
Under review as submission to TMLR

Fast Debiasing of the LASSO Estimator

Anonymous authors
Paper under double-blind review

Abstract

In high-dimensional sparse regression, the Lasso estimator offers excellent theo-
retical guarantees but is well-known to produce biased estimates. To address this,
Javanmard & Montanari (2014a) introduced a method to “debias” the Lasso es-
timates for a random sub-Gaussian sensing matrix A. Their approach relies on
computing an “approximate inverse” M of the matrix A⊤A/n by solving a convex
optimization problem. This matrix M plays a critical role in mitigating bias and al-
lowing for construction of confidence intervals using the debiased Lasso estimates.
However the computation of M is expensive in practice as it requires iterative op-
timization. In the presented work, we re-parameterize the optimization problem to
compute a “debiasing matrix” W := AM⊤ directly, rather than the approximate
inverse M . This reformulation retains the theoretical guarantees of the debiased
Lasso estimates, as they depend on the product AM⊤ rather than on M alone.
Notably, we derive a simple and computationally efficient closed-form expression for
W , applicable to the sensing matrix A in the original debiasing framework, under
a specific deterministic condition. This condition is satisfied with high probability
for a wide class of randomly generated sensing matrices. Also, the optimization
problem based on W guarantees a unique optimal solution, unlike the original
formulation based on M . We verify our main result with numerical simulations.

1 Introduction

In high-dimensional sparse regression, where the number of predictors significantly exceeds the
number of observations, the Lasso (Least Absolute Shrinkage and Selection Operator) is a widely
used method for variable selection and estimation. By incorporating an ℓ1 regularization term,
Lasso promotes sparsity in the estimated coefficients, enabling effective performance for sparse
signal vectors even if the number of predictors far exceeds the number of samples. The Lasso
estimator has well-established theoretical guarantees for signal and support recovery (Hastie et al.,
2015). Despite its strengths, a well-recognized limitation of Lasso is its tendency to produce
biased estimates. This bias arises from the shrinkage imposed by the ℓ1 penalty. Consequently, the
bias compromises estimation accuracy and impedes statistical inference tasks such as construction
of confidence intervals or hypothesis tests. These challenges are especially pronounced in high-
dimensional regimes, where traditional inference tools fail due to high dimensionality.

To address these limitations, several methods have been developed to “debias” the Lasso esti-
mator, allowing for valid statistical inference even in high-dimensional settings. Notably, Zhang &
Zhang (2014) introduced a decorrelated score-based approach, leveraging the Karush–Kuhn–Tucker
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(KKT) conditions of the Lasso optimization problem to construct bias-corrected estimators. Their
framework relies on precise estimation of the precision matrix (inverse covariance matrix), which
can be computationally challenging and sensitive to regularization choices. Similarly, Van de Geer
et al. (2014) proposed a methodology rooted in node-wise regression, where each variable is re-
gressed on the remaining variables to estimate the precision matrix. While effective, this method
is computationally intensive. This may limit its applicability, particularly in scenarios where the
design matrix lacks favorable properties like sparsity of the rows of the precision matrix.

Javanmard & Montanari (2014a) introduced a simple yet powerful approach that constructs de-
biased Lasso estimates using an “approximate inverse” of the sample covariance matrix. Their
method avoids direct precision matrix estimation and instead employs an optimization framework
to compute a debiasing matrix M that corrects for bias while ensuring asymptotic normality of the
debiased estimates. A key advantage of this method is its applicability for random sub-Gaussian
sensing matrices, enabling valid inference across a broad range of high-dimensional applications.

In this work, we build upon the technique of Javanmard & Montanari (2014a), addressing one of
its primary computational bottlenecks: the optimization step required to compute the approximate
inverse M . By reformulating the problem to work directly with the “weight matrix” W := AM⊤,
we entirely eliminate the need to solve this optimization problem in many practical cases. Our
proposed reformulation leverages the insight that the theoretical guarantees of the debiased Lasso
estimator depend on the product AM⊤ rather than the individual debiasing matrix M . By shifting
the focus to the “weight matrix” W := AM⊤, we simplify the optimization problem while retaining
all theoretical properties of the original framework. Under certain deterministic assumptions, we
provide a simple, exact, closed form optimal solution for the optimization problem to obtain W .
We show that this assumption is satisfied with high probability for different popular ensembles
of sub-Gaussian sensing matrices, under the additional condition that the elements of the rows of
A are weakly correlated. In practice, sensing matrices with uncorrelated entries are commonly
used in many applications (Duarte et al., 2008; Liu et al., 2013) and are also widely used in many
theoretical results in sparse regression (Hastie et al., 2015). This closed form solution eliminates
the computationally intensive optimization step required to compute M , significantly improving
runtime efficiency. It is applicable in many natural situations, including sensing matrices with i.i.d.
isotropic sub-Gaussian rows (such as i.i.d. Gaussian, or i.i.d. Rademacher entries).

Notation: Throughout this paper, we denote matrices by bold-faced uppercase symbols, e.g., A.
If A is an n × p matrix then ai. ∈ Rp denotes the ith row of A, thought of as a column vector.
Similarly if A is an n × p matrix then a.j ∈ Rn denotes the jth column of A, again thought of as a
column vector. Vectors are denoted by bold-faced lower case symbols, e.g., w. The ith entry of a
vector w is denoted wi ∈ R. The identity matrix of size p × p for any positive integer p is denoted
by Ip, and its ith column vector is denoted by ei. For a positive integer p, we use the shorthand
[p] = {1, 2, . . . , p}. For a vector w ∈ Rm, we denote the ℓq-norm by ∥w∥q := (

∑m
i=1 |wi|q)

1/q if
1 ≤ q < ∞ and the ℓ∞-norm by ∥w∥∞ := maxi∈[m] |wi|.

2 An Overview of the Debiased LASSO

We consider the high-dimensional linear model

y = Aβ∗ + η, (1)
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where β∗ ∈ Rp is a s-sparse signal (i.e., s := ∥β∗∥0 where s ≪ p), A is a n×p design/sensing matrix
(where n ≪ p), and y ∈ Rn is the measurement vector. Also, η ∈ Rn is an additive noise vector
that consists of independent and identically distributed elements drawn from N(0, σ2), where σ2 is
the noise variance.

The Lasso estimate β̂λ of the sparse signal β∗ is defined as the solution to the following optimization
problem:

β̂λ := arg min
β

1
2n

∥y − Aβ∥2
2 + λ∥β∥1, (2)

where λ > 0 is a regularization parameter chosen appropriately. The Lasso estimator is known
to be a consistent estimator of the sparse signal β∗ under the condition that the sensing matrix A
satisfies the Restricted Eigenvalue Condition (REC) (Hastie et al., 2015, Chapter 11).

The Lasso estimator is well-known to produce biased estimates, i.e., E(β̂λ) ̸= β∗ where the
expectation is computed over noise instances. This bias arises from the ℓ1 regularization term,
which induces shrinkage in the estimate β̂λ. Moreover, there is no known method to compute a
confidence interval of β∗ directly from β̂λ.

To reduce this bias and also construct confidence intervals of β∗, Javanmard & Montanari (2014a)
introduced a debiased Lasso estimator β̂d, defined as follows:

β̂d := β̂λ + 1
n

MA⊤(y − Aβ̂λ). (3)

Here M is an approximate inverse of the rank deficient matrix Σ̂ := A⊤A/n, computed by solving
the convex optimization problem given in Algorithm 1. The parameter µ in Alg.1 controls the bias
of the debiased Lasso estimator given in (3). Ideally one should choose the smallest µ for which
(4) is feasible.

Algorithm 1 Construction of M (from Javanmard & Montanari (2014a))
Require: Design matrix A, µ ∈ (0, 1)
Ensure: Debiasing matrix M

1: Compute: Σ̂ := A⊤A/n.
2: For each j ∈ [p], solve the following optimization problem to compute column vector m.j ∈ Rp:

minimize m⊤
.jΣ̂m.j

subject to ∥Σ̂m.j − ej∥∞ ≤ µ, (4)

where ej is the jth column of the identity matrix Ip, and µ ∈ (0, 1).
3: Assemble M as M := (m.1| · · · |m.p)⊤.
4: If the optimization problem is infeasible for any j, set M := Ip.

The theoretical properties of β̂d are applicable to a sensing matrix A with the following properties:
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D1: The rows a1., a2., . . . , an,. of matrix A are independent and identically distributed zero-
mean sub-Gaussian random vectors with covariance Σ := E[ai.a⊤

i. ]. Furthermore, the
sub-Gaussian norm κ := ∥Σ−1/2ai.∥ψ2

1 is a finite positive constant.

D2: There exist positive constants 0 < Cmin ≤ Cmax, such that the minimum and maximum
eigenvalues σmin(Σ), σmax(Σ) of Σ satisfy 0 < Cmin ≤ σmin(Σ) ≤ σmax(Σ) ≤ Cmax < ∞.

