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Abstract

Large language models (LLMs) have demonstrated strong performance across a
wide range of programming tasks, yet their potential for code optimization re-
mains underexplored. This work investigates whether LLMs can optimize the
performance of assembly code, where fine-grained control over execution enables
improvements that are difficult to express in high-level languages. We present a re-
inforcement learning framework that trains LLMs using Proximal Policy Optimiza-
tion (PPO), guided by a reward function that considers both functional correctness,
validated through test cases, and execution performance relative to the industry-
standard compiler gcc -03. To support this study, we introduce a benchmark of
8,072 real-world programs. Our model, Qwen2.5-Coder-7B-PP0, achieves 96.0%
test pass rates and an average speedup of 1.47x over the gcc -03 baseline, out-
performing all 20 other models evaluated, including Claude-3.7-sonnet. These
results indicate that reinforcement learning can unlock the potential of LLMs to
serve as effective optimizers for assembly code performance.

1 Introduction

Recent advances in large language models (LLMs) have achieved state-of-the-art solutions across a
wide range of programming tasks [1HS]. However, their potential for program optimization remains
underexplored. Generating highly optimized code is critical in performance-sensitive domains,
and prior work has investigated the use of LLMs to optimize C++ and Python programs [6-8]. In
this work, we aim to utilize LLMs to improve the performance of assembly code, extending their
capabilities beyond optimization for high-level languages.

Assembly code optimization is traditionally the responsibility of compilers. While modern compilers
apply a series of rule-based transformations to improve performance, such a design introduces
the classic phase ordering problem [9], where the order of optimizations can substantially affect
the performance of the generated code. Due to the inherent complexity of the optimization task,
especially the vast space of possible transformation sequences, compilers face fundamental challenges
in converging to optimal code, often leaving significant performance on the table [10].

An alternative approach is superoptimization, which searches the space of all programs that are
functionally equivalent to the compiler’s output, aiming to identify the most performant variant. In
principle, this strategy may yield optimal code. However, the search space grows exponentially with
program size, making exhaustive exploration computationally infeasible in practice. Furthermore,
prior work on superoptimization [11}|[12] has primarily targeted loop-free, straight-line code, where it
is more tractable to formally verify that the optimized code is semantically equivalent to the original.
As a result, these approaches are not directly applicable to most real-world programs with loops.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



35
36
37
38
39
40
41
42

43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59

60

61
62
63

64
65
66

call scanf@PLT
mov  eax, [rsp+8] Ll Test1l (9
5| add eax, [rsp+4] 101010 Test2 B
call printf@PLT 101010 ..
101010 Testn €3
gcc-03 Assembly Executable Correctness
(eoe® ) 11 f@PLT
ca scan
#include <stdio.h> mg; eax, %'“Sp"z% ooo
. . a eax, [rsp+
1n1': main() { _)'@‘ jmp  printf@PLT ]g:g:g
st LS 101010
e A4 —
scanf("%d", &a); L.
LLM LLM optimized Executable Speedup
} A assembly enreararannas .: ............... *
iUpdate Weights PPO Reward:
C Code . )< S

Figure 1: Overview of the assembly code optimization task. Given a C program and its baseline
assembly from gcc -03, an LLM is fine-tuned with Proximal Policy Optimization (PPO) to generate
improved assembly. The reward function reflects correctness and performance based on test execution.

In this work, we explore using large language models to optimize the performance of assembly code.
Compared with high-level languages such as Python or C++, assembly code operates closer to the
hardware, offering fine-grained control over execution and enabling optimizations that are difficult to
express or realize in higher-level code. However, this setting poses several challenges. Assembly
code is relatively rare and may be underrepresented in pretraining corpora [13]], making it harder
for LLMs to reason effectively about their behavior. Furthermore, industry compilers such as GCC
have been extensively tuned by performance engineers over decades. Achieving additional speedups
beyond gcc -03 (the compiler’s highest optimization level) is a technically challenging task.

