Under review as a conference paper at ICLR 2026

TRANSDUCTION IS ALL YOU NEED FOR STRUCTURED
DATA WORKFLOWS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper introduces Agentics, a functional agentic Al framework for building
LLM-based structured data workflow pipelines. Designed for both research and
practical applications, Agentics offers a new data-centric paradigm in which agents
are embedded within data types, enabling logical transduction between structured
states. This design shifts the focus toward principled data modeling, providing a
declarative language where data types are directly exposed to large language models
and composed through transductions triggered by type connections. We present a
range of structured data workflow tasks and empirical evidence demonstrating the
effectiveness of this approach, including data wrangling, text-to-SQL parsing, and
domain-specific multiple-choice question answering.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities in natural language
understanding, reasoning, and tool use. Recent advances in LLM-based agent systems—equipped
with human-level text generation and conversational abilities—have opened promising directions in
software engineering, scientific research, and a wide range of tasks that can be automated (Hosseini &
Seilani, [2025; |Agashe et al., [2025). In the emerging paradigm of agentic AI, LLMs are integrated with
external tools, structured knowledge sources, and memory modules to form specialized agents. These
agents, each designed with distinct functions and behaviors, collaborate through modular reasoning
to solve complex tasks (Acharya et al.,[2025; Moshkovich & Zeltyn, 2025 [Huang & Huang| [2025;
Han et al., 2024).

Despite growing interest in agentic Al, current systems remain poorly suited for structured data
workflows, where inputs and outputs are governed by explicit schemas and semantics (Hopkins et al.|
2022). Embedding structured data into natural language often fails in enterprise use cases such as
analytics and data transformation (Sarirete et al., 2022} Heck, 2024} |Putri & Athoillahl [2024), due to
the lack of compositional guarantees, which leads to brittle workflows, cascading errors, and limited
reproducibility.

While existing frameworks (LangChain, 2025} |[CrewAl Inc., 2025} |Pydantic, 2025b; |Dibia et al.}
2024; Khattab et al.| [2024)) offer modular agent composition and tool integration, they fall short
of addressing the foundational challenge. Namely, how to endow agentic systems with algebraic
structure that ensures robustness, modularity, and interpretability. As a result, these pipelines remain
fragile, i.e., lacking formal semantics and struggling with structured data integration.

To overcome these limitations, we introduce Agentics, a framework for agentic Al grounded in
logical transduction algebra, a formalism for representing and composing transformations between
structured inputs, intermediate states, and outputs. Agentics provides a unifying programming
model for generative structured data workflows, treating each step as an asynchronous transduction
rather than a prompt-chained interaction. This abstraction enables modularity, parallelism, and
schema-constrained transduction, addressing the fragility and lack of formal semantics in existing
agentic pipelines.

At the core of Agentics lies the notion of logical transduction: a typed transformation that maps an
input object of one schema into an output object of another. The key distinction is that Agentics
treats agents as stateless transducers operating over well-defined data types, hence shifting away
from chat-or event-based multi-agent architectures toward a data-centric, functional pipeline. Unlike

Under review as a conference paper at ICLR 2026

class ProductReview (BaseModel) : class SentimentSummary (BaseModel) :
reviewer: str sentiment: Literal| 0
text: str ’]
stars: int reason: str

s 5}, i by

Figure 1: Logical Transduction Applied to Sentiment Summary

conversational agents that rely on serialized dependencies and multi-turn dialogue, Agentics
agents support fully asynchronous execution.

By design, Agent ics exposes a programmatic interface to LLMs in which all input and output data
are represented as typed objects, ensuring schema validation and constraint checking. Interestingly,
such structured types are particularly well handled by LLMs, and align with function-calling patterns,
making them particularly well-suited for reliable and interpretable inference(Rossiello et al., 2021}
2023). Figure [T)illustrates a simple example of logical transduction. A ProductReview object
containing a reviewer’s name, review text, and rating is transduced into a new object that includes a
sentiment label and a rationale. The LLM generates these new fields based on the structured input
and the schema of the target type, no additional prompt engineering is required. Beyond individual
transductions, Agent ics introduces an asynchronous map-reduce style programming model for
asynchronous workflow composition, enabling scalable, and controllable pipelines. In Agentics
programming model, every step is a typed transformation, enabling reproducibility and adaptability
in real-world applications.

