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Abstract

In high-dimensional sparse regression, the Lasso estimator offers excellent theoretical guar-
antees but is well-known to produce biased estimates. To address this, Javanmard & Mon-
tanari (2014a) introduced a method to “debias” the Lasso estimates for a random sub-
Gaussian sensing matrix A. Their approach relies on computing an “approximate inverse”
M of the matrix A⊤A/n by solving a convex optimization problem. This matrix M plays
a critical role in mitigating bias and allowing for construction of confidence intervals using
the debiased Lasso estimates. However the computation of M is expensive in practice as it
requires iterative optimization. In the presented work, we re-parameterize the optimization
problem to compute a “debiasing matrix” W := AM⊤ directly, rather than the approx-
imate inverse M . This reformulation retains the theoretical guarantees of the debiased
Lasso estimates, as they depend on the product AM⊤ rather than on M alone. Notably,
we derive a simple and computationally efficient closed-form expression for W , applicable
to the sensing matrix A in the original debiasing framework, under a specific deterministic
condition. This condition is satisfied with high probability for a wide class of randomly gen-
erated sensing matrices. Also, the optimization problem based on W guarantees a unique
optimal solution, unlike the original formulation based on M . We verify our main result
with numerical simulations.

1 Introduction

In high-dimensional sparse regression, where the number of predictors significantly exceeds the number
of observations, the Lasso (Least Absolute Shrinkage and Selection Operator) is a widely used method for
variable selection and estimation. By incorporating an ℓ1 regularization term, Lasso promotes sparsity in the
estimated coefficients, enabling effective performance for sparse signal vectors even if the number of predictors
far exceeds the number of samples. The Lasso estimator has well-established theoretical guarantees for
signal and support recovery (Hastie et al., 2015). Despite its strengths, a well-recognized limitation of
Lasso is its tendency to produce biased estimates. This bias arises from the shrinkage imposed by the ℓ1
penalty. Consequently, the bias compromises estimation accuracy and impedes statistical inference tasks
such as construction of confidence intervals or hypothesis tests. These challenges are especially pronounced
in high-dimensional regimes, where traditional inference tools fail due to high dimensionality.

To address these limitations, several methods have been developed to “debias” the Lasso estimator, allowing
for valid statistical inference even in high-dimensional settings. Notably, Zhang & Zhang (2014) introduced
a decorrelated score-based approach, leveraging the Karush–Kuhn–Tucker (KKT) conditions of the Lasso
optimization problem to construct bias-corrected estimators. Their framework relies on precise estimation
of the precision matrix (inverse covariance matrix), which can be computationally challenging and sensitive
to regularization choices. Similarly, Van de Geer et al. (2014) proposed a methodology rooted in node-wise
regression, where each variable is regressed on the remaining variables to estimate the precision matrix.
While effective, this method is computationally intensive. This may limit its applicability, particularly in
scenarios where the design matrix lacks favorable properties like sparsity of the rows of the precision matrix.

Javanmard & Montanari (2014a) introduced a simple yet powerful approach that constructs debiased Lasso
estimates using an “approximate inverse” of the sample covariance matrix. Their method avoids direct
precision matrix estimation and instead employs an optimization framework to compute a debiasing matrix

1



Under review as submission to TMLR

M that corrects for bias while ensuring asymptotic normality of the debiased estimates. A key advantage
of this method is its applicability for random sub-Gaussian sensing matrices, enabling valid inference across
a broad range of high-dimensional applications.

In this work, we build upon the technique of Javanmard & Montanari (2014a), addressing one of its primary
computational bottlenecks: the optimization step required to compute the approximate inverse M . By refor-
mulating the problem to work directly with the “weight matrix” W := AM⊤, we entirely eliminate the need
to solve this optimization problem in many practical cases. Our proposed reformulation leverages the insight
that the theoretical guarantees of the debiased Lasso estimator depend on the product AM⊤ rather than
the individual debiasing matrix M . By shifting the focus to the “weight matrix” W := AM⊤, we simplify
the optimization problem while retaining all theoretical properties of the original framework. Under certain
deterministic assumptions, we provide a simple, exact, closed form optimal solution for the optimization
problem to obtain W . We show that this assumption is satisfied with high probability for different popular
ensembles of sub-Gaussian sensing matrices, under the additional condition that the elements of the rows
of A are weakly correlated. In practice, sensing matrices with uncorrelated entries are commonly used in
many applications (Duarte et al., 2008; Liu et al., 2013) and are also widely used in many theoretical results
in sparse regression (Hastie et al., 2015). This closed form solution eliminates the computationally intensive
optimization step required to compute M , significantly improving runtime efficiency. It is applicable in
many natural situations, including sensing matrices with i.i.d. isotropic sub-Gaussian rows (such as i.i.d.
Gaussian, or i.i.d. Rademacher entries).

Notation: Throughout this paper, we denote matrices by bold-faced uppercase symbols, e.g., A. If A is
an n × p matrix then ai. ∈ Rp denotes the ith row of A, thought of as a column vector. Similarly if A is
an n × p matrix then a.j ∈ Rn denotes the jth column of A, again thought of as a column vector. Vectors
are denoted by bold-faced lower case symbols, e.g., w. The ith entry of a vector w is denoted wi ∈ R. The
identity matrix of size p × p for any positive integer p is denoted by Ip, and its ith column vector is denoted
by ei. For a positive integer p, we use the shorthand [p] = {1, 2, . . . , p}. For a vector w ∈ Rm, we denote
the ℓq-norm by ∥w∥q := (

∑m
i=1 |wi|q)

1/q if 1 ≤ q < ∞ and the ℓ∞-norm by ∥w∥∞ := maxi∈[m] |wi|.

2 An Overview of the Debiased LASSO

We consider the high-dimensional linear model

y = Aβ∗ + η, (1)

where β∗ ∈ Rp is a s-sparse signal (i.e., s := ∥β∗∥0 where s ≪ p), A is a n × p design/sensing matrix (where
n ≪ p), and y ∈ Rn is the measurement vector. Also, η ∈ Rn is an additive noise vector that consists of
independent and identically distributed elements drawn from N(0, σ2), where σ2 is the noise variance.

The Lasso estimate β̂λ of the sparse signal β∗ is defined as the solution to the following optimization
problem:

β̂λ := arg min
β

1
2n

∥y − Aβ∥2
2 + λ∥β∥1, (2)

where λ > 0 is a regularization parameter chosen appropriately. The Lasso estimator is known to be a
consistent estimator of the sparse signal β∗ under the condition that the sensing matrix A satisfies the
Restricted Eigenvalue Condition (REC) (Hastie et al., 2015, Chapter 11).

