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Abstract

Large language models (LLMs) have demonstrated strong performance across a1

wide range of programming tasks, yet their potential for code optimization re-2

mains underexplored. This work investigates whether LLMs can optimize the3

performance of assembly code, where fine-grained control over execution enables4

improvements that are difficult to express in high-level languages. We present a re-5

inforcement learning framework that trains LLMs using Proximal Policy Optimiza-6

tion (PPO), guided by a reward function that considers both functional correctness,7

validated through test cases, and execution performance relative to the industry-8

standard compiler gcc -O3. To support this study, we introduce a benchmark of9

8,072 real-world programs. Our model, Qwen2.5-Coder-7B-PPO, achieves 96.0%10

test pass rates and an average speedup of 1.47× over the gcc -O3 baseline, out-11

performing all 20 other models evaluated, including Claude-3.7-sonnet. These12

results indicate that reinforcement learning can unlock the potential of LLMs to13

serve as effective optimizers for assembly code performance.14

1 Introduction15

Recent advances in large language models (LLMs) have achieved state-of-the-art solutions across a16

wide range of programming tasks [1–5]. However, their potential for program optimization remains17

underexplored. Generating highly optimized code is critical in performance-sensitive domains,18

and prior work has investigated the use of LLMs to optimize C++ and Python programs [6–8]. In19

this work, we aim to utilize LLMs to improve the performance of assembly code, extending their20

capabilities beyond optimization for high-level languages.21

Assembly code optimization is traditionally the responsibility of compilers. While modern compilers22

apply a series of rule-based transformations to improve performance, such a design introduces23

the classic phase ordering problem [9], where the order of optimizations can substantially affect24

the performance of the generated code. Due to the inherent complexity of the optimization task,25

especially the vast space of possible transformation sequences, compilers face fundamental challenges26

in converging to optimal code, often leaving significant performance on the table [10].27

An alternative approach is superoptimization, which searches the space of all programs that are28

functionally equivalent to the compiler’s output, aiming to identify the most performant variant. In29

principle, this strategy may yield optimal code. However, the search space grows exponentially with30

program size, making exhaustive exploration computationally infeasible in practice. Furthermore,31

prior work on superoptimization [11, 12] has primarily targeted loop-free, straight-line code, where it32

is more tractable to formally verify that the optimized code is semantically equivalent to the original.33

As a result, these approaches are not directly applicable to most real-world programs with loops.34
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#include <stdio.h>
int main() {
  int a, b;
  scanf("%d", &a);
  ...
}

call  scanf@PLT
mov   eax, [rsp+8]
add   eax, [rsp+4]
call  printf@PLT
...

Test 1

...
Test 2

Test n

call  scanf@PLT
mov   eax, [rsp+8]
add   eax, [rsp+4]
jmp   printf@PLT
...

gcc -O3 Assembly Correctness

SpeedupLLM

C Code

LLM optimized
assembly 

RewardUpdate Weights

Executable 

Executable 
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Figure 1: Overview of the assembly code optimization task. Given a C program and its baseline
assembly from gcc -O3, an LLM is fine-tuned with Proximal Policy Optimization (PPO) to generate
improved assembly. The reward function reflects correctness and performance based on test execution.

In this work, we explore using large language models to optimize the performance of assembly code.35

Compared with high-level languages such as Python or C++, assembly code operates closer to the36

hardware, offering fine-grained control over execution and enabling optimizations that are difficult to37

express or realize in higher-level code. However, this setting poses several challenges. Assembly38

code is relatively rare and may be underrepresented in pretraining corpora [13], making it harder39

for LLMs to reason effectively about their behavior. Furthermore, industry compilers such as GCC40

have been extensively tuned by performance engineers over decades. Achieving additional speedups41

beyond gcc -O3 (the compiler’s highest optimization level) is a technically challenging task.42

To address the challenges of low-level code optimization, we apply reinforcement learning to enhance43

the ability of LLMs to optimize assembly code. As shown in Figure 1, we use Proximal Policy44

Optimization (PPO) to train an LLM using a reward function that considers both correctness and45

performance. Correctness is evaluated based on whether the generated code passes program-specific46

test cases, and performance is measured by its speedup relative to the baseline produced by gcc47

-O3. To support this setting, we construct a new dataset of 8,072 assembly programs derived from48

real-world competitive programming submissions. Each instance includes input-output test cases and49

baseline assembly code generated by the compiler at the highest optimization level, which serves as50

the starting point for further optimization.51

We evaluate our approach on the proposed benchmark and find that reinforcement learning sub-52

stantially improves the ability of LLMs to optimize assembly code. Starting from the base model53

Qwen2.5-Coder-7B-Instruct, which achieves a modest 1.10x speedup over the gcc -O3 base-54

line, our PPO-trained model reaches 1.47× average speedup and improves both compile and test pass55

rates to 96.0%. It achieves the strongest performance across all evaluation metrics, outperforming56

all 20 other models evaluated, including Claude-3.7-sonnet. Ablation studies show that reward57

functions emphasizing final speedup, rather than intermediate correctness signals, lead to more58

effective training.59

In summary, our contributions are as follows:60

• We introduce the task of optimizing assembly code performance using large language mod-61

els, aiming for fine-grained performance improvements beyond what traditional compiler62

optimizations can achieve.63

• We construct a dataset of real-world C programs paired with the corresponding assembly64

code generated by the gcc -O3 baseline. Using this dataset, we explore improving LLMs65

on this task through reinforcement learning, applying Proximal Policy Optimization (PPO).66
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• We evaluate 21 LLMs on the proposed benchmark and show that our training substantially67

improves performance: Qwen2.5-Coder-7B-PPO achieves the highest compile and test pass68

rates, as well as the best average speedup (1.47×) over the gcc -O3 baseline, outperforming69

all other models (including Claude-3.7-sonnet) across all evaluation metrics.70

2 Related Work71

Large Language Models for Code. Benchmarks for evaluating large language models (LLMs)72

on code generation from natural language specifications have received increasing attention. Notable73

examples include HumanEval [1], MBPP [2], APPS [3], and more recent efforts [14–17]. In parallel,74

many models have been developed to enhance code generation capabilities, such as Codex [1], Alpha-75

