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Abstract

In high-dimensional sparse regression, the LASSO estimator offers excellent theo-
retical guarantees but is well-known to produce biased estimates. To address this,
Javanmard & Montanari (2014a)) introduced a method to “debias” the LASSO es-
timates for a random sub-Gaussian sensing matrix A. Their approach relies on
computing an “approximate inverse” M of the matrix AT A /n by solving a convex
optimization problem. This matrix M plays a critical role in mitigating bias and al-
lowing for construction of confidence intervals using the debiased LASSO estimates.
However the computation of M is expensive in practice as it requires iterative op-
timization. In the presented work, we re-parameterize the optimization problem to
compute a “debiasing matrix” W := AM T directly, rather than the approximate
inverse M. This reformulation retains the theoretical guarantees of the debiased
LASSO estimates, as they depend on the product AM " rather than on M alone.
Notably, we derive a simple and computationally efficient closed-form expression for
W, applicable to the sensing matrix A in the original debiasing framework, under
a specific deterministic condition. This condition is satisfied with high probability
for a wide class of randomly generated sensing matrices. Also, the optimization
problem based on W guarantees a unique optimal solution, unlike the original
formulation based on M. We verify our main result with numerical simulations.

1 Introduction

In high-dimensional sparse regression, where the number of predictors significantly exceeds the
number of observations, the LAsso (Least Absolute Shrinkage and Selection Operator) is a widely
used method for variable selection and estimation. By incorporating an ¢; regularization term,
LASSO promotes sparsity in the estimated coefficients, enabling effective performance for sparse
signal vectors even if the number of predictors far exceeds the number of samples. The LASSO
estimator has well-established theoretical guarantees for signal and support recovery (Hastie et al.|
2015). Despite its strengths, a well-recognized limitation of LASSO is its tendency to produce
biased estimates. This bias arises from the shrinkage imposed by the ¢; penalty. Consequently, the
bias compromises estimation accuracy and impedes statistical inference tasks such as construction
of confidence intervals or hypothesis tests. These challenges are especially pronounced in high-
dimensional regimes, where traditional inference tools fail due to high dimensionality.

To address these limitations, several methods have been developed to “debias” the LLASSO esti-
mator, allowing for valid statistical inference even in high-dimensional settings. Notably, |[Zhang &
Zhang| (2014]) introduced a decorrelated score-based approach, leveraging the Karush-Kuhn—Tucker
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(KKT) conditions of the LASSO optimization problem to construct bias-corrected estimators. Their
framework relies on precise estimation of the precision matrix (inverse covariance matrix), which
can be computationally challenging and sensitive to regularization choices. Similarly, [Van de Geer
et al.| (2014)) proposed a methodology rooted in node-wise regression, where each variable is re-
gressed on the remaining variables to estimate the precision matrix. While effective, this method
is computationally intensive. This may limit its applicability, particularly in scenarios where the
design matrix lacks favorable properties like sparsity of the rows of the precision matrix.

Javanmard & Montanari| (2014a)) introduced a simple yet powerful approach that constructs de-
biased LLASSO estimates using an “approximate inverse” of the sample covariance matrix. Their
method avoids direct precision matrix estimation and instead employs an optimization framework
to compute a debiasing matrix M that corrects for bias while ensuring asymptotic normality of the
debiased estimates. A key advantage of this method is its applicability for random sub-Gaussian
sensing matrices, enabling valid inference across a broad range of high-dimensional applications.

In this work, we build upon the technique of [Javanmard & Montanari (2014a)), addressing one of
its primary computational bottlenecks: the optimization step required to compute the approximate
inverse M. By reformulating the problem to work directly with the “weight matrix” W := AM T,
we entirely eliminate the need to solve this optimization problem in many practical cases. Our
proposed reformulation leverages the insight that the theoretical guarantees of the debiased LLASSO
estimator depend on the product AM | rather than the individual debiasing matrix M. By shifting
the focus to the “weight matrix” W := AM ", we simplify the optimization problem while retaining
all theoretical properties of the original framework. Under certain deterministic assumptions, we
provide a simple, exact, closed form optimal solution for the optimization problem to obtain W.
We show that this assumption is satisfied with high probability for different popular ensembles
of sub-Gaussian sensing matrices, under the additional condition that the elements of the rows of
A are weakly correlated. In practice, sensing matrices with uncorrelated entries are commonly
used in many applications (Duarte et al.l 2008} [Liu et al.,|2013) and are also widely used in many
theoretical results in sparse regression (Hastie et al [2015). This closed form solution eliminates
the computationally intensive optimization step required to compute M, significantly improving
runtime efficiency. It is applicable in many natural situations, including sensing matrices with i.i.d.
isotropic sub-Gaussian rows (such as i.i.d. Gaussian, or i.i.d. Rademacher entries).

Notation: Throughout this paper, we denote matrices by bold-faced uppercase symbols, e.g., A.
If Ais an n x p matrix then a; € RP denotes the i*" row of A, thought of as a column vector.
Similarly if A is an n x p matrix then a ; € R™ denotes the 4t column of A, again thought of as a
column vector. Vectors are denoted by bold-faced lower case symbols, e.g., w. The ith entry of a
vector w is denoted w; € R. The identity matrix of size p x p for any positive integer p is denoted
by I, and its i*™ column vector is denoted by e;. For a positive integer p, we use the shorthand
] = {1,2,...,p}. For a vector w € R™, we denote the {g-norm by [|wl||, :== (3%, |wi|q)1/q if
1 < ¢ < 00 and the /o-norm by [|w||s := max;epm) |w;l.

2 An Overview of the Debiased LASSO
We consider the high-dimensional linear model

y=AB"+n, (1)
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where 8 € R? is a s-sparse signal (i.e., s := ||3%||o where s < p), A is a n X p design/sensing matrix
(where n < p), and y € R™ is the measurement vector. Also, n € R™ is an additive noise vector
that consists of independent and identically distributed elements drawn from A (0, 0?), where o2 is
the noise variance.

The LASSO estimate BA of the sparse signal 8™ is defined as the solution to the following optimization
problem:

. 1
= in—|ly— AB|2 + A 2
B i= argmin 51y = ABz + Bl (2)

where A > 0 is a regularization parameter chosen appropriately. The LASSO estimator is known
to be a consistent estimator of the sparse signal 8* under the condition that the sensing matrix A
satisfies the Restricted Eigenvalue Condition (REC) (Hastie et al., [2015, Chapter 11).

The LASSO estimator is well-known to produce biased estimates, i.e., E(,@A) # " where the
expectation is computed over noise instances. This bias arises from the ¢; regularization term,
which induces shrinkage in the estimate ,3 A- Moreover, there is no known method to compute a
confidence interval of 8* directly from SBx.

To reduce this bias and also construct confidence intervals of 8%, |Javanmard & Montanari (2014a))
introduced a debiased LASSO estimator 34, defined as follows:

Ba =P+ %MAT(ZI — ABy). (3)

Here M is an approximate inverse of the rank deficient matrix £ := AT A /n, computed by solving
the convex optimization problem given in Algorithm[I}] The parameter p in Alg[I] controls the bias
of the debiased LASSO estimator given in . Ideally one should choose the smallest p for which
is feasible.

Algorithm 1 Construction of M (from [Javanmard & Montanari (2014a)))

Require: Design matrix A, p € (0,1)
Ensure: Debiasing matrix M
1: Compute: 3:= AT A/n.
2: For each j € [p], solve the following optimization problem to compute column vector m ; € R?:

minimize mj;f]m]
subject to ||§A]m] —€jlloo < i, (4)

where e; is the j* column of the identity matrix I, and u € (0,1).
3: Assemble M as M := (m 1| --|m,)".
4: If the optimization problem is infeasible for any j, set M := Ip,.

The theoretical properties of Bd are applicable to a sensing matrix A with the following properties:
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D1: The rows a; ,asz,...,ay,, of matrix A are independent and identically distributed zero-
mean sub-Gaussian random vectors with covariance ¥ := Ela; a;]. Furthermore, the
sub-Gaussian norm x := |27 2a; ||y, is a finite positive constant.

D2: There exist positive constants 0 < Cpin < Chax, such that the minimum and maximum
eigenvalues oy (X)), omax(2) of X satisfy 0 < Cipin < 0min(X) < 0max(B) < Chax < 00.