The Lasso estimator is well-known to produce biased estimates, i.e., E(β̂λ) ̸= β∗ where the expectation is
computed over noise instances. This bias arises from the ℓ1 regularization term, which induces shrinkage in
the estimate β̂λ. Moreover, there is no known method to compute a confidence interval of β∗ directly from
β̂λ.

To reduce this bias and also construct confidence intervals of β∗, Javanmard & Montanari (2014a) introduced
a debiased Lasso estimator β̂d, defined as follows:

β̂d := β̂λ + 1
n

MA⊤(y − Aβ̂λ). (3)
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Here M is an approximate inverse of the rank deficient matrix Σ̂ := A⊤A/n, computed by solving the
convex optimization problem given in Algorithm 1. The parameter µ in Alg.1 controls the bias of the
debiased Lasso estimator given in (3). Ideally one should choose the smallest µ for which (4) is feasible.

Algorithm 1 Construction of M (from Javanmard & Montanari (2014a))
Require: Design matrix A, µ ∈ (0, 1)
Ensure: Debiasing matrix M

1: Compute: Σ̂ := A⊤A/n.
2: For each j ∈ [p], solve the following optimization problem to compute column vector m.j ∈ Rp:

minimize m⊤
.jΣ̂m.j

subject to ∥Σ̂m.j − ej∥∞ ≤ µ, (4)

where ej is the jth column of the identity matrix Ip, and µ ∈ (0, 1).
3: Assemble M as M := (m.1| · · · |m.p)⊤.
4: If the optimization problem is infeasible for any j, set M := Ip.

The theoretical properties of β̂d are applicable to a sensing matrix A with the following properties:

D1: The rows a1., a2., . . . , an,. of matrix A are independent and identically distributed zero-mean sub-
Gaussian random vectors with covariance Σ := E[ai.a⊤

i. ]. Furthermore, the sub-Gaussian norm
κ := ∥Σ−1/2ai.∥ψ2

1 is a finite positive constant.

D2: There exist positive constants 0 < Cmin ≤ Cmax, such that the minimum and maximum eigenvalues
σmin(Σ), σmax(Σ) of Σ satisfy 0 < Cmin ≤ σmin(Σ) ≤ σmax(Σ) ≤ Cmax < ∞.

Theorem 7(b) of Javanmard & Montanari (2014a) shows that the optimization problem in (4) is feasible with
high probability, for sensing matrices satisfying properties D1 and D2, as long as µ > 4

√
3eκ2

√
Cmax
Cmin

√
log p
n .

If µ is O

(√
log p
n

)
and n is ω((s log p)2), then Theorem 8 in the aforementioned paper shows that the bias

of the debiased Lasso estimator goes to 0 and ∀j ∈ [p],
√

n(β̂dj − β∗
j ) is asymptotically zero-mean Gaussian

with variance σ2m⊤
.jΣ̂m.j .

3 Re-parameterization of the Debiased LASSO

The debiased Lasso estimator in (3) can be rewritten in terms of the weight matrix W := AM⊤ as:

β̂d = β̂λ + 1
n

W ⊤(y − Aβ̂λ). (5)

The re-parameterization does not affect the debiasing procedure described earlier. Thus, any theoretical
guarantees established using M extend to those using W .

We now produce a reformulated problem in (6) using W , and show that it is equivalent to the original
optimization problem in Algorithm 1. Using the relationship W = AM⊤, we can rewrite m.j as w.j :=
Am.j . Making this substitution, the objective in (4) becomes m⊤

.jΣ̂m.j = 1
nw⊤

.jw.j and the constraint
∥Σ̂m.j − ej∥∞ ≤ µ (where ej is the jth column of the identity matrix) becomes

∥∥∥ 1
nA⊤w.j − ej

∥∥∥
∞

≤ µ.

1The sub-Gaussian norm of a random variable x, denoted by ∥x∥ψ2 , is defined as ∥x∥ψ2 := supq≥1 q−1/2 (E|x|q)1/q . For
a random vector x ∈ Rn, its sub-Gaussian norm is defined as ∥x∥ψ2 := supy∈Sn−1 ∥y⊤x∥ψ2 , where Sn−1 denotes the unit
sphere in Rn.
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This change of variables suggests the following reformulated optimization problem (6) for the jth column of
W :

Pj := minimize 1
nw⊤

.jw.j

subject to
∥∥∥ 1
nA⊤w.j − ej

∥∥∥
∞

≤ µ. (6)

In fact, the jth reformulated problem (6) and the jth original problem (4) are equivalent in the following
sense: If m.j is feasible for (4) then w.j := Am.j is feasible for (6) and 1

nw⊤
.jw.j = m⊤

.jΣ̂m.j . Conversely,
suppose that w.j is feasible for (6). If A† is a pseudo-inverse of A, then m.j := A†w.j is feasible for (4)
since Σ̂m.j = 1

nA⊤Am.j = 1
nA⊤w.j . Moreover, 1

nw⊤
.jw.j = m⊤

.jΣ̂m.j , so both have the same objective
values, establishing that (4) and (6) are equivalent. This reformulation provides an equivalent separable
problem for each column of W , maintaining all theoretical guarantees while simplifying the representation
of the debiasing procedure.

The reformulated problem (6) has a unique optimal solution because the objective function is strongly convex
with convex constraints. In contrast, the original problem (4) does not have a unique solution. Indeed if m.j

is any solution to (4), then we can add to it any element of the nullspace of A to obtain another solution
to (4).

3.1 A Closed-Form Solution for the Debiasing Matrix W

In this section, we demonstrate that, for a suitable choice of µ, the optimal solution to the problem (6) can
be computed in closed form for a sensing matrix whose minimum column norm is strictly positive (which is
true with probability 1 for random matrices). To derive this result we write down the Fenchel dual of (6),
and appeal to weak duality. In particular, we explicitly find primal and dual feasible points with the same
objective value, certifying that both are, in fact, optimal.

Theorem 1 Let A be a n × p matrix with no column equal to zero. Define ρ(A) := maxi ̸=j |a⊤
.i a.j |

∥a.j∥2
2

. The
optimal solution of (6) is given by

w.j := n(1 − µ)
∥a.j∥2

2
a.j for all j ∈ [p] (7)

if and only if ρ
1+ρ ≤ µ ≤ 1.

