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Reproducibility Summary1

Scope of Reproducibility2

Mohankumar et al. (2020) claim that current attention mechanisms in LSTM based encoders can neither provide a3

faithful nor a plausible explanation of the model’s predictions in Natural Language Processing tasks. To make attention4

mechanisms more faithful and plausible, the authors propose two modified LSTM models with a diversity-driven5

training objective that ensures that the hidden representations learned at different time steps are diverse: the Orthogonal6

LSTM and the Diversity LSTM. The authors claim that the resulting attention distributions from these diversity-driven7

LSTMs offer more explainability and transparency in contrast to a Vanilla LSTM.8

Methodology9

The original code of the authors has been used. Data was retrieved from the links provided by the authors. A subset of10

the datasets used in the original paper were used, while maintaining the variety of different NLP tasks of the paper. The11

experiments were ran on the UvA Lisa cluster computer. Depending on the dataset, training and evaluation took between12

1 and 40 hours. Additionally, the LIME framework was added to the pipeline to account for an extra experiment.13

Results14

Our results partially support the authors’ claims. Although we were not able to reproduce everything the authors15

claimed in their paper, there are still some signs that the proposed diversity-driven LSTMs could offer something extra16

in terms of explainability and transparency.17

What was easy18

The authors’ code was relatively easy to run. Their clear instructions for setting everything up and running experiments19

contributed to this. Some slight adaptations to the code had to be made to omit warnings, but this was a straightforward20

task. Their choice to automatically run and plot all experiments after each other was convenient for reproducing the21

work.22

What was difficult23

Setting up the environment in the remote GPU was slightly difficult. Also, the links for some datasets were malfunc-24

tioning or missing, making it impossible to verify all results. Running some experiments took quite a long time, but this25

was no major issue given the available computational resources we had on the Lisa GPU server.26

Communication with original authors27

There has been no contact with the orignal authors of the paper.28
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1 Introduction29

Attention mechanisms in neural network-based models play an important role in various Natural Language Processing30

(NLP) tasks. Studies on the interpretability of these attention distributions, have often led to the notion of faithful31

and plausible explanations for model predictions. A distribution can be considered faithful if a higher attention32

weight implies a greater impact on the model’s prediction. A prediction can be considered plausible if it provides a33

human-understandable justification for the model’s prediction. Mohankumar et al. (2020) state that current LSTM34

attention mechanisms provide neither faithful nor plausible explanations of the model’s predictions. This is mainly due35

to hidden representations within the LSTM being very similar at different timesteps. According to Mohankumar et al.36

(2020), by modifying the LSTM cell with a diversity-driven training objective that ensures highly dissimilar hidden37

representations, attention mechanisms can be made more faithful and plausible. The authors propose two different38

LSTM models to ensure high diversity between hidden states: a Diversity LSTM and an Orthogonal LSTM.39

2 Scope of reproducibility40

2.1 Target claims41

In the paper, the authors introduce modified LSTM cells which makes attention distributions more faithful and42

plausible on NLP tasks including Binary Classification, Natural Language Inference, Paraphrase Detection and Question43

Answering. The main claims of the authors to substantiate this statement are as follows:44

1. The predictive performance of the Diversity and Orthogonal LSTM models is comparable to that of a Vanilla45

LSTM.46

2. The resulting attention distributions of the diversity-driven LSTM models offer more transparency as they47

provide a more precise importance ranking of the hidden states.48

3. The resulting attention distributions of the diversity-driven LSTM models offer more transparency as they are49

better indicative of words important for the model’s predictions.50

4. The resulting attention distributions of the diversity-driven LSTM models offer more transparency as they51

correlate better with attribution methods such as gradients and integrated gradients.52

By reproducing a series of experiments, the aim of this study is to determine which claims are supported. Due to the53

stochastic nature of the experiments that will be run to support or oppose these claims, identical numerical results are54

not expected. Instead, our judgement will be applied to determine which claims are supported by our results.55

3 Methodology56

3.1 Model descriptions57

In this section we will briefly outline the theories behind the proposed Orthogonal and Diversity LSTM models. The58

information provided in this section stems from the original Mohankumar et al. paper. First the concept of conicity will59

be explained. Thereafter, the theory behind both LSTM models is made clear.60

3.1.1 Conicity61

One of the similarities measures defined in the original paper is conicity. This measures the similarity between a set of
vectors. To do this, the alignment to a mean is calculated for a vector vi as follows:

ATM(vi,V) = cosine

vi,
1

m

m∑
j=1

vj

 .