Theorem 7(b) of Javanmard & Montanari (2014a) shows that the optimization problem in (4)
is feasible with high probability, for sensing matrices satisfying properties D1 and D2, as long

as µ > 4
√

3eκ2
√

Cmax
Cmin

√
log p
n . If µ is O

(√
log p
n

)
and n is ω((s log p)2), then Theorem 8 in the

aforementioned paper shows that the bias of the debiased Lasso estimator goes to 0 and ∀j ∈
[p],

√
n(β̂dj − β∗

j ) is asymptotically zero-mean Gaussian with variance σ2m⊤
.jΣ̂m.j .

3 Re-parameterization of the Debiased LASSO

The debiased Lasso estimator in (3) can be rewritten in terms of the weight matrix W := AM⊤

as:
β̂d = β̂λ + 1

n
W ⊤(y − Aβ̂λ). (5)

The re-parameterization does not affect the debiasing procedure described earlier. Thus, any the-
oretical guarantees established using M extend to those using W .

We now produce a reformulated problem in (6) using W , and show that it is equivalent to the
original optimization problem in Algorithm 1. Using the relationship W = AM⊤, we can rewrite
m.j as w.j := Am.j . Making this substitution, the objective in (4) becomes m⊤

.jΣ̂m.j = 1
nw⊤

.jw.j

and the constraint ∥Σ̂m.j − ej∥∞ ≤ µ (where ej is the jth column of the identity matrix) becomes∥∥∥ 1
nA⊤w.j − ej

∥∥∥
∞

≤ µ. This change of variables suggests the following reformulated optimization
problem (6) for the jth column of W :

Pj := minimize 1
nw⊤

.jw.j

subject to
∥∥∥ 1
nA⊤w.j − ej

∥∥∥
∞

≤ µ. (6)

In fact, the jth reformulated problem (6) and the jth original problem (4) are equivalent in the
following sense: If m.j is feasible for (4) then w.j := Am.j is feasible for (6) and 1

nw⊤
.jw.j =

m⊤
.jΣ̂m.j . Conversely, suppose that w.j is feasible for (6). If A† is a pseudo-inverse of A, then

m.j := A†w.j is feasible for (4) since Σ̂m.j = 1
nA⊤Am.j = 1

nA⊤w.j . Moreover, 1
nw⊤

.jw.j =
m⊤
.jΣ̂m.j , so both have the same objective values, establishing that (4) and (6) are equivalent.

This reformulation provides an equivalent separable problem for each column of W , maintaining
all theoretical guarantees while simplifying the representation of the debiasing procedure.

1The sub-Gaussian norm of a random variable x, denoted by ∥x∥ψ2 , is defined as ∥x∥ψ2 :=
supq≥1 q−1/2 (E|x|q)1/q . For a random vector x ∈ Rn, its sub-Gaussian norm is defined as ∥x∥ψ2 :=
supy∈Sn−1 ∥y⊤x∥ψ2 , where Sn−1 denotes the unit sphere in Rn.
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The reformulated problem (6) has a unique optimal solution because the objective function is
strongly convex with convex constraints. In contrast, the original problem (4) does not have a
unique solution. Indeed if m.j is any solution to (4), then we can add to it any element of the
nullspace of A to obtain another solution to (4).

3.1 A Closed-Form Solution for the Debiasing Matrix W

In this section, we demonstrate that, for a suitable choice of µ, the optimal solution to the problem
(6) can be computed in closed form for a sensing matrix whose minimum column norm is strictly
positive (which is true with probability 1 for random matrices). To derive this result we write down
the Fenchel dual of (6), and appeal to weak duality. In particular, we explicitly find primal and
dual feasible points with the same objective value, certifying that both are, in fact, optimal.

Theorem 1 Let A be a n×p matrix with no column equal to zero. Define ρ(A) := maxi ̸=j |a⊤
.i a.j |

∥a.j∥2
2

.
The optimal solution of (6) is given by

w.j := n(1 − µ)
∥a.j∥2

2
a.j for all j ∈ [p] (7)

if and only if ρ
1+ρ ≤ µ ≤ 1.

The proof of this theorem is given in Appendix A.1. For notational simplicity, we will denote ρ(A)
by ρ in the rest of the paper. We will provide a brief overview of the proof here.

Overview of the proof of Theorem 1: The proof shows that the closed-form expression in (7) is
optimal for the convex program (6) when ρ

1+ρ ≤ µ ≤ 1. Under this condition, the candidate vector
satisfies the ℓ∞ feasibility constraint given in (6) because the coherence bound ensures (1−µ)ρ ≤ µ.
Its objective value can be computed in closed form and is given by (1−µ)2

∥a.j∥2
2/n

. Using a Fenchel dual
reformulation, the dual problem is explicitly provided, and a suitably chosen dual vector attains a
dual value that matches the primal value achieved by (7). By weak duality, this equality certifies
optimality. Conversely, if µ < ρ/(1 + ρ), the solution in (7) violates the feasibility constraint, and
when µ > 1, the zero vector is the unique minimizer which is trivially optimal. Therefore, the
stated range of µ is necessary and sufficient for the optimality of the exact solution.

Remarks:

1. This theorem eliminates the requirement to execute an iterative optimization algorithm to
obtain W (or an iterative optimization algorithm to obtain M). This is because given A,
one can directly implement the optimal solution of Alg. 1 in the form (7) for all j ∈ [p].
This speeds up the implementation of the debiasing of Lasso for the ensemble of sensing
matrices that satisfy the conditions of Theorem 1. Likewise, our approach will also be
significantly faster than the debiasing approach presented in Van de Geer et al. (2014),
which explicitly estimates the precision matrix (inverse covariance matrix) of the rows of
A via a series of p different Lasso problems, each solved iteratively – see equations 7,8,9
of Van de Geer et al. (2014).

2. The condition ρ/(1 + ρ) ≤ µ ≤ 1 is necessary and sufficient for the closed-form expression
in (7) to be optimal (6). However, it is possible that (6) is feasible for values of µ that are
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smaller than ρ/(1 + ρ). In such a situation, the optimal solution to (6) is not given by (7).
This is empirically illustrated in Sec. 5.1. In the context of the debiased Lasso, Theorem
7(b) of Javanmard & Montanari (2014b) shows that the choice of µ := OP (

√
log p/n) makes

the optimization problem in (4) feasible for a sensing matrix A that satisfies conditions
D1 and D2. For a wide class of sensing matrices, we show in Theorem 2 that ρ/(1 + ρ) =
OP (

√
log p/n).

3. The quantity ρ
1+ρ can be computed exactly by using the definition of ρ given in Theorem 1

given a sensing matrix A. Furthermore, the distribution of ρ
1+ρ can also be estimated via

simulation for given any n, p, and Σ corresponding to the sensing matrix A.

4. The solution in (7) is the optimal solution even when we choose µ = 1. The optimal
solution in this case is the trivial solution wj = 0. However in practice, one always chooses
µ to be small, and hence this specific situation does not arise.

3.2 Concentration bounds of ρ
1+ρ

As mentioned earlier at the end of Sec. 2, if µ is O

(√
log p
n

)
and n is ω((s log p)2), then ∀j ∈

[p],
√

n(β̂dj − β∗
j ) is asymptotically zero-mean Gaussian when the elements of η are drawn from

N(0, σ2). For specific classes of random sensing matrices, we show in Theorem 2, that ρ
1+ρ ≤

c0

√
log p
n with high probability for some constant c0. This implies that for these random sensing

matrices, the choice µ := O

(√
log p
n

)
ensures both the following: (i) asymptotic negligible bias of

the estimator β̂d given by (5) when n is ω((s log p)2), and (ii) fulfillment of the sufficient condition
ρ

1+ρ ≤ µ for the debiasing matrix W to be computed in closed-form. If A satisfies an additional

mild assumption as given in Theorem 2 then ρ
1+ρ ≤ c0

√
log p
n holds with high probability.

Theorem 2 Let A be a n × p dimensional matrix with independent and identically distributed
zero-mean sub-Gaussian rows and sub-Gaussian norm κ := ∥Σ−1/2ai.∥ψ2 , where n < p and Σ :=
E[ai.ai.

⊤]. Let ρ be as defined in Theorem 1. Let γ ≥ Cmin
κ2Cmax

√
n

log p maxl ̸=j |Σlj |
Σjj

. If A obeys

properties D1, D2 and n ≥ 8C2
maxκ

4

C2
min(1−c)2 log p for some c ∈ (0, 1), then

P

(
ρ

1 + ρ
≤ (2

√
2 + γ)κ2

c

Cmax

Cmin

√
log p

n

)
≥ 1 − 3

2p2 . (8)

Furthermore, if c ∈
(

2
√

2+γ
4

√
2+γ , 1

)
and µ := (2

√
2 + γ)κ

2

c
Cmax
Cmin

√
log p
n , then with high probability, (6) is

feasible and the optimal debiasing matrix W in (6) is given by (7).

The proof of Theorem 2 is given in Appendix A.2.

Remarks:
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1. If Σ is a diagonal matrix (i.e., entries of the sensing matrix A are uncorrelated), then we
can choose γ = 0 and the upper bound of ρ/(1 + ρ) in (8) reduces to 2

√
2κ

2

c
Cmax
Cmin

√
log p
n

for any constant c ∈ (1/2, 1). If Σ is not a diagonal matrix, the parameter γ represents a
degree of dependence between the elements of the rows of the matrix A.