Code [18], CodeGen [19], InCoder [20], StarCoder [21], DeepSeek-Coder [22], Code Llama [23], and76

others [24, 25]. Beyond code generation, LLMs have been applied to real-world software engineering77

tasks including automated program repair [26, 27], software testing [28, 29], bug localization [30],78

and transpilation [31, 32]. SWE-bench [4] integrates these tasks into a benchmark for resolving79

real GitHub issues. Building on this, SWE-agent [5] and subsequent works [33, 34] employ an80

agent-based framework that leverages LLMs to improve the issue resolution process.81

Recent work has also explored LLMs for improving program performance. CodeRosetta [35] targets82

automatic parallelization, such as translating C++ to CUDA. Other efforts focus on optimizing Python83

code for efficiency [7, 8] or enabling self-adaptation [36], and improving C++ performance [6]. Of84

particular relevance are approaches to low-level code optimization [37, 38]. The LLM Compiler85

foundation models [39, 40] are primarily designed for code size reduction and binary disassembly,86

whereas our work focuses on optimizing assembly code for performance. LLM-Vectorizer [41] offers87

a formally verified solution for auto-vectorization, a specific compiler pass. In contrast, our work88

does not restrict the optimization type and uses test-case validation.89

Learning-Based Code Optimization. The space of code optimization is vast, and many approaches90

have leveraged machine learning to improve program performance. A classic challenge in compilers91

is the phase-ordering problem, where performance depends heavily on the sequence of optimization92

passes. AutoPhase [42] uses deep reinforcement learning to tackle this, while Coreset [43] employs93

graph neural networks (GNNs) to guide optimization decisions. Modern compilers apply extensive94

rewrite rules but offer no guarantee of optimality. Superoptimization seeks the most efficient program95

among all semantically equivalent variants of the compiler output. Traditional methods use stochastic96

search, such as Markov Chain Monte Carlo [11], with follow-up work improving scalability [44, 12]97

and extending to broader domains [45, 46]. These rely on formal verification for correctness,98

restricting them to small, loop-free programs. In contrast, our approach uses test-based validation,99

enabling optimization of general programs with loops. With the rise of deep learning, substantial100

attention has turned to optimizing GPU kernel code. AutoTVM [47] pioneered statistical cost model-101

based search for CUDA code optimization, followed by methods such as Ansor [48], AMOS [49],102

and other recent systems [50–52].103

More recently, using LLMs as code optimizers has gained popularity [6, 53, 37], with growing atten-104

tion to reinforcement learning approaches that guide LLMs through reward-based feedback [54, 34].105

CodeRL [55] incorporates unit test-based rewards within an actor-critic framework [56], while106

PPOCoder [57] extends this with Proximal Policy Optimization (PPO) [58], along with other vari-107

ants [59]. Subsequent efforts have adapted RL-based techniques [60] to additional low-resource108

programming languages, including Verilog [61]. To the best of our knowledge, our work is the109

first to apply reinforcement learning to optimize assembly code using LLMs. Assembly code offers110

fine-grained control and potential for significant performance gains, but it remains underexplored due111

to limited training data and the complexity of low-level semantics.112

3 Methodology113

3.1 Task Definition114

Let C be a program written in a high-level language such as C. A modern compiler like gcc can115

compile C into an x86-64 assembly program P = gcc(C), which can then be further assembled into116

an executable binary. The assembly program P serves as an intermediate representation that exposes117
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low-level optimization opportunities, making it suitable for aggressive performance improvement.118

We assume the semantics-preserving nature of the compilation process, i.e., JCK = JP K, so that the119

behavior of the assembly program P is identical to that of the source program C.120

In theory, the goal is to produce a program P ′ that is functionally equivalent to P across the entire121

input space X , i.e., P (x) = P ′(x) for all x ∈ X . Since verifying this property is undecidable in122

general, we approximate equivalence using a finite test set T = {(xi, yi)}ni=1, where each input-123

output pair (xi, yi) captures the expected behavior of C.124

We say that an assembly program P ′ is valid if it can be successfully assembled and linked into125

an executable binary. Let valid(P ′) ∈ {True, False} denote this property. We define the set of126

correct programs as:127

S(P ) = {P ′ | valid(P ′) ∧ ∀(xi, yi) ∈ T , P ′(xi) = yi} .

Performance and Speedup. Let t(P ) denote the execution time of P on the test set T , and let128

t(P ′) be the corresponding execution time for P ′. The speedup of P ′ relative to P is defined as:129

Speedup(P ′) =

{
t(P )
t(P ′) if P ′ ∈ S(P ) and t(P ′) < t(P ),

1 otherwise.

