Y | 0, X) +logpa(0))) + Ape(0), 0 € F°
0ppt(9)/0v =0, v € Np,0 € OF,

where OF and F° are the boundary and the interior of F, respectively, and Ny is the set of inward normal
vectors of F at 0. The evolution of p; is closely related to the reflected Langevin dynamics in F (Sato et al.,
2022), which keeps its trajectory in F by reflecting it at OF. When the posterior is strongly log-concave
in Cy, the equivalence implies that the function-space measure p; enjoys a fast convergence. In contrast,
convergence of (WLD) to the weight-space posterior can be much slower, as it needs to visit an exponential
number of equivalence classes.

3 Numerical Study

While our theoretical results have covered two simplified BNN models, the models are still different from
those employed in practice. In this section we validate our findings on practical BNN models on a toy 1D
regression dataset, as well as a collection of semi-synthetic datasets adapted from the UCI regression datasets
commonly used in previous work (e.g., Sun et al., 2019; Wang et al., 2019; Ma et al., 2019).

3.1 1D Regression Dataset

We first consider BNN inference on a toy 1D regression dataset, and check if the function-space measure
induced by (WLD) appears to converge at a similar rate, across models with increasing degree of overpa-
rameterization. Concretely,

1. we will visualize the pointwise credible intervals, which are informative about one-dimensional marginal
distributions of the function-space measure;

2. when the training sample size n is small, we approximately evaluate the approximation quality of (n+1)-
dimensional marginal distributions of f(Xe) := (f(x1),..., f(xn), f(z«)), by estimating the kernelized
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Stein discrepancy (KSD) between the marginal distribution ¢ induced by (WLD), and the approximate

ground truth p.

The KSD can be estimated because it only accesses p through its score function,

Vix.)logp = vf(Xe)(IOg

= Vf(XE)(IOg

dmyx,)

dptren

+logp(Y | f(X.)))

dm
# + log p(Y | f(X))>v

HLeb

(since X C X,)

(1)

where 7 x_) denotes the respective marginal distribution of 7y, and p e, denotes the Lebesgue measure.
We estimate the first term by fitting nonparametric score estimators (Zhou et al., 2020) on prior samples.
The second term can be evaluated in closed form.

| =25 1 =175 I =775 | =3175 | =102375
2 B
x X x X 4 X X
5 x X
-2 0 2 2 0 2 -2 0 2 -2 0 2 -2 0 2
(a) L=3,H =20
1 =25 I=175 I =775 | =3175 I =102375
2 B
O-M * X X X
X X X X X X X X X
x x
-2 T T T T T T T T T T T T T T T
-2 0 2 -2 0 2 -2 0 2 -2 0 2 -2 0 2

(b) L =3,H =500

Figure 1: 1D regression: visualization of the induced function-space measure of MALA after I iterations.
We plot the pointwise 80% credible intervals. The results for L = 2 are deferred to Fig. 4.
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Figure 2: 1D regression: estimated vKSD between the LD predictive distribution and the approximate
function-space posterior. We simulate 1000 LD chains. For the approximate posterior, we estimate the prior
score term in (1) using 5 x 105 samples.
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Figure 3: Semi-synthetic experiment: estimated average-case loss (4) under different choices of likelihood,
for H = 2, L = 200. Shade indicates standard deviation across 8 independent replications.

(b) Laplace likelihood / mean absolute error
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We use feed-forward networks with factorized Gaussian priors, and the standard initialization scaling:

f(x;0) := fE(FED( O (), where
FOREDY) .= 5O (W(l)h(“l) + b<l>) . vee(WO) ~ A (0, (dim h<l*1>)*11) . b~ N(0,0.21),  (2)

and the activation functions ¢(*) are SELU (Klambauer et al., 2017) for hidden layers (I < L) and the identity
map for the output layer (I = L). We vary the network depth L € {2,3}, and the width of all hidden layers
H € [20,500].

The training data is generated as follows: the inputs consist of |2n/3] evenly spaced points on [—2.5, —0.5],
and the remaining points are evenly placed on [1,2]. The output is sampled from p(y | x) = M (zsin(1.5z) +
0.1252,0.01). We use n = 7 for visualization, and n = 3 for KSD evaluation. The difference is due to
challenges in approximating the KSD: we need the score estimator to generalize to out-of-distribution inputs
(approximate posterior as opposed to prior samples), which is challenging in high dimensions.

We implement (WLD) with the Metropolis-adjusted Langevin algorithm (MALA), and evaluate the induced
function-space samples for varying number of iterations. The step size is set to 0.025/nH, so that the
function-space updates have a similar scale.