2. The condition c ∈
(

2
√

2+γ
4

√
2+γ , 1

)
in Theorem 2 ensures that when n ≥ 8C2

maxκ
4

C2
min(1−c)2 log p and

µ := (2
√

2 + γ)κ
2

c
Cmax
Cmin

√
log p
n , then we have µ < 1.

3. In practice, one tends to choose a small value of µ for debiasing the Lasso estimator. Given
n, p and Σ, the exact distribution of ρ

1+ρ can also be estimated with high precision through
simulations. One may also choose µ to be slightly larger than the maximum support of the
distribution of ρ

1+ρ . This produces a simple and elegant way to choose µ in practice. Given
a fixed A, it is easy to compute ρ, by definition of ρ in Theorem 1. So we can simply set
µ := ρ

1+ρ since smaller (but feasible) values of µ are desirable in (6). In Sec.5.4, we observe

that this empirical choice of µ is smaller than the choice of µ := (2
√

2 + γ)κ
2

c
Cmax
Cmin

√
log p
n .

4 Relation to Recent Developments in LASSO Debiasing

The Lasso debiasing literature has seen many recent developments in the statistics as well as
the AI/ML communities. For instance, the theory of the debiased Lasso has been extended to
handle generalized linear models in Vazquez & Nan (2025); Xia et al. (2023). Applications of the
debiased Lasso (extended to handle the total variation image prior) to compressive reconstruction
of magnetic resonance images have been recently explored in Hoppe et al. (2024b). Bootstrap
approaches to further diminish the bias value in low-sample regimes have been explored in Li
(2020). Along similar lines, a learning based technique for further reduction of the bias in small-
sample regimes has been recently explored in Hoppe et al. (2024a), where it is also shown how
to incorporate debiasing for data-driven approaches such as unrolled neural networks. Debiasing
techniques have also been extended to handle sparse quantile regression in Yan et al. (2023). Note
that all these techniques in principle require computation of either the approximate covariance
matrix M or the debiasing matrix W , after which various other steps in their approach are carried
out. Since our work in this paper proposes a technique to speedily compute W = AM⊤, it is clear
that it can be readily incorporated to speed up the key step of estimation of M or W in each of
these aforementioned approaches.

5 Empirical Results

5.1 Difference between the exact closed form solution W e and the solution of the
optimization problem in (6) given by W o for varying choices of µ

Aim: In Theorem 1, we show that if ρ
1+ρ ≤ µ < 1, then the exact closed form solution of (7)

represented by W e is the same as the solution of the optimization problem given in (6) represented
by W o. In this subsection, we investigate the difference between W o and We for µ < ρ

1+ρ as well
as in the range ρ

1+ρ ≤ µ < 1. We report the difference between W e and W o in terms of the Relative

Error given by
(

∥W o−W e∥F

∥We∥F

)
for µ = 0.2, 0.21, 0.22, . . . , 0.60.
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Sensing matrix properties: For this experiment, we fixed n = 80, p = 100. We ran this
experiment for two different n×p sensing matrices A with elements drawn from: (1) i.i.d. Gaussian
and, (2) i.i.d. Rademacher. In Figure 1, we plot µ vs

(
∥W o−W e∥F

∥We∥F

)
for both of these matrices on

a log scale. The exact value of ρ
1+ρ is given by a black vertical line in each case.

Observation: We see that for both the plots in Figure 1, the relative error decreases with increase
in µ for µ < ρ

1+ρ . For µ ≥ ρ
1+ρ , the relative error is very small with fluctuations primarily due to

the solver tolerances in lsqlin when computing W o. Furthermore, the decrease in relative error
is sharp after the value of µ crosses ρ

1+ρ .

Figure 1: Line plot of µ vs relative error
(

∥W o−W e∥F

∥We∥F

)
(in log scale) for two 80 × 100 dimensional

sensing matrices: (left) i.i.d. Gaussian and (right) i.i.d. Rademacher. The exact value of ρ
1+ρ is

given by the black vertical line. The value of ρ
1+ρ is 0.327 for the Gaussian sensing matrix (left)

and 0.298 for the Rademacher sensing matrix (right). Here, Wo is the solution of the optimization
problem in (6) and W e is computed as in (7).

5.2 Comparison of debiasing performance using the exact solution W e and the choice
M := dΣ−1

In this subsection, we compare the sensitivity, specificity of the debiased estimate β̂W e
obtained

from (5) using the exact closed-form solution W e, and the debiased estimate β̂dΣ−1 given in
Equation (17) of Javanmard & Montanari (2014b) with the debiasing matrix M := dΣ−1 (note
that M is an approximate inverse of the empirical covariance matrix Σ̂ – see Sec. 2) where
d := (1 − ∥β̂λ1∥0/p)−1. We further compare the ratios of the empirical total variance (ETV)
and asymptotic total variance (ATV) of β̂W e

and β̂dΣ−1 . The ATVs of the jth element of β̂W e

and β̂dΣ−1 are respectively given by 1
n

∑p
j=1 w⊤

.jw.j and d2

n

∑p
j=1[Σ−1A⊤AΣ−1⊤]jj . The empir-

ical total variance (ETV) of the debiased Lasso estimators is obtained using 100 simulation runs
over different instances of η with varying n ∈ {250, 350, 500}, fσ = 0.01, p = 500, s = 5 where the
signal β∗ was generated in the same manner as described in the beginning of this section. In these
simulations, the rows of A are generated as p-dimensional i.i.d. random vectors from Np(0, Σ) for
three different choices of Σ given as follows:

1. Diagonal Matrix: Σ1 = σ2Ip with choice σ2 = 1.
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2. Banded Equicorrelated Matrix: Σ2 with (i, j)th entry as follows.

Σ2ij =


σ2, if i = j ∈ [p],

σ2ζ, if |i − j| ≤ b, i ̸= j ∈ [p]
0, otherwise

, with choices ζ = 0.1, b = 5 and σ2 = 1.

3. Equicorrelated Matrix: Σ3 := σ2[(1 − ζ)Ip + ζ1p1⊤
p

]
with choices ζ = 0.1 and σ2 = 1.

Here, 1p denotes the p-dimensional vector of all ones.

The diagonal covariance matrices are widely used in compressed sensing Candès et al. (2006). The
chosen banded equicorrelated covariance matrix (Σ2) is a special case of a symmetric circulant
matrix, which has been explored by Javanmard & Montanari (2014a) in the context of debiasing
the Lasso estimator. Further, the equicorrelated matrix Σ3 has a motivation in compressed sensing
as well, to express cross-talk—given by the term ζ11⊤—between different elements of a sensor array.
In single-pixel cameras (a common architecture in compressed sensing) Duarte et al. (2008), the term
the term ζ1p1⊤

p models global illumination changes (similar to a background interference) which
bring in weak correlation, so that the jth row of the sensing matrix can be effectively expressed by
ãj =

√
1 − ζaj +

√
ζ1⊤

p .

In Tables 1, 2 and 3, we present results for each of these covariance designs comparing Sensitivity
and Specificity, for both debiased estimates (using W e and dΣ−1). We also present the ratios of
the ATV and ETV for these estimates.

n Sens(β̂W e
) Spec(β̂W e

) Sens(β̂dΣ−1) Spec(β̂dΣ−1) ATV (β̂W e
)

ATV (β̂dΣ−1 )
ETV (β̂W e

)
ETV (β̂dΣ−1 )

250 0.7145 0.8972 0.7209 0.8653 0.2819 0.3863
350 0.8554 0.9719 0.8126 0.9233 0.3882 0.5182
500 0.9985 0.9992 0.9486 0.9492 0.4699 0.6075

Table 1: Diagonal Matrix Σ1: (see Sec. 5.4) Comparison of sensitivity, specificity, and ATV, ETV
ratios for the debiased estimates β̂W e

and β̂dΣ−1 across different sample sizes n ∈ [200 : 50 : 500] for
an uncorrelated Gaussian design matrix. The fixed parameters are p = 500, fσ = 0.01, s = 5, r = 4.

n Sens(β̂W e
) Spec(β̂W e

) Sens(β̂dΣ−1) Spec(β̂dΣ−1) ATV (β̂W e
)

ATV (β̂dΣ−1 )
ETV (β̂W e

)
ETV (β̂dΣ−1 )

250 0.7392 0.8871 0.6975 0.8387 0.2573 0.3982
350 0.8833 0.9562 0.8136 0.8865 0.3142 0.5961
500 0.9715 0.9854 0.9006 0.9216 0.3924 0.7269

Table 2: Banded Equicorrelated Matrix Σ2: (see Sec. 5.4) Comparison of sensitivity, specificity,
and ATV, ETV ratios for the debiased estimates β̂W e

and β̂dΣ−1 across different sample sizes
n = [200 : 50 : 500] for correlated Gaussian design given as a bandwidth-3 matrix with Σij =
σ2 · 0.1, |i − j| ≤ 3, and zero otherwise. The fixed parameters are p = 500, fσ = 0.01, s = 5, r = 4.