The proof of this theorem is given in Appendix A.1. For notational simplicity, we will denote ρ(A) by ρ in
the rest of the paper.

Remarks:

1. This theorem eliminates the requirement to execute an iterative optimization algorithm to obtain
W (or an iterative optimization algorithm to obtain M). This is because given A, one can directly
implement the optimal solution of Alg. 1 in the form (7) for all j ∈ [p]. This speeds up the
implementation of the debiasing of Lasso for the ensemble of sensing matrices that satisfy the
conditions of Theorem 1.

2. The condition ρ/(1+ρ) ≤ µ ≤ 1 is necessary and sufficient for the closed-form expression in (7) to be
optimal (6). However, it is possible that (6) is feasible for values of µ that are smaller than ρ/(1+ρ).
In such a situation, the optimal solution to (6) is not given by (7). This is empirically illustrated in
Sec. 4.1. In the context of the debiased Lasso, Theorem 7(b) of Javanmard & Montanari (2014b)
shows that the choice of µ := OP (

√
log p/n) makes the optimization problem in (4) feasible for a

sensing matrix A that satisfies conditions D1 and D2. For a wide class of sensing matrices, we show
in Theorem 2 that ρ/(1 + ρ) = OP (

√
log p/n).
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3. The quantity ρ
1+ρ can be computed exactly by using the definition of ρ given in Theorem 1 given

a sensing matrix A. Furthermore, the distribution of ρ
1+ρ can also be estimated via simulation for

given any n, p, and Σ corresponding to the sensing matrix A.

4. The solution in (7) is the optimal solution even when we choose µ = 1. The optimal solution in this
case is the trivial solution wj = 0. However in practice, one always chooses µ to be small, and hence
this specific situation does not arise.

3.2 Concentration bounds of ρ
1+ρ

As mentioned earlier at the end of Sec. 2, if µ is O

(√
log p
n

)
and n is ω((s log p)2), then ∀j ∈ [p],

√
n(β̂dj−β∗

j )

is asymptotically zero-mean Gaussian when the elements of η are drawn from N(0, σ2). For specific classes
of random sensing matrices, we show in Theorem 2, that ρ

1+ρ ≤ c0

√
log p
n with high probability for some

constant c0. This implies that for these random sensing matrices, the choice µ := O

(√
log p
n

)
ensures both

the following: (i) asymptotic negligible bias of the estimator β̂d given by (5) when n is ω((s log p)2), and (ii)
fulfillment of the sufficient condition ρ

1+ρ ≤ µ for the debiasing matrix W to be computed in closed-form.

If A satisfies an additional mild assumption as given in Theorem 2 then ρ
1+ρ ≤ c0

√
log p
n holds with high

probability.

Theorem 2 Let A be a n × p dimensional matrix with independent and identically distributed zero-mean
sub-Gaussian rows and sub-Gaussian norm κ := ∥Σ−1/2ai.∥ψ2 , where n < p and Σ := E[ai.ai.

⊤]. Let
ρ be as defined in Theorem 1. Let γ ≥ Cmin

κ2Cmax

√
n

log p maxl ̸=j |Σlj |
Σjj

. If A obeys properties D1, D2 and

n ≥ 8C2
maxκ

4

C2
min(1−c)2 log p for some c ∈ (0, 1), then

P

(
ρ

1 + ρ
≤ (2

√
2 + γ)κ2

c

Cmax

Cmin

√
log p

n

)
≥ 1 − 3

2p2 . (8)

Furthermore, if c ∈
(

2
√

2+γ
4

√
2+γ , 1

)
and µ := (2

√
2 + γ)κ

2

c
Cmax
Cmin

√
log p
n , then with high probability, (6) is feasible

and the optimal debiasing matrix W in (6) is given by (7).

The proof of Theorem 2 is given in Appendix A.2.

Remarks:

1. If Σ is a diagonal matrix (i.e., entries of the sensing matrix A are uncorrelated), then we can choose
γ = 0 and the upper bound of ρ/(1 + ρ) in (8) reduces to 2

√
2κ

2

c
Cmax
Cmin

√
log p
n for any constant

c ∈ (1/2, 1). If Σ is not a diagonal matrix, the parameter γ represents a degree of dependence
between the elements of the rows of the matrix A.

2. The condition c ∈
(

2
√

2+γ
4

√
2+γ , 1

)
in Theorem 2 ensures that when n ≥ 8C2

maxκ
4

C2
min(1−c)2 log p and µ :=

(2
√

2 + γ)κ
2

c
Cmax
Cmin

√
log p
n , then we have µ < 1.

3. In practice, one tends to choose a small value of µ for debiasing the Lasso estimator. Given n, p
and Σ, the exact distribution of ρ

1+ρ can also be estimated with high precision through simulations.
One may also choose µ to be slightly larger than the maximum support of the distribution of
ρ

1+ρ . In Sec.4.4, we observe that this empirical choice of µ is smaller than the choice of µ :=

(2
√

2 + γ)κ
2

c
Cmax
Cmin

√
log p
n .
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4 Empirical Results

4.1 Difference between the exact closed form solution W e and the solution of the optimization
problem in (6) given by W o for varying choices of µ

Aim: In Theorem 1, we show that if ρ
1+ρ ≤ µ < 1, then the exact closed form solution of (7) represented

by W e is the same as the solution of the optimization problem given in (6) represented by W o. In this
subsection, we investigate the difference between W o and We for µ < ρ

1+ρ as well as in the range ρ
1+ρ ≤ µ < 1.

We report the difference between W e and W o in terms of the Relative Error given by
(

∥W o−W e∥F

∥We∥F

)
for

µ = 0.2, 0.21, 0.22, . . . , 0.60.

Sensing matrix properties: For this experiment, we fixed n = 80, p = 100. We ran this experiment
for two different n × p sensing matrices A with elements drawn from: (1) i.i.d. Gaussian and, (2) i.i.d.
Rademacher. In Figure 1, we plot µ vs

(
∥W o−W e∥F

∥We∥F

)
for both of these matrices on a log scale. The exact

value of ρ
1+ρ is given by a black vertical line in each case.

Observation: We see that for both the plots in Figure 1, the relative error decreases with increase in µ
for µ < ρ

1+ρ . For µ ≥ ρ
1+ρ , the relative error is very small with fluctuations primarily due to the solver

tolerances in lsqlin when computing W o. Furthermore, the decrease in relative error is sharp after the
value of µ crosses ρ

1+ρ .