The conicity is then defined as the mean of ATM of all vectors.

conicity (V) =
1

m

m∑
i=1

ATM(vi,V)

A high conicity indicates high similarity between vectors and thus that they lie within a narrow cone centered at the62

origin. We will use the conicity measurement to evaluate the similarity between hidden states in the different LSTM63

models.64
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3.1.2 Orthogonal LSTM65

With the Orthogonal LSTM, low conicity between hidden states of the LSTM encoder is ensured by orthogonalizing66

the current hidden states with the mean of previous states.67

The Orthogonal LSTM uses the same set of update equations as a Vanilla LSTM where only the equation for updating68

the hidden states is interchanged with the following two equations:69

ht =

t−1∑
i=1

hi ht = ĥt −
ĥT
t ht

h
T

t ht

ht

Where the hidden state vector’s ĥt component is subtracted along the mean ht of the previous states.70

3.1.3 Diversity LSTM71

While the Orthogonal LSTM model sets a hard constraint between the hidden state vector’s ĥt and the previous states72

mean ht, the Diversity LSTM takes a more flexible approach by being trained to maximize the log-likelihood of the73

training data and minimize the conicity of hidden states.74

L(θ) = −pmodel (y | P,Q, θ) + λ conicity
(
HP
)

where y is the ground truth class, P and Q are the input sentences, HP = {hp
1, . . . ,h

p
m} ∈ Rm×d contains all the75

hidden states of the LSTM, θ is a collection of the model parameters and pmodel (.) represents the model’s output76

probability. λ is a hyperparameter that controls the weight given to diversity in hidden states during training.77

3.2 Datasets78

In this study, experiments were reproduced for a subset of the original datasets. These datasets are the SST, IMDB,79

20News, Yelp, SNLI, QQP and BabI datasets. The same preprocessing and splitting into subsets was performed as80

in the original paper. The code to download, preprocess and split the data can be found in the git of original paper:81

https://github.com/akashkm99/Interpretable-Attention. A full overview of all datasets can be found in82

Appendix A.83

3.3 Hyperparameters84

We have used the same hyperparameter-settings as in the Mohankumar et al. paper to be able to reproduce their results.85

For all datasets, except the BabI datasets, pretrained GloVe Pennington et al. (2014) or fastText Tomas et al. (2018)86

word embeddings have been used. The 50 dimensional BabI word-embeddings are learned form scratch during training.87

An overview of the hyperparameters can be found in appendix A.88

3.4 Experimental setup89

The link to our code has been made publicly available at https://github.com/Jeroenvanwely/FACT.git. We90

also provide the link to the code used in the Mohankumar et al. paper: https://github.com/akashkm99/91

Interpretable-Attention. We ran the code on the Lisa GPU server provided by the University of Amsterdam (see92

https://userinfo.surfsara.nl/systems/lisa for more information).93

3.5 Computational requirements94

Depending on the dataset, running experiments takes between 1 and 40 hours on a single node GPU. Therefore, a95

substantial amount of time is needed to complete experiments for all datasets. All code including datasets amounts to96

15 GB, therefore this is the absolute minimum amount of storage that needs to be available.97

4 Results98

The results of our experiments support claims 1 and 2 from section 2.1. We did, however, not find strong evidence99

which supports claims 3 and 4. In the following sections we present the results of our experiments in detail. For each100

experiment, we will indicate if the results support or oppose a claim.101
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4.1 Experiment 1: Empirical evaluation102

The first experiment performed in the original paper is an empirical evaluation (i.e. measurement of accuracy and103

conicity) of the Vanilla, Diversity and Orthogonal LSTM on different datasets. The results of the authors suggest104

that the accuracy of the Diversity and Orthogonal LSTM is similar to that of the Vanilla LSTM while conicity values105

decrease significantly.106

Our obtained results regarding the empirical evaluation of the Vanilla, Diversity and Orthogonal LSTM averaged over107

three separate runs including the standard deviation are shown in table 1. For reference, the authors’ results have been108

included as well. Compared to the authors’ results, we see similar trends: the accuracy of the Diversity and Orthogonal109

LSTM is comparable to that of the Vanilla LSTM while the conicity decreases substantially. These findings support110

claim 1, which states that the predictive performance of the Diversity and Orthogonal LSTM models is comparable to111

that of a Vanilla LSTM.112

LSTM Diversity LSTM Orthogonal LSTM Random MLP
Accuracy Conicity Accuracy Conicity Accuracy Conicity Conicity Accuracy

Binary Classification
SST 81.79 / 80.13 (1.06) 0.68 / 0,72 (0.02) 79.95 / 79.75 (0.86) 0.20 / 0.19 (0.00) 80.05 / 79.01 (0.62) 0.28 / 0.28 (0.00) 0.25 80.05

IMDB 89.49 / 89.86 (0.28) 0.69 / 0.61 (0.04) 88.54 / 87.23 (0.43) 0.08 / 0.09 (0.00) 88.71 / 88.44 (0.07) 0.18 / 0.17 (0.01) 0.08 88.29
20News 93.55 / 90.29 (1.43) 0.77 / 0.83 (0.06) 91.03 / 92.16 (0.56) 0.15 / 0.12 (0.00) 92.15 / 92.31 (1.50) 0.23 / 0.24 (0.01) 0.13 87.68