Optimization Objective. The objective is to generate a candidate program P ′ that maximizes130

Speedup(P ′). Only programs in S(P ) are eligible for speedup; any candidate that fails to compile131

into a binary or produces incorrect outputs is assigned a default speedup of 1. This reflects a practical132

fallback: when the generated program is invalid, the system can revert to the baseline P , compiled133

with gcc -O3, which defines the 1× reference performance. Although S(P ) captures the correctness134

criteria, we do not restrict the LLM to generate only valid programs. Instead, the model produces135

arbitrary assembly code, and correctness is verified post hoc via compilation and test execution. We136

train an LLM using reinforcement learning (see Section 3.3) to generate candidates that both satisfy137

correctness and achieve performance improvements.138

3.2 Dataset Construction139

We construct our dataset using C programs from CodeNet [62], a large-scale corpus of competitive140

programming submissions. Each dataset instance is a tuple (C,P, T ), where C is the original C141

source code, P = gcc_O3(C) is the corresponding x86-64 assembly generated by compiling C142

with gcc at the -O3 optimization level, and T = {(xi, yi)}ni=1 is the test set. Since not all CodeNet143

problems include test inputs, we adopt those provided by prior work [18] to define xi, but discard144

their output labels. Instead, we regenerate each output yi by executing the original submission on145

input xi, as many CodeNet programs are not accepted solutions, and even accepted ones do not146

reliably pass all test cases.147

Given the scale of CodeNet, which contains over 8 million C and C++ submissions, we sample148

a subset for this study. To focus on performance-critical cases, we sample programs that exhibit149

the highest relative speedup from gcc -O0 (no optimization) to gcc -O3 (maximum optimization).150

Such strategy serves two purposes: (1) it favors programs with complex logic that lead to suboptimal151

performance under -O0 and can be effectively optimized by -O3, and (2) it creates a more challenging152

setting by starting from code that has already benefited from aggressive compiler optimizations.153

If an LLM can generate code that further improves upon gcc -O3, it suggests that the model can154

outperform the compiler’s “expert” solution. The final dataset consists of 7,872 training programs155

and 200 held-out evaluation programs, with additional statistics provided in Section 4.156

3.3 Reinforcement Learning157

We conceptualize our task as a standard contextual multi-armed bandit problem [63], defined by a158

context space S, an action space A, and a reward function r : S × A → R. Each context s ∈ S159

represents a problem instance, comprising the source program C, its baseline assembly P , and the160

associated test cases T . An action a ∈ A corresponds to generating a candidate assembly program P̃ .161

The reward function r(s, a) evaluates the quality of the generated program based on correctness and162

performance. We will describe different designs of the reward function later. A policy π : S → ∆(A)163
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maps a context s to a probability distribution over actions and samples an action a ∈ A stochastically.164

Given a distribution µ over problem instances, the expected performance of a policy π under reward165

function r is expressed as Es∼µ,a∼π(·|s) [r(s, a)]. The objective is to find a policy that maximizes166

this expected reward.167

Optimization with PPO. We train the policy using Proximal Policy Optimization (PPO) [58], a168

first-order policy-gradient algorithm that stabilizes training by constraining each policy update to169

remain close to the previous one. Specifically, PPO maximizes a clipped surrogate objective of the170

form Es,a

[
min

(
ρ(θ)Â, clip(ρ(θ), 1− ϵ, 1 + ϵ) Â

)]
, where ρ(θ) = πθ(a | s)/πθold(a | s) is the171

probability ratio between the current and previous policy, Â is the estimated advantage of action a in172

state s, and ϵ is a clipping coefficient that limits the policy update to a small trust region. We use a173

critic model to estimate Â, and compute rewards based on the correctness and execution time of the174

generated program, eliminating the need for a separate reward model.175

Reward Function Design. As defined in our contextual bandit setup, the reward function r :176

S × A → R assigns a scalar score to each (context, action) pair. Each context s ∈ S consists of177

the source program C, the baseline assembly P , and a test set T = {(xi, yi)}ni=1. An action a ∈ A178

corresponds to a generation procedure that produces a candidate assembly program P̃ = gen(a).179

We define two auxiliary metrics for computing reward:180

pass(s, a) = 1
|T |

∑
(x,y)∈T

1[P̃ (x) = y], speedup(s, a) = t(P )/t(P̃ ),

which respectively denote the fraction of test cases passed and the speedup of the generated program181

P̃ relative to the baseline P . We evaluate two reward function variants:182

1. Correctness-Guided Speedup (CGS):183

r(s, a) =


−1, if P̃ fails to compile,

pass(s, a), if some tests fail,

1 + α · speedup(s, a), if all tests pass.

2. Speedup-Only (SO):184

r(s, a) =

{
0, if P̃ fails to compile or any test fails,

speedup(s, a), otherwise.

In CGS, the constant α controls the relative importance of speedup once full correctness is achieved185

(i.e., all test cases pass). The CGS reward provides a dense signal by assigning intermediate credit for186

successful compilation and partially correct outputs, guiding the policy even when the final objective187

is not yet met. In contrast, SO defines a more direct and sparse objective, assigning nonzero reward188

only to programs that are both correct and performant, thereby rewarding only the terminal goal of189

achieving speedup.190

4 Experimental Setup191

Split # Prog. Avg. Tests Avg. LOC
C Assembly

Training 7,872 8.86 22.3 130.3
Evaluation 200 8.92 21.9 133.3

Table 1: Dataset statistics across training and evaluation
splits. LOC = lines of code.