From Tables 1, 2 and 3, it is evident that the debiased estimator β̂W e
consistently outperforms

β̂dΣ−1 in terms of sensitivity and specificity, with the advantage being more pronounced for smaller

9
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n Sens(β̂W e
) Spec(β̂W e

) Sens(β̂dΣ−1) Spec(β̂dΣ−1) ATV (β̂W e
)

ATV (β̂dΣ−1 )
ETV (β̂W e

)
ETV (β̂dΣ−1 )

250 0.7275 0.8655 0.6855 0.8152 0.2724 0.3892
350 0.8112 0.9216 0.7908 0.8872 0.3433 0.4844
500 0.9466 0.9573 0.9212 0.9319 0.4147 0.5795

Table 3: Equicorrelated Matrix Σ3: (see Sec. 5.4) Comparison of sensitivity, specificity, and
ATV, ETV ratios for the debiased estimates β̂W e

and β̂dΣ−1 across different sample sizes n = [200 :
50 : 500] for correlated Gaussian design given as a bandwidth-3 matrix with Σij = σ2 ·0.1, |i−j| ≤
3, and zero otherwise. The fixed parameters are p = 500, fσ = 0.01, s = 5, r = 4.

sample sizes and gradually diminishing as n increases. This performance benefit is not surprising
because in our approach, the matrix W is specifically designed to produce a debiased estimator of
minimum variance, unlike the choice of M := dΣ−1 which only provides debiasing. Furthermore,
the debiasing properties of M := dΣ−1 have only been established for Gaussian uncorrelated
designs in Javanmard & Montanari (2014b), whereas our approach is applicable to a much wider
range of matrices. Moreover, our approach does not require knowledge of Σ, which may not be
available and is hard to estimate even for uncorrelated designs because n < p. Lastly, our approach
does not rely on the ℓ0 norm of the Lasso estimate.

The introduction of correlation in the design matrix leads to an overall reduction in both sensitivity
and specificity at lower n, but this gap narrows down with larger n. Furthermore, the variance
ratios remain below unity across all settings, indicating that β̂W e

achieves lower empirical and
asymptotic variances, with the ratios increasing steadily in n, reflecting greater stability. Overall,
β̂W e

demonstrates superior efficiency and robustness to correlation compared to β̂dΣ−1 .

5.3 Validity of the exact solution

Aim: The debiased Lasso can be used to determine the support of the unknown vector β∗ by
using statistical hypothesis tests derived using Lasso debiasing theory. We aim to estimate the
support using p hypothesis tests (one per element of β∗) based on the debiased Lasso estimates
using the weights matrix W obtained from the optimization problem in (6) (denoted by Wo),
and that obtained from the closed-form expression (7) (denoted by We), for varying number of
measurements n. The aim is to also compare these support set estimates with the ground truth
support set, and report sensitivity and specificity values (defined below). We will further show the
difference in the run-time for both methods.

Signal Generation: For our simulations, we chose our design matrix A to have elements drawn
independently from the standard Gaussian distribution. We synthetically generated signals (i.e.,
β∗) with p = 500 elements in each. The non-zero values of β∗ were drawn i.i.d. from U(50, 1000)
and placed at randomly chosen indices. We set s := ∥β∗∥0 = 10 and the noise standard deviation
σ := 0.05

∑n
i=1 |ai.β

∗|/n. We varied n ∈ {200, 250, 300, 350, 400, 450, 500}. We chose µ = ρ/(ρ + 1)
where ρ was computed exactly given the sensing matrix A.

Sensitivity and Specificity Computation: Let us denote the debiased Lasso estimates ob-
tained using a matrix W by β̂d,W . We know that asymptotically β̂d,W (j) ∼ N(β∗

j , σ2w⊤
.jw.j/n2)

10
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sensitivity specificity time (in s)

n Wo We Wo We Wo We
∥W o−W e∥F

∥W e∥F

200 0.6742 0.6742 0.8592 0.8592 3.88 × 102 1.11 × 10−3 6.68 × 10−10

250 0.7229 0.7229 0.9063 0.9063 5.22 × 102 1.72 × 10−3 2.31 × 10−8

300 0.8071 0.8071 0.9427 0.9427 3.29 × 102 2.25 × 10−3 2.73 × 10−7

350 0.8554 0.8554 0.9719 0.9719 4.77 × 102 3.88 × 10−3 2.56 × 10−7

400 0.9275 0.9275 0.9855 0.9855 5.59 × 102 7.82 × 10−3 4.76 × 10−7

450 0.9781 0.9781 0.9909 0.9909 7.15 × 102 4.27 × 10−2 5.29 × 10−7

500 0.9985 0.9985 0.9992 0.9992 8.03 × 102 7.56 × 10−2 8.22 × 10−7

Table 4: Sensitivity and Specificity of hypothesis test using debiased estimates obtain from Wo

(optimization method) and We (closed-form expression from (7)) with its corresponding runtime
in seconds for varying number of measurements. The fixed parameters are p = 500, s = 10, σ :=
0.05

∑n
i=1 |ai.β

∗|/n. We set µ = ρ/(ρ + 1) where ρ is computed exactly for the chosen sensing
matrix A.

for all j ∈ [p]. Using this result, β̂d,W was binarized to create a vector b̂W in the following way: For
all j ∈ [p], we set b̂W (j) := 1 if the value of β̂W (j) was such that the the hypothesis H0,j : β∗

j = 0
was rejected against the alternate H1,j : β∗

j ̸= 0 at 5% level of significance. b̂W (j) was set to 0
otherwise. Note that for the purpose of our simulation, we either have W = Wo or W = We. The
binary vectors corresponding to these choices of W are respectively denoted by b̂Wo and b̂We .

A ground truth binary vector b∗ was created such that b∗
j := 1 at all locations j where β∗

j ̸= 0 and
b∗
j := 0 otherwise. Sensitivity and specificity values were computed by comparing corresponding

entries of b∗ to those in b̂Wo and b̂We . Considering the matrix W , we declared an element to be
a true defective if b∗

j = 1 and b̂W (j) = 1, and a false defective if b∗
j = 0 but b̂W (j) ̸= 0. We declare

it to be a false non-defective if b∗
j = 0 but b̂W (j) ̸= 0, and a true non-defective if β∗

j = 0 and
b̂W (j) = 0. The sensitivity for β∗ is defined as (# true defectives)/(# true defectives + # false
non-defectives) and specificity for β∗ is defined as (# true non-defectives)/(# true non-defectives
+ # false defectives).

Results: For obtaining Wo, the optimization routine was executed using the lsqlin package
in MATLAB. The sensitivity and specificity were averaged over 25 runs with independent noise
instances.

In Table 4, we can see that the sensitivity as well as the specificity of the hypothesis tests for Wo

and We are equal. We further report the relative difference between Wo and We in the Frobenius
norm. We can clearly see that the difference is negligible, which is consistent with Theorem 1.
Furthermore, we see that using the closed-form expression in (7) saves significantly on time (by a
factor of at least 104). While the computational efficiency of the iterative approach can be improved
by developing a specialized solver for problems of the form (6), no iterative method is expected to
outperform directly computing the simple closed-form expression (7).
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sensitivity specificity time (in s)

µ Wo We Wo We Wo We
∥W o−W e∥F

∥W e∥F

0.2 0.9586 0.9544 0.9942 0.9901 8.44 × 102 7.76 × 10−3 2.24 × 10−1

0.25 0.9531 0.9502 0.9872 0.9855 6.91 × 102 8.72 × 10−3 7.62 × 10−2

0.3 0.9475 0.9475 0.9921 0.9921 5.59 × 102 8.12 × 10−3 3.39 × 10−7

0.35 0.9354 0.9354 0.9891 0.9891 5.42 × 102 7.83 × 10−3 6.312 × 10−7

0.4 0.9275 0.9275 0.9855 0.9855 5.77 × 102 7.56 × 10−3 2.08 × 10−8

0.45 0.9102 0.9102 0.9792 0.9792 5.98 × 102 7.49 × 10−3 4.55 × 10−7

Table 5: Sensitivity and Specificity of hypothesis tests using debiased estimates obtained using
Wo (optimization method) and We (closed-form expression from (7)) for varying choice of µ. The
corresponding run-times for estimating Wo and We from a Rademacher sensing matrix A, are also
shown. The fixed parameters are p = 500, n = 400, s = 10, σ := 0.05

∑n
i=1 |ai.β

∗|/n. The exact
value of ρ

1+ρ = 0.298 where ρ is computed exactly for the chosen sensing matrix A.