Section [2] summarizes the related works and highlight the key difference between Agentics and
existing frameworks. Section 3 develops logical transduction algebra and asynchronous programming
model, Section 4 develops technical implementation of the proposed framework as a Python library,
Section 5 shows experiment results on a wide variety of tasks that are closely related to generative
structured data workflow tasks such as data wrangling|Narayan et al.|(2022)) and text-to-SQL semantic
parsing (Hendrix et al., |[1978; |Androutsopoulos et al., |1995). We also evaluate schema rich domain-
sensitive multiple choice question answering tasks

In this paper, we focus on proposing a new programming model for agentic Al, rather than introducing
novel algorithms or engineered solutions aimed at improving task-specific performance. Nevertheless,
our evaluation shows that Agentics achieves competitive or improved results due to the structured
prompting compared to carefully selected baselines. Our emphasis is on the advantages of shifting
toward a data-centric paradigm, demonstrating how this approach simplifies the development of
LLM-based workflows while enhancing compositionality, scalability, and execution efficiency.

2 RELATED WORK

For decades, Al has been framed as an effort to emulate human intelligence. The Turing Test exempli-
fies this anthropomorphic ideal: a machine is deemed intelligent if its conversation is indistinguishable
from a human’s. The rise of LLMs has amplified this framing. By enabling rapid prototyping of intel-
ligent systems through natural language prompts, developing Al agents has become more intuitive
and accessible. Consequently, many agentic Al frameworks adopt agentic metaphors such as memory,
planning, and tool use, often realized via chat-based interfaces.

This approach has driven remarkable progress in consumer applications. Yet, as tasks demand greater
semantic precision, prompt-centric methods often prove brittle, opaque, and hard to scale, especially in

"Due to the space limitation, we provide details of implementation of each task and additional tasks in the
Appendix.

Under review as a conference paper at ICLR 2026

structured data environments where reproducibility and accuracy are paramount. Agentic frameworks
typically position the agent as the locus of intelligence, with data as passive input. While effective
for open-ended tasks, this model struggles in deterministic workflows. In enterprise settings where
querying, transformation, and integration of structured data are common, conversational agents can
introduce error propagation and unpredictable behavior.

To address the limitations of prompt-centric agentic systems, recent research has introduced tech-
niques such as guardrails (Ouyang et al., 2022} [Dong et al., 2024} Zhang et al.||2024), self-reflection
(Shinn et al.l 2023} |Asai et al., [2024), and correction strategies (Madaan et al., 2023} |Pan et al.,
2024). While these methods enhance reliability, most frameworks still depend on free-form text or
loosely structured prompts that remain fragile and difficult to verify, especially in tasks requiring
high semantic precision. In practice, techniques that offer more reliable interfaces such as structured
decoding based on predefined schemas (Rossiello et al.| 2023} [Kwon et al., |2023a) or type-safe
libraries (Pydantic, 2025a) have gained traction. These approaches are increasingly supported by
modern software stacks built around LLMs.

The shift toward structured data computation is reflected in several emerging frameworks.
Pydantic—AT (Pydantic, 2025b) emphasizes type-safe agentic programming and serves as agent
framework for building structured Al applications using Pydantic types and multi-agent systems.
LangGraph (LangChain, [2025) enables orchestration of stateful agents over finite state machines,
supporting complex control flows. CrewAT (CrewAl Inc.|{2025) demonstrates strong performance
in multi-agent coordination and message passing between agents and tools. DSPy (Khattab et al.|
2024) pioneers declarative abstractions for prompt engineering and optimization, tightly coupled
with structured templates. While these frameworks have evolved toward conversational multi-agent
coordination in networked environments, Agent ics proposes a shift toward computation centered
on data semantics and type-driven transformations—enabling more robust, scalable, and interpretable
workflows for generative structured data tasks.

3 LoGICAL TRANSDUCTION ALGEBRA

Agentics leverages asynchronous, parallel LLM inference to support enterprise-scale workflows
over structured data. To ground this capability, we introduce Logical Transduction Algebra (LTA): a
typed, compositional calculus for building, analyzing, and optimizing LLM-powered pipelines. Our
work is closely related to relational algebra (Codd, [1970) and the MapReduce programming model
(Dean & Ghemawat, |2008). Here, we present an abridged version of the formal Logical Transduction
Algebra in the main paper. The full details are provided in the Appendix.

A logical transduction is a semantically grounded transformation from an object x of type X to
an object y of type Y such that each field of y is logically justified by information in 2 under the
constraints of the source/target schemas. Concretely, schemas are realized as Pydantic types
in Python library implementation, which allows type-checking and constraints make intermediate
states explicit and auditable, while aligning naturally with LLM function-calling behaviors. Logical
transduction is executed between any two Agentics (AGs).

Definition: Agentics (AG) Let © be the universe of types. A type T € © is a finite set of named
slots T' = {(s;,Ts,;)} with Ts, € ©. An Agentic structure AG bundles a schema and a list of instances:
AG = { Satype 1 ©, Sgtates : List[Sarype | }-

We write AG[X] for an agentic structure with schema X and x = AG[X] for a particular instance
list. Concatenation of state lists endows instances of a fixed AG[X] with a monoid structure, giving a
simple but useful algebra over batches.