Figure 1: Line plot of µ vs relative error
(

∥W o−W e∥F

∥We∥F

)
(in log scale) for two 80 × 100 dimensional sensing

matrices: (left) i.i.d. Gaussian and (right) i.i.d. Rademacher. The exact value of ρ
1+ρ is given by the black

vertical line. The value of ρ
1+ρ is 0.327 for the Gaussian sensing matrix (left) and 0.298 for the Rademacher

sensing matrix (right). Here, Wo is the solution of the optimization problem in (6) and W e is computed as
in (7).

4.2 Comparison of debiasing performance using the exact solution W e and the choice M := dΣ−1

In this subsection, we compare the sensitivity, specificity of the debiased estimate β̂W e
obtained from

(5) using the exact closed-form solution W e, and the debiased estimate β̂dΣ−1 given in Equation (17) of
Javanmard & Montanari (2014b) with the debiasing matrix M := dΣ−1 (note that M is an approximate
inverse of the empirical covariance matrix Σ̂ – see Sec. 2) where d := (1 − ∥β̂λ1∥0/p)−1. We further
compare the ratios of the empirical total variance (ETV) and asymptotic total variance (ATV) of β̂W e

and β̂dΣ−1 . The ATVs of the jth element of β̂W e
and β̂dΣ−1 are respectively given by 1

n

∑p
j=1 w⊤

.jw.j

and d2

n

∑p
j=1[Σ−1A⊤AΣ−1⊤]jj . The empirical total variance (ETV) of the debiased Lasso estimators is

obtained using 100 simulation runs over different instances of η with varying n ∈ {250, 350, 500}, fσ = 0.01,
p = 500, s = 5 where the signal β∗ was generated in the same manner as described in the beginning of
this section. In these simulations, the rows of A are generated as p-dimensional i.i.d. random vectors from
Np(0, Σ) for three different choices of Σ given as follows:

6
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1. Diagonal Matrix: Σ1 = σ2Ip with choice σ2 = 1.

2. Banded Equicorrelated Matrix: Σ2 with (i, j)th entry as follows.

Σ2ij
=


σ2, if i = j ∈ [p],

σ2ζ, if |i − j| ≤ b, i ̸= j ∈ [p]
0, otherwise

, with choices ζ = 0.1, b = 5 and σ2 = 1.

3. Equicorrelated Matrix: Σ3 := σ2[(1 − ζ)Ip + ζ1p1⊤
p

]
with choices ζ = 0.1 and σ2 = 1. Here, 1p

denotes p-dimensional vector of all ones.

The diagonal covariance matrices are widely used in compressed sensing Candès et al. (2006). The chosen
banded equicorrelated covariance matrix (Σ2) is a special case of a symmetric circulant matrix, which has
been explored by Javanmard & Montanari (2014a) in the context of debiasing the Lasso estimator. Further,
the equicorrelated matrix Σ3 has a motivation in compressed sensing as well, to express cross-talk—given by
the term ζ11⊤—between different elements of a sensor array. In single-pixel cameras (a common architecture
in compressed sensing) Duarte et al. (2008), the term the term ζ1p1⊤

p models global illumination changes
(similar to a background interference) which bring in weak correlation, so that the jth row of the sensing
matrix can be effectively expressed by ãj =

√
1 − ζaj +

√
ζ1p.

In Tables 1, 2 and 3, we present results for each of these covariance designs comparing Sensitivity and
Specificity, for both debiased estimates (using W e and dΣ−1). We also present the ratios of the ATV and
ETV for these estimates.

n Sens(β̂W e
) Spec(β̂W e

) Sens(β̂dΣ−1) Spec(β̂dΣ−1) ATV (β̂W e
)

ATV (β̂dΣ−1 )
ETV (β̂W e

)
ETV (β̂dΣ−1 )

250 0.7145 0.8972 0.7209 0.8653 0.2819 0.3863
350 0.8554 0.9719 0.8126 0.9233 0.3882 0.5182
500 0.9985 0.9992 0.9486 0.9492 0.4699 0.6075

Table 1: Diagonal Matrix Σ1: (see Sec. 4.4) Comparison of sensitivity, specificity, and ATV, ETV ratios for
the debiased estimates β̂W e

and β̂dΣ−1 across different sample sizes n ∈ [200 : 50 : 500] for an uncorrelated
Gaussian design matrix. The fixed parameters are p = 500, fσ = 0.01, s = 5, r = 4.

n Sens(β̂W e
) Spec(β̂W e

) Sens(β̂dΣ−1) Spec(β̂dΣ−1) ATV (β̂W e
)

ATV (β̂dΣ−1 )
ETV (β̂W e

)
ETV (β̂dΣ−1 )

250 0.7392 0.8871 0.6975 0.8387 0.2573 0.3982
350 0.8833 0.9562 0.8136 0.8865 0.3142 0.5961
500 0.9715 0.9854 0.9006 0.9216 0.3924 0.7269

Table 2: Banded Equicorrelated Matrix Σ2: (see Sec. 4.4) Comparison of sensitivity, specificity, and
ATV, ETV ratios for the debiased estimates β̂W e

and β̂dΣ−1 across different sample sizes n = [200 : 50 : 500]
for correlated Gaussian design given as a bandwidth-3 matrix with Σij = σ2 · 0.1, |i − j| ≤ 3, and zero
otherwise. The fixed parameters are p = 500, fσ = 0.01, s = 5, r = 4.

From Tables 1, 2 and 3, it is evident that the debiased estimator β̂W e
consistently outperforms β̂dΣ−1 in

terms of sensitivity and specificity, with the advantage being more pronounced for smaller sample sizes and
gradually diminishing as n increases. This performance benefit is not surprising because in our approach,
the matrix W is specifically designed to produce a debiased estimator of minimum variance, unlike the
choice of M := dΣ−1 which only provides debiasing. Furthermore, the debiasing properties of M := dΣ−1

have only been established for Gaussian uncorrelated designs in Javanmard & Montanari (2014b), whereas
our approach is applicable to a much wider range of matrices. Moreover, our approach does not require
knowledge of Σ, which may not be available and is hard to estimate even for uncorrelated designs because
n < p. Lastly, our approach does not rely on the ℓ0 norm of the Lasso estimate.
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n Sens(β̂W e
) Spec(β̂W e

) Sens(β̂dΣ−1) Spec(β̂dΣ−1) ATV (β̂W e
)

ATV (β̂dΣ−1 )
ETV (β̂W e

)
ETV (β̂dΣ−1 )

250 0.7275 0.8655 0.6855 0.8152 0.2724 0.3892
350 0.8112 0.9216 0.7908 0.8872 0.3433 0.4844
500 0.9466 0.9573 0.9212 0.9319 0.4147 0.5795

Table 3: Equicorrelated Matrix Σ3: (see Sec. 4.4) Comparison of sensitivity, specificity, and ATV,
ETV ratios for the debiased estimates β̂W e

and β̂dΣ−1 across different sample sizes n = [200 : 50 : 500]
for correlated Gaussian design given as a bandwidth-3 matrix with Σij = σ2 · 0.1, |i − j| ≤ 3, and zero
otherwise. The fixed parameters are p = 500, fσ = 0.01, s = 5, r = 4.