In Table 5, we observe that both debiasing matrices Wo and We exhibit almost identical sensitivity
and specificity for the hypothesis tests across a wide range of µ values greater than or equal to 0.2
to 1. This range was chosen because we observed that for the choices of µ < 0.2, the optimization
problem (4) was often not feasible. For µ > ρ/(1 + ρ) = 0.298, the sensitivity and specificity of the
debiasing methods with Wo and We was the same (up to numerical tolerances in the optimizer)
which is consistent with our theory. For µ > 0.45, the sensitivity and specificity of Lasso debiasing
with both Wo and We was below 0.9 (not shown in the table), but it remained identical for both
methods. For 0.2 < µ < 0.298, the sensitivity and specificity values with the two methods were
similar even though not identical. In all cases, however, the major distinction between the two
methods was computational time, as computing Wo took more than 550 seconds whereas We was
obtained in a few milliseconds. Given this dramatic speed-up and the similar statistical performance,
the closed-form We offers a highly practical and efficient alternative to the optimization-based
solution W o.

5.4 Empirical Distribution of ρ/(1 + ρ)

In this subsection, we will show that the support of the distribution of ρ
1+ρ is smaller than the choice

of µ := (2
√

2 + γ)κ
2

c
Cmax
Cmin

√
log p
n given by Theorem 2 for the different chosen covariance matrices

Σ1, Σ2, Σ3 defined in Sec. 5.2. We chose p = 500 and n ∈ {250, 350, 500}. For each configuration,
we generated 1000 independent n × p matrices A, with rows sampled i.i.d. from Np(0, Σ).

For each realization of A, we computed ρ(A) = maxi ̸=j |a⊤
.i a.j |

∥a.j∥2
2

. The normalized histograms of
ρ/(1 + ρ) based on 1000 simulation runs are shown in Figure 2. The top, middle and bottom rows
of Figure 2 respectively correspond to the covariance matrix Σ1, Σ2 and Σ3, whereas the left,
center and right column respectively correspond to n = 250, 350 and 500. Each plot is overlaid
with a red vertical line showing the bound µ := (2

√
2 + γ)κ

2

c
Cmax
Cmin

√
log p
n as given in Theorem 2.

Ideally, we would like to choose γ as small as possible and c to be as large as possible. Therefore

12
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n = 250 n = 350 n = 500

Σ1

Σ2

Σ3

Figure 2: Histograms of ρ/(1+ρ) based on 1000 simulation runs for p = 500 and n ∈ {250, 350, 500}.
Rows correspond to different covariance structures (diagonal, banded equicorrelated and equicor-
related), while columns correspond to sample size n. The red lines indicate the theoreti-
cal benchmark of µ := (2

√
2 + γ)κ

2

c
Cmax
Cmin

√
log p
n by choosing c = 1 − 2

√
2κ

2

c
Cmax
Cmin

√
log p
n and

γ = Cmin
κ2Cmax

√
n

log p maxl ̸=j |Σlj |
Σjj

for all designs.

in our experiments, we chose γ = Cmin
κ2Cmax

√
n

log p maxl ̸=j |Σlj |
Σjj

. Furthermore, under the assumption

n ≥ 8C2
maxκ

4

C2
min(1−c)2 log p, we chose c = 1 − 2

√
2κ

2

c
Cmax
Cmin

√
log p
n .

In Figure 2, we observe that the span of the normalized histograms shrinks and moves towards
the origin for all the chosen covariance matrices. This indicates that ρ

1+ρ tends to zero as the
sample size increases. Figure 2 also shows that the upper bound on ρ

1+ρ obtained from Theorem 2
is conservative (in terms of constant factors) for smaller sample sizes. We also observe that the
probability density of ρ

1+ρ depends on the dependent structure of Σ. Therefore, given the values of
n, p and Σ, one may choose µ which is slightly larger than the maximum value of the support of
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the distribution of ρ
1+ρ in practice, which can be obtained using simulation before performing the

debiasing.

6 Experiments on Compressive Image/Video Reconstruction

We further validated the use of our fast debiasing approach for image reconstruction from noisy
compressive measurements given three different compressed sensing architectures (that is, realistic
models for A): the Rice Single Pixel Camera for compressive imaging Duarte et al. (2008), the coded
exposure snapshot camera for compressive video acquisition Liu et al. (2013) and the coded aperture
snapshot spectral imager (CASSI) for hyperspectral image acquisition Kittle et al. (2010). There
already exist a plethora of compressive image reconstruction techniques, both classical Foucart &
Rauhut (2013) and deep learning based Kulkarni et al. (2016). Here, our aim is to provide proof of
concept that fast debiasing is applicable to realistic sensing matrices; our aim here is not to beat the
state of the art. However, compared to the existing techniques, our presented approach is unique in
its ability to provide quantification of the uncertainty in the reconstructed pixel values, an aspect
which the aforementioned techniques do not cover.

Consider a noisy measurement vector y ∈ Rn of the form y = Φf + η = ΦΨθ + η, where η is an
additive noise vector whose elements are drawn independently from N(0, σ2), Φ ∈ Rn×p is a sensing
matrix of i.i.d. sub-Gaussian distributed entries, and Ψ ∈ Rp×p is an orthonormal basis in which the
image f is sparse or ‘weakly sparse’ – that is f = Ψθ, where θ ∈ Rp is a vector of coefficients of which
a small number have large magnitude and the majority are either zero (sparse θ) or close to zero
(weakly sparse θ). The aim is to reconstruct θ, and thus f , from y, Φ, Ψ in the compressive regime
where n ≪ p. For this estimation task, the Lasso is used: θ̂ := arg minθ ∥y−ΦΨθ∥2

2 +λ∥θ∥1. This
is followed by a debiasing step of the form θ̂d = θ̂ + 1

nW̃
⊤

(y − ΦΨθ̂) where the debiasing matrix
W̃ = (1−µ)ΦΨ with µ being exactly as defined in Theorem 1 with A = ΦΨ. We particularly note
that in this case, we first estimate θ since the image f ∈ Rp is not sparse in the canonical basis
but is (weakly) sparse in the basis Ψ. A typical choice for Ψ is the 2D discrete cosine transform
(DCT) basis, though many other choices such as wavelets, shearlets, etc., are also possible. We
note that Theorems 1 and 2 are applicable to the matrix A := ΦΨ for the following reasons: (i)
As no column of Φ equals zero, neither does any column of ΦΨ and hence Theorem 1 applies. (ii)
Φ has zero-mean sub-Gaussian entries and Ψ has bounded entries. Hence the entries of ΦΨ are
also zero-mean sub-Gaussian and they have the same covariance matrix as the rows of Φ. Hence if
the entries of Φ are i.i.d. Gaussian, then the rows of ΦΨ remain independent. Hence Theorem 2
applies. Even though the independence assumption may not strictly hold for the rows of ΦΨ for
Φ from other distributions (e.g., Rademacher or Bernoulli), we have observed excellent empirical
results with debiasing even for such cases.

6.1 Image reconstruction for the Rice Single Pixel Camera Model

We simulated noisy compressive measurements from four commonly used images of size 256×256 via
a Φ matrix with i.i.d. entries drawn from a Bernoulli distribution with success probability 0.5, which
is in tune with the architecture of the celebrated Rice Single Pixel Camera Duarte et al. (2008). In
our experiments, we used n = 20, 000 measurements for p = 2562. The original images, and their
reconstructed versions via the Lasso and the debiased Lasso, are shown in Fig. 3. After debiasing,
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RRMSE SSIM Cov. Prob. (Edges) Cov. Prob. (Non-Edges)
Barbara 0.0325 0.932 0.72 0.93

Cameraman 0.0281 0.948 0.68 0.91
Moon 0.0204 0.971 0.79 0.95
Male 0.0357 0.918 0.66 0.92

Table 6: Reconstruction quality metrics for grayscale images of size 256 × 256 using Debiased
Lasso. The metrics reported include RRMSE, SSIM, and average coverage probabilities computed
separately on edge and non-edge pixel locations based on the Canny edge detection method.

the variance of the ith estimated coefficient is given by σ2[W̃
⊤

W̃ ]ii. Since f = Ψθ, the variance of
the ith pixel of the estimated image (i.e. f̂i) is given by σ2[ΨW̃

⊤
W̃ Ψ⊤]ii. These variance values

form a quantitative measure of the uncertainty inherent in the reconstruction. To illustrate this
further, the reconstruction experiment for each image was repeated K = 50 times using different
realizations of the noise η. The total number of times Ni (out of K) for which fi (the value of the ith

pixel of f) resided in the interval
[
f̂i − z1−α/2σ

√
[ΨW̃

⊤
W̃ Ψ⊤]ii, f̂i + z1−α/2σ

√
[ΨW̃

⊤
W̃ Ψ⊤]ii

]
was recorded. This is the confidence interval of probability 1 − α for fi, and z1−α/2 is the per-
centile of a standard normal distribution at level 1 − α/2. The values of Ni/K—termed coverage
probabilities—across all i ∈ {1, 2, ..., p} were recorded and plotted as an image in Fig. 3. As is
clearly seen in the fourth column of Fig. 3, these probabilities are very high for pixels in smooth
regions and they are the least for pixels lying on edges. This is because the 2D DCT is more effi-
cient in representing smooth regions as compared to discontinuities. The ratios along edges can be
improved by using direction-sensitive bases such as shearlets Kutyniok & Labate (2012) or learned
overcomplete representations Aharon et al. (2006), but we leave a full investigation of these aspects
to future work as they are not central to the main theme of this work.
We report the Relative Root Mean Square Error (RRMSE), defined as ∥θ∗−θ̂∥2

∥θ∗∥2
, where θ̂ denotes

the estimate of the true parameter θ∗. Along with RRMSE, we present the Structural Similarity
Index Measure (SSIM), the average coverage probability over edge pixels, and the average coverage
probability over non-edge pixels. These quantitative metrics, summarized in Table 6, correspond to
the Debiased Lasso estimates for all four benchmark images. The small RRMSE values and high
SSIM scores collectively indicate that the the reconstruction quality is very good. Furthermore,
the coverage probabilities display the expected spatial behavior: coverage is considerably higher in
smooth, non-edge regions and lower in edge regions, consistent with the qualitative observations in
Fig. 3.