Theorem 7(b) of |Javanmard & Montanari (2014a)) shows that the optimization problem in
is feasible with high probability, for sensing matrices satisfying properties D1 and D2, as long

as pu > 4\/361‘{21/% o8P If y is O( 105”) and n is w((slogp)?), then Theorem 8 in the

n

aforementioned paper shows that the bias of the debiased LLASSO estimator goes to 0 and Vj €
[p], v/n(Baj — B;) is asymptotically zero-mean Gaussian with variance sz'—;Em,j.

3 Re-parameterization of the Debiased LASSO

The debiased LASSO estimator in can be rewritten in terms of the weight matrix W := AM '
as:

Ba = B+ %WT(?J — ABy). (5)

The re-parameterization does not affect the debiasing procedure described earlier. Thus, any the-
oretical guarantees established using M extend to those using W.

We now produce a reformulated problem in @ using W, and show that it is equivalent to the
original optimization problem in Algorithm [1, Using the relationship W = AM T, we can rewrite
m_j as w ; := Am ;. Making this substitution, the objective in becomes mEZm_j = %w;w,j
and the constraint ||3m _j — e;]|o < p (where e; is the jth column of the identity matrix) becomes

< p. This change of variables suggests the following reformulated optimization

1 AT, ,
A w;—e; -

problem () for the j'" column of W

%; := minimize W W

subject to H LATw ; — ejHOO < p. (6)

n

In fact, the j* reformulated problem (6) and the j*" original problem (4] are equivalent in the

following sense: If m ; is feasible for () then w ; := Am ; is feasible for @ and %w;w_j =

777,—;277?,7 Conversely, suppose that w ; is feasible for @ If AT is a pseudo-inverse of A, then

e ATar i i ; 3 o 1 AT o L AT, LopTap . —
m_ := A'w is feasible for since ¥m ; = ~A Am; = - A w_;. Moreover, SW W =

Tn,_—;f]m.j7 so both have the same objective values, establishing that and @ are equivalent.
This reformulation provides an equivalent separable problem for each column of W, maintaining
all theoretical guarantees while simplifying the representation of the debiasing procedure.

!The sub-Gaussian norm of a random variable z, denoted by |z|ly,, is defined as ||z,
SUp;>1 ¢~Y/2 (E|z|9)*/9.  For a random vector # € R", its sub-Gaussian norm is defined as x|y, =
SUPy ¢ gn—1 lly ||y, , where S"~1 denotes the unit sphere in R™.
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The reformulated problem @ has a unique optimal solution because the objective function is
strongly convex with convex constraints. In contrast, the original problem does not have a
unique solution. Indeed if m ; is any solution to , then we can add to it any element of the
nullspace of A to obtain another solution to .

3.1 A Closed-Form Solution for the Debiasing Matrix W

In this section, we demonstrate that, for a suitable choice of i, the optimal solution to the problem
(@ can be computed in closed form for a sensing matrix whose minimum column norm is strictly
positive (which is true with probability 1 for random matrices). To derive this result we write down
the Fenchel dual of @, and appeal to weak duality. In particular, we explicitly find primal and
dual feasible points with the same objective value, certifying that both are, in fact, optimal.

.
Theorem 1 Let A be a n x p matriz with no column equal to zero. Define p(A) := max;-; ‘\Idi aHle
-7 112
The optimal solution of @ is given by
n(l — ) .
w = (72(1,3- for all j € [p] (7)
a3

if and only ifﬁ <p<l.

The proof of this theorem is given in Appendix For notational simplicity, we will denote p(A)
by p in the rest of the paper. We will provide a brief overview of the proof here.

Overview of the proof of Theorem (1} The proof shows that the closed-form expression in is
optimal for the convex program (@ when 5 ip < p < 1. Under this condition, the candidate vector
satisfies the ¢, feasibility constraint given in @ because the coherence bound ensures (1 —pu)p < p.
(1-p)*

la;ll3/n
reformulation, the dual problem is explicitly provided, and a suitably chosen dual vector attains a

dual value that matches the primal value achieved by @ By weak duality, this equality certifies
optimality. Conversely, if u < p/(1 + p), the solution in violates the feasibility constraint, and
when p > 1, the zero vector is the unique minimizer which is trivially optimal. Therefore, the
stated range of u is necessary and sufficient for the optimality of the exact solution.

Its objective value can be computed in closed form and is given by . Using a Fenchel dual

Remarks:

1. This theorem eliminates the requirement to execute an iterative optimization algorithm to
obtain W (or an iterative optimization algorithm to obtain M). This is because given A,
one can directly implement the optimal solution of Alg. |1l in the form @ for all 5 € [p].
This speeds up the implementation of the debiasing of LLASSO for the ensemble of sensing
matrices that satisfy the conditions of Theorem Likewise, our approach will also be
significantly faster than the debiasing approach presented in [Van de Geer et al. (2014)),
which explicitly estimates the precision matrix (inverse covariance matrix) of the rows of
A via a series of p different 1LASSO problems, each solved iteratively — see equations 7,8,9
of Van de Geer et al.| (2014).

2. The condition p/(1 4 p) < i <1 is necessary and sufficient for the closed-form expression
in to be optimal @ However, it is possible that @ is feasible for values of p that are
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smaller than p/(1+ p). In such a situation, the optimal solution to @ is not given by @
This is empirically illustrated in Sec.[5.1] In the context of the debiased LAsso, Theorem
7(b) of Javanmard & Montanari (2014b)) shows that the choice of p := Op(+/log p/n) makes
the optimization problem in feasible for a sensing matrix A that satisfies conditions
D1 and D2. For a wide class of sensing matrices, we show in Theorem [2| that p/(1 4 p) =

Op(y/logp/n).

3. The quantity ﬁpp can be computed exactly by using the definition of p given in Theorem
given a sensing matrix A. Furthermore, the distribution of % can also be estimated via
simulation for given any n, p, and X corresponding to the sensing matrix A.

4. The solution in is the optimal solution even when we choose = 1. The optimal
solution in this case is the trivial solution w; = 0. However in practice, one always chooses
1 to be small, and hence this specific situation does not arise.

3.2 Concentration bounds of 1+p

As mentioned earlier at the end of Sec. |2 if p is O <\/l°§p> and n is w((slogp)?), then Vj €

[p], v (ﬁdj %) is asymptotically zero-mean Gaussian when the elements of 1 are drawn from
N(0,0?). For specific classes of random sensing matrices, we show in Theorem l that - 5 <

log p

Co with high probability for some constant ¢yg. This implies that for these random sensing

matrices, the choice y := O (\ / 105”) ensures both the following: (¢) asymptotic negligible bias of

the estimator B4 given by (] (B) when n is w((slogp)?), and (47) fulfillment of the sufficient condition

E +p < p for the debiasing matrix W to be computed in closed-form. If A satisfies an additional

mild assumption as given in Theorem [2| then ﬁ < cp 10% holds with high probability.

Theorem 2 Let A be a n X p dimensional matriz with independent and identically distributed
zero-mean sub-Gaussian rows and sub-Gaussian norm r = | £7/%a;, ||,/,2, where n < p and X :=

Ela;.a;."]. Let p be as defined in Theorem Let v > ch‘"‘ maxj=£; |EU|~ If A obeys

‘ma log P

properties D1, D2 and n > j% logp for some c € (0,1), then

2
P Kk* Chax [logp 3
Pl—<(2 >1— —. 8
<1+p \[+7)ch111 n >_ 2p? (8)

Furthermore, if c € (i?f’ 1) and p = (2\/5—&—7)%2% k’%, then with high probability, (6)) is

feasible and the optimal debiasing matriz W in @ s given by ,

The proof of Theorem [2]is given in Appendix

Remarks:
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1. If 3 is a diagonal matrix (i.e., entries of the sensing matrix A are uncorrelated), then we
can choose v = 0 and the upper bound of p/(1 + p) in reduces to 2\@”—;%\/1"%

in

for any constant ¢ € (1/2,1). If 3 is not a diagonal matrix, the parameter « represents a
degree of dependence between the elements of the rows of the matrix A.

2. The condition ¢ € (i?i’y 1) in Theorem I ensures that when n > ﬁ% log p and

= (2\/5—4—7)%2%\/10%, then we have p < 1.

3. In practice, one tends to choose a small value of  for debiasing the LASSO estimator. Given
n, p and X, the exact distribution of % can also be estimated with high precision through
simulations. One may also choose i to be slightly larger than the maximum support of the
distribution of 7 p . This produces a simple and elegant way to choose u in practice. Given
a ﬁxed A, it is eaby to compute p, by definition of p in Theorem [I] So we can simply set

W= ﬁ since smaller (but feasible) values of p are desirable in @ In Sec we observe
that this empirical choice of y is smaller than the choice of 1= (2v/2 + ) “C g::: \/ 1"%.