Natural Language Inference
SNLI 77.23 / 77.69 (0.34) 0.56 / 0.58 (0.01) 76.96 / 76.77 (0.07) 0.12 / 0.12 (0.00) 76.46 / 76.65 (0.02) 0.27 / 0.30 (0.00) 0.27 75.35

Paraphrase Detection
QQP 78.74 / 78.50 (0.46) 0.59 / 0.57 (0.01) 78.40 / 78.46 (0.21) 0.04 / 0.03 (0.00) 78.61 / 78.54 (0.11) 0.33 / 0.34 (0.00) 0.30 77.78

Question Answering
bAbI 1 99.10 / 100 (0.00) 0.56 / 0.72 (0.01) 100.00 / 100 (0.00) 0.07 / 0.10 (0.00) 99.90 / 100.00 (0.00) 0.22 / 0.22 (0.01) 0.19 42.00
bAbI 2 40.10 / 49.43 (7.96) 0.48 / 0.49 (0.12) 40.20 / 43.50 (5.93) 0.05 / 0.12 (0.00) 56.10 / 32.50 (6.13) 0.21 / 0.17 (0.01) 0.12 33.20
bAbI 3 47.70 / 22.90 (0.80) 0.43 / 0.88 (0.00) 50.90 / 49.57 (5.44) 0.10 / 0.10 (0.00) 51.20 / 50.77 (8.58) 0.18 / 0.16 (0.01) 0.07 31.60

Table 1: Accuracy and conicity of Vanilla, Diversity and Orthogonal LSTMs across different datasets. Authors’ results
are left, our results including standard deviation between brackets are right. Accuracy of a Multilayered Perceptron
(MLP) model and conicity of vectors uniformly distributed with respect to direction is also reported for reference.

4.2 Experiment 2: Usefulness of importance ranking of hidden states113

The second experiment that was conducted in the paper researched whether attention weights provide a useful importance114

ranking of hidden representations. To do so, the authors erase the hidden representations in the descending order of115

the importance (highest attention to lowest) until the model’s decision changes. The authors observed that, in several116

datasets, a large fraction of the representations in the Vanilla LSTM model have to be erased to obtain a decision flip.117

This observation suggests that representations in the lower end of the importance ranking do play a significant role,118

which makes the usefulness of attention ranking in Vanilla LSTMs questionable. In contrast, the authors claim that a119

decision flip is obtained much quicker using their Diversity and Orthogonal LSTM, implying higher importance to120

higher ranked representations.121

In figure 1 we present our results of this experiment. For reference, the authors’ results are included in Appendix B.122

We notice similar trends as those observed by the authors. For the IMDB and 20 News datasets we observe a quicker123

decision flip for the Diversity and Orthogonal LSTMs when compared to the Vanilla LSTM. For the QQP dataset only124

the Orthogonal LSTM results in a quicker decision flip, while the authors of the paper find that the Diversity LSTM125

has a quicker decision flip as well. For the bAbi 1 dataset, all models have an equally fast decision flip, which can be126

observed in the paper as well. Overall, our results are in line with the authors’ results. Therefore it can be stated that, in127

contrast to a Vanilla LSTM, the top elements of the attention ranking of the Diversity and Orthogonal models are better128

able to concisely describe the model’s decisions. This suggests that their attention weights provide a faithful explanation129

of the model’s performance. Ultimately, these findings support claim 2, which states that the attention distributions of130

the proposed models offer more transparency as they provide a precise importance ranking of the hidden states.131
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(a) IMDB dataset (b) 20 News dataset

(c) QQP dataset (d) bAbi 1 dataset

Figure 1: Box plots of fraction of hidden representations removed for a decision flip for the the Vanilla, Diversity and
Orthogonal LSTMs (left to right, respectively).

4.3 Experiment 3: Meaningfulness of attention weights132

To strengthen the affirmed claim made in experiment 2, which states that the attention weights of the Diversity and133

Orthogonal LSTM provide more faithful predictions and therefore offer more transparency due to a more precise134

importance ranking, another experiment was conducted. Here, the authors randomly permuted the attention weights135

and observed the difference in the model’s output. Subsequently, they plotted the median of Total Variation Distance136

(TVD) between the output distribution before and after the permutation for different values of maximum attention in137

the Vanilla, Diversity and Orthogonal LSTM models. In the plots stemming from the paper (see appendix B), it can138

be observed that randomly permuting the attention weights in the Diversity and Orthogonal LSTM model resulted in139

significantly different outputs. However, there is little change in the Vanilla LSTM model’s output for several datasets140

suggesting that here the attention weights are not so meaningful.141

In figure 2 the results of our experiment are presented. While the authors, for unclear reasons, chose to only plot the142