To address the challenges of low-level code optimization, we apply reinforcement learning to enhance
the ability of LLMs to optimize assembly code. As shown in Figure [I| we use Proximal Policy
Optimization (PPO) to train an LLM using a reward function that considers both correctness and
performance. Correctness is evaluated based on whether the generated code passes program-specific
test cases, and performance is measured by its speedup relative to the baseline produced by gcc
-03. To support this setting, we construct a new dataset of 8,072 assembly programs derived from
real-world competitive programming submissions. Each instance includes input-output test cases and
baseline assembly code generated by the compiler at the highest optimization level, which serves as
the starting point for further optimization.

We evaluate our approach on the proposed benchmark and find that reinforcement learning sub-
stantially improves the ability of LLMs to optimize assembly code. Starting from the base model
Qwen2.5-Coder-7B-Instruct, which achieves a modest 1.10x speedup over the gcc -03 base-
line, our PPO-trained model reaches 1.47x average speedup and improves both compile and test pass
rates to 96.0%. It achieves the strongest performance across all evaluation metrics, outperforming
all 20 other models evaluated, including Claude-3.7-sonnet. Ablation studies show that reward
functions emphasizing final speedup, rather than intermediate correctness signals, lead to more
effective training.

In summary, our contributions are as follows:

* We introduce the task of optimizing assembly code performance using large language mod-
els, aiming for fine-grained performance improvements beyond what traditional compiler
optimizations can achieve.

* We construct a dataset of real-world C programs paired with the corresponding assembly
code generated by the gcc -03 baseline. Using this dataset, we explore improving LLMs
on this task through reinforcement learning, applying Proximal Policy Optimization (PPO).
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* We evaluate 21 LLMs on the proposed benchmark and show that our training substantially
improves performance: Qwen2.5-Coder-7B-PP0 achieves the highest compile and test pass
rates, as well as the best average speedup (1.47x) over the gcc -03 baseline, outperforming
all other models (including Claude-3.7-sonnet) across all evaluation metrics.

2 Related Work

Large Language Models for Code. Benchmarks for evaluating large language models (LLMs)
on code generation from natural language specifications have received increasing attention. Notable
examples include HumanEval [[1], MBPP [2], APPS [3], and more recent efforts [14-17]. In parallel,
many models have been developed to enhance code generation capabilities, such as Codex [1]], Alpha-
Code [[18]], CodeGen [19]], InCoder [20], StarCoder [21]], DeepSeek-Coder [22], Code Llama [23], and
others [24,25]]. Beyond code generation, LLMs have been applied to real-world software engineering
tasks including automated program repair [26} 27]], software testing [28} 29], bug localization [30],
and transpilation [31} 132]. SWE-bench [4] integrates these tasks into a benchmark for resolving
real GitHub issues. Building on this, SWE-agent [5] and subsequent works [33| [34]] employ an
agent-based framework that leverages LL.Ms to improve the issue resolution process.

Recent work has also explored LLMs for improving program performance. CodeRosetta [35]] targets
automatic parallelization, such as translating C++ to CUDA. Other efforts focus on optimizing Python
code for efficiency [7, 8] or enabling self-adaptation [36], and improving C++ performance [6]]. Of
particular relevance are approaches to low-level code optimization [37, 38]. The LLM Compiler
foundation models [39,40]] are primarily designed for code size reduction and binary disassembly,
whereas our work focuses on optimizing assembly code for performance. LLM-Vectorizer [41]] offers
a formally verified solution for auto-vectorization, a specific compiler pass. In contrast, our work
does not restrict the optimization type and uses test-case validation.

Learning-Based Code Optimization. The space of code optimization is vast, and many approaches
have leveraged machine learning to improve program performance. A classic challenge in compilers
is the phase-ordering problem, where performance depends heavily on the sequence of optimization
passes. AutoPhase [42] uses deep reinforcement learning to tackle this, while Coreset [43]] employs
graph neural networks (GNNs) to guide optimization decisions. Modern compilers apply extensive
rewrite rules but offer no guarantee of optimality. Superoptimization seeks the most efficient program
among all semantically equivalent variants of the compiler output. Traditional methods use stochastic
search, such as Markov Chain Monte Carlo [11]], with follow-up work improving scalability (44} [12]
and extending to broader domains [45) |46]. These rely on formal verification for correctness,
restricting them to small, loop-free programs. In contrast, our approach uses test-based validation,
enabling optimization of general programs with loops. With the rise of deep learning, substantial
attention has turned to optimizing GPU kernel code. AutoTVM [47]] pioneered statistical cost model-
based search for CUDA code optimization, followed by methods such as Ansor [48], AMOS [49],
and other recent systems [S0H52].