4 Relation to Recent Developments in LASSO Debiasing

The LASSO debiasing literature has seen many recent developments in the statistics as well as
the AI/ML communities. For instance, the theory of the debiased LAsSO has been extended to
handle generalized linear models in [Vazquez & Nan| (2025)); [Xia et al.| (2023). Applications of the
debiased LAssoO (extended to handle the total variation image prior) to compressive reconstruction
of magnetic resonance images have been recently explored in [Hoppe et al| (2024b). Bootstrap
approaches to further diminish the bias value in low-sample regimes have been explored in
. Along similar lines, a learning based technique for further reduction of the bias in small-
sample regimes has been recently explored in [Hoppe et al.| (2024a), where it is also shown how
to incorporate debiasing for data-driven approaches such as unrolled neural networks. Debiasing
techniques have also been extended to handle sparse quantile regression in (2023). Note
that all these techniques in principle require computation of either the approximate covariance
matrix M or the debiasing matrix W, after which various other steps in their approach are carried
out. Since our work in this paper proposes a technique to speedily compute W = AM T it is clear
that it can be readily incorporated to speed up the key step of estimation of M or W in each of
these aforementioned approaches.

5 Empirical Results

5.1 Difference between the exact closed form solution W, and the solution of the
optimization problem in @ given by W, for varying choices of 1

Aim: In Theorem (1, we show that if ﬁ < p < 1, then the exact closed form solution of @
represented by W, is the same as the solution of the optimization problem given in @ represented
by W,. In this subsectlon we investigate the difference between W, and W, for p < ” as well
as in the range %= < p < 1. We report the difference between W, and W, in terms of the Relative

Error given by (%) for p=0.2,0.21,0.22,...,0.60.
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Sensing matrix properties: For this experiment, we fixed n = 80,p = 100. We ran this

experiment for two different n x p sensing matrices A with elements drawn from: (1) i.i.d. Gaussian

IWo—Wellr
[Wellr

and, (2) i.i.d. Rademacher. In Figure we plot p vs (
a log scale. The exact value of ﬁ is given by a black vertical line in each case.

) for both of these matrices on

Observation: We see that for both the plots in Figure[l} the relative error decreases with increase
in p for p < ﬁ. For pu > ?”p, the relative error is very small with fluctuations primarily due to
the solver tolerances in 1sqlin when computing W ,. Furthermore, the decrease in relative error

is sharp after the value of p crosses —£—
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Figure 1: Line plot of i vs relative error ( ) (in log scale) for two 80 x 100 dimensional

Wellr
sensing matrices: (left) i.i.d. Gaussian and (right) i.i.d. Rademacher. The exact value of ﬁ is
given by the black vertical line. The value of ﬁ is 0.327 for the Gaussian sensing matrix (left)

and 0.298 for the Rademacher sensing matrix (right). Here, W, is the solution of the optimization
problem in (6) and W is computed as in (7).

5.2 Comparison of debiasing performance using the exact solution W, and the choice
M :=ds~!

In this subsection, we compare the sensitivity, specificity of the debiased estimate ﬁwe obtained
from using the exact closed-form solution W, and the debiased estimate 3112*1 given in
Equation (17) of \Javanmard & Montanari| (2014b) with the debiasing matrix M := dX~' (note
that M is an approximate inverse of the empirical covariance matrix 3 — see Sec. where
d:=(1- ||,3)\1||0/p)’1. We further compare the ratios of the empirical total variance (ETV)
and asymptotic total variance (ATV) of BW& and B 5-1. The ATVs of the jth element of ﬁAWE
and B 5,1 are respectively given by 2 whw j and % Z?ZI[E_lATAE_lT]jj. The empir-
ical total variance (ETV) of the debiased LASSO estimators is obtained using 100 simulation runs
over different instances of 1 with varying n € {250, 350,500}, f, = 0.01, p = 500, s = 5 where the
signal B* was generated in the same manner as described in the beginning of this section. In these
simulations, the rows of A are generated as p-dimensional i.i.d. random vectors from N, (0, %) for
three different choices of ¥ given as follows:

1. Diagonal Matrix: 31 = oI, with choice 02 = 1.
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2. Banded Equicorrelated Matrix: X5 with (i, /)" entry as follows.

o?, ifi=jep),

Soy =02, iffi—jl<b, ije[p  Withchoices (=01, b="5and 0® =1.

xJ

0, otherwise

3. Equicorrelated Matrix: X3 := 02 [(1 -OI, + Clplz] with choices ¢ = 0.1 and 02 = 1.
Here, 1, denotes the p-dimensional vector of all ones.

The diagonal covariance matrices are widely used in compressed sensing (Candes et al.| (2006). The
chosen banded equicorrelated covariance matrix (Xo) is a special case of a symmetric circulant
matrix, which has been explored by |Javanmard & Montanari (2014a)) in the context of debiasing
the LASSO estimator. Further, the equicorrelated matrix 33 has a motivation in compressed sensing
as well, to express cross-talk—given by the term (11T —between different elements of a sensor array.
In single-pixel cameras (a common architecture in compressed sensing) Duarte et al.| (2008)), the term
the term ¢ 11,1;r models global illumination changes (similar to a background interference) which
bring in weak correlation, so that the jth row of the sensing matrix can be effectively expressed by

@’ =/1—Cal +/(1).
In Tables and [3] we present results for each of these covariance designs comparing Sensitivity

and Specificity, for both debiased estimates (using W, and dE_l). We also present the ratios of
the ATV and ETV for these estimates.

A A A A ATV(ﬁwe) ETV(ﬂwe)

n | Sens(Bw,) | Spec(Bw,) | Sens(Bys-1) | Spec(Bys-1) ATV(B 5-1) | ETV(B s-1)
250 0.7145 0.8972 0.7209 0.8653 0.2819 0.3863
350 0.8554 0.9719 0.8126 0.9233 0.3882 0.5182
500 0.9985 0.9992 0.9486 0.9492 0.4699 0.6075

Table 1: Diagonal Matrix X;: (see Sec. Comparison of sensitivity, specificity, and ATV, ETV
ratios for the debiased estimates By, and B;x5-1 across different sample sizes n € [200 : 50 : 500] for
an uncorrelated Gaussian design matrix. The fixed parameters are p = 500, f, = 0.01,s = 5,r = 4.

A A A A ATV(ﬁwe) ETV(ﬁwe)

n | Sens(Bw,) | Spec(Bw,) | Sens(Bys-1) | Spec(Byz-1) ATV(B s-1) | ETV(B s-1)
250 0.7392 0.8871 0.6975 0.8387 0.2573 0.3982
350 0.8833 0.9562 0.8136 0.8865 0.3142 0.5961
500 0.9715 0.9854 0.9006 0.9216 0.3924 0.7269

Table 2: Banded Equicorrelated Matrix X5: (see Sec. Comparison of sensitivity, specificity,
and ATV, ETV ratios for the debiased estimates BWF and de—l across different sample sizes
n = [200 : 50 : 500] for correlated Gaussian design given as a bandwidth-3 matrix with Yij =
02-0.1, |i—j| <3, and zero otherwise. The fixed parameters are p = 500, f, = 0.01,5 = 5,7 = 4.

From Tables and [3| it is evident that the debiased estimator BWE consistently outperforms
B 4x—1 in terms of sensitivity and specificity, with the advantage being more pronounced for smaller
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(A A A A ATV (Byy,) ETV (B, )

n | Sens(Byy,) | Spec(Bw,) | Sens(Byn-1) | Spec(Byxm-1) ATV (Brp1) | ETV(Bym)
250 0.7275 0.8655 0.6855 0.8152 0.2724 0.3892
350 0.8112 0.9216 0.7908 0.8872 0.3433 0.4844
500 0.9466 0.9573 0.9212 0.9319 0.4147 0.5795

Table 3: Equicorrelated Matrix X3: (see Sec. Comparison of sensitivity, specificity, and
ATV, ETV ratios for the debiased estimates BWE and B 451 across different sample sizes n = [200 :
50 : 500] for correlated Gaussian design given as a bandwidth-3 matrix with ¥;; = 02-0.1, |i—j| <
3, and zero otherwise. The fixed parameters are p = 500, f, = 0.01,s =5,r = 4.

sample sizes and gradually diminishing as n increases. This performance benefit is not surprising
because in our approach, the matrix W is specifically designed to produce a debiased estimator of
minimum variance, unlike the choice of M := dX~! which only provides debiasing. Furthermore,
the debiasing properties of M := dX~' have only been established for Gaussian uncorrelated
designs in [Javanmard & Montanari| (2014b)), whereas our approach is applicable to a much wider
range of matrices. Moreover, our approach does not require knowledge of 3, which may not be
available and is hard to estimate even for uncorrelated designs because n < p. Lastly, our approach
does not rely on the ¢y norm of the LASSO estimate.