TVD for one class, we plotted it for both classes. When compared to the authors’ results, we see similar trends. For143

the IMDB dataset, we observe that randomly permuting the attention weights in the Diversity and Orthogonal LSTMs144

results in significantly different outputs, whereas the output of the Vanilla LSTM does not change much. We observe the145

same for the 20News dataset. It is noticeable however, that for one class (in blue) of the 20News dataset in combination146

with the Vanilla LSTM there is almost no difference in outputs (left subfigure in figure 2b), while for the other class (in147

brown) we observe that there is a considerable amount of permutations in which the output does change. It might be for148

this reason that the authors chose to only show the TVD for one class of each dataset.149

Although our results are not completely in line with the paper and the evidence is not as convincing, it can be said that150

in general, randomly permuting the attention weights in the Diversity and Orthogonal LSTM models results more often151

in different outputs than permuting the attention weights in the Vanilla LSTM. The sensitivity to random permutations152

of the attention weights in the proposed models suggests that they provide a more faithful explanation for the model’s153

predictions. This finding contributes to the previous confirmation of claim 2, which states that Diversity and Orthogonal154

attention distributions offer more transparency as they provide a more precise importance ranking of the hidden states.155

(a) IMDB dataset (b) 20News dataset

Figure 2: Comparison of Median output difference when randomly permuting the attention weights for the Vanilla,
Diversity and Orthogonal LSTM models (left to right, respectively). Plotted for the IMDB and 20News dataset. Blue:
Class 0, Brown: Class 1.
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4.4 Experiment 4: Comparison with Rationales156

In the binary classification tasks a single input sequence is used to make a prediction. For those tasks, the authors157

analyzed how much attention is given to words in the sentence that are important for the prediction. Specifically, a158

minimum subset of words in the input sentence were selected with which the model can accurately make predictions.159

This subset of words, called Rationales, were obtained using the REINFORCE algorithm. After obtaining the rationales,160

the total amount of attention given to this subset is calculated. The authors observed that the accuracy of predictions161

made from the extracted rationales was within 5% of the accuracy made from the entire sentences, while the LSTM162

Diversity model provides substantially more attention to rationales than the Vanilla LSTM. This would indicate that the163

attention weights in the Diversity LSTM are better able to indicate words that are important for making predictions.164

In table 2 our averaged results over three runs including standard deviation are presented. For reference, the authors’165

results have been included in the table as well. While the authors did not incorporate the results of the Orthogonal166

LSTM, we also added these. We can observe that the results for the Diversity and Orthogonal LSTM are very similar.167

In comparison to the authors’ results, we notice some differences. For the SST and IMDB datasets it is visible that the168

Diversity and Orthogonal LSTMs have a relative low rationale length value and and a relative high rationale attention169

value, which is in line with the results in the paper. For these datasets using the Vanilla LSTM, however, we observe170

very high values for the rationale length. This indicates that in the Vanilla LSTM almost all words are considered171

important. Subsequently, it is not unsurprising to see that almost all attention is given to these rationales. This is very172

different from the results observed in the paper which show a lower rationale attention value and a higher rationale173

length value in contrast to the Diversity LSTM. However, for the 20News dataset comparable results as in the paper are174

noticeable.175

In most cases, we do not observe that the Diversity LSTM model provides much higher attention to rationales which176

are shorter than the Vanilla LSTM model’s rationales. Thus, we cannot confirm claim 3 which states that the attention177

weights in the Diversity LSTM are able to better indicate words that are important for making predictions.178

Vanilla LSTM Diversity LSTM Orthogonal LSTM
Dataset Rationale Rationale Rationale Rationale Rationale Rationale

Attention Length Attention Length Attention Length
SST 0.348 / 0.89 (0.07) 0.240 / 0.87 (0.08) 0.624 / 0.58 (0.08) 0.175 / 0.21 (0.06) - / 0.47 (0.04) - / 0.14 (0.02)

IMDB 0.472 / 0.90 (0.13) 0.217 / 0.84 (0.21) 0.761 / 0.87 (0.05) 0.169 / 0.27 (0.04) - / 0.68 (0.05) - / 0.17 (0.01)
20News 0.627 / 0.66 (0.17) 0.215 / 0.56 (0.03) 0.884 / 0.95 (0.02) 0.173 / 0.27 (0.05) - / 0.90 (0.04) - / 0.26 (0.04)

Table 2: Mean Attention given to the generated rationales with their mean lengths (in fraction). Authors’ results are left,
our results including standard deviation between brackets are right.