More recently, using LLMs as code optimizers has gained popularity [6, 53| 37]], with growing atten-
tion to reinforcement learning approaches that guide LLMs through reward-based feedback [54! [34].
CodeRL [55] incorporates unit test-based rewards within an actor-critic framework [56]], while
PPOCoder [57] extends this with Proximal Policy Optimization (PPO) [58]], along with other vari-
ants [S9]]. Subsequent efforts have adapted RL-based techniques [60] to additional low-resource
programming languages, including Verilog [61]. To the best of our knowledge, our work is the
first to apply reinforcement learning to optimize assembly code using LLMs. Assembly code offers
fine-grained control and potential for significant performance gains, but it remains underexplored due
to limited training data and the complexity of low-level semantics.

3 Methodology

3.1 Task Definition

Let C' be a program written in a high-level language such as C. A modern compiler like gcc can
compile C' into an x86-64 assembly program P = gcc(C'), which can then be further assembled into
an executable binary. The assembly program P serves as an intermediate representation that exposes
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low-level optimization opportunities, making it suitable for aggressive performance improvement.
We assume the semantics-preserving nature of the compilation process, i.e., [C] = [P], so that the
behavior of the assembly program P is identical to that of the source program C'.

In theory, the goal is to produce a program P’ that is functionally equivalent to P across the entire
input space X, i.e., P(x) = P’(z) for all z € X. Since verifying this property is undecidable in
general, we approximate equivalence using a finite test set 7 = {(x, y;)}_,, where each input-
output pair (x;, y;) captures the expected behavior of C.

We say that an assembly program P’ is valid if it can be successfully assembled and linked into
an executable binary. Let valid(P’) € {True,False} denote this property. We define the set of
correct programs as:

S(P) = {P' | valid(P') A Y(wiy:) € T, P'(z:) =y} .

Performance and Speedup. Let ¢(P) denote the execution time of P on the test set 7, and let
t(P’) be the corresponding execution time for P’. The speedup of P’ relative to P is defined as:

{5 if P' € S(P)and t(P') < t(P)
Speedup(P’) = {i(P) otherwise

Optimization Objective. The objective is to generate a candidate program P’ that maximizes
Speedup(P’). Only programs in S(P) are eligible for speedup; any candidate that fails to compile
into a binary or produces incorrect outputs is assigned a default speedup of 1. This reflects a practical
fallback: when the generated program is invalid, the system can revert to the baseline P, compiled
with gcc -03, which defines the 1x reference performance. Although S(P) captures the correctness
criteria, we do not restrict the LLM to generate only valid programs. Instead, the model produces
arbitrary assembly code, and correctness is verified post hoc via compilation and test execution. We
train an LLM using reinforcement learning (see Section [3.3) to generate candidates that both satisfy
correctness and achieve performance improvements.

3.2 Dataset Construction

We construct our dataset using C programs from CodeNet [62]], a large-scale corpus of competitive
programming submissions. Each dataset instance is a tuple (C, P, T'), where C is the original C
source code, P = gcc_03(C) is the corresponding x86-64 assembly generated by compiling C
with gcc at the -03 optimization level, and 7 = {(x;, y;) }7; is the test set. Since not all CodeNet
problems include test inputs, we adopt those provided by prior work [18]] to define x;, but discard
their output labels. Instead, we regenerate each output y; by executing the original submission on
input x;, as many CodeNet programs are not accepted solutions, and even accepted ones do not
reliably pass all test cases.