The introduction of correlation in the design matrix leads to an overall reduction in both sensitivity
and specificity at lower n, but this gap narrows down with larger n. Furthermore, the variance
ratios remain below unity across all settings, indicating that BAWF achieves lower empirical and
asymptotic variances, with the ratios increasing steadily in n, reflecting greater stability. Overall,
Bwe demonstrates superior efficiency and robustness to correlation compared to B ds-1-

5.3 Validity of the exact solution

Aim: The debiased LASSO can be used to determine the support of the unknown vector 8* by
using statistical hypothesis tests derived using 1LASSO debiasing theory. We aim to estimate the
support using p hypothesis tests (one per element of 3%) based on the debiased L.ASSO estimates
using the weights matrix W obtained from the optimization problem in @ (denoted by W,),
and that obtained from the closed-form expression (denoted by Wp), for varying number of
measurements n. The aim is to also compare these support set estimates with the ground truth
support set, and report sensitivity and specificity values (defined below). We will further show the
difference in the run-time for both methods.

Signal Generation: For our simulations, we chose our design matrix A to have elements drawn
independently from the standard Gaussian distribution. We synthetically generated signals (i.e.,
B*) with p = 500 elements in each. The non-zero values of 8* were drawn i.i.d. from U(50,1000)
and placed at randomly chosen indices. We set s := ||8*|lo = 10 and the noise standard deviation
o :=0.05%", |a;.B*|/n. We varied n € {200, 250, 300, 350, 400, 450, 500}. We chose pn = p/(p+1)
where p was computed exactly given the sensing matrix A.

Let us denote the debiased LASSO estimates ob-

0w fw j /n?)

Sensitivity and Specificity Computation: K
tained using a matrix W by Bq,w. We know that asymptotically B w () ~ N (

10
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sensitivity specificity time (in s)

n W, 1%% W, W, %% \%% IWo—We|r
o e o e o e Wellr

200 0.6742 0.6742 0.8592 0.8592 3.88 x 102 1.11 x 1073 6.68 x 10~10
250  0.7229 0.7229 0.9063 0.9063 5.22x 102 1.72x 1073 2.31 x 1078
300 0.8071 0.8071 0.9427 0.9427 3.29x 102 225x 1073 273 x 10"
350 0.8554 0.8554 0.9719 0.9719 4.77 x 102 3.88x 1073 2.56 x 10~7
400 0.9275 0.9275 0.9855 0.9855 5.59 x 102 7.82x 1073  4.76 x 1077
450 0.9781 0.9781 0.9909 0.9909 7.15x 102 427 x107%2 529 x 1077
500 0.9985 0.9985 0.9992 0.9992 8.03 x 102 7.56 x 1072 8.22 x 107

Table 4: Sensitivity and Specificity of hypothesis test using debiased estimates obtain from W,
(optimization method) and W, (closed-form expression from @) with its corresponding runtime
in seconds for varying number of measurements. The fixed parameters are p = 500,s = 10,0 :=
0.053" , |a;.B8*|/n. We set u = p/(p+ 1) where p is computed exactly for the chosen sensing
matrix A.

for all j € [p]. Using this result, Bd,w was binarized to create a vector BW in the following way: For
all j € [p], we set by (§) := 1 if the value of By (j) was such that the the hypothesis Hoj : B =0

was rejected against the alternate Hyj : 85 # 0 at 5% level of significance. Ew(j) was set to 0
otherwise. Note that for the purpose of our simulation, we either have W = W, or W = W,. The
binary vectors corresponding to these choices of W are respectively denoted by by, and byy,.

A ground truth binary vector b* was created such that b := 1 at all locations j where 37 # 0 and
bi := 0 otherwise. Sensitivity and specificity values were computed by comparing corresponding

entries of b* to those in IA)W0 and Bwe. Considering the matrix W, we declared an element to be
a true defective if b5 = 1 and bw (j) = 1, and a false defective if b} = 0 but by, (j) # 0. We declare
it to be a false non-defective if b7 = 0 but EW(j) # 0, and a true non-defective if 57 = 0 and

b (j) = 0. The sensitivity for 8" is defined as (# true defectives)/(# true defectives + # false
non-defectives) and specificity for 8* is defined as (# true non-defectives)/(# true non-defectives
+ # false defectives).

Results: For obtaining W, the optimization routine was executed using the 1sqlin package
in MATLAB. The sensitivity and specificity were averaged over 25 runs with independent noise
instances.

In Table [d we can see that the sensitivity as well as the specificity of the hypothesis tests for W,
and W, are equal. We further report the relative difference between W, and W, in the Frobenius
norm. We can clearly see that the difference is negligible, which is consistent with Theorem [I}
Furthermore, we see that using the closed-form expression in saves significantly on time (by a
factor of at least 10*). While the computational efficiency of the iterative approach can be improved
by developing a specialized solver for problems of the form @, no iterative method is expected to
outperform directly computing the simple closed-form expression .

11
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sensitivity specificity time (in s)

L W, W, W, W, W, W, raobde
0.2  0.9586 0.9544 0.9942 0.9901 8.44x10% 7.76 x 1073 2.24 x 107!
0.25 0.9531 0.9502 0.9872 0.9855 6.91 x 102 8.72x 1073 7.62 x 1072
0.3 0.9475 0.9475 0.9921 0.9921 5.59 x 10> 8.12x 1072 3.39 x 10~
0.35 0.9354 0.9354 0.9891 0.9891 542 x10®> 7.83x 1072 6.312x 1077
0.4 0.9275 0.9275 0.9855 0.9855 5.77 x 10> 7.56 x 1073 2.08 x 10~8
0.45 0.9102 0.9102 0.9792 0.9792 5.98 x 10> 7.49x 1073 4.55 x 1077

Table 5: Sensitivity and Specificity of hypothesis tests using debiased estimates obtained using
W, (optimization method) and W, (closed-form expression from (7)) for varying choice of z. The
corresponding run-times for estimating W, and W, from a Rademacher sensing matrix A, are also
shown. The fixed parameters are p = 500,n = 400,s = 10,0 := 0.05Y ", |a;.8*|/n. The exact
value of ﬁ = 0.298 where p is computed exactly for the chosen sensing matrix A.

In Table[5] we observe that both debiasing matrices W, and W, exhibit almost identical sensitivity
and specificity for the hypothesis tests across a wide range of p values greater than or equal to 0.2
to 1. This range was chosen because we observed that for the choices of p < 0.2, the optimization
problem was often not feasible. For u > p/(1+ p) = 0.298, the sensitivity and specificity of the
debiasing methods with W, and W, was the same (up to numerical tolerances in the optimizer)
which is consistent with our theory. For p > 0.45, the sensitivity and specificity of LLASSO debiasing
with both W, and W, was below 0.9 (not shown in the table), but it remained identical for both
methods. For 0.2 < p < 0.298, the sensitivity and specificity values with the two methods were
similar even though not identical. In all cases, however, the major distinction between the two
methods was computational time, as computing W, took more than 550 seconds whereas W, was
obtained in a few milliseconds. Given this dramatic speed-up and the similar statistical performance,
the closed-form W, offers a highly practical and efficient alternative to the optimization-based
solution W .

5.4 Empirical Distribution of p/(1 + p)

In this subsection, we will show that the support of the distribution of ﬁ is smaller than the choice

of u:= (2v2 + 7)";% 10% given by Theorem [2[ for the different chosen covariance matrices
331,39, X3 defined in Sec. We chose p = 500 and n € {250, 350, 500}. For each configuration,
we generated 1000 independent n x p matrices A, with rows sampled i.i.d. from A, (0, 3).

la%a.,l
I

For each realization of A, we computed p(A) = max;x; Tasiz The normalized histograms of
J12

p/(1+ p) based on 1000 simulation runs are shown in Figure [2 The top, middle and bottom rows
of Figure [2] respectively correspond to the covariance matrix ¥q, Xo and X3, whereas the left,
center and right column respectively correspond to n = 250,350 and 500. Each plot is overlaid

with a red vertical line showing the bound pu := (2v/2 + 7)”—(2%\ / l(’% as given in Theorem
Ideally, we would like to choose v as small as possible and ¢ to be as large as possible. Therefore

12
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Figure 2: Histograms of p/(1+p) based on 1000 simulation runs for p = 500 and n € {250, 350, 500}.
Rows correspond to different covariance structures (diagonal, banded equicorrelated and equicor-
related), while columns correspond to sample size n. The red lines indicate the theoreti-

cal benchmark of u := (2v2 + )“ Cma" 10% by choosing ¢ = 1 — 2\/5%2%\/10% and

in
C'min

— [z lJl
Y = =8 oep MaXizj w2 for all de51gns

. . . 2y
in our experiments, we chose vy = %"‘" logp max£j 2]
tmax

n > 7‘?3* ) log p, we chose c =1 — 2\/5'€ C’“"“‘ =4/ k’%.