4.5 Experiment 5: Comparison with attribution methods179

In the fifth experiment, the authors examined how well their attention weights agree with gradient-based attribution180

methods Sundararajan et al. (2017). For every input word, they computed these attributions and normalized them to181

obtain a distribution over the input words. Subsequently, they computed the Pearson correlation and JS divergence182

between the attribution distribution and the attention distribution. The authors observed that attention weights in the183

Diversity LSTM better agree with gradients with an average (relative) 64.84% increase in Pearson correlation and an184

average (relative) 17.18% decrease in JS divergence over the Vanilla LSTM across the datasets. If we recalculate these185

averages due to our usage of less datasets, we obtain an average (relative) 90.81% increase in Pearson correlation and186

an average (relative) 29.37% decrease in JS divergence over the Vanilla LSTM across datasets. Similar trends follow187

for the Integrated Gradients attribution method.188

Our results regarding the difference of the Diversity and Orthogonal LSTMs with respect to the Vanilla LSTM are189

shown in table 3. Relative increases or decreases were calculated by comparing the averaged scores over three runs.190

For reference, these values including standard deviation and the authors’ results can be found in Appendix B. We191

observe an average (relative) increase of 30.96% and 29.80% in Pearson correlation between the Attention weights and192

the Gradients and Integrated Gradients, respectively, for the Diversity LSTM when compared to the Vanilla LSTM.193

Although these increases are lower than those found in the paper, the general trend is similar. For the JS divergence,194

however, we see an average (relative) increase of 8.48% between the Attention weights and Gradients for the Diversity195

LSTM compared to the Vanilla LSTM. This is not in line with the authors’ results which suggest an average (relative)196

29.37% decrease in JS divergence. We also do not notice a decrease in JS Divergence between the attention weights197

and Integrated Gradients as our results show an average (relative) increase of 0.81%.198
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It is also noticeable that all our averaged increase and decrease results have relatively high standard deviations across the199

different datasets, which means that results differ significantly per dataset. For example, the Babi 1 and Babi 2 Pearson200

Correlation between the Attention weights and Gradients for the Diversity LSTM is actually worse than for the regular201

LSTM (-4.45% and -2.47% respectively) which is not in line with the previously mentioned average (relative) 30.96%202

increase in Pearson Correlation. These inconsistent results are observable for more datasets. Due to the fluctuations of203

results between datasets and the average increase of JS divergence when compared to Vanilla LSTMs, our results of this204

experiment cannot confirm claim 4, which states that the attention distributions of the diversity-driven LSTM models205

offer more transparency as they correlate better with attribution methods such as gradients and integrated gradients.206

Pearson Correlation JS Divergence
Gradients Integrated Gradients Gradients Integrated Gradients

Dataset (Mean incr./decr.) (Mean incr./decr.) (Mean incr./decr.) (Mean incr./decr.)
Diversity Orthogonal Diversity Orthogonal Diversity Orthogonal Diversity Orthogonal

Text Classification
SST +71.33 +58.67 +105.00 +93.33 -20.00 +8.57 -23.08 -2.56
IMDB +13.14 +14.41 +6.05 +9.30 +2.94 -11.76 +24.39 -2.44

20News +48.68 +36.51 +90.78 +78.72 -19.05 +38.10 -50.00 -13.79
Natural Language Inference

SNLI +5.59 -7.45 -3.85 +5.77 -11.43 +5.71 -4.35 -8.70
Paraphrase Detection

QQP +56.70 +23.71 +72.92 +91.67 +25.93 +37.04 +28.13 +25.00
Question Answering

Babi 1 -4.45 +0.68 +8.55 +11.11 +54.17 +37.50 -10.29 -11.76
Babi 2 -2.47 -62.96 -3.70 -86.42 +0.83 +26.45 -3.27 +14.38
Babi 3 +59.20 -28.80 -37.35 -95.18 +34.48 +75.86 44.92 +63.65

Averaged relative difference w.r.t. Vanilla LSTM
Incr/Decr (%) +30.96 +4.35 +29.80 +13.54 +8.48 +27.18 +0.81 +7.96
Std. deviation 28.01 28.98 44.83 55.78 22.48 19.94 23.75 19.76

Table 3: Relative increase/decrease in % of Pearson correlation and Jensen-Shannon divergence between Attention
weights and Gradients/Integrated Gradients for the Diversity and Orthogonal LSTM models w.r.t. Vanilla LSTM.

4.6 Additional experiment: Applying LIME framework207

In addition to reproducing the experiments from the original paper, we added one extra experiment to verify the claims208

of the authors. Moreover, this experiment served to further investigate the validity of claim 4, in which it is stated that209

the attention distributions of the diversity-driven LSTM models correlate better with other attribution methods. To210

examine and compare the explanations of the different LSTM models, the LIME framework was used. LIME is an211

abbreviation for local interpretable model-agnostic explanations and was introduced in 2016 as a method to explain how212

machine learning classifiers and models arrive at their prediction Ribeiro (2016). To do this, the model is treated as a213

black box, the input instance that needs to be explained is perturbed and a weighted sparse linear model is learned as an214

explanation around this instance. Therefore, LIME learns a local linear model around the vicinity of this instance. This215

means that LIME is not able to explain global predictive behaviour of models but can instead be used as an attribution216

method that describes how models come to their prediction for specific inputs.217