Dataset. We describe our dataset con-192

struction approach in Section 3.2. Each193

instance consists of a C source program194

C, the corresponding gcc -O3 compiled195

assembly P , and a set of test cases T for196

correctness evaluation. The final dataset197

contains 7,872 training programs and 200198

evaluation programs, with average pro-199

gram lengths and test case counts sum-200

marized in Table 1.201
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Prompts. For each instance, we construct a prompt that includes the original C program along with202

the generated assembly using gcc -O3. All test cases are withheld from the model. The model is203

instructed to generate only the optimized x86-64 assembly code. We show the prompt template in204

Appendix A.2.205

Metrics. We evaluate each model using both correctness and performance metrics. Compile pass206

is the percentage of problems for which the generated assembly compiles to binary executable207

successfully, while test pass is the percentage of problems where the compiled code passes all test208

cases. For a given problem, any single failed test case is considered a failure for the test pass metric.209

Both metrics are computed across the entire validation set. For performance, we measure the relative210

speedup over the gcc -O3 baseline. As defined in Section 3.1, we assign a default speedup of 1× to211

any candidate that fails to compile, fails any test case, or is slower than the baseline. This reflects the212

practical setting where a system can fall back to the gcc -O3 output, resulting in no performance213

gain. We report the 25th, 50th (median), and 75th percentiles of speedup to capture distributional214

behavior, along with the average speedup over the entire evaluation set.215

Models. We evaluate 21 state-of-the-art language models spanning a diverse range of archi-216

tectures. Our benchmark includes frontier proprietary models such as gpt-4o [64], o4-mini,217

gemini-2.0-flash-001 [65], and claude-3.7-sonnet, as well as open-source families such as218

Llama [66], DeepSeek [67], and Qwen [25]. In addition, we include models distilled from DeepSeek-219

R1 [68] based on Qwen and Llama. Finally, we evaluate recent compiler foundation models [39, 40]220

that are pre-trained on assembly code, building upon Code Llama and designed specifically for221

compiler-related tasks. All open-source models are instruction-tuned.222

Performance Measurement. To ensure an accurate performance evaluation, we use223

hyperfine [69], a benchmarking tool that reduces measurement noise by performing warmup224

runs followed by repeated timed executions. For each program’s execution, we discard the first three225

runs and report the average runtime over the next ten runs.226

Implementation. We implement our customized reinforcement learning reward functions within227

the VERL framework [70], which enables fine-tuning of LLMs using Proximal Policy Optimization228

(PPO). As part of this setup, we build a task-specific environment that handles program compilation,229

test execution, and runtime measurement, as detailed in Section 3.3. This environment provides the230

model with direct scalar feedback based on both functional correctness and execution performance.231

Training Configurations. Among all evaluated models (see Table 2), we select232

Qwen2.5-Coder-7B-Instruct for training due to its strongest correctness results and sub-233

stantial room for performance improvement, while intentionally avoiding compiler-specific234

foundation models to preserve generality. Training is performed on a single node with four A100235

GPUs. Full hyperparameter settings are provided in Appendix A.1.236

5 Results237

5.1 Evaluation of Different Models238

Table 2 presents results across evaluated models. Most models struggle to generate performant239

assembly: the majority yield only 1.00× speedup, with low compile and test pass rates. Among240

baseline models, claude-3.7-sonnet and DeepSeek-V3 perform best, achieving test pass rates241

above 40% and average speedups of 1.22× and 1.21×, respectively. Notably, some models such as242

DeepSeek-R1 fail to generate any valid assembly, and o4-mini achieves only 4.5% test pass. These243

results underscore the difficulty of the task and motivate the need for a task-specific approach.244

Compiler foundation models (prefixed with llm-compiler-) are pretrained on assembly code and245

compiler intermediate representations. Among them, llm-compiler-13b demonstrates strong246

performance in both correctness and speedup. In contrast, the fine-tuned variants (-ftd) perform247

poorly, likely because they are adapted for tasks such as disassembling x86-64 and ARM assembly248

into LLVM-IR, rather than optimizing assembly code for execution performance.249
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Model Compile
Pass

Test
Pass

Speedup Percentiles Average
Speedup25th 50th 75th

DS-R1-Distill-Qwen-1.5B 0.0% 0.0% 1.00× 1.00× 1.00× 1.00×
DeepSeek-R1 0.0% 0.0% 1.00× 1.00× 1.00× 1.00×
DS-R1-Distill-Llama-70B 5.5% 0.0% 1.00× 1.00× 1.00× 1.00×
DS-R1-Distill-Qwen-14B 11.5% 0.5% 1.00× 1.00× 1.00× 1.00×
gpt-4o-mini 44.5% 1.0% 1.00× 1.00× 1.00× 1.00×
Llama-4-Maverick-17B 77.5% 7.0% 1.00× 1.00× 1.00× 1.02×
Llama-3.2-11B 84.0% 21.0% 1.00× 1.00× 1.00× 1.02×
gpt-4o 81.0% 5.0% 1.00× 1.00× 1.00× 1.02×
Llama-4-Scout-17B 68.5% 5.5% 1.00× 1.00× 1.00× 1.02×
o4-mini 25.0% 4.5% 1.00× 1.00× 1.00× 1.02×
gemini-2.0-flash-001 57.5% 4.0% 1.00× 1.00× 1.00× 1.03×
Qwen2.5-72B 59.5% 7.5% 1.00× 1.00× 1.00× 1.03×
Llama-3.2-90B 82.5% 15.0% 1.00× 1.00× 1.00× 1.05×
Qwen2.5-Coder-7B 79.0% 61.0% 1.00× 1.00× 1.00× 1.10×
DeepSeek-V3 94.0% 43.0% 1.00× 1.00× 1.40× 1.21×
claude-3.7-sonnet 94.5% 58.5% 1.00× 1.10× 1.45× 1.22×

llm-compiler-7b-ftd 2.0% 2.0% 1.00× 1.00× 1.00× 1.00×
llm-compiler-13b-ftd 2.5% 2.0% 1.00× 1.00× 1.00× 1.01×
llm-compiler-7b 55.0% 54.0% 1.00× 1.00× 1.00× 1.09×
llm-compiler-13b 60.5% 59.5% 1.00× 1.27× 1.63× 1.34×

Qwen2.5-Coder-7B-PPO (Ours) 96.0% 96.0% 1.21× 1.42× 1.66× 1.47×

Table 2: Comparison of LLMs on our assembly optimization benchmark. We report compilation
success rate, test pass rate, and average speedup over the gcc -O3 baseline. All open-source models
are instruction-tuned. We evaluate general-purpose foundational models, compiler-specific foundation
models, and our PPO-trained model, which improves average speedup from 1.10× to 1.47×.