Image reconstruction with Φ having equicorrelated entries: Another set of results was
obtained where the i.i.d. Bernoulli model for Φ was replaced by the equicorrelated model from
Sec. 5.2 to model cross-talk between different sensory elements of a compressive device. These
results, which are presented in Fig. 4 and Table 7, demonstrate a gentle decrease in reconstruction
performance with increase in the cross-talk factor ζ (i.e., increase in correlation in the elements
of the rows of the sensing matrix). Nonetheless, the overall reconstruction quality remains strong
across all images when using the Debiased Lasso.
Computation Time: In both cases above, we note that the fast debiasing approach allowed for
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Figure 3: Compressive Image Reconstruction: Reconstruction of grayscale images of dimension
256×256 (leftmost column) using Lasso (column 2 from left) and Debiased Lasso (column 3 from
left) and the empirical coverage probabilities Ni/K ∀i ∈ [p] based on confidence intervals for the
debiased Lasso estimates (rightmost column). The sensing matrix contains random Rademacher
entries. Here n = 20000, p = 65, 536 and the additive noise σ = 0.01× the mean absolute value
of the noiseless measurements. Debiasing matrix computation using (4) (method from Javanmard
& Montanari (2014a)) would have taken more than 2 days, whereas our Fast Debiasing approach
accomplishes it in less than a second.
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construction of the debiasing matrix W in about a second. On the other hand, using the method
from Javanmard & Montanari (2014a) to construct M would have required more than two days.
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Figure 4: Compressive Image Reconstruction given cross-talk (correlation in the entries of the
sensing matrix): Reconstruction of grayscale images of dimension 256 × 256 (leftmost column)
using Lasso (column 2 from left) and Debiased Lasso (column 3 from left) and the empirical
coverage probabilities Ni/K ∀i ∈ [p] based on confidence intervals for the debiased Lasso estimates
(rightmost column). Here n = 20000, p = 65, 536, and the additive noise σ is taken as 1% of mean
absolute noiseless measurements and ζ = 0.02. Debiasing matrix computation using (4) (method
from Javanmard & Montanari (2014a)) would have taken more than 2 days, whereas our Fast
Debiasing approach accomplishes it in less than a second.
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RRMSE SSIM Cov. Prob. (Edges) Cov. Prob. (Non-Edges)
Barbara 0.0445 0.901 0.65 0.90

Cameraman 0.0481 0.909 0.61 0.89
Moon 0.0317 0.923 0.72 0.92
Male 0.0457 0.898 0.58 0.89

Table 7: Reconstruction quality metrics for grayscale images of size 256 × 256 using Debiased
Lasso given cross-talk (correlation in the entries of the sensing matrix) with ζ = 0.02. The metrics
reported include RRMSE, SSIM, and average coverage probabilities computed separately on edge
and non-edge pixel locations based on the Canny edge detection technique.

6.2 Experiments on Compressive Video Reconstruction

Here, we follow the forward model of well known video compressed sensing architectures such as Liu
et al. (2013), which acquire snapshot images representing the superposition of a set of pixel-wise
modulated consecutive video frames. This snapshot image y ∈ Rp2 (an image of size p×p, reshaped
to form a vector) is represented in the form:

y =
T∑
t=1

Φt ◦ f t + η, (9)

where η ∈ Rp2 is a noise vector with elements drawn from N(0, σ2), Φt ∈ Rp2 is a randomly
generated Bernoulli or Rademacher pattern for modulating frame f t, the t-th frame of the
underlying video. The aim is to reconstruct the video f := {f}Tt=1 from y and {Φt}Tt=1. The video
is a 3D signal of size p × p × T , which after vectorization can be regarded as a vector in RTp2 . The
effective sensing matrix Φ (of size p2 × Tp2) has the form Φ = (diag(Φ1)|diag(Φ2)|...|diag(ΦT )),
where diag(Φt) is a diagonal matrix of size p2 × p2 containing the elements of Φt on its diagonal.

For our experiments, we represented the 3D signal f ∈ Rp2T in the 3D-DCT basis Ψ3D in
the form f = Ψ3Dθ where θ ∈ Rp2T is a (weakly) sparse vector of 3D DCT coefficients.
The snapshot images were obtained by simulating the forward model on an already available
video. The video was reconstructed by the Lasso using θ̂ := arg minθ ∥y − ΦΨ3Dθ∥2

2 + λ∥θ∥1,
followed by a debiasing step where the debiasing matrix was computed using our fast approach.
Reconstruction results for the first set of 5 frames are shown in Fig. 5—the supplemental material
contains comparative reconstructions in video format. These reconstructions reveal good quality
reconstruction of spatial textures as well as temporal motion patterns.

Here again, the aim of the experiment here is to show that the fast debiasing approach works for
another compressive architecture where the sensing matrix Φ consists of a column-wise concatena-
tion of diagonal sub-matrices. The method of Javanmard & Montanari (2014a) would have taken
more than 2 days for computing the debiasing matrix, whereas our technique obtains W in less
than a second.
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Figure 5: Video reconstruction for a water fountain scene: Reconstruction results showing the
progression from original images via Lasso and Debiased Lasso. Each column corresponds to
an individual frame and the first row corresponds to 5 frames of the original video, the second
row shows the frames reconstructed using Lasso, the third row shows the frames reconstructed
using Debiased Lasso. The compressed measurements correspond to T = 5 in (9). The average
RRMSE and SSIM over the 5 frames are given as 0.0189 and 0.9293 respectively. Debiasing matrix
computation using (4) (method from Javanmard & Montanari (2014a)) would have taken more
than 2 days, whereas Fast Debiasing accomplishes it in less than a second. See supplemental video
for results in video format.
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6.3 Experiments with Hyperspectral Image Reconstruction

We also experimented with reconstruction of hyperspectral images from real compressive acqui-
sitions in the form of coded snapshot images acquired by the CASSI (Coded aperture snapshot
spectral imager) camera Kittle et al. (2010). Consider a hyperspectral image f of size px × py × nL
where nL is the number of spectral channels (or wavelengths). We represent f as a vector in
RpxpynL . A hyperspectral image can be regarded as a stack of wavelength-specific slices, where
each slice is an image of size px × py. The CASSI camera does not measure the entire image f ,
but instead measures a coded snapshot image y (roughly of size px × py, represented as a vector in
Rpxpy ) in the form of a superposition of the L individual slices each modulated by binary patterns.
This is expressed mathematically in the following manner:

y =
nL∑
l=1

f i · Ci + η, (10)

where f i (a vector in Rpxpy ) is the ith slice of f and Ci (a vector in {0, 1}pxpy ) is the binary code
for the ith slice. The binary codes are implemented in hardware via a coded aperture (or mask)
that modulates the white light entering the camera. A prism inside the camera disperses this light
into its constituent wavelengths and also gives rises to different shifts to each wavelength, ensuring
that each slice is modulated by a different binary code before the superposition of the individual
slices is recorded by the sensor. For more details, see Kittle et al. (2010). The aim is to reconstruct
f from y and {Ci}nL

i=1. Since the associated compression ratio here (nL : 1) is very high, in practice
a multi-snapshot version of CASSI is used, where T < nL different coded snapshot images are
acquired, each with a different coded aperture pattern. The forward model now is:

∀t ∈ {1, 2, ..., T}, yt =
nL∑
l=1

f i · Cit + ηt, (11)

where yt is the t-th coded snapshot, Cit (a vector in {0, 1}pxpy ) is the coded aperture pattern for
the ith channel in the t-th snapshot. The aim is to reconstruct f from {yt}Tt=1 and {{Ci,t}Tt=1}nL

i=1.
Here again, we employ a Lasso estimator with a 3D-DCT representation for f = Ψθ where Ψ ∈
RpxpynL×pxpynL is the 3D-DCT basis matrix and θ ∈ RpxpynL is a vector of 3D-DCT coefficients.
The estimate of θ is obtained by minimizing ∥z − ΦΨθ∥2

2 + λ∥θ∥1 where z is a vector of size
Tpxpy × 1 obtained by concatenating all the vectorized coded snapshots {yt}Tt=1 and Φ is a matrix
of size Tpxpy × nLpxpy defined as follows:

z :=


y1
.
.
.

yT

 , Φ :=


diag(C1,1) diag(C2,1) . . . diag(CnL,1)

· · · ·
· · · ·
· · · ·

diag(C1,T ) diag(C2,T ) . . . diag(CnL,T )

 , (12)

where ∀i ∈ [nL], ∀t ∈ [T ], diag(Ci,t) denotes a diagonal matrix of size pxpy × pxpy containing the
pxpy elements of Ci,t along its diagonal.
For our experiments, we used a set of T = 6 coded snapshot images acquired by a real camera,
corresponding to a hyperspectral image of size 1021×730×24 with nL = 24. One of these snapshot
images is shown in Fig. 6. Four different slices of the reconstructed hypercube using Lasso and
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Figure 6: Coded snapshot used for hyperspectral reconstruction in Fig. 7.

debiased Lasso (using our fast approach for computing the debiasing matrix) are shown in Fig. 7.
Since ground truth is absent, RRMSE or SSIM values cannot be directly computed. However the
reconstruction with T = 6 (compression ratio of 4:1) snapshots can be compared to a reconstruction
with T = 24 snapshots (compression ratio 1:1). The latter can be regraded as a form of ground
truth since there is no compression. We observe that the debiased reconstructions with T = 6
snapshots quite closely match those with T = 24, validating the success of our debiasing approach
on this architecture as well. The RRMSE and SSIM values between reconstructions under T = 6
and T = 24 averaged over all bands are 0.0023 and 0.9912 for Lasso and 0.0029 and 0.9891 for
Debiased Lasso respectively.