The introduction of correlation in the design matrix leads to an overall reduction in both sensitivity and
specificity at lower n, but this gap narrows down with larger n. Furthermore, the variance ratios remain
below unity across all settings, indicating that β̂W e

achieves lower empirical and asymptotic variances, with
the ratios increasing steadily in n, reflecting greater stability. Overall, β̂W e

demonstrates superior efficiency
and robustness to correlation compared to β̂dΣ−1 .

4.3 Validity of the exact solution

Aim: The debiased Lasso can be used to determine the support of the unknown vector β∗ by using
statistical hypothesis tests derived using Lasso debiasing theory. We aim to estimate the support using p
hypothesis tests (one per element of β∗) based on the debiased Lasso estimates using the weights matrix
W obtained from the optimization problem in (6) (denoted by Wo), and that obtained from the closed-form
expression (7) (denoted by We), for varying number of measurements n. The aim is to also compare these
support set estimates with the ground truth support set, and report sensitivity and specificity values (defined
below). We will further show the difference in the run-time for both methods.

Signal Generation: For our simulations, we chose our design matrix A to have elements drawn indepen-
dently from the standard Gaussian distribution. We synthetically generated signals (i.e., β∗) with p = 500
elements in each. The non-zero values of β∗ were drawn i.i.d. from U(50, 1000) and placed at randomly
chosen indices. We set s := ∥β∗∥0 = 10 and the noise standard deviation σ := 0.05

∑n
i=1 |ai.β

∗|/n. We
varied n ∈ {200, 250, 300, 350, 400, 450, 500}. We chose µ = ρ/(ρ + 1) where ρ was computed exactly given
the sensing matrix A.

Sensitivity and Specificity Computation: Let us denote the debiased Lasso estimates obtained using
a matrix W by β̂d,W. We know that asymptotically β̂d,W(j) ∼ N(β∗

j , σ2w⊤
.jw.j/n2) for all j ∈ [p]. Using this

result, β̂d,W was binarized to create a vector b̂W in the following way: For all j ∈ [p], we set b̂W(j) := 1 if the
value of β̂Wj was such that the the hypothesis H0,j : β∗

j = 0 was rejected against the alternate H1,j : β∗
j ̸= 0

at 5% level of significance. b̂W(j) was set to 0 otherwise. Note that for the purpose of our simulation, we
either have W = Wo or W = We. The binary vectors corresponding to these choices of W are respectively
denoted by b̂Wo and b̂We .

A ground truth binary vector b∗ was created such that b∗
j := 1 at all locations j where β∗

j ̸= 0 and b∗
j := 0

otherwise. Sensitivity and specificity values were computed by comparing corresponding entries of b∗ to
those in b̂Wo and b̂We . Considering the matrix W, we declared an element to be a true defective if b∗

j = 1
and b̂W,j = 1, and a false defective if b∗

j = 0 but b̂W,j ̸= 0. We declare it to be a false non-defective if b∗
j = 0

but b̂W,j ̸= 0, and a true non-defective if β∗
j = 0 and b̂W,j = 0. The sensitivity for β∗ is defined as (#

true defectives)/(# true defectives + # false non-defectives) and specificity for β∗ is defined as (# true
non-defectives)/(# true non-defectives + # false defectives).

Results: For obtaining Wo, the optimization routine was executed using the lsqlin package in MATLAB.
The sensitivity and specificity were averaged over 25 runs with independent noise instances.

8
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sensitivity specificity time (in s)

n Wo We Wo We Wo We
∥W o−W e∥F

∥W e∥F

200 0.6742 0.6742 0.8592 0.8592 3.88 × 102 1.11 × 10−3 6.68 × 10−10

250 0.7229 0.7229 0.9063 0.9063 5.22 × 102 1.72 × 10−3 2.31 × 10−8

300 0.8071 0.8071 0.9427 0.9427 3.29 × 102 2.25 × 10−3 2.73 × 10−7

350 0.8554 0.8554 0.9719 0.9719 4.77 × 102 3.88 × 10−3 2.56 × 10−7

400 0.9275 0.9275 0.9855 0.9855 5.59 × 102 7.82 × 10−3 4.76 × 10−7

450 0.9781 0.9781 0.9909 0.9909 7.15 × 102 4.27 × 10−2 5.29 × 10−7

500 0.9985 0.9985 0.9992 0.9992 8.03 × 102 7.56 × 10−2 8.22 × 10−7

Table 4: Sensitivity and Specificity of hypothesis test using debiased estimates obtain from Wo (optimization
method) and We (closed-form expression from (7)) with its corresponding runtime in seconds for varying
number of measurements. The fixed parameters are p = 500, s = 10, σ := 0.05

∑n
i=1 |ai.β

∗|/n. We set
µ = ρ/(ρ + 1) where ρ is computed exactly for the chosen sensing matrix A.

In Table 4, we can see that the sensitivity as well as the specificity of the hypothesis tests for Wo and
We are equal. We further report the relative difference between Wo and We in the Frobenius norm. We
can clearly see that the difference is negligible, which is consistent with Theorem 1. Furthermore, we see
that using the closed-form expression in (7) saves significantly on time (by a factor of at least 104). While
the computational efficiency of the iterative approach can be improved by developing a specialized solver
for problems of the form (6), no iterative method is expected to outperform directly computing the simple
closed-form expression (7).

4.4 Empirical Distribution of ρ/(1 + ρ)

In this subsection, we will show that the support of the distribution of ρ
1+ρ is smaller than the choice of

µ := (2
√

2 + γ)κ
2

c
Cmax
Cmin

√
log p
n given by Theorem 2 for the different chosen covariance matrices Σ1, Σ2, Σ3

defined in Sec. 4.2. We chose p = 500 and n ∈ {250, 350, 500}. For each configuration, we generated 1000
independent n × p matrices A, with rows sampled i.i.d. from Np(0, Σ).