Definition: Transduction operator (<) The basic operator of LTA is the left-shift <, which maps
a source object into the target schema:

y = AG[Y| <z where Yy.Sgues ={y : y satisfies Y and is logically inferred from x }.

Operationally, < renders typed inputs into prompts, invokes an LLM (optionally with tools/RAG/few-
shot), and parses/validates the result into the target type Y.

Under review as a conference paper at ICLR 2026

Definition: Prompt function (P) A prompt function P : List[T] — st r serializes typed states to
text, bridging structured data and LLM inputs. Zero-shot transduction applies P per state:

yli] = AGY] < P(x[i]),

. The default prompt function of AG is the pydantic model_dump() method with returns a json
dictionary representing the state.

Lemma: Properties of LTA Let the transduction context , i.e. the LLM, decoding settings, tools,
and few-shot used by the AG, fixed. Then the following conditions applies:

* Conditional determinism: Re-invoking < on the same x under the same context yields the
same ¥, enabling reproducibility.

* Statelessness: y depends only on z and the context, not on other inputs, enabling asyn-
chronous parallel execution.

» Compositionality: f y = AG[Y] <« x and z = AG[Z] < y, then z = AG[Z] <
AG[Y] < x, giving functional-style pipeline composition.

aType Operators In LTA, operations among agentic types (aTypes) provide the foundation for
composing and reasoning about structured workflows. Each type X is defined as a set of named
slots (s;, Ts,), and standard set operations are applied component-wise: the union X U Y collects all
slots present in either schema, the intersection X N'Y keeps only shared slots, the difference X \ Y
removes slots from X that also appear in Y, and the Cartesian product X Xx Y builds composite types
pairing slots from both. At the level of instances, Agentic structures AG[X] (a schema plus a list of
states) form a monoid under concatenation of state lists, with the empty instance as identity.

Asynchronous MapReduce. To scale beyond single-step transduction, LTA provides two higher-
order operators:

aMap : (AG[X], f) — AG[Y], Reduce : (AG[X],g) — AG[Y],

where f : X — List]Y] is applied independently to each z; (filter/transform/fan-out), and
g : List{X] — Y aggregates many states (summaries, rankings, joins). Because < is stateless,
aMap execute the function f, which might embed transductions, in asynchronous fashion. In con-
trast, Reduce functions takes all the states of the input agentic at once, and therefore cannot be
asyncronously executed.

In short, LTA provides a formalism to make assumptions explicit; < provides a uniform contract
between stages; aMap/aReduce expose parallel structure and enable hierarchical summaries; and
conditional determinism/statelessness support reproducible, high-throughput execution. Together,
LTA turns LLM pipelines from brittle prompt chains into modular, optimized, and auditable programs.

4 TECHNICAL IMPLEMENTATION

Agentics framework is distributed as a Python library As briefly introduced in the logical transduc-
tion algebra, we define the Agentic structure AG as a container for a list of typed objects. Within this
framework, LLM inference is conceptualized as logical transduction, i.e., the process of inducing one
object from another based on a predefined type schema. The framework is built upon two essential
components: the Agentic structure, implemented as the metaclass AG, and the Transducer, built on
top of Pydant ic to enable type-safe object transformation. In this section, we describe these core
elements and present examples that illustrate the Agentic programming model in practice.

4.1 EXAMPLE USAGE OF META-CLASS AG

The meta-class AG is a lightweight yet expressive container for typed data and its execution context.
It provides the following three essential capabilities. First, it binds a typed schema, which we call
atype, apydantic.BaseModel subclass. Second, it holds a list of states, where each state
is a validated instance of at ype. Third, it carries an execution context of transducer, such as 1 1m,
tools, prompt template, batch size, and decoding parameters.

Under review as a conference paper at ICLR 2026

Meta-Class AG The meta-class AG allows structured states to be natively represented in Python,
while remaining agnostic to the specific LLM providers (e.g., OpenAl, Google DeepMind, Anthropic,
Meta Al, WatsonX, etc). The following pseudo code shows an example of AG.

class AG (BaseModel) :

atype: Type[BaseModel] # target schema (Pydantic model)
states: List[BaseModel] = [] # instances of ’atype’

execution context

1lm: Any = None # LLM client/handle

tools: Optional[List[Tool]l] = [] # optional tool registry
prompt_fn: Optional[Callable] = lambda x: x.model_dump ()

batch_size: int = 20 # async batch size

Given an atype and a list of typed instances, an instance of AG carries the st ates and manages
their transformation either through logical transduction or via asynchronous functions in a map/reduce-
style program.