Given the scale of CodeNet, which contains over 8 million C and C++ submissions, we sample
a subset for this study. To focus on performance-critical cases, we sample programs that exhibit
the highest relative speedup from gcc -00 (no optimization) to gcc -03 (maximum optimization).
Such strategy serves two purposes: (1) it favors programs with complex logic that lead to suboptimal
performance under -00 and can be effectively optimized by -03, and (2) it creates a more challenging
setting by starting from code that has already benefited from aggressive compiler optimizations.
If an LLM can generate code that further improves upon gcc -03, it suggests that the model can

outperform the compiler’s “expert” solution. The final dataset consists of 7,872 training programs
and 200 held-out evaluation programs, with additional statistics provided in Section 4}

3.3 Reinforcement Learning

We conceptualize our task as a standard contextual multi-armed bandit problem [63]], defined by a
context space S, an action space A, and a reward function r : S x A — R. Each context s € S
represents a problem instance, comprising the source program C, its baseline assembly P, and the
associated test cases 7. An action a € A corresponds to generating a candidate assembly program P.
The reward function 7 (s, a) evaluates the quality of the generated program based on correctness and
performance. We will describe different designs of the reward function later. A policy 7 : S — A(A)
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maps a context s to a probability distribution over actions and samples an action a € A stochastically.
Given a distribution p over problem instances, the expected performance of a policy 7 under reward
function 7 is expressed as E, ., 4~r(.s) [7(5, a)]. The objective is to find a policy that maximizes
this expected reward.

Optimization with PPO. We train the policy using Proximal Policy Optimization (PPO) [38], a
first-order policy-gradient algorithm that stabilizes training by constraining each policy update to
remain close to the previous one. Specifically, PPO maximizes a clipped surrogate objective of the

form E, , [min (p(G)A, clip(p(#),1 —e,1+¢) A)} , where p(0) = mg(a | s)/ma,,(a | s) is the

probability ratio between the current and previous policy, A is the estimated advantage of action a in
state s, and ¢ is a clipping coefficient that limits the policy update to a small trust region. We use a

critic model to estimate A, and compute rewards based on the correctness and execution time of the
generated program, eliminating the need for a separate reward model.

Reward Function Design. As defined in our contextual bandit setup, the reward function r :
S x A — R assigns a scalar score to each (context, action) pair. Each context s € S consists of
the source program C, the baseline assembly P, and a test set T = {(z;,¥;)}"_;. An actiona € A

corresponds to a generation procedure that produces a candidate assembly program P = gen(a).

We define two auxiliary metrics for computing reward:

pass(s,a) = ﬁ Z 1[P(z) =y], speedup(s,a) = t(P)/t(P),
(z,y)eT

which respectively denote the fraction of test cases passed and the speedup of the generated program
P relative to the baseline P. We evaluate two reward function variants:

1. Correctness-Guided Speedup (CGS):
-1, if P fails to compile,
r(s,a) = { pass(s,a), if some tests fail,
1+ « - speedup(s,a), if all tests pass.
2. Speedup-Only (SO):

(s.a) 0, if P fails to compile or any test fails,
r(s,a) =
speedup(s,a), otherwise.

In CGS, the constant « controls the relative importance of speedup once full correctness is achieved
(i.e., all test cases pass). The CGS reward provides a dense signal by assigning intermediate credit for
successful compilation and partially correct outputs, guiding the policy even when the final objective
is not yet met. In contrast, SO defines a more direct and sparse objective, assigning nonzero reward
only to programs that are both correct and performant, thereby rewarding only the terminal goal of
achieving speedup.

4 Experimental Setup

Dataset. We describe our dataset con-
struction approach in Section[3.2] Each

instance consists of a C source program Split #Prog. Avg. Tests Avg. LOC

. . C | Assembly
C, the corresponding gcc -03 compiled —
assembly P, and a set of test cases 7 for Training 7,872 8.86 223 130.3
correctness evaluation. The final dataset Evaluation 200 8.92 21.9 133.3

contains 7,872 training programs and 200
evaluation programs, with average pro-
gram lengths and test case counts sum-
marized in Table

Table 1: Dataset statistics across training and evaluation
splits. LOC = lines of code.
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Prompts. For each instance, we construct a prompt that includes the original C program along with
the generated assembly using gcc -03. All test cases are withheld from the model. The model is
instructed to generate only the optimized x86-64 assembly code. We show the prompt template in

Appendix [A.2]