In our additional experiment, we took a similar approach as in experiment 5, in which the attention weights distribution218

was compared with the distribution of gradient-based attribution methods. More specifically, we created LIME219

explanation objects for instances in the test dataset using the LimeTextExplainer module, which can be used to calculate220

an importance weight for every word within the test instance. Subsequently, these LIME weight distributions over the221

test dataset were normalized and compared to the attention weight distributions over the same test instances using the222

same similarity metrics as in experiment 5. We performed this experiment on four text classification datasets, where we223

considered all test sentences for the SST and 20News dataset and only the 1000 shortest test sentences for the relatively224

large and computationally heavy IMDB and Yelp datasets. We averaged results over three runs, the results of which you225

can find in Appendix B.226

We notice similar trends as in experiment 5: on average both the Diversity and Orthogonal LSTM models obtain227

a higher Pearson correlation compared to the Vanilla LSTM (+37.12% and +31.70%, respectively), while the JS228

divergence also increases for both models (+20.39% and +24.71%, respectively). Also, high standard deviation across229

the different datasets, indicating significant differences in results for the different dataset, is similarly to experiment 5230

noticeable. Overall, the comparison of the attention weights with the LIME attribution weights produces inconsistent231

and inconclusive results that cannot substantiate the validity of the claims made by the authors in the original paper.232
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5 Discussion233

Within our reproduction study we studied four claims Mohankumar et al. make in their paper titled towards transparent234

and explainable attention models regarding the transparency offered by Diversity and Orthogonal LSTM models in235

contrast to a regular LSTM model. Our results support claim 1 and 2. No evidence to support claim 3 was found and236

our evidence to support claim 4 was inconclusive. An additional experiment using LIME was conducted to test claim 4237

in an adjusted approach. The results of this experiment were again inconclusive.238

Overall, our results across experiments are inconsistent. In experiment 2 and 3 the Diversity and orthogonal LSTM did239

show the ability of attention weights to provide a more precise importance ranking of hidden states, which in turn offers240

more faithfulness and transparency. On the other hand, in experiments 4 (comparison with Rationales), 5 (comparison241

with attribution methods) and our additional LIME experiment no convincing evidence was found showing that the242

Diversity and Orthogonal LSTM models offer more faithfulness and plausibility.243

It is difficult to point out the exact cause of these inconsistencies. The problem could be in the main assumption made by244

the authors, namely that higher conicity of hidden states (more variety) does not necessarily leads to more transparent245

models. It could also be a consequence of the design of the experiments. In the Rationale experiment, for example,246

the REINFORCE algorithm was not able to extract useful Rationales from texts for the Vanilla LSTM as often a large247

fraction of sentences were labeled as Rationales. Therefore, our results did not support claim 3. In experiment 5 and the248

LIME experiment we did often notice a higher Pearson correlation for the Diversity and Orthogonal LSTM. At the249

same time though, we also noticed as larger Jensen-Shannon Divergence for these models. Also, extreme fluctuations250

in Pearson Correlation and JS Divergence were observed across datasets. It is, due to these mentioned observations,251

questionable to what extend both similarity metrics are a useful benchmark to compare the Diversity and Orthogonal252

attention distributions with other attribution methods.253

There are two main strengths in our reproduction approach. First of all, in contrast to the authors we also included the254

results of the Orthogonal LSTM model in the Rationale (4.4) and attribution methods (4.5) experiments. The results in255

the Rationale experiment showed a very similar performance of both models. Because of the inconclusive outcome of256

the attribution methods experiment, however, it is difficult to make a good comparison of performance between both257

models. Also, because these results are left out in the original paper, a comparison between the authors’ results and our258

results is not possible. The second strength of our approach is the fact that we did three runs for each experiment. This259

made it possible to draw stronger conclusions from findings and detect possible deviations in results as was the case260

in the attribution Methods experiment. The fact that not all datasets used by the original authors were tested can be261

considered a weakness in our approach. Considering the fact that all NLP tasks carried out in the original paper were262

maintained in our study, we do however think that with the subset used, a reflective reproduction study has been carried263

out. Another shortcoming of our approach is that we did not conduct the qualitative experiments of the original paper,264

that might have helped to reinforce our conclusions265

In conclusion, although we were not able to reproduce everything the authors claim in their paper, we still found some266

signs that the proposed Diversity and Orthogonal LSTMs could offer something extra in terms of explainability and267

transparency. Additional research could provide a definitive answer to this question.268

5.1 What was easy269

The authors’ code was readily available and included clear instructions how to set up and run all experiments. Also, the270

authors’ arguments to substantiate their claims and the provided results were easy to follow and understand. Verifying a271

majority of the claims was uncomplicated since all results and plots were automatically created when running the code.272

5.2 What was difficult273

Not all datasets were available and some links to the datasets were outdated. Furthermore, some experiments on274

particular datasets took quite some time to run, e.g. the Rationale experiment on relative large datasets such as275

IMDB. Within the code, there were some confusing sections where additional comments could contribute to an easier276

understanding. In particular, it was confusing that the hidden size of the LSTM models recorded in the configurations277

file did not match the actual hidden size of the LSTM cells initialized. Lastly, it was unclear how some plots in the278

paper were created, e.g. the combined display of the median output difference for all LSTM models.279