In Figure 2] we observe that the span of the normalized histograms shrinks and moves towards
the origin for all the chosen covariance matrices. This indicates that % tends to zero as the

2., Furthermore, under the assumption
J]

sample size increases. Figure 2| also shows that the upper bound on ? obtained from Theorem
is conservative (in terms of constant factors) for smaller sample sizes. We also observe that the
probability density of ﬁpp depends on the dependent structure of 3. Therefore, given the values of

n, p and X, one may choose p which is slightly larger than the maximum value of the support of
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the distribution of ?"p in practice, which can be obtained using simulation before performing the
debiasing.

6 Experiments on Compressive Image/Video Reconstruction

We further validated the use of our fast debiasing approach for image reconstruction from noisy
compressive measurements given three different compressed sensing architectures (that is, realistic
models for A): the Rice Single Pixel Camera for compressive imaging Duarte et al.| (2008)), the coded
exposure snapshot camera for compressive video acquisition |Liu et al.|(2013)) and the coded aperture
snapshot spectral imager (CASSI) for hyperspectral image acquisition [Kittle et al.| (2010). There
already exist a plethora of compressive image reconstruction techniques, both classical
and deep learning based [Kulkarni et al.| (2016). Here, our aim is to provide proof of
concept that fast debiasing is applicable to realistic sensing matrices; our aim here is not to beat the
state of the art. However, compared to the existing techniques, our presented approach is unique in
its ability to provide quantification of the uncertainty in the reconstructed pixel values, an aspect
which the aforementioned techniques do not cover.

Consider a noisy measurement vector y € R™ of the form y = ®&f + n = ®¥0 + 1, where 1 is an
additive noise vector whose elements are drawn independently from A (0, 02), ® € R"*? is a sensing
matrix of i.i.d. sub-Gaussian distributed entries, and ¥ € RP*? is an orthonormal basis in which the
image f is sparse or ‘weakly sparse’ —that is f = W8, where 8 € RP is a vector of coefficients of which
a small number have large magnitude and the majority are either zero (sparse 0) or close to zero
(weakly sparse 0). The aim is to reconstruct 6, and thus f, from y, ®, ¥ in the compressive regime
where n < p. For this estimation task, the LASSO is used: § := argming ||y — ®®0||2+A||6]|;. This
is followed by a debiasing step of the form 84 = 6 + %V/\[;T(y — ®W0) where the debiasing matrix
W = (1—p)@W with u being exactly as defined in Theoremwith A = &W¥. We particularly note
that in this case, we first estimate 6 since the image f € RP is not sparse in the canonical basis
but is (weakly) sparse in the basis ¥. A typical choice for ¥ is the 2D discrete cosine transform
(DCT) basis, though many other choices such as wavelets, shearlets, etc., are also possible. We
note that Theorems |1| and [2] are applicable to the matrix A := ®W¥ for the following reasons: (%)
As no column of @ equals zero, neither does any column of ®¥ and hence Theorem [l applies. (i7)
® has zero-mean sub-Gaussian entries and ¥ has bounded entries. Hence the entries of ®W are
also zero-mean sub-Gaussian and they have the same covariance matrix as the rows of ®. Hence if
the entries of ® are i.i.d. Gaussian, then the rows of ®¥ remain independent. Hence Theorem [2]
applies. Even though the independence assumption may not strictly hold for the rows of ®W¥ for
® from other distributions (e.g., Rademacher or Bernoulli), we have observed excellent empirical
results with debiasing even for such cases.

6.1 Image reconstruction for the Rice Single Pixel Camera Model

We simulated noisy compressive measurements from four commonly used images of size 256 x 256 via
a ® matrix with i.i.d. entries drawn from a Bernoulli distribution with success probability 0.5, which
is in tune with the architecture of the celebrated Rice Single Pixel Camera Duarte et al.| (2008). In
our experiments, we used n = 20,000 measurements for p = 2562. The original images, and their
reconstructed versions via the LAssO and the debiased LAsSo, are shown in Fig. [3] After debiasing,
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RRMSE SSIM Cov. Prob. (Edges) Cov. Prob. (Non-Edges)
Barbara 0.0325 0.932 0.72 0.93
Cameraman 0.0281 0.948 0.68 0.91
Moon 0.0204 0.971 0.79 0.95
Male 0.0357 0.918 0.66 0.92

Table 6: Reconstruction quality metrics for grayscale images of size 256 x 256 using Debiased
LAsso. The metrics reported include RRMSE, SSIM, and average coverage probabilities computed
separately on edge and non-edge pixel locations based on the Canny edge detection method.

T —
the variance of the ith estimated coefficient is given by o?[W  W];;. Since f = W8, the variance of

the ith pixel of the estimated image (i.e. fz) is given by aQ[Wﬁ/TW@T]ii. These variance values
form a quantitative measure of the uncertainty inherent in the reconstruction. To illustrate this
further, the reconstruction experiment for each image was repeated K = 50 times using different
realizations of the noise . The total number of times N; (out of K) for which f; (the value of the ith

R — T — . P
pixel of f) resided in the interval {fi—zla/za [(TW WO, fi + 2120\ [TW WE'];

was recorded. This is the confidence interval of probability 1 — « for f;, and 2;_,/2 is the per-
centile of a standard normal distribution at level 1 — «/2. The values of N;/K—termed coverage
probabilities—across all i € {1,2,...,p} were recorded and plotted as an image in Fig. As is
clearly seen in the fourth column of Fig. [3] these probabilities are very high for pixels in smooth
regions and they are the least for pixels lying on edges. This is because the 2D DCT is more effi-
cient in representing smooth regions as compared to discontinuities. The ratios along edges can be
improved by using direction-sensitive bases such as shearlets Kutyniok & Labate| (2012 or learned
overcomplete representations |Aharon et al|(2006)), but we leave a full investigation of these aspects
to future work as they are not central to the main theme of this work.

We report the Relative Root Mean Square Error (RRMSE), defined as “%:ﬁ}z”?, where 0 denotes

the estimate of the true parameter 8. Along with RRMSE, we present the Structural Similarity
Index Measure (SSIM), the average coverage probability over edge pixels, and the average coverage
probability over non-edge pixels. These quantitative metrics, summarized in Table[6] correspond to
the Debiased LASSO estimates for all four benchmark images. The small RRMSE values and high
SSIM scores collectively indicate that the the reconstruction quality is very good. Furthermore,
the coverage probabilities display the expected spatial behavior: coverage is considerably higher in
smooth, non-edge regions and lower in edge regions, consistent with the qualitative observations in

Fig.

Image reconstruction with ® having equicorrelated entries: Another set of results was
obtained where the i.i.d. Bernoulli model for ® was replaced by the equicorrelated model from
Sec. [.2] to model cross-talk between different sensory elements of a compressive device. These
results, which are presented in Fig. [l and Table[7] demonstrate a gentle decrease in reconstruction
performance with increase in the cross-talk factor ¢ (i.e., increase in correlation in the elements
of the rows of the sensing matrix). Nonetheless, the overall reconstruction quality remains strong
across all images when using the Debiased L.ASSO.

Computation Time: In both cases above, we note that the fast debiasing approach allowed for
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Original
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Cameraman

Moon
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Figure 3: Compressive Image Reconstruction: Reconstruction of grayscale images of dimension
256 x 256 (leftmost column) using LASSO (column 2 from left) and Debiased LASSO (column 3 from
left) and the empirical coverage probabilities N;/K Vi € [p] based on confidence intervals for the
debiased LASSO estimates (rightmost column). The sensing matrix contains random Rademacher
entries. Here n = 20000, p = 65,536 and the additive noise 0 = 0.01x the mean absolute value
of the noiseless measurements. Debiasing matrix computation using @ (method from
|& Montanari| (2014a))) would have taken more than 2 days, whereas our Fast Debiasing approach
accomplishes it in less than a second.
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construction of the debiasing matrix W in about a second. On the other hand, using the method
from [Javanmard & Montanari (2014a) to construct M would have required more than two days.