We select Qwen2.5-Coder-7B-Instruct for RL training due to its strong compile pass rate (79.0%)250

and highest test pass rate (61.0%) among models. After PPO fine-tuning, it achieves 96.0% on both251

metrics and increases average speedup from 1.10× to 1.47×. Notably, it is the only model to exhibit252

meaningful speedup even at the 25th percentile, and it outperforms all other models across all253

evaluation metrics, including correctness, average speedup, and speedup percentiles.254

5.2 Ablation Study of Reward Function Design255

Method Compile Pass Test Pass Avg. Speedup

Base Model 79.0% 61.0% 1.10x
RL w/ CGS 95.5% 94.5% 1.38×
RL w/ SO 96.0% 96.0% 1.47×

Table 3: Ablation study comparing reward function
variants. CGS provides intermediate reward shaping,
while SO uses a sparse and terminal signal.

We evaluate two reward designs for RL:256

Correctness-Guided Speedup (CGS) and257

Speedup-Only (SO). CGS penalizes compi-258

lation failures, rewards partial correctness,259

and scales final reward by speedup once all260

tests pass. SO uses speedup as the sole re-261

ward, but only when all tests pass.262

As shown in Table 3, both variants achieve263

high compile pass rates and test pass rates,264

but SO yields better performance. Remov-265

ing intermediate shaping appears to help the266

model focus on terminal objectives. We also tried varying the CGS scaling factor α (5 or 10) and267

found that it has a negligible effect.268

These results indicate that sparse, terminal rewards (SO) are more effective in this setting. Since the269

base model already reaches 61.0% test pass, correctness is not the bottleneck; optimizing directly for270

speedup offers a stronger training signal.271
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Method Compile Pass Test Pass Avg. Speedup
w/ O3 w/o O3 w/ O3 w/o O3 w/ O3 w/o O3

DeepSeek-V3 94.0% 25.5% 43.0% 4.5% 1.21× 1.02×
claude-3.7-sonnet 94.5% 53.0% 58.5% 16.0% 1.22× 1.07×
llm-compiler-7b 55.0% 12.0% 54.0% 0.0% 1.09× 1.00×
llm-comiler-13b 60.5% 2.0% 59.5% 0.5% 1.34× 1.00×
Qwen2.5-Coder-7B 79.0% 0.0% 61.0% 0.0% 1.10× 1.00×
Qwen2.5-Coder-7B-PPO 96.0% 0.0% 96.0% 0.0% 1.47× 1.00×

Table 4: Ablation study on the impact of including gcc -O3 baseline assembly in the prompt. Each
metric is reported with and without access to the baseline assembly generated by the compiler.

5.3 Can LLMs Directly Compile Programs without Baseline Assembly?272

In our main evaluation, we always include the baseline assembly generated by gcc -O3 in the prompt.273

While this baseline offers a strong starting point for further optimization, it may also bias the model274

toward replicating patterns from the compiler’s output. In this subsection, we investigate a more275

challenging setup: Can large language models directly compile C code into performant assembly276

without relying on the compiler-generated baseline?277

We compare two settings in evaluation: (1) providing both the C source and the gcc -O3 assembly278

(default, “w/ O3” in Table 4), and (2) providing only the C source (“w/o O3”). For each model, we279

report compile success rate, test pass rate, and average speedup.280

Table 4 shows that removing the baseline assembly leads to severe degradation. For instance,281

Qwen2.5-Coder-7B-PPO drops from 96.0% correctness and 1.47× speedup to 0.0% and 1.00×,282

respectively. Even strong models like Claude-3.7-sonnet suffer substantial declines.283

These results suggest that direct compilation from C to optimized assembly remains challenging284

for current LLMs. The compiler output provides a reliable reference for LLMs. This supports our285

framework design: using gcc -O3 as an effective starting point for reinforcement learning. While286

future work may explore direct generation from C, we expect it to be substantially more challenging287

due to the absence of compiler guidance.288

5.4 Case Study289

Figure 2 presents a representative example where large language models (LLMs), including gpt-290

4o and claude-3.7-sonnet, discover an optimization that outperforms a state-of-the-art compiler.291

The original C function computes the population count (i.e., the number of set bits) by repeatedly292

shifting the input and accumulating its least significant bit. The assembly code produced by gcc293

-O3 preserves this loop structure, relying on explicit bitwise operations and conditional branches to294

compute the result.295

In contrast, the LLM generates a significantly more concise and efficient implementation that replaces296

the entire loop with a single popcnt instruction. This instruction, supported by modern x86-64297

architectures, performs the same computation in one operation, thereby reducing both instruction298

count and runtime overhead.299

Such a transformation is beyond the reach of gcc -O3, which applies a predetermined sequence of300

rule-based optimization passes and does not conduct semantic-level rewrites of this kind. In this case,301

the language model is able to synthesize functionally equivalent code that exploits hardware-level302

instructions not utilized by the compiler. This demonstrates the potential of language models to303

optimize assembly by exploring a broader space of semantics-preserving program transformations.304

6 Discussion305

Limitations. A key limitation of our approach is the absence of formal correctness guarantees.306

Although we validate generated programs using input-output test cases, such testing is inherently307

incomplete and may overlook edge cases. Consequently, unlike fully verified systems such as308

Stoke [11], LLM-generated assembly may produce wrong results or exhibit undefined behavior. This309
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C Code

int f(unsigned long x)
{

int res = 0;
while (x > 0)
{

res += x & 1;
x >>= 1;