We visualize the posterior approximations in Fig. 1 and Fig. 4, and report the approximate KSD in Fig. 2.
As we can see, the convergence appears to happen at a similar rate, which supports the equivalence results.

3.2 Semi-Synthetic Experiments

We now investigate the behavior of (WLD) on datasets that better reflect real-world applications. The
previous experiments cannot scale to larger datasets due to challenges in evaluating the KSD. Thus, here
we turn to less direct evaluations, using semi-synthetic datasets adapted from the UCI machine learning
repository. Specifically, we modify the UCI datasets by keeping the input data and replacing the output
with samples from the model likelihood p(y | x, fo), where fo = f(+;00) is sampled from the BNN prior:

Oo ~mo, y|x~ply=-|f(x;00)). (3)

We will check whether an approximate posterior mean estimator, constructed from MALA samples, has a
competitive average-case performance across randomly sampled 6y. This will happen if weight-space MALA
provides a reasonably accurate approximation to the function-space posterior, since the ezact posterior mean
estimator will minimize the average-case risk

F = Efonr By £0(30) B sy mp 1 o () E0F (@) 95) (4)

where ¢ denotes the loss function derived from the model likelihood. Therefore, competitive predictive
performance of the MALA-approximated predictor will provide indirect evidence on the quality of posterior
approximation.

We consider Gaussian and Laplacian likelihoods, which correspond to the square loss and the absolute error
loss, respectively, and estimate (4) using 8 independently sampled 6y. We use the feed-forward network
architecture in Section 3.1 and vary L € {2,3}, H € {50,200}. We construct the approximate posterior
mean predictor using 50 independent MALA chains, and compare its performance with an ensemble of 50
NN models trained with gradient descent (GD) using the MAP objective. For both MALA and GD, the step
size is selected from {n/2nH : n € {1,0.5,0.1,0.05,0.01,0.005}} such that the average acceptance rate of the
first 200 MALA iterations is closest to 0.7, where n denotes the size of training set. We use 80% samples for
training and 20% for testing.

We plot the estimated average-case loss in Fig. 3 and Fig. 5-6 in appendix, and report the best loss in
Table 1-3. As we can see, across all settings, MALA leads to a similar predictive performance to the GD
ensemble. As it is well known that GD methods perform well on DNN models, these results provide further
evidence on the efficacy of the weight-space Langevin algorithm.
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4 Conclusion

In this work we have investigated the function space behavior of weight-space Langevin-type algorithms
on overparameterization models. Across multiple settings that encompass simplified BNN models, we have
established the equivalence of the function-space pushforward of weight-space Langevin dynamics to its
various function-space counterparts. Numerical studies on more realistic models provide further evidence of
the possible equivalence.
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A Proofs

A.1 Proof of Proposition 2.1

Proof of Proposition 2.1. By definitions, for any f € F, there exists some § € R? and one of its neighborhood
N such that f = A6, and that for U = A(N), (U, A|y) forms a coordinate chart. On this chart, the
coordinate matrix of the pushforward metric tensor equals identity, by its definition. Thus, the coordinate
representation (FLD) reduces to

d
df; = Vy (logp(Y | 0, X) + log d:f> dt +v2dB;,,
f
and it differs from (WLD) only on the prior term. When condition (a) in the proposition holds, the prior is

uniform so the gradient vanishes. When condition (b) holds, the group is trivial and the quotient map A4 is
a bijection. Thus, it suffices to show that for all § € supp my, we have

dﬂ'f d7T9

G (A0) =

N dPJLeb

(0) = po(0),
where 1 denotes the Lebesgue measure. By the change of measure formula, the above will be implied by

Tf © Aumg, pr w ApbiLep-

(i) is the definition of 7;. For (ii), let g : F — R be any measurable function with a compact support,
{(U; = A(N;), Aln,) : i € [h]} be a finite chart covering of supp g, and {p;} be a corresponding partition of
unity. Then

h
Jo0ur@n =3 [ (a)A@)VIE@Tnsaria) = | 9(A) s (00)

A~1(supp g)

This establishes (ii), and thus completes the proof. O

A.2 Details in Example 2.3

Recall the definition of the cone Cy := {z € R? : 21 < 29 < ... < 14}, and the group Sy that consists of all
permutations of length d. An action of S; on R? can be naturally defined, under which we have Cy = R?/S,.

We introduce a few additional notations. For x € R?, the stabilizer subgroup is defined as Stabg, = := {¢ €
Sy :@-x =}, and the orbit is Sy -z := {¢ -z : p € Sg}. A vector n, € R? is an inward normal vector of

11
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Cy at x if (ng,y —x) > 0 holds for all y € C4. Denote by N, the set of all inward normal vector of Cy at z.
For any f : R — R, define the function

f:Ci—R, f ngox (5)

LPES

When f is the density function of a measure 7 on R%, the pushforward measure under the quotient map
R% — Cy has the density function f. The following lemma shows that the directional derivative of f along
the normal direction vanishes.