Pydantic Models as Schemas An atype can be any subclass of Pydantic BaseModel. For
instance, a news schema St ockNews may be defined as follows, and an AG class news can be

instantiated with states of type St ockNews.

class StockNews (BaseModel) :

ticker: str # e.g., "AAPL"
content: str # raw news article text
date: datetime # publication time
news = AG(atype=StockNews, states=[StockNews (ticker= , content=

,date=
) 1)

Note that AG instances behave like a typed list enriched with a type system.

news = AG.from_csv (

for article in news: # iterate states like a list
print (article.ticker)
news.add_attribute(, str)

news.rebind_atype (StockNews) # rebind to new schema with added attribute.

Logical Transduction (<) Agentics framework overloads the < operator to express logical
transduction between agentic structures. The left operand is the farget AG, which becomes populated
by transducing the states of the right operand. The following examples shows application of logical
transduction to sentiment summary by populating the Sent iment Score instances from news.

class SentimentScore (BaseModel) :
ticker: str

sentiment: float # normalized score in [-1, 1]
label: str # "pos", "neutral", "neg"
output = await (AG(atype=SentimentScore) << news)
#output [0] : SentimentScore (ticker="AAPL", sentiment=0.8, label="pos")

Map/Reduce Paradigm The meta-class AG applies asynchronous mapping to its list of states,
executing either logical transduction or a (possibly asynchronous) function f via AG.amap (£) on
each state independently. Since transductions are stateless, amap evaluations over multiple states
can run asynchronously in parallel. In other words, the mapping can be batched for efficiency. In
contrast, AG.aReduce (f) aggregates a collection of states into a single (or small set of) output(s).
Because it consumes the entire list of states, it operates synchronously and is not parallelizable.

Example Workflow By chaining logical transduction (<), aMap, and aReduce, a complex
workflow can be expressed declaratively. For example, a sentiment-driven stock ranking can be built

Under review as a conference paper at ICLR 2026

as follows. This combination of typed schemas, logical transduction, and asynchronous map-reduce
execution yields workflows that are modular, interpretable, and highly scalable.

(1) Gather news for each ticker

news_ag = await AG (atype=StockNews) .amap (fetch_news_for_ticker)
(2) Extract sentiment per article

scores_ag = await AG (atype=SentimentScore) << news_ag

(3) Aggregate to stock-level sentiment

stock_sentiment = scores_ag.aReduce (group_by_ticker_mean)
(4) Rank portfolio by sentiment
portfolio_ranking = stock_sentiment.aReduce (rank_portfolio)

4.2 PYDANTICTRANSDUCER

Logical transduction triggers the creation and execution of a PydanticTransducer, whichis a
stateless agent whose role is to generate a valid instance of the target at ype given text input. The
textual input can represent virtually any concept accessible to an LLLM, while the structured output
ensures reliability in downstream tasks. Because agents in Agent ics avoids shared conversational
memory, it naturally supports asynchronous execution and efficient scale-out.

To ensure high throughput and responsiveness
across datasets of varying sizes, the transduction Agentics execution time vs batch size
operator processes data in configurable batches,
typically ranging from 8 to 32 items. As shown
in the figure on the right, execution time de-
creases as batch size increases from 1, with per-
formance gains saturating around a batch size of
32. This trend reflects near-linear improvements
in processing speed across all tasks, highlighting
the efficiency of batched execution. The under-
lying asynchronous map/reduce programming

Execution Time

model—grounded in a logical transduction alge- ° * “ ocnsie
bra—enables scalable and robust computation,)
adapting seamlessly to diverse data workloads. Figure 2: Average time (sec) per question

5 EXPERIMENTS

In this paper, we evaluate Agentics, a programming framework for building generative data workflows
with a focus on computational efficiency, scalability, ease of design, and accuracy. While prior work
on agentic Al frameworks has emphasized capabilities such as planning and tool use, we focus on
the quality and structure of agentic workflow pipelines, particularly in data-centric tasks. We test
the following hypotheses: (1) Agentics supports a data-centric paradigm through declarative data
modeling via type schemas, which decouples logical agent workflows from chat-centric paradigms.
This enables intuitive and functional composition of pipelines., (2) Structured prompts induced
from declarative data models reduce the burden of manual prompt engineering while maintaining or
improving task performance. They are effective in tasks that benefit from clear contexts.

5.1 DATA WORKFLOW TASKS

We evaluate canonical structured data workflow tasks such as schema matching with healthcare data
(Parciak et al., 2024b), data imputation with the Buy and Restaurant datasets (Narayan et al.,[2022),
and text-to-SQL with challenging benchmarks (Zheng et al., 2024; [Li et al., [2023)).