Original Lasso ~ Debiased Lasso Cov. Prob.

Al

0.9

" Hos

0.7

0.6

Barbara

Cameraman

Moon

Male

Figure 4: Compressive Image Reconstruction given cross-talk (correlation in the entries of the
sensing matrix): Reconstruction of grayscale images of dimension 256 x 256 (leftmost column)
using LASSO (column 2 from left) and Debiased LAsSO (column 3 from left) and the empirical
coverage probabilities N; /K Vi € [p] based on confidence intervals for the debiased LASSO estimates
(rightmost column). Here n = 20000, p = 65, 536, and the additive noise ¢ is taken as 1% of mean
absolute noiseless measurements and ¢ = 0.02. Debiasing matrix computation using (method
from [Javanmard & Montanari| (2014a)) would have taken more than 2 days, whereas our Fast
Debiasing approach accomplishes it in less than a second.
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RRMSE SSIM Cov. Prob. (Edges) Cov. Prob. (Non-Edges)
Barbara 0.0445 0.901 0.65 0.90
Cameraman 0.0481 0.909 0.61 0.89
Moon 0.0317 0.923 0.72 0.92
Male 0.0457 0.898 0.58 0.89

Table 7: Reconstruction quality metrics for grayscale images of size 256 x 256 using Debiased
LASsO given cross-talk (correlation in the entries of the sensing matrix) with ¢ = 0.02. The metrics
reported include RRMSE, SSIM, and average coverage probabilities computed separately on edge
and non-edge pixel locations based on the Canny edge detection technique.

6.2 Experiments on Compressive Video Reconstruction

Here, we follow the forward model of well known video compressed sensing architectures such as
, which acquire snapshot images representing the superposition of a set of pixel-wise
modulated consecutive video frames. This snapshot image y € RP’ (an image of size p X p, reshaped
to form a vector) is represented in the form:

T
y=> ®o0f, +mn, 9)
t=1

where 1 € RP’ is a noise vector with elements drawn from N (0,0%), ®; € RP’ is a randomly
generated Bernoulli or Rademacher pattern for modulating frame f,, the ¢-th frame of the
underlying video. The aim is to reconstruct the video f := {f}_, from y and {®;}_,. The video
is a 3D signal of size p x p x T, which after vectorization can be regarded as a vector in RZ?’ The
effective sensing matrix ® (of size p*> x Tp?) has the form ® = (diag(®,)|diag(P>)|...|diag(® 7)),
where diag(®;) is a diagonal matrix of size p? x p? containing the elements of ®; on its diagonal.

For our experiments, we represented the 3D signal f € RP’T in the 3D-DCT basis Wsp in
the form f = W3pO where 0 < RP°T is a (weakly) sparse vector of 3D DCT coefficients.
The snapshot images were obtained by simulating the forward model on an already available
video. The video was reconstructed by the LAsso using 8 := argming ||y — ®®3p0(2 + 6],
followed by a debiasing step where the debiasing matrix was computed using our fast approach.
Reconstruction results for the first set of 5 frames are shown in Fig. the supplemental material
contains comparative reconstructions in video format. These reconstructions reveal good quality
reconstruction of spatial textures as well as temporal motion patterns.

Here again, the aim of the experiment here is to show that the fast debiasing approach works for
another compressive architecture where the sensing matrix ® consists of a column-wise concatena-
tion of diagonal sub-matrices. The method of |Javanmard & Montanari| (2014a)) would have taken
more than 2 days for computing the debiasing matrix, whereas our technique obtains W in less
than a second.
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Original

LAsso

Debiased LASSO

Figure 5: Video reconstruction for a water fountain scene: Reconstruction results showing the
progression from original images via LASSO and Debiased LAssO. Each column corresponds to
an individual frame and the first row corresponds to 5 frames of the original video, the second
row shows the frames reconstructed using LASSO, the third row shows the frames reconstructed
using Debiased LASSO. The compressed measurements correspond to 7" = 5 in @D The average
RRMSE and SSIM over the 5 frames are given as 0.0189 and 0.9293 respectively. Debiasing matrix
computation using (method from Javanmard & Montanari| (2014a)) would have taken more
than 2 days, whereas Fast Debiasing accomplishes it in less than a second. See supplemental video
for results in video format.
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6.3 Experiments with Hyperspectral Image Reconstruction

We also experimented with reconstruction of hyperspectral images from real compressive acqui-
sitions in the form of coded snapshot images acquired by the CASSI (Coded aperture snapshot
spectral imager) camera [Kittle et al.| (2010). Consider a hyperspectral image f of size p, X p, X np,
where ny, is the number of spectral channels (or wavelengths). We represent f as a vector in
RP=Pv™L A hyperspectral image can be regarded as a stack of wavelength-specific slices, where
each slice is an image of size p, x p,. The CASSI camera does not measure the entire image f,
but instead measures a coded snapshot image y (roughly of size p, x p,, represented as a vector in
RP=Pv) in the form of a superposition of the L individual slices each modulated by binary patterns.
This is expressed mathematically in the following manner:

nr
y=> fi-Ci+n, (10)
=1

where f, (a vector in RP=Pv) is the ith slice of f and C; (a vector in {0,1}P=Pv) is the binary code
for the ith slice. The binary codes are implemented in hardware via a coded aperture (or mask)
that modulates the white light entering the camera. A prism inside the camera disperses this light
into its constituent wavelengths and also gives rises to different shifts to each wavelength, ensuring
that each slice is modulated by a different binary code before the superposition of the individual
slices is recorded by the sensor. For more details, see Kittle et al|(2010). The aim is to reconstruct
f from y and {C;};'%,. Since the associated compression ratio here (ny, : 1) is very high, in practice
a multi-snapshot version of CASSI is used, where T' < ny different coded snapshot images are
acquired, each with a different coded aperture pattern. The forward model now is:

nr
Vte{1723'“3T}ayt:Zfi'cit+nt> (11)
=1

where y, is the t-th coded snapshot, C;; (a vector in {0, 1}P=Pv) is the coded aperture pattern for
the ith channel in the ¢-th snapshot. The aim is to reconstruct f from {y,}7_; and {{C; ¢}, }}'t,.
Here again, we employ a LLASSO estimator with a 3D-DCT representation for f = W0 where ¥ €
RP=PynLXPaPynL jg the 3D-DCT basis matrix and € € RP=Pv™L is a vector of 3D-DCT coefficients.
The estimate of @ is obtained by minimizing ||z — ®¥0||3 + A||@||; where z is a vector of size
Tpzpy x 1 obtained by concatenating all the vectorized coded snapshots {y,}_, and ® is a matrix
of size T'pypy X nrpzpy defined as follows:

Y, diag(C,,1) diag(Cs:) ... diag(Chp, 1)

z = . , P = . : : : ) (12)

Yr diag(CLT) diag(CzT) diag(an’T)

where Vi € [ng],Vt € [T], diag(C+) denotes a diagonal matrix of size p,p, X pyp, containing the
DDy elements of C;; along its diagonal.

For our experiments, we used a set of T = 6 coded snapshot images acquired by a real camera,
corresponding to a hyperspectral image of size 1021 x 730 x 24 with n;, = 24. One of these snapshot
images is shown in Fig. [f] Four different slices of the reconstructed hypercube using LAssO and
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Figure 6: Coded snapshot used for hyperspectral reconstruction in Fig. m

debiased LASSO (using our fast approach for computing the debiasing matrix) are shown in Fig.
Since ground truth is absent, RRMSE or SSIM values cannot be directly computed. However the
reconstruction with 7= 6 (compression ratio of 4:1) snapshots can be compared to a reconstruction
with 7" = 24 snapshots (compression ratio 1:1). The latter can be regraded as a form of ground
truth since there is no compression. We observe that the debiased reconstructions with 7' = 6
snapshots quite closely match those with 1" = 24, validating the success of our debiasing approach
on this architecture as well. The RRMSE and SSIM values between reconstructions under 7' = 6
and T = 24 averaged over all bands are 0.0023 and 0.9912 for LAsso and 0.0029 and 0.9891 for
Debiased LASSO respectively.