Lemma A.1. Let x € Cy and assume f is differentiable at every y € Sy -x. Then

= 1
D,f(z) = @ Z Dy.w, ) f(y), where Wy( Z Y- v,

y:=y-x€Sq-x pEStabx

where D, denotes the directional derivative along v. Moreover, W,(v) = v for x € C2 and v € R?, and
Wi (v) =0 for x € 9Cy and v € N,.

We postpone the proof of the above lemma to the end of this section, and first present the following lemma,
which implies the invariance of the Fokker-Planck equation under orthogonal transformations.

Lemma A.2. Let f,g : R? — R be two functions and Q € R be an orthogonal matriz, then [V(f o
QANIV(goQ) = [(VH)IVgloQ and A(f o Q) = Af o Q, in which Q is also regarded as a linear map
Q:R¢ - RY.

Proof. Note that V(f o Q) = QT(VfoQ). Let Q; be the i-th column of @, then

d

[V(fo@)"V(goQ) => (Vfo@Q)TQiQ(VgoQ) = (VfoQ)(VgoQ).

i=1

A similar result also holds for the Laplacian:

d d
A(f Zaaf Q) = > 0:0ifoQaji= > (B:0;f © Q)djicus-
i=1 i,j=1 i,7,k=1
As @ is orthogonal, we know E —1 9jiqki = 0%, which completes the proof. O

As the pushforward measure Axp has density p, the following proposition establishes the equivalence result
claimed in the text.

Proposition A.1. Let p: R* — R be any function that is invariant under the action of Sq, and X, follow
the Langevin dynamics on R?,
dX; = Vlog p(X,)dt + v2dB;.

Then, the pushforward density p; of X; will evolve as

opy = =V - (pVlogp) + Ap, in C9,
%(x)zo, Yv € Ny, x € 0Cy.

Proof. Let p; be the density of the distribution of Xy, then it follows the Fokker-Planck equation
Oipe = =V - (psVlogp) + Ap; = —(Vpy) TV 1ogp — prAlogp + Apy.

For ¢ € Sy, we denote P, € R¥4 by the corresponding matrix such that ¢ -z = P, for every z € R?.
Then, P, is an orthogonal matrix, and by Lemma A.2

O¢(pt o Py) = (Ospt) 0 Py = —(Vp: - Vlogp) o P, — (pAlogp) o P, + (Apy) o P,
= —[V(pi o P,)|*Vlogp — (ps o P,)Alogp + A(ps o P,),

12
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where the first equation is because P, is independent to ¢, and the last equation follows from Lemma A.2
and logp o P, = log p.

Therefore, we obtain the equation for p;:

1
OPt = 75 Z IproPy) = Z ((pe o Py)Vlogp) + Alp o Pyp))
1S4l =5, [ d| ol
==V (p:Vlogp) + Ap;. (6)

Combining with Lemma A.1 yields the boundary condition

9Py

Proof of Lemma A.1. Since the group action is linear (i.e., ¢ - (z+y) = ¢ -z + ¢ -y and ¢ - (tx) = tp - x),
we have

Dv.f(x) = tLH(Ileri (f( +tv) | dl Z Dtp vf

pESq

To simplify the above summation, we introduce the coset ¢ Stabx := {@ : ¢ € Staba} for each ¢ € Sy,
and the set of cosets S;/ Staba := {p Stabx : ¢ € S4}. Clearly, any two cosets are either equal or disjoint,
and the group Sy is partitioned by Sg/ Stab z. The orbit-stabilizer theorem (Dummit & Foote, 2004, p. 114)
states that the map ¢ Stabx — ¢ - x is a bijection between cosets Sy/ Stab 2 and the orbit Sy - x, and thus®

D’U Z‘ Jf
‘Sd| Z Lpr <)0

©ESy
1
~ 1S4 ) Dy f(p-x) (partition)
¢ pel
C=1 Stabz€S,/ Stabz
1 - |
- m Z Do f(p- ) (v Stabx +— 9 - x bijective)
€1 Stab
yio:’(/)‘leas da~:z

1 / y
=5 X X Dewwfl) D=0y

y:=y-x€Sq-x ¢’ EStabx

1
= — Z Dd,.Wm(v)f(y). (linearity of l)(f)f)

‘Sd| y:=1-x€ESq-x

This proves the first claim.