Metrics. We evaluate each model using both correctness and performance metrics. Compile pass
is the percentage of problems for which the generated assembly compiles to binary executable
successfully, while test pass is the percentage of problems where the compiled code passes all test
cases. For a given problem, any single failed test case is considered a failure for the test pass metric.
Both metrics are computed across the entire validation set. For performance, we measure the relative
speedup over the gcc -03 baseline. As defined in Section[3.1] we assign a default speedup of 1x to
any candidate that fails to compile, fails any test case, or is slower than the baseline. This reflects the
practical setting where a system can fall back to the gcc -03 output, resulting in no performance
gain. We report the 25¢h, 50th (median), and 75th percentiles of speedup to capture distributional
behavior, along with the average speedup over the entire evaluation set.

Models. We evaluate 21 state-of-the-art language models spanning a diverse range of archi-
tectures. Our benchmark includes frontier proprietary models such as gpt-4o [64]], o4-mini,
gemini-2.0-flash-001 [65], and claude-3.7-sonnet, as well as open-source families such as
Llama [66], DeepSeek [67]], and Qwen [25]]. In addition, we include models distilled from DeepSeek-
R1 [68]] based on Qwen and Llama. Finally, we evaluate recent compiler foundation models [39, 40]]
that are pre-trained on assembly code, building upon Code Llama and designed specifically for
compiler-related tasks. All open-source models are instruction-tuned.

Performance Measurement. To ensure an accurate performance evaluation, we use
hyperfine [69], a benchmarking tool that reduces measurement noise by performing warmup
runs followed by repeated timed executions. For each program’s execution, we discard the first three
runs and report the average runtime over the next ten runs.

Implementation. We implement our customized reinforcement learning reward functions within
the VERL framework [70]], which enables fine-tuning of LLMs using Proximal Policy Optimization
(PPO). As part of this setup, we build a task-specific environment that handles program compilation,
test execution, and runtime measurement, as detailed in Section @ This environment provides the
model with direct scalar feedback based on both functional correctness and execution performance.

Training Configurations. Among all evaluated models (see Table [2), we select
Qwen2.5-Coder-7B-Instruct for training due to its strongest correctness results and sub-
stantial room for performance improvement, while intentionally avoiding compiler-specific
foundation models to preserve generality. Training is performed on a single node with four A100
GPUs. Full hyperparameter settings are provided in Appendix [A.T]

5 Results

5.1 Evaluation of Different Models

Table [2] presents results across evaluated models. Most models struggle to generate performant
assembly: the majority yield only 1.00x speedup, with low compile and test pass rates. Among
baseline models, claude-3.7-sonnet and DeepSeek-V3 perform best, achieving test pass rates
above 40% and average speedups of 1.22x and 1.21x, respectively. Notably, some models such as
DeepSeek-R1 fail to generate any valid assembly, and o4-mini achieves only 4.5% test pass. These
results underscore the difficulty of the task and motivate the need for a task-specific approach.

Compiler foundation models (prefixed with 11m-compiler-) are pretrained on assembly code and
compiler intermediate representations. Among them, 11lm-compiler-13b demonstrates strong
performance in both correctness and speedup. In contrast, the fine-tuned variants (-ftd) perform
poorly, likely because they are adapted for tasks such as disassembling x86-64 and ARM assembly
into LLVM-IR, rather than optimizing assembly code for execution performance.
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Compile Test Speedup Percentiles Average