Under review as a conference paper at ICLR 2026

5.1.1 SCHEMA MATCHING

Schema matching is a canonical data workflow task that identifies mappings between semantically
identical elements in two relational schemas. Recent works such as (Parciak et al.l 2024a) have
explored the use of LLMs for the schema matching task. The schema matching benchmark by [Parciak
et al.|(2024a) contains 9 datasets, each consisting of a source table from the MIMIC-IV dataset John{
son et al.[(2023) and a target table from the OHDSI OMOP Common Data Model (OHDSI| (2019).
Specifically, the mapping problem involves identifying which source column can be matched to
a column in the target table. We provide details of the experiment in the Appendix. The schema
of the source and target table follows the following data model with table and column names and
descriptions. Attributes defines a list of Attribute states.

class Attribute (BaseModel) :

relation_name: Optional[str] = Field(None, description=)

relation_description: Optional[str] = Field(None, description=)

attribute_name: Optional[str] = Field(None, description=)

attribute_description: Optional[str] = Field(None, description=)
class Attributes (BaseModel) :

attributes: Optional[list[Attribute]] = Field(None, description=)

Logical Transduction Given a source table with M columns and a target table with N columns,
we implemented the mapping task as described in (Parciak et al.| [2024a) in two variations: /-fo-1
and /-fo-N. In the I-to-1 setting, each prompt contains a pair of columns from the source and target
tables, and the LLM is tasked with determining whether they are semantically equivalent. This setting
requires M N LLM calls. In the /-to-N setting, each prompt contains a column from the source table
and NN columns from the target table, requiring only M LLM calls. The LLM evaluates all possible
pairs and identifies all semantically equivalent matches in a single inference.

The following pseudocode shows the Agentics program that creates Agentics objects for the source
and target tables. To parallelize the mapping, mimic_omop creates a product of the two Agentics
objects and adds an invertible attribute to transduce the truth assessment of the mappings.

mimic_data = AG.from_states (mimic_states, Attribute)

omop_data = AG.from_states (omop_states, Attributes)

mimic_omop = mimic_data.product (omop_data)

mimic_omop = mimic_omop.add_attribute (slot_name = , slot_type = list[bool]
mimic_omop = await mimic_omop.self transduction (mimic_omop.fields, [1)

F1-score Result We have implemented the schema matching task in Agentics and ensembled
results from two open-source models, GPT-OSS and LLaMA-4}| The mean F1-score over 9 datasets
is summarized as follows. For the /-fo-1 setting, the GPT-3.5 baseline achieves 0.241, while Agentics
achieves 0.325. For the /-fo-N setting, the GPT-3.5 baseline achieves 0.398, and Agentics achieves
0.382, slightly behindE]Note that we achieved significantly better performance with smaller-parameter
models in the /-fo-1 setting, and slightly worse results in the /-fo-N setting.

5.1.2 TEXT-TO-SQL

We evaluated text-to-SQL pipelines composed of multiple components on challenging text-to-SQL
benchmarks. The dev set of BIRD-bench (Li et al.,2023)) contains 1,534 questions across 11 databases,
and the dev set of the Archer dataset (Zheng et al.l|2024) contains 104 questions across 10 databasesE]
In our evaluation, we focus on the data-centric design aspects of Agentic text-to-SQL pipelines.
Composing various components such as few-shot examples, schema linker outputs, keywords from
topic models, and sub-questions with optimized prompts—collectively improves execution match
results by 10.33% over the baseline performance of Llama-3.3-70B.

Ensembling the two pipelines from different models takes the disjunction of their assessments, which may
decrease accuracy but increase recall.

3Detailed Fl-scores are available in the Appendix.

*State-of-the-art performance on both benchmarks is available on the official leaderboards. The best dev
performance is 76.14% on BIRD-bench (https://bird-bench.github.io/) and 38.46% on Archer (https://sigdkg
github.io/archer-bench/).

https://bird-bench.github.io/
https://sig4kg.github.io/archer-bench/
https://sig4kg.github.io/archer-bench/

DA W =

-

6

Under review as a conference paper at ICLR 2026

Asynchronous Pipeline The text-to-SQL task can introduce the following data model for each
problem in the dataset, where a natural language que st ion and the SQL dd1 scripts for creating
the database tables are the input fields provided, and the remaining fields are generated by passing
through asynchronous pipelines. The enrichment field annotates semantic meanings for the tables
and columns, sgl_query is the generated SQL from LLMs, and execution_result is the
resulting data frame obtained by executing the sgql_query.

class Text2SQLTask (BaseModel) :
question: str = Field(description=)
ddl: str = Field(description=)
enrichment: Optional[DB] = Field(description=)
few_shots: Optional[Problem] = Field(description=)
sgl_query: Optional[str] = Field(description=)
execution_result: Optional[List[Dict[str, str]]] = Field(description=)

The asynchronous pipeline concatenates the logical transductions in order, as shown in the pseudo-
code below. A series of logical transductions generates the empty fields in the Text2SQLTask
state object. Note that the overall execution of all state objects is performed concurrently, either per
transduction step or per line of the pseudo-code.

text2sqgl () <<text2sqgl () <<text2sqgl ()
text2sqgl () << text2sqgl ()
text2sqgl () << text2sqgl (0
’)
text2sqgl (o) <<text2sqgl (o
)
text2sqgl () = text2sqgl.filter(valid_sql,)
text2sql () << text2sql (o o)
text2sqgl () = text2sqgl.amap (execute_sqgl_query)