For each realization of A, we computed ρ(A) = maxi ̸=j |a⊤
.i a.j |

∥a.j∥2
2

. The normalized histograms of ρ/(1 + ρ)
based on 1000 simulation runs are shown in Figure 2. The top, middle and bottom rows of Figure 2 re-
spectively correspond to the covariance matrix Σ1, Σ2 and Σ3, whereas the left, center and right column
respectively correspond to n = 250, 350 and 500. Each plot is overlaid with a red vertical line showing the
bound µ := (2

√
2+γ)κ

2

c
Cmax
Cmin

√
log p
n as given in Theorem 2. Ideally, we would like to choose γ as small as pos-

sible and c to be as large as possible. Therefore in our experiments, we chose γ = Cmin
κ2Cmax

√
n

log p maxl ̸=j |Σlj |
Σjj

.

Furthermore, under the assumption n ≥ 8C2
maxκ

4

C2
min(1−c)2 log p, we chose c = 1 − 2

√
2κ

2

c
Cmax
Cmin

√
log p
n .

In Figure 2, we observe that the span of the normalized histograms shrinks and moves towards the origin
for all the chosen covariance matrices. This indicates that ρ

1+ρ tends to zero as the sample size increases.
Figure 2 also shows that the upper bound on ρ

1+ρ obtained from Theorem 2 is conservative (in terms of
constant factors) for smaller sample sizes. We also observe that the probability density of ρ

1+ρ depends on
the dependent structure of Σ. Therefore, given the values of n, p and Σ, one may choose µ which is slightly
larger than the maximum value of the support of the distribution of ρ

1+ρ in practice, which can be obtained
using simulation before performing the debiasing.

5 Conclusion

In this article, we reformulate the optimization problem to obtain M (the approximate inverse of the covari-
ance matrix of the rows of the sensing matrix A) in Javanmard & Montanari (2014a) and further provide

9
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n = 250 n = 350 n = 500

Σ1

Σ2

Σ3

Figure 2: Histograms of ρ/(1 + ρ) based on 1000 simulation runs for p = 500 and n ∈ {250, 350, 500}.
Rows correspond to different covariance structures (diagonal, banded equicorrelated and equicorrelated),
while columns correspond to sample size n. The red lines indicate the theoretical benchmark of µ :=
(2

√
2 + γ)κ

2

c
Cmax
Cmin

√
log p
n by choosing c = 1 − 2

√
2κ

2

c
Cmax
Cmin

√
log p
n and γ = Cmin

κ2Cmax

√
n

log p maxl ̸=j |Σlj |
Σjj

for all
designs.

an exact, closed-form optimal solution to the reformulated problem under assumptions on the pairwise inner
products of the columns of A. For sensing matrices with i.i.d. zero-mean sub-Gaussian rows that have a
diagonal covariance matrix or a full covariance matrix with small-valued off-diagonal elements, the debiased
Lasso estimator, based on this closed-form solution, has entries that are asymptotically zero-mean and sub-
Gaussian. The exact solution significantly improves the time efficiency for debiasing the Lasso estimator, as
shown in the numerical results. Our method is particularly useful for debiasing in streaming settings where
new measurements or new signal features arrive on the fly.
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A Appendix for ‘Fast Debiasing of the Lasso Estimator’: Proofs of Theoretical
Results

A.1 Proof of Theorem 1

Primal feasibility: If ρ
1+ρ ≤ µ ≤ 1 then we have that µ + µρ ≥ ρ which implies that 0 ≤ (1 − µ)ρ ≤ µ.

The choice of w.j given by (7) is primal feasible since∥∥∥∥∥ 1
n

A⊤ (1 − µ)
∥a.j∥2

2
n

a.j − ej

∥∥∥∥∥
∞

≤ max{µ, |(1 − µ)ρ|} = µ. (9)

To see why this is true, note that for index j, the LHS is upper bounded by µ, otherwise it is upper bounded
by |(1 − µ)ρ|.

Primal objective function value: The primal objective function value is given by 1
n∥w.j∥2

2 =
(1 − µ)2

(∥a.j∥2
2/n)2 ∥a.j∥2

2/n = (1 − µ)2

∥a.j∥2
2/n

.

The Fenchel dual problem: Consider an optimization problem of the form for a fixed j ∈ [p]:

inf
w

f(w) + gj

(
1
n

A⊤w

)
(10)

where f and gj are extended real-valued convex functions. The Fenchel dual (see Chapter 3 of Borwein &
Lewis (2006)) is

sup
u

−f∗
(

1
n

Au

)
− g∗

j (−u) (11)

where f∗ and g∗
j are the convex conjugates of f and gj respectively. The Fenchel dual satisfies weak duality

(see Chapter 3 of Borwein & Lewis (2006)), i.e., for any w and u,

f(w) + gj

(
1
n

A⊤w

)
≥ −f∗

(
1
n

Au

)
− g∗

j (−u).

In our setting, for a fixed j, we consider

f(w) := 1
n

∥w∥2 and gj(w) :=
{

0 if ∥w − ej∥∞ ≤ µ

∞ otherwise
. (12)

Then, for the same j, we have their convex conjugates from Lemma 3:

f∗(u) = sup
w

u⊤w − f(w) = n

4 ∥u∥2, (13)

g∗
j (u) = sup

w
u⊤w − gj(w) = sup

∥w−ej∥∞≤µ
u⊤w = uj + µ∥u∥1. (14)

This gives a dual problem in the form supu − 1
4nu⊤A⊤Au + uj − µ∥u∥1.

The point u := 2(1 − µ)ej
∥a.j∥2

2/n
is feasible for the dual (trivially, as there are no constraints).

Dual objective function value: Plugging in u = 2(1 − µ)ej
∥a.j∥2

2/n
, the corresponding dual objective function

value is

− 1
4n

u⊤A⊤Au + uj − µ∥u∥1 = − 1
4n

∥a.j∥2 4(1 − µ)2

(∥a.j∥2
2/n)2 + 2(1 − µ)

∥a.j∥2
2/n

− µ
2(1 − µ)
∥a.j∥2

2/n

= − (1 − µ)2

∥a.j∥2
2/n

+ 2 (1 − µ)2

∥a.j∥2
2/n

= (1 − µ)2

∥a.j∥2
2/n

.

12
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Since the primal solution and the dual objective function values are equal, it follows that an optimal solution
for the primal is (1 − µ)

∥a.j∥2
2/n

a.j , and that an optimal solution to the dual is 2(1 − µ)
∥a.j∥2

2/n
ej .