7 Conclusion

In this article, we reformulate the optimization problem to obtain M (the approximate inverse of
the covariance matrix of the rows of the sensing matrix A) in Javanmard & Montanari (2014a)) and
further provide an exact, closed-form optimal solution to the reformulated problem under assump-
tions on the pairwise inner products of the columns of A. For sensing matrices with i.i.d. zero-mean
sub-Gaussian rows that have a diagonal covariance matrix or a full covariance matrix with small-
valued off-diagonal elements, the debiased LLASSO estimator, based on this closed-form solution,
has entries that are asymptotically zero-mean and sub-Gaussian. The exact solution significantly
improves the time efficiency for debiasing the LASSO estimator, as shown in the numerical results.
Our method is particularly useful for debiasing in streaming settings where new measurements or
new signal features arrive on the fly.
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3,7, 11, 15, 19, and 23 (wavelengths 426.1-687.0 nm). Columns correspond to reconstructed images
using LAsso and Debiased LASSO reconstructions under 1:4 (that is, with 7' = 6 different coded
snapshots in (11)) and 1:1 (that is, with 7" = 24 different coded snapshots in (11])) compression
ratios respectively. The slices at any wavelength are represented using the color corresponding to the
wavelength. The RRMSE and SSIM values between reconstructions under 1:4 and 1:1 averaged over
all bands are 0.0023 and 0.9912 for LLAssO and 0.0029 and 0.9891 for Debiased 1LASSO respectively.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge University Press, 2004.

E. J. Candes, J. K. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate
measurements. Comm. Pure Appl. Math., 59(8):1207-1223, 2006. doi: https://doi.org/10.1002/

22



Under review as submission to TMLR

cpa.20124.

Marco F Duarte, Mark A Davenport, Dharmpal Takhar, Jason N Laska, Ting Sun, Kevin F Kelly,
and Richard G Baraniuk. Single-pixel imaging via compressive sampling. IEEFE signal processing
magazine, 25(2):83-91, 2008.

Simon Foucart and Holger Rauhut. A mathematical introduction to compressive sensing. Springer,
2013.

Trevor Hastie, Ryan Tibshirani, and Martin Wainwright. Statistical Learning with Sparsity: The
LASSO and Generalizations. CRC Press, 2015.

Frederik Hoppe, Claudio Mayrink Verdun, Hannah Laus, Felix Krahmer, and Holger Rauhut. Non-
asymptotic uncertainty quantification in high-dimensional learning. Advances in Neural Infor-
mation Processing Systems, 37:122524—122555, 2024a.

Frederik Hoppe, Claudio Mayrink Verdun, Hannah Sophie Laus, Sebastian Endt, Marion Irene
Menzel, Felix Krahmer, and Holger Rauhut. Imaging with confidence: Uncertainty quantification

for high-dimensional undersampled MR images. In Furopean Conference on Computer Vision,
pp- 432-450, 2024b.

Adel Javanmard and Andrea Montanari. Confidence intervals and hypothesis testing for high-
dimensional regression. J Mach Learn Res, 2014a.

Adel Javanmard and Andrea Montanari. Hypothesis testing in high-dimensional regression under
the Gaussian random design model: Asymptotic theory. IEEE Transactions on Information
Theory, 60(10):6522-6554, 2014b. doi: 10.1109/TTT.2014.2343629.

David Kittle, Kerkil Choi, Ashwin Wagadarikar, and David J Brady. Multiframe image estimation
for coded aperture snapshot spectral imagers. Applied optics, 49(36):6824-6833, 2010.

Kuldeep Kulkarni, Suhas Lohit, Pavan Turaga, Ronan Kerviche, and Amit Ashok. Reconnet: Non-
iterative reconstruction of images from compressively sensed measurements. In Proceedings of
the IEEFE conference on computer vision and pattern recognition, pp. 449-458, 2016.

Gitta Kutyniok and Demetrio Labate. Shearlets: Multiscale analysis for multivariate data. Springer
Science & Business Media, 2012.

Sai Li. Debiasing the debiased LASSO with bootstrap. FElectronic Journal of Statistics, 14, 2020.
Dengyu Liu, Jinwei Gu, Yasunobu Hitomi, Mohit Gupta, Tomoo Mitsunaga, and Shree K Nayar.
Efficient space-time sampling with pixel-wise coded exposure for high-speed imaging. IEEFE

transactions on pattern analysis and machine intelligence, 36(2):248-260, 2013.

Sara Van de Geer, Peter Bithlmann, Ya’acov Ritov, and Ruben Dezeure. On asymptotically optimal
confidence regions and tests for high-dimensional models. The Annals of Statistics, 42(3):1166—
1202, 2014.

Omar Vazquez and Bin Nan. Debiased LASSO after sample splitting for estimation and inference in
high-dimensional generalized linear models. Canadian Journal of Statistics, 53(1):e11827, 2025.

23



Under review as submission to TMLR

Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science.
Cambridge University Press, 2018.

Lu Xia, Bin Nan, and Yi Li. Debiased LASSO for generalized linear models with a diverging number
of covariates. Biometrics, 79(1):344-357, 2023.

Yibo Yan, Xiaozhou Wang, and Riquan Zhang. Confidence intervals and hypothesis testing for
high-dimensional quantile regression: Convolution smoothing and debiasing. Journal of Machine
Learning Research, 24(245):1-49, 2023.

Cun-Hui Zhang and Stephanie S. Zhang. Confidence intervals for low-dimensional parameters in
high-dimensional linear models. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 76(1):217-242, 2014.

A Appendix for ‘Fast Debiasing of the Lasso Estimator’: Proofs of
Theoretical Results

A.1 Proof of Theorem [I

Primal feasibility: If ﬁ < u < 1 then we have that u 4+ up > p which implies that 0 <
(1 — p)p < p. The choice of w ; given by is primal feasible since

n la.sl3

< max{p, [(1 = p)pl} = p. (13)

o0

g€

To see why this is true, note that for index j, the LHS is upper bounded by pu, otherwise it is upper
bounded by [(1 — p)p|.

Primal objective function value: The primal objective function value is given by *[w ;|3 =
(1—p)” _ (A-p?

g lall/n = e
(lajl13/n)2 7" la.513/n

The Fenchel dual problem: Consider an optimization problem of the form for a fixed j € [p]:
. 1+
inf f(w)+g; | —A w (14)
w n

where f and g; are extended real-valued convex functions. The Fenchel dual (see Chapter 3 of
Borwein & Lewis| (20006)) is

sup " (1) - gj(-w) (15)

where f* and g; are the convex conjugates of f and g; respectively. The Fenchel dual satisfies weak
duality (see Chapter 3 of [Borwein & Lewis| (2006)), i.e., for any w and wu,

)+ (aTw) = -5 (Tau) - gicw,
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In our setting, for a fixed j, we consider

1 0 if lw—ejlle <p
fw) == ~Jlw|* and g;(w) = 7 : (16)
n oo otherwise
Then, for the same j, we have their convex conjugates from Lemma [3}
¥ n
fru) = swpu'w— flw)= 2l (17)
gj(w) = swpulw-gj(w)= s wlw=u;+plul (18)
w lw—ejlloo<p
This gives a dual problem in the form sup,, —ﬁuTATAu +uj — p|wl]r.
. 2(1 - ,U)ej . . .. .
The point u := W is feasible for the dual (trivially, as there are no constraints).
a.liz/mn
. . . . . 2(1 - u)ej . s .
Dual objective function value: Plugging in u = W, the corresponding dual objective
a.liz/m
function value is
L ooor L A0 -w? 20— 20-p)
—uT AT Au g~ il = — - Jla) —u
4n ’ dn 0 (lagl3/m)? - llagl3/n " llagl3/n
N N B G
lajl3/n~ “llajl3/n lla;lz/n

Since the primal solution and the dual objective function values are equal, it follows that an optimal
1-— 2(1 —
solution for the primal is (72'@@]», and that an optimal solution to the dual is (72'u)ej.
la.;lz/n la.;liz/n

We have shown that if p/(1 + p) < p < 1 then the optimal solution of @ is given by . Now

consider the case when u < p/(1 + p). This implies p < (1 — p)p. Let 4,5 € [p] (with i # j) be
such that p = |ala j|/||la;||3. Then plugging in the expression w ; := wa_j from (7)) into the
-7 12

constraint of @ we have,

1AT(1—M)

n la.sll3
n

> (1= plaga;l/lla;l3=(1—pwp>p

o0

g€

This shows that w_; (defined in (7)) is not feasible for (6)) when p < p/(1+ p), and so is certainly
not optimal.

Finally, consider the case when p > 1. If u > 1, then the unique optimal solution of @ isw,; =0.
This is because 0 is feasible and is the global minimizer of the objective function. However, when
@ > 1, the formula does not give the value 0, and so is not the optimal solution to @

p

This concludes the proof that e

given in to be optimal.