5.3 Communication with original authors280

There has been no contact with the original authors of the paper.281
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6 A Appendix - Datasets and hyperparameters309

Dataset Available Source Task Specifications
Binary Classification

Stanford Sentiment Treebank (SST) Yes Socher et al. (2013) Sentiment Analysis with binary
IMDB Movie Reviews Yes Maas et al. (2011) target variables (positive/negative)
Yelp Yes Link
Amazon No -

Anemia No − Determining patients type of Ane-
mia (Chronic vs Acute)

Diabetes No - Diabetes patient diagnosing

20 Newsgroups (20News) Yes Jain and Wallace (2019) Classify sports-news articles into
(baseball/hockey)

Tweets No Nikfarjam et al. (2015) Detect if a tweet describes an ad-
verse drug reaction or not

Natural Language Inference

SNLI Yes Bowman et al. (2015) Recognizing textual entailment
within sentence pairs

Paraphrase Detection
Quora Question Paraphrase (QQP) Yes Wang et al. (2018) Classify as paraphrased or not

Question Answering
bAbI 1 Yes Answering questions that require 1,
bAbI 2 Yes Weston et al. (2015) 2 or 3 supporting statements from
bAbI 3 Yes the context
CNN News Articles (CNN) No - Question answering

Table 4: Datsets used in the Mohankumar et al. paper and their current availability, sources and corresponding tasks in
this paper.

Hyperparameter Vanilla LSTM Diversity LSTM Orthogonal LSTM
Word embedding dimension1 300 300 300
Encoder hidden size2 256 256 256
Generator hidden size 256 64 64
Sparsity lambda 0.2 0.5 0.5
Batch size 32 32 32
Weight decay 1e-05 1e-05 1e-05
Diversity weight - 0.53 -
Context weight - 0 -
Optimizer Adam Adam Adam
Learning rate 0.001 0.001 0.001

Table 5: Table presenting the hyperparameter-setting used in each model

1Exception for BabI datasets, where word embedding dimension is 50.
2Exception for BabI datasets, where encoder hidden size is 128.
3Exception for SNLI and CNN datasets, where diversity weights are 0.1 and 0.2 respectively.
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B Appendix - Experiment results310

Figure 3: Box plots of fraction of hidden representations removed for a decision flip stemming from the original paper.
Dataset and models are mentioned at the top and bottom of figures. Blue and Yellow indicate the attention and random
ranking.

Figure 4: Comparison of Median output difference on randomly permuting the attention weights in the vanilla, Diversity
and Orthogonal LSTM models from the original paper. The dataset names are mentioned at the top of each figure.
Colors indicate the different models as shown legend

11



Pearson Correlation ↑ JS Divergence ↓
Gradients Integrated Gradients Gradients Integrated Gradients

Dataset (Mean ± Std.) (Mean ± Std.) (Mean ± Std.) (Mean ± Std.)
Vanilla Diversity Orthogonal Vanilla Diversity Orthogonal Vanilla Diversity Orthogonal Vanilla Diversity Orthogonal

Text Classification
SST 0.50 (0.08) 0.86 (0.01) 0.79 (0.03) 0.40 (0.07) 0.82 (0.02) 0.77 (0.05) 0.12 (0.02) 0.09 (0.01) 0.13 (0.01) 0.13 (0.02) 0.10 (0.01) 0.13 (0.02)
IMDB 0.79 (0.02) 0.89 (0.01) 0.90 (0.01) 0.72 (0.05) 0.76 (0.03) 0.78 (0.02) 0.11 (0.02) 0.12 (0.01) 0.10 (0.01) 0.14 (0.01) 0.17 (0.02) 0.13 (0.01)

20News 0.63 (0.15) 0.94 (0.01) 0.86 (0.02) 0.47 (0.21) 0.90 (0.01) 0.84 (0.00) 0.14 (0.02) 0.11 (0.01) 0.19 (0.01) 0.19 (0.03) 0.10 (0.00) 0.17 (0.00)
Natural Language Inference

SNLI 0.54 (0.02) 0.57 (0.01) 0.50 (0.02) 0.35 (0.02) 0.33 (0.01) 0.37 (0.03) 0.12 (0.00) 0.10 (0.00) 0.12 (0.00) 0.15 (0.00) 0.15 (0.01) 0.14 (0.01)
Paraphrase Detection

QQP 0.32 (0.04) 0.51 (0.09) 0.40 (0.05) 0.16 (0.11) 0.28 (0.11) 0.31 (0.02) 0.09 (0.00) 0.11 (0.02) 0.12 (0.00) 0.11 (0.02) 0.14 (0.02) 0.13 (0.01)
Question Answering