}
return res;

}

GCC -O3 Output

.L0:
xorl %eax , %eax
testq %rdi , %rdi
je .L2

.L1:
movq %rdi , %rdx
andl $0x1 , %edx
addq %rdx , %rax
shrq $0x1 , %rdi
jne .L1
retq

.L2:
retq

LLM Generated

.L0:
popcnt %rdi , %rax
retq

Figure 2: Case study comparing the C code, baseline assembly produced by gcc -O3, and optimized
assembly generated by the LLM. The model successfully replaces the loop with the specialized
hardware instruction popcnt, resulting in a significantly more concise implementation.

limitation reflects a broader challenge in programming languages: verifying the semantic equivalence310

between two arbitrary programs is undecidable in the general case.311

Another limitation lies in the inherent randomness of performance measurement on real hardware.312

Although we mitigate noise through repeated measurements, low-level hardware fluctuations can still313

introduce variability into speedup estimates. Such nondeterminism is difficult to eliminate entirely in314

real-world settings. While prior work has adopted simulator-based evaluation [6], simulators may fail315

to faithfully capture the actual hardware performance.316

Finally, the observed performance gains may not generalize across machines. The model may317

implicitly learn and exploit hardware-specific characteristics like cache size. As a result, a model318

trained on one machine may not retain its effectiveness when deployed on a different machine.319

Future Work. While we use Proximal Policy Optimization (PPO), future work may explore alter-320

native reinforcement learning algorithms such as GRPO [71]. Expanding to larger and more diverse321

datasets, particularly those involving performance-critical code beyond competitive programming,322

would make the setting more realistic and applicable. Combining reinforcement learning with super-323

vised fine-tuning may also be beneficial, although it remains unclear whether training on gcc -O3324

outputs would provide additional gains. Another direction is to incorporate an interactive refinement325

loop, where the model iteratively updates its output using feedback from errors or performance326

measurements. Finally, extending our approach from x86-64 to other architectures such as MIPS,327

ARM, or GPU programming could broaden its applicability and impact.328

7 Conclusion329

We explore the use of large language models (LLMs) for optimizing assembly code, a setting where330

fine-grained control over execution enables performance improvements that are difficult to express in331

high-level languages. While traditional compilers rely on fixed rule-based transformations, they face332

fundamental limitations due to the complexity of the optimization space. To address this, we apply333

reinforcement learning to fine-tune LLMs with Proximal Policy Optimization (PPO), using a reward334

function based on correctness and speedup over the gcc -O3 baseline. To support this effort, we335

introduce a benchmark of 8,072 real-world C programs with compiler-generated baseline assembly336

and test cases. Our resulting model, Qwen2.5-Coder-7B-PPO, achieves the highest compile and test337

pass rates (96.0%) and the best average speedup (1.47×), outperforming all 20 other models evaluated338

across all metrics. These results indicate that reinforcement learning can unlock the potential of339

LLMs to serve as effective optimizers for assembly code performance.340
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A Appendix537

A.1 Training Configurations538

Component Setting

Base model Qwen2.5-Coder-7B-Instruct
Actor’s learning rate 1e-6
Critic’s learning rate 1e-5
Batch size 16
Epoch 1
Max prompt length 2000 tokens
Max response length 2000 tokens
Gradient checkpointing Enabled (both actor and critic)
Rollout temperature 0.5
Hardware 4× A100 GPUs

Table A1: Key training configurations for VERL PPO fine-tuning.

A.2 Prompt Template539

Prompt Template

Given the following C code and assembly code, your task is to generate highly
optimized x86-64 assembly code.

C Code:

<C code here>

Assembly Code:

<baseline assembly code here produced by gcc -O3>

Only output the optimized assembly code. Do not include any other text.
Do not write any comments in the assembly code. Wrap the assembly code in
assembly tags.
Optimized Assembly Code:

540
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a complete (and correct) proof?591

Answer: [NA]592
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Justification: The paper does not include theoretical results.593

Guidelines:594

• The answer NA means that the paper does not include theoretical results.595

• All the theorems, formulas, and proofs in the paper should be numbered and cross-596

referenced.597

• All assumptions should be clearly stated or referenced in the statement of any theorems.598

• The proofs can either appear in the main paper or the supplemental material, but if599

they appear in the supplemental material, the authors are encouraged to provide a short600

proof sketch to provide intuition.601

• Inversely, any informal proof provided in the core of the paper should be complemented602

by formal proofs provided in appendix or supplemental material.603

• Theorems and Lemmas that the proof relies upon should be properly referenced.604

4. Experimental result reproducibility605

Question: Does the paper fully disclose all the information needed to reproduce the main ex-606

perimental results of the paper to the extent that it affects the main claims and/or conclusions607

of the paper (regardless of whether the code and data are provided or not)?608

Answer: [Yes]609

Justification: We clearly discuss the experiment setup in Section 4 with additional details in610

Appendix A.611

Guidelines:612

• The answer NA means that the paper does not include experiments.613

• If the paper includes experiments, a No answer to this question will not be perceived614

well by the reviewers: Making the paper reproducible is important, regardless of615

whether the code and data are provided or not.616

• If the contribution is a dataset and/or model, the authors should describe the steps taken617

to make their results reproducible or verifiable.618

• Depending on the contribution, reproducibility can be accomplished in various ways.619