7 Conclusion

In this article, we reformulate the optimization problem to obtain M (the approximate inverse of
the covariance matrix of the rows of the sensing matrix A) in Javanmard & Montanari (2014a) and
further provide an exact, closed-form optimal solution to the reformulated problem under assump-
tions on the pairwise inner products of the columns of A. For sensing matrices with i.i.d. zero-mean
sub-Gaussian rows that have a diagonal covariance matrix or a full covariance matrix with small-
valued off-diagonal elements, the debiased Lasso estimator, based on this closed-form solution,
has entries that are asymptotically zero-mean and sub-Gaussian. The exact solution significantly
improves the time efficiency for debiasing the Lasso estimator, as shown in the numerical results.
Our method is particularly useful for debiasing in streaming settings where new measurements or
new signal features arrive on the fly.
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A Appendix for ‘Fast Debiasing of the Lasso Estimator’: Proofs of
Theoretical Results

A.1 Proof of Theorem 1

Primal feasibility: If ρ
1+ρ ≤ µ ≤ 1 then we have that µ + µρ ≥ ρ which implies that 0 ≤

(1 − µ)ρ ≤ µ. The choice of w.j given by (7) is primal feasible since∥∥∥∥∥ 1
n

A⊤ (1 − µ)
∥a.j∥2

2
n

a.j − ej

∥∥∥∥∥
∞

≤ max{µ, |(1 − µ)ρ|} = µ. (13)

To see why this is true, note that for index j, the LHS is upper bounded by µ, otherwise it is upper
bounded by |(1 − µ)ρ|.

Primal objective function value: The primal objective function value is given by 1
n∥w.j∥2

2 =
(1 − µ)2

(∥a.j∥2
2/n)2 ∥a.j∥2

2/n = (1 − µ)2

∥a.j∥2
2/n

.

The Fenchel dual problem: Consider an optimization problem of the form for a fixed j ∈ [p]:

inf
w

f(w) + gj

(
1
n

A⊤w

)
(14)

where f and gj are extended real-valued convex functions. The Fenchel dual (see Chapter 3 of
Borwein & Lewis (2006)) is

sup
u

−f∗
(

1
n

Au

)
− g∗

j (−u) (15)

where f∗ and g∗
j are the convex conjugates of f and gj respectively. The Fenchel dual satisfies weak

duality (see Chapter 3 of Borwein & Lewis (2006)), i.e., for any w and u,

f(w) + gj

(
1
n

A⊤w

)
≥ −f∗

(
1
n

Au

)
− g∗

j (−u).
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In our setting, for a fixed j, we consider

f(w) := 1
n

∥w∥2 and gj(w) :=
{

0 if ∥w − ej∥∞ ≤ µ

∞ otherwise
. (16)

Then, for the same j, we have their convex conjugates from Lemma 3:

f∗(u) = sup
w

u⊤w − f(w) = n

4 ∥u∥2, (17)

g∗
j (u) = sup

w
u⊤w − gj(w) = sup

∥w−ej∥∞≤µ
u⊤w = uj + µ∥u∥1. (18)

This gives a dual problem in the form supu − 1
4nu⊤A⊤Au + uj − µ∥u∥1.

The point u := 2(1 − µ)ej
∥a.j∥2

2/n
is feasible for the dual (trivially, as there are no constraints).

Dual objective function value: Plugging in u = 2(1 − µ)ej
∥a.j∥2

2/n
, the corresponding dual objective

function value is

− 1
4n

u⊤A⊤Au + uj − µ∥u∥1 = − 1
4n

∥a.j∥2 4(1 − µ)2

(∥a.j∥2
2/n)2 + 2(1 − µ)

∥a.j∥2
2/n

− µ
2(1 − µ)
∥a.j∥2

2/n

= − (1 − µ)2

∥a.j∥2
2/n

+ 2 (1 − µ)2

∥a.j∥2
2/n

= (1 − µ)2

∥a.j∥2
2/n

.

Since the primal solution and the dual objective function values are equal, it follows that an optimal
solution for the primal is (1 − µ)

∥a.j∥2
2/n

a.j , and that an optimal solution to the dual is 2(1 − µ)
∥a.j∥2

2/n
ej .

We have shown that if ρ/(1 + ρ) ≤ µ ≤ 1 then the optimal solution of (6) is given by (7). Now
consider the case when µ < ρ/(1 + ρ). This implies µ < (1 − µ)ρ. Let i, j ∈ [p] (with i ̸= j) be
such that ρ = |a⊤

.ia.j |/∥a.j∥2
2. Then plugging in the expression w.j := n(1−µ)

∥a.j∥2
2

a.j from (7) into the
constraint of (6) we have,∥∥∥∥∥ 1

n
A⊤ (1 − µ)

∥a.j∥2
2

n

a.j − ej

∥∥∥∥∥
∞

≥ (1 − µ)|a⊤
.ia.j |/∥a.j∥2

2 = (1 − µ)ρ > µ.

This shows that w.j (defined in (7)) is not feasible for (6) when µ < ρ/(1 + ρ), and so is certainly
not optimal.

Finally, consider the case when µ > 1. If µ ≥ 1, then the unique optimal solution of (6) is w.j = 0.
This is because 0 is feasible and is the global minimizer of the objective function. However, when
µ > 1, the formula (7) does not give the value 0, and so is not the optimal solution to (6).

This concludes the proof that ρ
1+ρ ≤ µ ≤ 1 is necessary and sufficient condition for the expression

given in (7) to be optimal.
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A.2 Proof of Theorem 2

For an n × p matrix A, let for all j ∈ [p],

Lj := 1
n

∥a.,j∥2
2 (19)

and let for all l ̸= j ∈ [p],
νlj := 1

n
|a⊤
.la.j |. (20)

Using union bound on (32) of Lemma 2 and (31) of Lemma 1, we have under the assumption
n ≥ 8C2

maxκ
4

C2
min(1−c)2 log p for all l ̸= j ∈ [p],

P

νlj
Lj

≥
2
√

2Cmaxκ2
√

log p
n + |Σlj |

cΣjj

 ≤ 3
p4 . (21)

Given the definition of ρ in Theorem 1, we have the bound

ρ

1 + ρ
≤ ρ = max

l ̸=j

|a⊤
.la.j |

∥a.j∥2
2

= max
l ̸=j

νlj
Lj

. (22)

Taking union bound over l ̸= j ∈ [p], we have,

P

 ρ

1 + ρ
≤ max

l ̸=j

νlj
Lj

≤ max
l ̸=j

2
√

2Cmaxκ2
√

log p
n

cΣjj
+ 1

c
max
l ̸=j

|Σlj |
Σjj

 ≥ 1− p(p − 1)
2

3
p4 ≥ 1− 3

2p2 . (23)

Since Σjj ≥ Cmin for all j ∈ [p], we have, maxl ̸=j
2
√

2Cmaxκ2
√

log p
n

cΣjj
≤

2
√

2Cmaxκ
2

√
log p

n
cCmin

. Further-

more, given γ ≥ Cmin

κ2Cmax

√
n

log p maxl ̸=j
|Σlj |
Σjj

, we have,

P

(
ρ

1 + ρ
≤ (2

√
2 + γ)κ2

c

Cmax

Cmin

√
log p

n

)
≥ 1 − 3

2p2 .

We have now established the upper bound on ρ/(1 + ρ) with high probability. Theorem 1 states
that for ρ/(1 + ρ) ≤ µ < 1 the optimization problem in (6) is feasible and the optimal debiasing
matrix W in (6) is given by (7). The choice µ = (2

√
2 + γ)κ

2

c
Cmax
Cmin

√
log p
n with c ∈

(
2

√
2+γ

4
√

2+γ , 1
)

ensures that µ < 1 and ρ/(1 + ρ) ≤ µ with high probability.

This completes the proof of Theorem 2.