< p <1 is necessary and sufficient condition for the expression
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A.2 Proof of Theorem
For an n x p matrix A, let for all j € [p],

Ly = a3 (19)
and let for all I # 5 € [p],

vy = ] (20)

Using union bound on (32) of Lemma [2[ and (31) of Lemma [1} we have under the assumption
8C2 kKt .
n > et ogp for all [ # j € [p],

Cfﬂin(lfc)
vj _ 2V2Cmaxk® |/ P22 + |y 3
j Clijj p

Given the definition of p in Theorem [I} we have the bound

.
14 la,a,l Vij
1+p i# llagll3 L
Taking union bound over [ # j € [p|, we have,
) 220 o 2 logp 1 3 ~1) 3 3
P L§maxm§max ‘ - JrfmaxM zlfmjzlf—z. (23)
1—|—p l#7 Lj l#£j7 cEjj C l#j ij 2 p 2])
1
IV2C max 2\ 182 2v/2Cmaxn?y | ~ep
Since ¥;; > Chin for all j € [p], we have, max;; = "< o " Further-
33
. S|
more, given ~y > ot _ ma | 7 we have
SV T = 20 V Tosp 1HENIAT T 0 WE VS,

2
P K* Chax [logp 3
Pl — < (2Vv2 — — | >1—-—.
<1+p_(\[+7)chin n )‘ 2p?

We have now established the upper bound on p/(1 + p) with high probability. Theorem [1| states
that for p/(1 + p) < pu < 1 the optimization problem in @ is feasible and the optimal debiasing

. . S . _ k2 Cmax lo . 2V2+
matrix W in (6) is given by (7). The choice p = (2v2 + v) gy [ PEE with ¢ € <4\/§+3, 1)
ensures that p < 1 and p/(1 4 p) < p with high probability.

This completes the proof of Theorem [2]

A.3 Lower bound on L;

In Lemmal [T} we show that for an ensemble of sensing matrices satisfying assumptions D1, D2, the
parameter L; is greater than ¢3;; for all j € [p], with high probability, for some constant c.
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Lemma 1 Let A be a nXp matriz with independently and identically distributed sub-Gaussian rows,
where n < p. Consider L as defined in . For any constant ¢ € (0,1) and r := |27 2a; ||y,

if A satisfies properties D1 and D2 and n > % logp, then for all j € [p],

2

2

Proof of Lemma |1 We have for all j € [p], @glls = 1 LS L aZ;. Since the a;. (for i € [n]) are

n

sub-Gaussian, the a;; are sub-Gaussian for each j € [p] and l|las; sz < |l@;. ||, - By the definition of
the sub-Gaussian norm (see footnote in Sec. [2] with ¢ = 2), we know that

1
3 Plal] < llaslly, = llej aillf, < la:lly, (25)

Recall that x := | £~'/?a,, |ly, in property D1 of sensing matrix A. We have

@ [ly, = sup (21/QU)T2_1/Z‘“"
veSp—1 Y2
1 _
= sup |[|ZV%0], T(z“%ﬁz 1/2q,
vesr1 [ vl "
1
< sup [|[=Y%0], sup T(Zl/Qz)TZl*l/Qaz
vesp—1 zesr—1 || || B z]|2

s
< Omax (B2 137 %ay |y,

S V Cmax H? (26)

where Ciay is defined in property D2. Therefore, we obtain E[a? ] < 2||la; |2 by < 2C maxk>. From
the definition of eigenvalues, for any © € RP, " Xz > 0ppin (2 )H:c||2 > Chinll||3. Putting = = e,

where e; is the 4 column of I,, we have, ¥;; > Chnin. Since E[agj] = Yj; 2 Chuin, we have,
B[} Y af] = Cuin.

For a given j € [p], the variables afj are independent for all i € [n]. Hence, using the concentration
inequality of Theorem 3.1.1 and Equation (3.3) of [Vershyninl (2018])), we have for ¢ > qﬂ

nt?
P (|lla;l3/n— Ellla;l3/n]| 2 t) < 2e 2ax~. (27)
Using the left-sided inequality of , we have,
nt?
P(llal3/n < Ella,ll3/n] —t) < 2e 2ax~. (28)

Using El|a ;||3/n] = X;;, can be rewritten as follows for ¢ > 0:

nt?

P(L; <% —t) <2 *Chaxr’. (29)

2We have set ¢ = 1/2, § :=t and K := 2¢/Cmaxs in Equation (3.3) and the equation immediately preceding it in
Vershynin| (2018)
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Putting ¢ := 2v/2Cnaxk?1/ 10% in , we obtain:

P (Lj <%y (1 - 2\/502”‘“/{2 10gp>> <2 (30)
» )

3J n

2 4 2 4
For some constant ¢ € (0,1), if n > —scma_Jogp > Xi‘c'#"“logp for all j € [p], then (30)
J

Cc2, (1-c)? j(l—c)Q
becomes: 5 5
P(LJ < Czjj) < -7 — P(LJ > Czjj) > 1— - (31)
D p

This completes the proof.

A.4  Upper bound on v;;

In the upcoming Lemma we provide a high probability upper bound on v;; VI # j € [p], for sensing
matrices with independent and identically distributed zero-mean sub-Gaussian rows.

Lemma 2 Let A be a n x p dimensional matriz satisfying assumptions D1 and D2 and with
sub-Gaussian norm k := H271/2a1~,H¢2. Define vi; as in (20). Then for all 1 # j € [p],

1 1
P vy < 2V2Cmani®y | 22 415 21— = (32)
n pt

Proof of LemmaWe have %|a3a.j| = % Z?Zl ai;jaq. Here, for given j # [, we know that a;; and
a;; are independent zero-mean sub-Gaussian random variables. From from and we know
that their sub-Gaussian norm is at most /Caxk for all ¢ € [n]. Using Lemma 2.7.7 of [Vershynin
(2018), we have that for all ¢ € [n], a;;a; are independent sub-Exponential random variables
with sub-exponential norm at most Cpaxk?. Moreover, Ela;ja;] = Xj,. Hence, using Bernstein’s
inequality for averages of independent sub-exponential random variables, given in Corollary 2.8.3
of |Vershynin (2018), we have for any ¢ > 0,

1 n 1 n 1 n B e
P ( — E a;ja; — — E Elaijaq)| > t) =P (‘ E aijag — S| >t | <2 2Chmaxst (33)
n n n
i=1 i=1 i=1

Using Reverse Triangle’s inequality, we have,

1 & 1 &
- > aijai| — |35 < - > aijai — Ty
i=1 i=1
Thereofore, {|% Dy aijail| - %>t} = {’% Yo aijag — Elj‘}. Hence, we have,
1 n __ nt?
. (‘ > agaa| >t + |le|> < Ze 2t (34)
n
i=1

Taking t = 2¢v/2Caxk? 1/ loﬁp, we have for all [ # j € [p],

1 1
P ( > 2V2Chmanti® || 2L + |zlj|> < (35)
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This completes the proof.

A.5 Convex conjugates

The convex conjugate of a function f(w) is defined as:
F*(w) = sup (u"w — f(w)). (36)

The following result gives the convex conjugates of the functions needed in the proof of Theorem [I}

Lemma 3 1. If f(w) = Ll|lw|3, then its convex conjugate is f*(u) = 2||lul3.

T n

2. If g is the indicator function of the convexr set {w € R? | [[w — ej|o < p}, t.e.,

0 if fw—ejle < s
(w) =
9(w) {oo otherwise,

then its conver conjugate is gi(u) = u; + pl|ulf;.

Proof of Lemma [3k

1. We can write f(w) = %'wTQw where Q := %Ip is positive definite (and has size p X p).
From Example 3.2.2 of Boyd & Vandenberghe| (2004)), the convex conjugate of a positive
definite quadratic form is

P = e s L (20) s M2
9 ) n P g

2. If g; is the indicator function of the set C, the convex conjugate is given by

g; (u) = sup u'w, (37)

where C' = {w € R? | ||lw — €j||oc < p}. This implies that w; € [ej; — u, e;; + pl, Vi. (Note
that e;; = 1if ¢ = j and 0 otherwise.) To maximize ulw = le u;w;, the optimal w; can
be chosen as

ji if u; > 0,
wi:{ef e (38)

€j; — b if u; <O0.

Substituting into w"w, we obtain w"w = Y" | u;(e;; + psign(u;)), where sign(u;) is the
sign of u;. Simplifying, we have u'w = u; + > 7_, |u;|. Thus, we have

g5 (w) = uj + pllul);. (39)

This completes the proof.
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