We have shown that if ρ/(1 + ρ) ≤ µ ≤ 1 then the optimal solution of (6) is given by (7). Now consider the
case when µ < ρ/(1+ρ). This implies µ < (1−µ)ρ. Let i, j ∈ [p] (with i ̸= j) be such that ρ = |a⊤

.ia.j |/∥a.j∥2
2.

Then plugging in the expression w.j := n(1−µ)
∥a.j∥2

2
a.j from (7) into the constraint of (6) we have,∥∥∥∥∥ 1

n
A⊤ (1 − µ)

∥a.j∥2
2

n

a.j − ej

∥∥∥∥∥
∞

≥ (1 − µ)|a⊤
.ia.j |/∥a.j∥2

2 = (1 − µ)ρ > µ.

This shows that w.j (defined in (7)) is not feasible for (6) when µ < ρ/(1+ρ), and so is certainly not optimal.

Finally, consider the case when µ > 1. If µ ≥ 1, then the unique optimal solution of (6) is w.j = 0. This
is because 0 is feasible and is the global minimizer of the objective function. However, when µ > 1, the
formula (7) does not give the value 0, and so is not the optimal solution to (6).

This concludes the proof that ρ
1+ρ ≤ µ ≤ 1 is necessary and sufficient condition for the expression given in

(7) to be optimal.

A.2 Proof of Theorem 2

For an n × p matrix A, let for all j ∈ [p],
Lj := 1

n
∥a.,j∥2

2 (15)

and let for all l ̸= j ∈ [p],
νlj := 1

n
|a⊤
.la.j |. (16)

Using union bound on (28) of Lemma 2 and (27) of Lemma 1, we have under the assumption n ≥
8C2

maxκ
4

C2
min(1−c)2 log p for all l ̸= j ∈ [p],

P

νlj
Lj

≥
2
√

2Cmaxκ2
√

log p
n + |Σlj |

cΣjj

 ≤ 3
p4 . (17)

Given the definition of ρ in Theorem 1, we have the bound

ρ

1 + ρ
≤ ρ = max

l ̸=j

|a⊤
.la.j |

∥a.j∥2
2

= max
l ̸=j

νlj
Lj

. (18)

Taking union bound over l ̸= j ∈ [p], we have,

P

 ρ

1 + ρ
≤ max

l ̸=j

νlj
Lj

≤ max
l ̸=j

2
√

2Cmaxκ2
√

log p
n

cΣjj
+ 1

c
max
l ̸=j

|Σlj |
Σjj

 ≥ 1 − p(p − 1)
2

3
p4 ≥ 1 − 3

2p2 . (19)

Since Σjj ≥ Cmin for all j ∈ [p], we have, maxl ̸=j
2
√

2Cmaxκ2
√

log p
n

cΣjj
≤

2
√

2Cmaxκ
2

√
log p

n
cCmin

. Furthermore,

given γ ≥ Cmin

κ2Cmax

√
n

log p maxl ̸=j
|Σlj |
Σjj

, we have,

P

(
ρ

1 + ρ
≤ (2

√
2 + γ)κ2

c

Cmax

Cmin

√
log p

n

)
≥ 1 − 3

2p2 .

13
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We have now established the upper bound on ρ/(1 + ρ) with high probability. Theorem 1 states that for
ρ/(1 + ρ) ≤ µ < 1 the optimization problem in (6) is feasible and the optimal debiasing matrix W in (6)
is given by (7). The choice µ = (2

√
2 + γ)κ

2

c
Cmax
Cmin

√
log p
n with c ∈

(
2

√
2+γ

4
√

2+γ , 1
)

ensures that µ < 1 and
ρ/(1 + ρ) ≤ µ with high probability.

This completes the proof of Theorem 2.

A.3 Lower bound on Lj

In Lemma 1, we show that for an ensemble of sensing matrices satisfying assumptions D1, D2, the parameter
Lj is greater than c Σjj for all j ∈ [p], with high probability, for some constant c.

Lemma 1 Let A be a n × p matrix with independently and identically distributed sub-Gaussian rows, where
n < p. Consider L as defined in (15). For any constant c ∈ (0, 1) and κ := ∥Σ−1/2ai.∥ψ2 , if A satisfies
properties D1 and D2 and n ≥ 8C2

maxκ
4

C2
min(1−c)2 log p, then for all j ∈ [p],

P (Lj ≥ c Σjj) ≥ 1 − 2
p4 . (20)

Proof of Lemma 1 We have for all j ∈ [p], ∥a.j∥2
2

n = 1
n

∑n
i=1 a2

ij . Since the ai. (for i ∈ [n]) are sub-Gaussian,
the aij are sub-Gaussian for each j ∈ [p] and ∥aij∥ψ2 ≤ ∥ai.∥ψ2 . By the definition of the sub-Gaussian norm
(see footnote in Sec. 2 with q = 2), we know that

1
2E[a2

ij ] ≤ ∥aij∥2
ψ2

= ∥e⊤
j ai.∥2

ψ2
≤ ∥ai.∥2

ψ2
. (21)

Recall that κ := ∥Σ−1/2ai.∥ψ2 in property D1 of sensing matrix A. We have

∥ai.∥ψ2 = sup
v∈Sp−1

∥∥∥(Σ1/2v)⊤Σ−1/2ai.

∥∥∥
ψ2

= sup
v∈Sp−1

∥Σ1/2v∥2

∥∥∥∥∥ 1
∥Σ1/2v∥2

(Σ1/2v)⊤Σ−1/2ai.

∥∥∥∥∥
ψ2

≤ sup
v∈Sp−1

∥Σ1/2v∥2 sup
z∈Sp−1

∥∥∥∥∥ 1
∥Σ1/2z∥2

(Σ1/2z)⊤Σ−1/2ai.

∥∥∥∥∥
ψ2

≤ σmax(Σ1/2)∥Σ−1/2ai.∥ψ2

≤
√

Cmax κ, (22)

where Cmax is defined in property D2. Therefore, we obtain E[a2
ij ] ≤ 2∥ai.∥2

ψ2
≤ 2Cmaxκ2. From the

definition of eigenvalues, for any x ∈ Rp, x⊤Σx ≥ σmin(Σ)∥x∥2
2 ≥ Cmin∥x∥2

2. Putting x = ej , where ej is
the jth column of Ip, we have, Σjj ≥ Cmin. Since E[a2

ij ] = Σjj ≥ Cmin, we have, E
[ 1
n

∑n
i=1 a2

ij

]
≥ Cmin.