For example, if the contribution is a novel architecture, describing the architecture fully620

might suffice, or if the contribution is a specific model and empirical evaluation, it may621

be necessary to either make it possible for others to replicate the model with the same622

dataset, or provide access to the model. In general. releasing code and data is often623

one good way to accomplish this, but reproducibility can also be provided via detailed624

instructions for how to replicate the results, access to a hosted model (e.g., in the case625

of a large language model), releasing of a model checkpoint, or other means that are626

appropriate to the research performed.627

• While NeurIPS does not require releasing code, the conference does require all submis-628

sions to provide some reasonable avenue for reproducibility, which may depend on the629

nature of the contribution. For example630

(a) If the contribution is primarily a new algorithm, the paper should make it clear how631

to reproduce that algorithm.632

(b) If the contribution is primarily a new model architecture, the paper should describe633

the architecture clearly and fully.634

(c) If the contribution is a new model (e.g., a large language model), then there should635

either be a way to access this model for reproducing the results or a way to reproduce636

the model (e.g., with an open-source dataset or instructions for how to construct637

the dataset).638

(d) We recognize that reproducibility may be tricky in some cases, in which case639

authors are welcome to describe the particular way they provide for reproducibility.640

In the case of closed-source models, it may be that access to the model is limited in641

some way (e.g., to registered users), but it should be possible for other researchers642

to have some path to reproducing or verifying the results.643

5. Open access to data and code644

Question: Does the paper provide open access to the data and code, with sufficient instruc-645

tions to faithfully reproduce the main experimental results, as described in supplemental646

material?647
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Answer: [No]648

Justification: The code and data are being prepared for release and will be made publicly649

available with full instructions upon acceptance.650

Guidelines:651

• The answer NA means that paper does not include experiments requiring code.652

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/653

public/guides/CodeSubmissionPolicy) for more details.654

• While we encourage the release of code and data, we understand that this might not be655

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not656

including code, unless this is central to the contribution (e.g., for a new open-source657

benchmark).658

• The instructions should contain the exact command and environment needed to run to659

reproduce the results. See the NeurIPS code and data submission guidelines (https:660

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.661

• The authors should provide instructions on data access and preparation, including how662

to access the raw data, preprocessed data, intermediate data, and generated data, etc.663

• The authors should provide scripts to reproduce all experimental results for the new664

proposed method and baselines. If only a subset of experiments are reproducible, they665

should state which ones are omitted from the script and why.666

• At submission time, to preserve anonymity, the authors should release anonymized667

versions (if applicable).668

• Providing as much information as possible in supplemental material (appended to the669

paper) is recommended, but including URLs to data and code is permitted.670

6. Experimental setting/details671

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-672

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the673

results?674

Answer: [Yes]675

Justification: We provide the experimental details in Section 4 and Appendix A.676

Guidelines:677

• The answer NA means that the paper does not include experiments.678

• The experimental setting should be presented in the core of the paper to a level of detail679

that is necessary to appreciate the results and make sense of them.680

• The full details can be provided either with the code, in appendix, or as supplemental681

material.682

7. Experiment statistical significance683

Question: Does the paper report error bars suitably and correctly defined or other appropriate684

information about the statistical significance of the experiments?685

Answer: [Yes]686

Justification: We run each performance measurement 10 times with 3 warmup runs, and687

report 25th, 50th, 75th percentiles and average speedup to capture variability.688

Guidelines:689

• The answer NA means that the paper does not include experiments.690

• The authors should answer "Yes" if the results are accompanied by error bars, confi-691

dence intervals, or statistical significance tests, at least for the experiments that support692

the main claims of the paper.693

• The factors of variability that the error bars are capturing should be clearly stated (for694

example, train/test split, initialization, random drawing of some parameter, or overall695

run with given experimental conditions).696

• The method for calculating the error bars should be explained (closed form formula,697

call to a library function, bootstrap, etc.)698

• The assumptions made should be given (e.g., Normally distributed errors).699
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• It should be clear whether the error bar is the standard deviation or the standard error700

of the mean.701

• It is OK to report 1-sigma error bars, but one should state it. The authors should702

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis703

of Normality of errors is not verified.704

• For asymmetric distributions, the authors should be careful not to show in tables or705

figures symmetric error bars that would yield results that are out of range (e.g. negative706

error rates).707

• If error bars are reported in tables or plots, The authors should explain in the text how708

they were calculated and reference the corresponding figures or tables in the text.709

8. Experiments compute resources710

Question: For each experiment, does the paper provide sufficient information on the com-711

puter resources (type of compute workers, memory, time of execution) needed to reproduce712

the experiments?713

Answer: [Yes]714

Justification: We provide such details in Section 4 and Appendix A.715

Guidelines:716

• The answer NA means that the paper does not include experiments.717

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,718

or cloud provider, including relevant memory and storage.719

• The paper should provide the amount of compute required for each of the individual720

experimental runs as well as estimate the total compute.721

• The paper should disclose whether the full research project required more compute722

than the experiments reported in the paper (e.g., preliminary or failed experiments that723

didn’t make it into the paper).724

9. Code of ethics725

Question: Does the research conducted in the paper conform, in every respect, with the726

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?727

Answer: [Yes]728

Justification: We have reviewed the NeurIPS Code of Ethics and confirm that our research729

complies fully with its principles.730

Guidelines:731

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.732

• If the authors answer No, they should explain the special circumstances that require a733

deviation from the Code of Ethics.734

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-735

eration due to laws or regulations in their jurisdiction).736

10. Broader impacts737

Question: Does the paper discuss both potential positive societal impacts and negative738

societal impacts of the work performed?739

Answer: [No]740

Justification: The paper focuses on techniques for code optimization. We do not explicitly741

discuss societal impacts, as no direct applications or harms are identified.742

Guidelines:743

• The answer NA means that there is no societal impact of the work performed.744

• If the authors answer NA or No, they should explain why their work has no societal745

impact or why the paper does not address societal impact.746

• Examples of negative societal impacts include potential malicious or unintended uses747