A.3 Lower bound on Lj

In Lemma 1, we show that for an ensemble of sensing matrices satisfying assumptions D1, D2, the
parameter Lj is greater than c Σjj for all j ∈ [p], with high probability, for some constant c.
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Lemma 1 Let A be a n×p matrix with independently and identically distributed sub-Gaussian rows,
where n < p. Consider L as defined in (19). For any constant c ∈ (0, 1) and κ := ∥Σ−1/2ai.∥ψ2 ,
if A satisfies properties D1 and D2 and n ≥ 8C2

maxκ
4

C2
min(1−c)2 log p, then for all j ∈ [p],

P (Lj ≥ c Σjj) ≥ 1 − 2
p4 . (24)

Proof of Lemma 1 We have for all j ∈ [p], ∥a.j∥2
2

n = 1
n

∑n
i=1 a2

ij . Since the ai. (for i ∈ [n]) are
sub-Gaussian, the aij are sub-Gaussian for each j ∈ [p] and ∥aij∥ψ2 ≤ ∥ai.∥ψ2 . By the definition of
the sub-Gaussian norm (see footnote in Sec. 2 with q = 2), we know that

1
2E[a2

ij ] ≤ ∥aij∥2
ψ2

= ∥e⊤
j ai.∥2

ψ2
≤ ∥ai.∥2

ψ2
. (25)

Recall that κ := ∥Σ−1/2ai.∥ψ2 in property D1 of sensing matrix A. We have

∥ai.∥ψ2 = sup
v∈Sp−1

∥∥∥(Σ1/2v)⊤Σ−1/2ai.

∥∥∥
ψ2

= sup
v∈Sp−1

∥Σ1/2v∥2

∥∥∥∥∥ 1
∥Σ1/2v∥2

(Σ1/2v)⊤Σ−1/2ai.

∥∥∥∥∥
ψ2

≤ sup
v∈Sp−1

∥Σ1/2v∥2 sup
z∈Sp−1

∥∥∥∥∥ 1
∥Σ1/2z∥2

(Σ1/2z)⊤Σ−1/2ai.

∥∥∥∥∥
ψ2

≤ σmax(Σ1/2)∥Σ−1/2ai.∥ψ2

≤
√

Cmax κ, (26)

where Cmax is defined in property D2. Therefore, we obtain E[a2
ij ] ≤ 2∥ai.∥2

ψ2
≤ 2Cmaxκ2. From

the definition of eigenvalues, for any x ∈ Rp, x⊤Σx ≥ σmin(Σ)∥x∥2
2 ≥ Cmin∥x∥2

2. Putting x = ej ,
where ej is the jth column of Ip, we have, Σjj ≥ Cmin. Since E[a2

ij ] = Σjj ≥ Cmin, we have,
E
[ 1
n

∑n
i=1 a2

ij

]
≥ Cmin.

For a given j ∈ [p], the variables a2
ij are independent for all i ∈ [n]. Hence, using the concentration

inequality of Theorem 3.1.1 and Equation (3.3) of Vershynin (2018), we have for t > 02,

P
(∣∣∥a.j∥2

2/n − E[∥a.j∥2
2/n]

∣∣ ≥ t
)

≤ 2e
− nt2

2C2
maxκ4 . (27)

Using the left-sided inequality of (27), we have,

P
(
∥a.j∥2

2/n ≤ E[∥a.j∥2
2/n] − t

)
≤ 2e

− nt2
2C2

maxκ4 . (28)

Using E[∥a.j∥2
2/n] = Σjj , (28) can be rewritten as follows for t > 0:

P (Lj ≤ Σjj − t) ≤ 2e
− nt2

2C2
maxκ4 . (29)

2We have set c = 1/2, δ := t and K := 2
√

Cmaxκ in Equation (3.3) and the equation immediately preceding it in
Vershynin (2018)
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Putting t := 2
√

2Cmaxκ2
√

log p
n in (29), we obtain:

P

(
Lj ≤ Σjj

(
1 − 2

√
2Cmax

Σjj
κ2
√

log p

n

))
≤ 2

p4 . (30)

For some constant c ∈ (0, 1), if n ≥ 8C2
maxκ

4

C2
min(1−c)2 log p ≥ 8C2

maxκ
4

Σ2
jj

(1−c)2 log p for all j ∈ [p], then (30)
becomes:

P (Lj ≤ c Σjj) ≤ 2
p4 =⇒ P (Lj ≥ c Σjj) ≥ 1 − 2

p4 . (31)

This completes the proof.

A.4 Upper bound on νlj

In the upcoming Lemma we provide a high probability upper bound on νlj ∀ l ̸= j ∈ [p], for sensing
matrices with independent and identically distributed zero-mean sub-Gaussian rows.

Lemma 2 Let A be a n × p dimensional matrix satisfying assumptions D1 and D2 and with
sub-Gaussian norm κ := ∥Σ−1/2ai.∥ψ2 . Define νlj as in (20). Then for all l ̸= j ∈ [p],

P

(
νlj ≤ 2

√
2Cmaxκ2

√
log p

n
+ |Σlj |

)
≥ 1 − 1

p4 . (32)

Proof of Lemma 2 We have 1
n |a⊤

.la.j | = 1
n

∑n
i=1 aijail. Here, for given j ̸= l, we know that aij and

ail are independent zero-mean sub-Gaussian random variables. From from (25) and (26) we know
that their sub-Gaussian norm is at most

√
Cmaxκ for all i ∈ [n]. Using Lemma 2.7.7 of Vershynin

(2018), we have that for all i ∈ [n], aijail are independent sub-Exponential random variables
with sub-exponential norm at most Cmaxκ2. Moreover, E[aijail] = Σjl. Hence, using Bernstein’s
inequality for averages of independent sub-exponential random variables, given in Corollary 2.8.3
of Vershynin (2018), we have for any t > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

aijail − 1
n

n∑
i=1

E[aijail]

∣∣∣∣∣ ≥ t

)
= P

(∣∣∣∣∣ 1n
n∑
i=1

aijail − Σlj

∣∣∣∣∣ ≥ t

)
≤ 2e

− nt2
2C2

maxκ4 (33)

Using Reverse Triangle’s inequality, we have,∣∣∣∣∣ 1n
n∑
i=1

aijail

∣∣∣∣∣− |Σjj | ≤

∣∣∣∣∣ 1n
n∑
i=1

aijail − Σjj

∣∣∣∣∣ .
Thereofore,

{∣∣ 1
n

∑n
i=1 aijail

∣∣− |Σjj | ≥ t
}

=⇒
{∣∣ 1
n

∑n
i=1 aijail − Σlj

∣∣}. Hence, we have,

P

(∣∣∣∣∣ 1n
n∑
i=1

aijail

∣∣∣∣∣ ≥ t + |Σlj |
)

≤ 2e
− nt2

2C2
maxκ4 (34)

Taking t = 2
√

2Cmaxκ2
√

log p
n , we have for all l ̸= j ∈ [p],

P

(
νlj ≥ 2

√
2Cmaxκ2

√
log p

n
+ |Σlj |

)
≤ 1

p4 . (35)
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This completes the proof.

A.5 Convex conjugates

The convex conjugate of a function f(w) is defined as:

f∗(u) = sup
w

(
u⊤w − f(w)

)
. (36)

The following result gives the convex conjugates of the functions needed in the proof of Theorem 1.

Lemma 3 1. If f(w) = 1
n∥w∥2

2, then its convex conjugate is f∗(u) = n
4 ∥u∥2

2.

2. If gj is the indicator function of the convex set {w ∈ Rp | ∥w − ej∥∞ ≤ µ}, i.e.,

gj(w) =
{

0 if ∥w − ej∥∞ ≤ µ

∞ otherwise,

then its convex conjugate is g∗
j (u) = uj + µ∥u∥1.

Proof of Lemma 3:

1. We can write f(w) = 1
2 w⊤Qw where Q := 2

nIp is positive definite (and has size p × p).
From Example 3.2.2 of Boyd & Vandenberghe (2004), the convex conjugate of a positive
definite quadratic form is

f∗(u) = 1
2u⊤Q−1u = 1

2u⊤
(

2
n

Ip

)−1
u = n

4 ∥u∥2
2.

2. If gj is the indicator function of the set C, the convex conjugate is given by

g∗
j (u) = sup

w∈C
u⊤w, (37)

where C = {w ∈ Rp | ∥w − ej∥∞ ≤ µ}. This implies that wi ∈ [eji − µ, eji + µ], ∀i. (Note
that eij = 1 if i = j and 0 otherwise.) To maximize u⊤w =

∑p
i=1 uiwi, the optimal wi can

be chosen as

wi =
{

eji + µ if ui ≥ 0,

eji − µ if ui < 0.
(38)

Substituting into u⊤w, we obtain u⊤w =
∑p
i=1 ui

(
eji + µ sign(ui)

)
, where sign(ui) is the

sign of ui. Simplifying, we have u⊤w = uj + µ
∑p
i=1 |ui|. Thus, we have

g∗
j (u) = uj + µ∥u∥1. (39)

This completes the proof.
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