For a given j ∈ [p], the variables a2
ij are independent for all i ∈ [n]. Hence, using the concentration inequality

of Theorem 3.1.1 and Equation (3.3) of Vershynin (2018), we have for t > 02,

P
(∣∣∥a.j∥2

2/n − E[∥a.j∥2
2/n]

∣∣ ≥ t
)

≤ 2e
− nt2

2C2
maxκ4 . (23)

Using the left-sided inequality of (23), we have,

P
(
∥a.j∥2

2/n ≤ E[∥a.j∥2
2/n] − t

)
≤ 2e

− nt2
2C2

maxκ4 . (24)
2We have set c = 1/2, δ := t and K := 2

√
Cmaxκ in Equation (3.3) and the equation immediately preceding it in Vershynin

(2018)

14
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Using E[∥a.j∥2
2/n] = Σjj , (24) can be rewritten as follows for t > 0:

P (Lj ≤ Σjj − t) ≤ 2e
− nt2

2C2
maxκ4 . (25)

Putting t := 2
√

2Cmaxκ2
√

log p
n in (25), we obtain:

P

(
Lj ≤ Σjj

(
1 − 2

√
2Cmax

Σjj
κ2
√

log p

n

))
≤ 2

p
. (26)

For some constant c ∈ (0, 1), if n ≥ 8C2
maxκ

4

C2
min(1−c)2 log p ≥ 8C2

maxκ
4

Σ2
jj

(1−c)2 log p for all j ∈ [p], then (26) becomes:

P (Lj ≤ c Σjj) ≤ 2
p4 =⇒ P (Lj ≥ c Σjj) ≥ 1 − 2

p4 . (27)

This completes the proof.

A.4 Upper bound on νlj

In the upcoming Lemma we provide a high probability upper bound on νlj ∀ l ̸= j ∈ [p], for sensing matrices
with independent and identically distributed zero-mean sub-Gaussian rows.

Lemma 2 Let A be a n × p dimensional matrix satisfying assumptions D1 and D2 and with sub-Gaussian
norm κ := ∥Σ−1/2ai.∥ψ2 . Define νlj as in (16). Then for all l ̸= j ∈ [p],

P

(
νlj ≤ 2

√
2Cmaxκ2

√
log p

n
+ |Σlj |

)
≥ 1 − 1

p4 . (28)

Proof of Lemma 2 We have 1
n |a⊤

.la.j | = 1
n

∑n
i=1 aijail. Here, for given j ̸= l, we know that aij and ail

are independent zero-mean sub-Gaussian random variables. From from (21) and (22) we know that their
sub-Gaussian norm is at most

√
Cmaxκ for all i ∈ [n]. Using Lemma 2.7.7 of Vershynin (2018), we have

that for all i ∈ [n], aijail are independent sub-Exponential random variables with sub-exponential norm at
most Cmaxκ2. Moreover, E[aijail] = Σjl. Hence, using Bernstein’s inequality for averages of independent
sub-exponential random variables, given in Corollary 2.8.3 of Vershynin (2018), we have for any t > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

aijail − 1
n

n∑
i=1

E[aijail]

∣∣∣∣∣ ≥ t

)
= P

(∣∣∣∣∣ 1n
n∑
i=1

aijail − Σlj

∣∣∣∣∣ ≥ t

)
≤ 2e

− nt2
2C2

maxκ4 (29)

Using Reverse Triangle’s inequality, we have,∣∣∣∣∣ 1n
n∑
i=1

aijail

∣∣∣∣∣− |Σjj | ≤

∣∣∣∣∣ 1n
n∑
i=1

aijail − Σjj

∣∣∣∣∣ .
Thereofore,

{∣∣ 1
n

∑n
i=1 aijail

∣∣− |Σjj | ≥ t
}

=⇒
{∣∣ 1
n

∑n
i=1 aijail − Σlj

∣∣}. Hence, we have,

P

(∣∣∣∣∣ 1n
n∑
i=1

aijail

∣∣∣∣∣ ≥ t + |Σlj |
)

≤ 2e
− nt2

2C2
maxκ4 (30)

Taking t = 2
√

2Cmaxκ2
√

log p
n , we have for all l ̸= j ∈ [p],

P

(
νlj ≥ 2

√
2Cmaxκ2

√
log p

n
+ |Σlj |

)
≤ 1

p4 . (31)

This completes the proof.
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A.5 Convex conjugates

The convex conjugate of a function f(w) is defined as:

f∗(u) = sup
w

(
u⊤w − f(w)

)
. (32)

The following result gives the convex conjugates of the functions needed in the proof of Theorem 1.

Lemma 3 1. If f(w) = 1
n∥w∥2

2, then its convex conjugate is f∗(u) = n
4 ∥u∥2

2.

2. If gj is the indicator function of the convex set {w ∈ Rp | ∥w − ej∥∞ ≤ µ}, i.e.,

gj(w) =
{

0 if ∥w − ej∥∞ ≤ µ

∞ otherwise,

then its convex conjugate is g∗
j (u) = uj + µ∥u∥1.

Proof of Lemma 3:

1. We can write f(w) = 1
2 w⊤Qw where Q := 2

nIp is positive definite (and has size p × p). From
Example 3.2.2 of Boyd & Vandenberghe (2004), the convex conjugate of a positive definite quadratic
form is

f∗(u) = 1
2u⊤Q−1u = 1

2u⊤
(

2
n

Ip

)−1
u = n

4 ∥u∥2
2.

2. If gj is the indicator function of the set C, the convex conjugate is given by

g∗
j (u) = sup

w∈C
u⊤w, (33)

where C = {w ∈ Rp | ∥w − ej∥∞ ≤ µ}. This implies that wi ∈ [eji − µ, eji + µ], ∀i. (Note that
eij = 1 if i = j and 0 otherwise.) To maximize u⊤w =

∑p
i=1 uiwi, the optimal wi can be chosen as

wi =
{

eji + µ if ui ≥ 0,

eji − µ if ui < 0.
(34)

Substituting into u⊤w, we obtain u⊤w =
∑p
i=1 ui

(
eji + µ sign(ui)

)
, where sign(ui) is the sign of

ui. Simplifying, we have u⊤w = uj + µ
∑p
i=1 |ui|. Thus, we have

g∗
j (u) = uj + µ∥u∥1. (35)

This completes the proof.
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