Brid-Dev Result We evaluated execution accuracy on BIRD-dev using a simple prompt and a
composite workflow that includes additional logical transductions with randomly generated few-
shot examples (FS), keyword enrichment (KW), sub-question enrichment (SQ), schema linking
enrichment (SL), and an optimized prompt template (OP). Across all models, the composite work-
flow consistently improved performance. Llama-3.3-70B showed the largest gain, improving from
50.51% =+ 0.71 to 60.84% =+ 0.53, a 10.33% increase. Mistral-Large improved by 8.21%, and
Llama-4-maverick-17B saw a more modest gain of 3.06%. These results demonstrate that structured
prompting and modular transductions in Agentics can significantly enhance execution accuracy.
Inspecting the impact of each individual component, as shown in the Appendix, SL and OP con-
tributed 2.24% and 4.49% individually, while other components did not improve accuracy on their
own. However, combining all components results in a higher gain of 10.33%, exceeding the sum of
individual improvements.

Archer-Dev Result The Archer benchmark presents challenges that require LLMs to perform
commonsense, arithmetic, and hypothetical reasoning in order to correctly generate SQL expres-
sions from natural language questions. In our experiments, we adopt a simplified pipeline that
bypasses intermediate components and directly generates the sql_query from the dd1 and op-
tional commonsense_knowledge hints.

‘We evaluate three LLMs, GPT-OSS-120B, Llama-3.3-70B, and Llama-4-17B under two conditions,
with and without commonsense knowledge. Based on the average execution match over 10 trials, GPT-
OSS-120B shows a clear improvement when commonsense knowledge is incorporated, increasing
from 0.28% to 0.35%. Llama-3.3-70B performs identically in both settings 0.15%, and Llama-4-17B
also improved execution match performance from 0.25% to 0.30%. For reference, the best reported
performance on the Archer dev set is 38.46% using the GPT-o1 model. Our results with GPT-OSS-
120B demonstrate comparable performance, highlighting its effectiveness despite the simplified
pipeline and smaller parameter models.

5.1.3 DATA IMPUTATION

The data imputation task is also a canonical example in generative structured data workflows. We
consider the task of filling in missing entries with plausible substitutions for a given tabular record
containing one or more missing field values. In Agentics, the input record can be defined as a
semantic data type. The missing attribute is then transduced from the known attributes using logical

Under review as a conference paper at ICLR 2026

transduction. We evaluate data imputation implemented in Agentics on the Buy and Restaurant
datasetsNarayan et al.|(2022)). The zero-shot accuracy performance of the GPT-OSS-120B and Llama-
4-17B models is 70.77% and 72.31% on the Buy dataset, and 79.07% and 66.28% on the Restaurant
dataset, respectively. These results are comparable to the baseline performance of GPT-3-175B, which
achieves 84.5% on Buy and 70.9% on Restaurant.

5.2 DOMAIN-SPECIFIC MULTI-CHOICE QUESTION ANSWER

We evaluate the FailureSensorIQ dataset, a recently proposed domain-specific multiple-choice QA
benchmark designed to assess understanding of sensor relationships and failure modes (Constantinides
et al.,[2025). We demonstrate the stable performance of structured prompting in Agentics across
both the original single-correct MCQA and its perturbation variants. The single-correct MCQA set
contains 2,667 questions spanning various industrial assets. The perturbations are designed to be
knowledge-invariant. The simple perturbation involves renaming option letters, while the complex
perturbation combines option letter renaming with question rephrasing.

Logical Self Transduction Each problem in FailureSensorIQ dataset has multiple fields, answer
options, industrial asset_name, relevancy context, question_type, subject of the
question, and the answer to the question. The structured prompting compose the input prompt from
the data model and the Agentics framework performs self-transduction from all other fields to the
answer with additional instruction as follows.

fsig benchmark = await fsiqg benchmark.self_transduction (
input_fields=][’ ’ ’ ’ ’
’ 1,
output_fields=][1,
instructions=(

Accuracy and Robustness Result We evaluated accuracy on 2,667 FailureSensorIQ instances
across four models with varying parameter sizes. Agentics consistently improved performance over
the baseline prompt performance for all models. Qwen3-8B showed the largest gain, improving from
45.86% to 60.18%. Llama-3.3-70B and Mistral-Large saw gains of 9.04% and 8.32 %, respectively.
The largest model, Llama-3-405B, showed a modest improvement of 1.64 %, Notably, Qwen3-8B
achieves a major improvement of 14.32%, placing it just behind openai-o1, 60.4%. These results
suggest that prompting through logical transduction helps unlock latent reasoning capabilities, even
in models with limited parameter counts.