Model Pass Pass 25th 50th 75th  Speedup
DS-R1-Distill-Qwen-1.5B 0.0% 0.0% 1.00x 1.00x 1.00x 1.00x
DeepSeek-R1 0.0% 0.0% 1.00x 1.00x 1.00x 1.00x
DS-R1-Distill-Llama-70B 5.5% 0.0% 1.00x 1.00x 1.00x 1.00x
DS-R1-Distill-Qwen-14B 11.5% 0.5% 1.00x 1.00x 1.00x 1.00x
gpt-4o-mini 44.5% 1.0% 1.00x 1.00x 1.00x 1.00x
Llama-4-Maverick-17B 77.5% 7.0% 1.00x 1.00x 1.00x 1.02x
Llama-3.2-11B 84.0% 21.0% 1.00x 1.00x 1.00x 1.02x
gpt-40 81.0% 5.0% 1.00x 1.00x 1.00x 1.02x
Llama-4-Scout-17B 68.5% 5.5% 1.00x 1.00x 1.00x 1.02x
04-mini 25.0% 4.5% 1.00x 1.00x 1.00x 1.02x
gemini-2.0-flash-001 57.5% 4.0% 1.00x 1.00x 1.00x 1.03x
Qwen2.5-72B 59.5% 7.5% 1.00x 1.00x 1.00x 1.03x
Llama-3.2-90B 82.5% 15.0% 1.00x 1.00x 1.00x 1.05x
Qwen2.5-Coder-7B 79.0% 61.0% 1.00x 1.00x 1.00x 1.10x
DeepSeek-V3 94.0% 43.0% 1.00x 1.00x 1.40x 1.21x
claude-3.7-sonnet 945% 58.5% 1.00x 1.10x 1.45x 1.22x
IIm-compiler-7b-ftd 2.0% 2.0% 1.00x 1.00x 1.00x 1.00x
llm-compiler-13b-ftd 2.5% 2.0% 1.00x 1.00x 1.00x 1.01x
IIm-compiler-7b 55.0% 54.0% 1.00x 1.00x 1.00x 1.09x
llm-compiler-13b 60.5% 59.5% 1.00x 1.27x 1.63x 1.34x
Qwen2.5-Coder-7B-PPO (Ours) 96.0% 96.0% 1.21x 1.42x 1.66x% 1.47x

Table 2: Comparison of LLMs on our assembly optimization benchmark. We report compilation
success rate, test pass rate, and average speedup over the gcc -03 baseline. All open-source models
are instruction-tuned. We evaluate general-purpose foundational models, compiler-specific foundation
models, and our PPO-trained model, which improves average speedup from 1.10x to 1.47x.

We select Qwen2.5-Coder-7B-Instruct for RL training due to its strong compile pass rate (79.0%)
and highest test pass rate (61.0%) among models. After PPO fine-tuning, it achieves 96.0% on both
metrics and increases average speedup from 1.10x to 1.47x. Notably, it is the only model to exhibit
meaningful speedup even at the 25th percentile, and it outperforms all other models across all
evaluation metrics, including correctness, average speedup, and speedup percentiles.

5.2 Ablation Study of Reward Function Design

We evaluate two reward designs for RL:
Correctness-Guided Speedup (CGS) and
Speedup-Only (SO). CGS penalizes compi-

Method Compile Pass Test Pass Avg. Speedup

lation failures, rewards partial correctness, — Base Model 79.0% 61.0% 1.10x
and scales final reward by speedup once all ~ RL w/CGS 95.5% 94.5% 1.38x
RL w/ SO 96.0% 96.0% 1.47x

tests pass. SO uses speedup as the sole re-
ward, but only when all tests pass.

Table 3: Ablation study comparing reward function
As shown in Table[3] both variants achieve variants. CGS provides intermediate reward shaping,
high compile pass rates and test pass rates, while SO uses a sparse and terminal signal.

but SO yields better performance. Remov-

ing intermediate shaping appears to help the

model focus on terminal objectives. We also tried varying the CGS scaling factor « (5 or 10) and
found that it has a negligible effect.

These results indicate that sparse, terminal rewards (SO) are more effective in this setting. Since the
base model already reaches 61.0% test pass, correctness is not the bottleneck; optimizing directly for
speedup offers a stronger training signal.
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Method Compile Pass Test Pass Avg. Speedup
w/03 w/o03 w/ 03 woO3 w/ 03 w/o03

DeepSeek-V3 94.0% 25.5% 43.0% 4.5% 1.21x  1.02x
claude-3.7-sonnet 94.5% 53.0% 58.5% 16.0% 1.22x 1.07x
IIm-compiler-7b 55.0% 12.0% 54.0% 0.0% 1.09x  1.00x
Ilm-comiler-13b 60.5% 20% 595% 0.5% 1.34x  1.00x
Qwen2.5-Coder-7B 79.0% 0.0% 61.0% 0.0% 1.10x  1.00x

Qwen2.5-Coder-7B-PPO  96.0% 0.0% 96.0% 0.0% 1.47x  1.00x

Table 4: Ablation study on the impact of including gcc -03 baseline assembly in the prompt. Each
metric is reported with and without access to the baseline assembly generated by the compiler.