For any interior point « € C§, we have Stabz = {e} and thus W, (v) = v. For any boundary point = € 0Cy,
the stabilizer subgroup is non-trivial, and it remains to show that W,(v) = 0 for normal vectors.

An element ¢ € Sy can be identified as a permutation matrix P, € R?*4 5.t. the group action is the matrix-
vector multiplication p-v=Pyv, and clearly7 the stabilizer of z € 0Cy always has the form of a Cartesian
product, [[7 S;, where {c;} is s.t. 3°71 ¢; = d.* Therefore, we have

Wy (v) = Z w-v= Z P, | v.

€Stabx s
® ¢€Hj=1 SCJ‘

3t can be verified that the proof is independent on the choice of .
4For example, for x € C5 with 21 = x2 < 23 = x4 < x5, the stabilizer is Sz x Sg X S1.
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Note that P, = blkdiag(P1, Pa, ..., Py, ), with each P; € R%*% being a permutation matrix, and the sum of
all size c; permutation matrices is (¢; —1)!1c, x¢;, where 1 denotes the all-ones matrix. Thus, by decomposing
W, (v) € R? into R x R x --- x R°m= we have

Sm
Ao Zsl Ao 252 Ao ZT
Wz ('U) = <C v’i1017 07 Ui1627 ceey T ’Uilc‘mz ,
1 i—sot1 2 e +1 Mo g, 11
where A =[]}, ¢;! and 55 = 37, a1

Let ) € R? be such that el(j) =1ifs;_1 <k <sj, and e,(cj) = 0 otherwise. Then a sufficient condition for
W, (v) = 0 is that (v,e)) = 0 for all j € [m,]. Let n, € N, be an inward normal vector and fix j € [m,].
Since z + ajel) € Cy for aj = min(zs, — 5,_,, @s,,, — ;) > 0, we conclude that (n,,+e) >0 and hence
(ng, ey =0. Thus, W,(n,) = 0. O

B Additional Results

I =25 I =175 1=775 | =3175 | = 102375

X X
0 A % % X X
X
-2 T T T T T T T T T T T T T T T
-2 0 2 -2 0 2 -2 0 2 -2 0 2 -2 0 2
(a) L=2H=20
=25 =175 =775 I = 3175 I = 102375
2-
04 X
X X
X
-2 T T T T T T T T T T T T T T T
-2 0 2 -2 0 2 -2 0 2 -2 0 2 -2 0 2
(b) L=2,H =50
I =25 =175 =775 I = 3175 | = 102375
2-
04 X
X X
X
-2 T T T
-2 0 2

(c) L =2, H =500

Figure 4: Additional visualizations in the setting of Fig. 1.
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Figure 5: Semi-synthetic experiment: estimated loss (4) under different likelihoods, for H = 2, L = 50.

Table 1: Semi-synthetic experiment: average-case test risk for the best stopping iteration, for H = 2, L = 200.

Likelihood ‘ Algorithm ‘ boston concrete energy kin8nm naval power plant wine yacht

Gaussian MALA 0.067 0.058 0.056 0.055 0.051 0.050 0.063  0.055
GD 0.068 0.059 0.056 0.055 0.051 0.050 0.063  0.056

Laplacian MALA 0.190 0.175 0.167 0.168 0.159 0.159 0.185 0.172
P GD 0.191 0.176 0.168 0.169 0.159 0.159 0.185 0.173

Table 2: Semi-synthetic experiment: average-case test risk for the best stopping iteration, for H = 2, L = 50.

Likelihood ‘ Algorithm ‘ boston concrete energy kin8nm naval power plant wine yacht

Canssian MALA 0.071 0.058 0.053 0.054  0.052 0.050 0.063  0.057
aussia GD 0.071 0.058 0.053 0.054  0.051 0.050 0.063  0.057
Lo lacian MALA 0.193 0.172 0.170 0.165  0.160 0.159 0.185  0.168
p GD 0.195 0.173 0.170 0.166  0.159 0.159 0.186  0.169
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Figure 6: Semi-synthetic experiment: estimated loss (4) under different likelihoods, for H = 3, L = 50.

Table 3: Semi-synthetic experiment: average-case test risk for the best stopping iteration, for H = 3, L = 50.

Likelihood ‘ Algorithm ‘ boston concrete energy kin8nm naval power plant wine yacht
Gaussian MALA 0.069 0.059 0.055 0.056 0.051 0.052 0.068  0.053

GD 0.070 0.059 0.056 0.056 0.051 0.051 0.069  0.054

Laplacian MALA 0.194 0.176 0.172 0.171 0.183 0.160 0.189  0.175

P GD 0.197 0.177 0.173 0.172 0.160 0.160 0.190 0.175
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