Agentics demonstrates robustness against knowledge-invariant perturbations. In the original
FailureSensorIQ experiments, all models experienced significant drops in performance, ranging
from 5% to 20% . However, Agentics showed minimal change, ranging from just 0.08% to 0.19%
under the simple perturbation, and from 2.21% to 2.44% under the complex perturbation.

6 CONCLUSION

We present a principled framework for agentic Al, grounded in a novel logical transduction algebra
and a scalable asynchronous programming model. This framework redefines how agents interact with
data through a declarative, type-driven approach, enabling robust and efficient execution across diverse
tasks. Despite its strengths, the current framework has several limitations. First, it primarily focuses
on type-driven transduction, which may not generalize well to tasks requiring richer contextual
understanding or instruction-following behavior. Many real-world tasks involve implicit signals or
external context that go beyond type annotations. Second, the integration of tool usage remains
underexplored. Future work will explore several promising directions. One is transduction that
incorporates instruction or retrieval. Another is enhanced tool integration, enabling agents to invoke
external tools within the transduction pipeline. Additionally, extending the framework to support
interoperability with other agentic Al frameworks could unlock broader capabilities of agentic
systems.

Under review as a conference paper at ICLR 2026

Ethics Statement Our approach does not involve human subjects, personally identifiable infor-
mation, or synthetic data generation that could be misused. We do not deploy models in production
settings, and all evaluations are conducted with open source dataset and open weight models. On
the usage of large language models. We used large language models to polish the writing for fixing
syntax errors or latex command errors.

Reproducibility Statement We provide several materials to ensure the reproducibility of our work.
First, we have anonymized the Python library code and included it as supplementary material. The
library can be installed locally, and the provided examples are sufficient to reproduce the experiments.
In the Appendix, we include pseudocode for the experiments described in the paper, which aids
in understanding the implementation details. We use publicly available open-source datasets, and
all data sources are freely accessible. To support data preprocessing, we also provide the relevant
scripts—such as those used for schema matching and data imputation experiments. We also provide
details about the computing resources and the large language models used in our experiments, which
are documented in the Appendix. For the theoretical contributions related to logical transduction
algebra, we include the full version with complete proofs in the Appendix.

REFERENCES

Deepak Bhaskar Acharya, Karthigeyan Kuppan, and B Divya. Agentic Al: Autonomous intelligence
for complex goals—a comprehensive survey. IEEE Access, 2025.

Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s: An open
agentic framework that uses computers like a human. In The Thirteenth International Conference
on Learning Representations, 2025. URL https://openreview.net/forum?id=11VRgt4nLv.

Ion Androutsopoulos, Graeme D Ritchie, and Peter Thanisch. Natural language interfaces to
databases—an introduction. Natural language engineering, 1(1):29-81, 1995.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-RAG: Learning to
retrieve, generate, and critique through self-reflection. In The Twelfth International Conference on
Learning Representations, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Edgar F Codd. A relational model of data for large shared data banks. Communications of the ACM,
13(6):377-387, 1970.

Christodoulos Constantinides, Dhaval Patel, Shuxin Lin, Claudio Guerrero, Sunil Dagajirao Patil,
and Jayant Kalagnanam. FailuresensorIQ: A multi-choice QA dataset for understanding sensor
relationships and failure modes. arXiv preprint arXiv:2506.03278, 2025.

CrewAl Inc. CrewAl, 2025. 2025-07-15.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107-113, 2008.

Victor Dibia, Jingya Chen, Gagan Bansal, Suff Syed, Adam Fourney, Erkang Zhu, Chi Wang, and
Saleema Amershi. AUTOGEN STUDIO: A no-code developer tool for building and debugging
multi-agent systems. In Proceedings of the 2024 Conference on Empirical Methods in Natural Lan-
guage Processing: System Demonstrations, pp. 72—79. Association for Computational Linguistics,
2024.

Yi Dong, Ronghui Mu, Gaojie Jin, Yi Qi, Jinwei Hu, Xingyu Zhao, Jie Meng, Wenjie Ruan, and
Xiaowei Huang. Building guardrails for large language models. In Kristin Bennett and Vivek
Srikumar (eds.), Proceedings of the 41st International Conference on Machine Learning (ICML),
volume 235 of Proceedings of Machine Learning Research, pp. 235-249. PMLR, 2024.

10

https://openreview.net/forum?id=lIVRgt4nLv

Under review as a conference paper at ICLR 2026

Shanshan Han, Qifan Zhang, Yuhang Yao, Weizhao Jin, Zhaozhuo Xu, and Chaoyang He. LLM
multi-agent systems: Challenges and open problems. CoRR, abs/2402.03578, 2024.

Petra Heck. What about the data? a mapping study on data engineering for Al systems. In Proceedings
of the IEEE/ACM 3rd International Conference on Al Engineering-Software Engineering for Al,
pp. 43-52, 2024.