5.3 Can LLMs Directly Compile Programs without Baseline Assembly?

In our main evaluation, we always include the baseline assembly generated by gcc -03 in the prompt.
While this baseline offers a strong starting point for further optimization, it may also bias the model
toward replicating patterns from the compiler’s output. In this subsection, we investigate a more
challenging setup: Can large language models directly compile C code into performant assembly
without relying on the compiler-generated baseline?

We compare two settings in evaluation: (1) providing both the C source and the gcc -03 assembly
(default, “w/ O3” in Table E]) and (2) providing only the C source (‘“w/o O3”). For each model, we
report compile success rate, test pass rate, and average speedup.

Table [ shows that removing the baseline assembly leads to severe degradation. For instance,
Qwen2.5-Coder-7B-PP0O drops from 96.0% correctness and 1.47x speedup to 0.0% and 1.00x,
respectively. Even strong models like Claude-3.7-sonnet suffer substantial declines.

These results suggest that direct compilation from C to optimized assembly remains challenging
for current LLMs. The compiler output provides a reliable reference for LLMs. This supports our
framework design: using gcc -03 as an effective starting point for reinforcement learning. While
future work may explore direct generation from C, we expect it to be substantially more challenging
due to the absence of compiler guidance.

5.4 Case Study

Figure [2] presents a representative example where large language models (LLMs), including gpt-
40 and claude-3.7-sonnet, discover an optimization that outperforms a state-of-the-art compiler.
The original C function computes the population count (i.e., the number of set bits) by repeatedly
shifting the input and accumulating its least significant bit. The assembly code produced by gcc
-03 preserves this loop structure, relying on explicit bitwise operations and conditional branches to
compute the result.

In contrast, the LLM generates a significantly more concise and efficient implementation that replaces
the entire loop with a single popcnt instruction. This instruction, supported by modern x86-64
architectures, performs the same computation in one operation, thereby reducing both instruction
count and runtime overhead.

Such a transformation is beyond the reach of gcc -03, which applies a predetermined sequence of
rule-based optimization passes and does not conduct semantic-level rewrites of this kind. In this case,
the language model is able to synthesize functionally equivalent code that exploits hardware-level
instructions not utilized by the compiler. This demonstrates the potential of language models to
optimize assembly by exploring a broader space of semantics-preserving program transformations.

6 Discussion

Limitations. A key limitation of our approach is the absence of formal correctness guarantees.
Although we validate generated programs using input-output test cases, such testing is inherently
incomplete and may overlook edge cases. Consequently, unlike fully verified systems such as
Stoke [[11]], LLM-generated assembly may produce wrong results or exhibit undefined behavior. This
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C Code GCC -03 Output LLM Generated

int f(unsigned long x) .LO: .LO:

{ xorl Jeax, %eax popcnt %rdi, Yrax
int res = 0; testq %rdi, Yrdi retq
while (x > 0) je .L2
{ .L1:

res += x & 1; movq %rdi, %rdx
x >>= 1; andl $0x1, Y%edx
} addq %rdx, Y%rax
return res; shrq $0x1, Jrdi
} jne .L1
retq
.L2:
retq

Figure 2: Case study comparing the C code, baseline assembly produced by gcc -03, and optimized
assembly generated by the LLM. The model successfully replaces the loop with the specialized
hardware instruction popcnt, resulting in a significantly more concise implementation.

limitation reflects a broader challenge in programming languages: verifying the semantic equivalence
between two arbitrary programs is undecidable in the general case.

Another limitation lies in the inherent randomness of performance measurement on real hardware.
Although we mitigate noise through repeated measurements, low-level hardware fluctuations can still
introduce variability into speedup estimates. Such nondeterminism is difficult to eliminate entirely in
real-world settings. While prior work has adopted simulator-based evaluation [6], simulators may fail
to faithfully capture the actual hardware performance.