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations748

(e.g., deployment of technologies that could make decisions that unfairly impact specific749

groups), privacy considerations, and security considerations.750
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• The conference expects that many papers will be foundational research and not tied751

to particular applications, let alone deployments. However, if there is a direct path to752

any negative applications, the authors should point it out. For example, it is legitimate753

to point out that an improvement in the quality of generative models could be used to754

generate deepfakes for disinformation. On the other hand, it is not needed to point out755

that a generic algorithm for optimizing neural networks could enable people to train756

models that generate Deepfakes faster.757

• The authors should consider possible harms that could arise when the technology is758

being used as intended and functioning correctly, harms that could arise when the759

technology is being used as intended but gives incorrect results, and harms following760

from (intentional or unintentional) misuse of the technology.761

• If there are negative societal impacts, the authors could also discuss possible mitigation762

strategies (e.g., gated release of models, providing defenses in addition to attacks,763

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from764

feedback over time, improving the efficiency and accessibility of ML).765

11. Safeguards766

Question: Does the paper describe safeguards that have been put in place for responsible767

release of data or models that have a high risk for misuse (e.g., pretrained language models,768

image generators, or scraped datasets)?769

Answer: [NA]770

Justification: The paper does not release any models or datasets with high risk of misuse.771

Guidelines:772

• The answer NA means that the paper poses no such risks.773

• Released models that have a high risk for misuse or dual-use should be released with774

necessary safeguards to allow for controlled use of the model, for example by requiring775

that users adhere to usage guidelines or restrictions to access the model or implementing776

safety filters.777

• Datasets that have been scraped from the Internet could pose safety risks. The authors778

should describe how they avoided releasing unsafe images.779

• We recognize that providing effective safeguards is challenging, and many papers do780

not require this, but we encourage authors to take this into account and make a best781

faith effort.782

12. Licenses for existing assets783

Question: Are the creators or original owners of assets (e.g., code, data, models), used in784

the paper, properly credited and are the license and terms of use explicitly mentioned and785

properly respected?786

Answer: [Yes]787

Justification: We use publicly available datasets intended for research use (e.g., CodeNet),788

and all sources of data and models are properly cited with adherence to their license terms.789

Guidelines:790

• The answer NA means that the paper does not use existing assets.791

• The authors should cite the original paper that produced the code package or dataset.792

• The authors should state which version of the asset is used and, if possible, include a793

URL.794

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.795

• For scraped data from a particular source (e.g., website), the copyright and terms of796

service of that source should be provided.797

• If assets are released, the license, copyright information, and terms of use in the798

package should be provided. For popular datasets, paperswithcode.com/datasets799

has curated licenses for some datasets. Their licensing guide can help determine the800

license of a dataset.801

• For existing datasets that are re-packaged, both the original license and the license of802

the derived asset (if it has changed) should be provided.803
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• If this information is not available online, the authors are encouraged to reach out to804

the asset’s creators.805

13. New assets806

Question: Are new assets introduced in the paper well documented and is the documentation807

provided alongside the assets?808

Answer: [No]809

Justification: We plan to release the dataset and model with documentation upon acceptance,810

but they are not publicly available at submission time.811

Guidelines:812

• The answer NA means that the paper does not release new assets.813

• Researchers should communicate the details of the dataset/code/model as part of their814

submissions via structured templates. This includes details about training, license,815

limitations, etc.816

• The paper should discuss whether and how consent was obtained from people whose817

asset is used.818

• At submission time, remember to anonymize your assets (if applicable). You can either819

create an anonymized URL or include an anonymized zip file.820

14. Crowdsourcing and research with human subjects821

Question: For crowdsourcing experiments and research with human subjects, does the paper822

include the full text of instructions given to participants and screenshots, if applicable, as823

well as details about compensation (if any)?824

Answer: [NA]825

Justification: The paper does not involve crowdsourcing or research with human subjects.826

Guidelines:827

• The answer NA means that the paper does not involve crowdsourcing nor research with828

human subjects.829

• Including this information in the supplemental material is fine, but if the main contribu-830

tion of the paper involves human subjects, then as much detail as possible should be831

included in the main paper.832

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,833

or other labor should be paid at least the minimum wage in the country of the data834

collector.835

15. Institutional review board (IRB) approvals or equivalent for research with human836

subjects837

Question: Does the paper describe potential risks incurred by study participants, whether838

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)839

approvals (or an equivalent approval/review based on the requirements of your country or840

institution) were obtained?841

Answer: [NA]842

Justification: The paper does not involve crowdsourcing nor research with human subjects.843

Guidelines:844

• The answer NA means that the paper does not involve crowdsourcing nor research with845

human subjects.846

• Depending on the country in which research is conducted, IRB approval (or equivalent)847

may be required for any human subjects research. If you obtained IRB approval, you848

should clearly state this in the paper.849

• We recognize that the procedures for this may vary significantly between institutions850

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the851

guidelines for their institution.852

• For initial submissions, do not include any information that would break anonymity (if853

applicable), such as the institution conducting the review.854

21



16. Declaration of LLM usage855

Question: Does the paper describe the usage of LLMs if it is an important, original, or856

non-standard component of the core methods in this research? Note that if the LLM is used857

only for writing, editing, or formatting purposes and does not impact the core methodology,858

scientific rigorousness, or originality of the research, declaration is not required.859

Answer: [Yes]860

Justification: The paper investigates using LLMs to optimize assembly code performance,861

making LLM usage central to the core methodology.862

Guidelines:863

• The answer NA means that the core method development in this research does not864

involve LLMs as any important, original, or non-standard components.865

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)866

for what should or should not be described.867
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