Babi 1 0.97 (0.01) 0.93 (0.01) 0.98 (0.00) 0.78 (0.01) 0.85 (0.02) 0.87 (0.03) 0.08 (0.01) 0.12 (0.02) 0.11 (0.01) 0.23 (0.02) 0.20 (0.02) 0.20 (0.03)
Babi 2 0.54 (0.01) 0.53 (0.08) 0.20 (0.07) 0.27 (0.11) 0.26 (0.11) 0.04 (0.02) 0.40 (0.01) 0.41 (0.01) 0.51 (0.05) 0.51 (0.05) 0.49 (0.03) 0.58 (0.04)
Babi 3 0.42 (0.02) 0.66 (0.06) 0.30 (0.15) 0.28 (0.07) 0.17 (0.06) 0.01 (0.02) 0.29 (0.02) 0.39 (0.03) 0.51 (0.05) 0.39 (0.05) 0.57 (0.03) 0.64 (0.02)

Table 6: Mean and standard deviation (between brackets) averaged over 3 runs of Pearson correlation and Jensen-
Shannon divergence between Attention weights and Gradients/Integrated Gradients for Vanilla, Diversity and Orthogonal
LSTM models.

Pearson Correlation ↑ JS Divergence ↓
Gradients Integrated Gradients Gradients Integrated Gradients

Dataset (Mean ± Std.) (Mean ± Std.) (Mean ± Std.) (Mean ± Std.)
Vanilla Diversity Vanilla Diversity Vanilla Diversity Vanilla Diversity

Text Classification
SST 0.71 ± 0.21 0.83 ± 0.19 0.62 ± 0.24 0.79 ± 0.22 0.10 ± 0.04 0.08 ± 0.05 0.12 ± 0.05 0.09 ± 0.05
IMDB 0.80 ± 0.07 0.89 ± 0.04 0.68 ± 0.09 0.78 ± 0.07 0.09 ± 0.02 0.09 ± 0.01 0.13 ± 0.02 0.13 ± 0.02

20News 0.72 ± 0.28 0.96 ± 0.08 0.65 ± 0.32 0.67 ± 0.11 0.15 ± 0.07 0.06 ± 0.04 0.21 ± 0.06 0.07 ± 0.05
Natural Language Inference

SNLI 0.58 ± 0.33 0.51 ± 0.35 0.51 ± 0.38 0.26 ± 0.39 0.11 ± 0.07 0.10 ± 0.06 0.16 ± 0.09 0.13 ± 0.06
Paraphrase Detection

QQP 0.19 ± 0.34 0.58 ± 0.31 -0.06 ± 0.34 0.21 ± 0.36 0.15 ± 0.08 0.10 ± 0.05 0.19 ± 0.10 0.15 ± 0.06
Question Answering

Babi 1 0.56 ± 0.34 0.91 ± 0.10 0.33 ± 0.37 0.91 ± 0.10 0.33 ± 0.12 0.21 ± 0.08 0.43 ± 0.13 0.24 ± 0.08
Babi 2 0.16 ± 0.22 0.70 ± 0.13 0.05 ± 0.22 0.75 ± 0.10 0.53 ± 0.09 0.23 ± 0.06 0.58 ± 0.09 0.19 ± 0.05
Babi 3 0.39 ± 0.24 0.67 ± 0.19 -0.01 ± 0.08 0.47 ± 0.25 0.46 ± 0.08 0.37 ± 0.07 0.64 ± 0.05 0.41 ± 0.08

Table 7: Mean and standard deviation of Pearson correlation and Jensen-Shannon divergence between Attention weights
and Gradients/Integrated Gradients for Vanilla, Diversity and Orthogonal LSTM models from paper.

Pearson Correlation ↑ JS Divergence ↓
Dataset (Mean + Std.) (Mean + Std.)

Vanilla Diversity Orthogonal Vanilla Diversity Orthogonal
SST 0.41 ± 0.34 0.80 ± 0.21 0.77 ± 0.24 0.13 ± 0.06 0.11 ± 0.06 0.12 ± 0.06

IMDB 0.78 ± 0.09 0.84 ± 0.09 0.82 ± 0.07 0.12 ± 0.02 0.16 ± 0.04 0.16 ± 0.03
20News 0.60 ± 0.31 0.81 ± 0.16 0.73 ± 0.23 0.19 ± 0.08 0.28 ± 0.11 0.29 ± 0.11

Yelp 0.62 ± 0.29 0.68 ± 0.22 0.70 ± 0.23 0.11 ± 0.07 0.13 ± 0.07 0.13 ± 0.07

Averaged relative difference w.r.t. Vanilla LSTM
Incr/Decr (%) - +37.12 +31.70 - +20.39 +24.71
Std. deviation - 35.23 32.88 - 26.46 25.40

Table 8: Mean and standard deviation of Pearson correlation and Jensen-Shannon divergence between Attention
distributions and the LIME weight distributions for the Vanilla, Diversity and Orthogonal LSTM models implemented
on the text classification datasets. The bottom two rows represent the averaged relative difference from the Vanilla
LSTM with std. deviation between the datasets.
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