Finally, the observed performance gains may not generalize across machines. The model may
implicitly learn and exploit hardware-specific characteristics like cache size. As a result, a model
trained on one machine may not retain its effectiveness when deployed on a different machine.

Future Work. While we use Proximal Policy Optimization (PPO), future work may explore alter-
native reinforcement learning algorithms such as GRPO [71]. Expanding to larger and more diverse
datasets, particularly those involving performance-critical code beyond competitive programming,
would make the setting more realistic and applicable. Combining reinforcement learning with super-
vised fine-tuning may also be beneficial, although it remains unclear whether training on gcc -03
outputs would provide additional gains. Another direction is to incorporate an interactive refinement
loop, where the model iteratively updates its output using feedback from errors or performance
measurements. Finally, extending our approach from x86-64 to other architectures such as MIPS,
ARM, or GPU programming could broaden its applicability and impact.

7 Conclusion

We explore the use of large language models (LLMs) for optimizing assembly code, a setting where
fine-grained control over execution enables performance improvements that are difficult to express in
high-level languages. While traditional compilers rely on fixed rule-based transformations, they face
fundamental limitations due to the complexity of the optimization space. To address this, we apply
reinforcement learning to fine-tune LLMs with Proximal Policy Optimization (PPO), using a reward
function based on correctness and speedup over the gcc -03 baseline. To support this effort, we
introduce a benchmark of 8,072 real-world C programs with compiler-generated baseline assembly
and test cases. Our resulting model, Qwen2.5-Coder-7B-PP0, achieves the highest compile and test
pass rates (96.0%) and the best average speedup (1.47x), outperforming all 20 other models evaluated
across all metrics. These results indicate that reinforcement learning can unlock the potential of
LLMs to serve as effective optimizers for assembly code performance.
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A Appendix

A.1 Training Configurations

Component Setting

Base model Qwen2.5-Coder-7B-Instruct
Actor’s learning rate le-6

Critic’s learning rate le-5

Batch size 16

Epoch 1

Max prompt length 2000 tokens

Max response length 2000 tokens

Gradient checkpointing  Enabled (both actor and critic)
Rollout temperature 0.5

Hardware 4x A100 GPUs

Table Al: Key training configurations for VERL PPO fine-tuning.

A.2 Prompt Template

Prompt Template

Given the following C code and assembly code, your task is to generate highly
optimized x86-64 assembly code.

C Code:

<C code here>

Assembly Code:

<baseline assembly code here produced by gcc -03>

Only output the optimized assembly code. Do not include any other text.
Do not write any comments in the assembly code. Wrap the assembly code in
assembly tags.

Optimized Assembly Code:
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have verified that the claims accurately reflect our contributions and the
defined research scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations in Section

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We clearly discuss the experiment setup in Section @] with additional details in
Appendix
Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:

Justification: The code and data are being prepared for release and will be made publicly
available with full instructions upon acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide the experimental details in Section 4] and Appendix [A]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We run each performance measurement 10 times with 3 warmup runs, and
report 25th, 50th, 75th percentiles and average speedup to capture variability.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide such details in Sectiond and Appendix [A]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and confirm that our research
complies fully with its principles.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: The paper focuses on techniques for code optimization. We do not explicitly
discuss societal impacts, as no direct applications or harms are identified.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not release any models or datasets with high risk of misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use publicly available datasets intended for research use (e.g., CodeNet),
and all sources of data and models are properly cited with adherence to their license terms.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:

Justification: We plan to release the dataset and model with documentation upon acceptance,
but they are not publicly available at submission time.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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855 16. Declaration of LLLM usage

856 Question: Does the paper describe the usage of LLMs if it is an important, original, or
857 non-standard component of the core methods in this research? Note that if the LLM is used
858 only for writing, editing, or formatting purposes and does not impact the core methodology,
859 scientific rigorousness, or originality of the research, declaration is not required.

860 Answer: [Yes]

861 Justification: The paper investigates using LLMs to optimize assembly code performance,
862 making LLM usage central to the core methodology.

863 Guidelines:

864 * The answer NA means that the core method development in this research does not
865 involve LLMs as any important, original, or non-standard components.

866 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
867 for what should or should not be described.
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