Gary G Hendrix, Earl D Sacerdoti, Daniel Sagalowicz, and Jonathan Slocum. Developing a natural
language interface to complex data. ACM Transactions on Database Systems (TODS), 3(2):
105-147, 1978.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations, 2021.

Danielle Hopkins, Debra J Rickwood, David J Hallford, and Clare Watsford. Structured data vs.
unstructured data in machine learning prediction models for suicidal behaviors: A systematic
review and meta-analysis. Frontiers in Digital Health, 4:945006, 2022.

Soodeh Hosseini and Hossein Seilani. The role of agentic ai in shaping a smart future: A systematic
review. Array, pp. 100399, 2025.

Ken Huang and Jerry Huang. Al Agent Tools and Frameworks. In Agentic Al: Theories and Practices,
pp. 23-50. Springer, 2025.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of Experts. arXiv preprint arXiv:2401.04088, 2024.

Alistair EW Johnson, Lucas Bulgarelli, Lu Shen, Alvin Gayles, Ayad Shammout, Steven Horng,
Tom J Pollard, Sicheng Hao, Benjamin Moody, Brian Gow, et al. Mimic-iv, a freely accessible
electronic health record dataset. Scientific data, 10(1):1, 2023.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller, Matei
Zaharia, and Christopher Potts. DSPy: Compiling declarative language model calls into state-of-
the-art pipelines. In The Twelfth International Conference on Learning Representations, ICLR
2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
2219922213, 2022.

Woosuk Kwon, Zhuohan Li, Siyuan Liu, Joseph Orth, Yaohan Ding, Dean Sheng, Eric Liang, and
Matei Zaharia. Efficiently scaling transformer inference. In Proceedings of Machine Learning and
Systems, pp. 555-572, 2023a.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with PagedAttention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023b.

LangChain. LangGraph, 2025. 2025-07-15.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Ruiying Geng, Nan Huo, et al. Can llm already serve as a database interface? a big bench for
large-scale database grounded text-to-sqls. Advances in Neural Information Processing Systems,
36:42330-42357, 2023.

Wenwu Li, Xiangfeng Wang, Wenhao Li, and Bo Jin. A survey of automatic prompt engineering: An
optimization perspective. arXiv preprint arXiv:2502.11560, 2025.

Zhiyong Li, Yong Guan, Cong Yan, Xiaotong Li, Jie Li, Yonggang Li, Xin Jin, Shaoting Ji, and Ying
Wei. MedQA: A dataset of medical question answering. arXiv preprint arXiv:2007.03233, 2020.

11

Under review as a conference paper at ICLR 2026

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Processing Systems, 36:46534-46594, 2023.

Dany Moshkovich and Sergey Zeltyn. Taming uncertainty via automation: Observing, analyzing, and
optimizing agentic Al systems. arXiv preprint arXiv:2507.11277, 2025.

Avanika Narayan, Ines Chami, Laurel J. Orr, and Christopher Ré. Can foundation models wrangle
your data? Proc. VLDB Endow., 16(4):738-746, 2022.

OHDSI. The Book of OHDSI: Observational Health Data Sciences and Informatics. OHDSI, 2019.

Krista Opsahl-Ong, Michael Ryan, Josh Purtell, David Broman, Christopher Potts, Matei Zaharia,
and Omar Khattab. Optimizing instructions and demonstrations for multi-stage language model

programs. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, pp. 9340-9366, 2024.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback. In Proceedings
of the 36th International Conference on Neural Information Processing Systems, Red Hook, NY,
USA, 2022. Curran Associates Inc. ISBN 9781713871088.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak Nathani, Xinyi Wang, and William Yang Wang.
Automatically correcting large language models: Surveying the landscape of diverse automated
correction strategies. Transactions of the Association for Computational Linguistics, 12:484-506,
2024.

Marcel Parciak, Brecht Vandevoort, Frank Neven, Liesbet M Peeters, and Stijn Vansummeren.
Schema matching with large language models: an experimental study. In Proceedings of 2nd
International Workshop on Tabular Data Analysis (TaDA) at VLDB 2024, 2024a.

Marcel Parciak, Brecht Vandevoort, Frank Neven, Liesbet M Peeters, and Stijn Vansummeren.
Schema matching with large language models: an experimental study. Proceedings of the VLDB
Endowment. ISSN, 2150:8097, 2024b.

Rani Kurnia Putri and Muhammad Athoillah. Artificial intelligence and machine learning in digital
transformation: Exploring the role of Al and ML in reshaping businesses and information sys-
tems. In Advances in Digital Transformation-Rise of Ultra-Smart Fully Automated Cyberspace.
IntechOpen, 2024.

Pydantic. Pydantic, 2025a.
Pydantic. Pydantic-Al, 2025b. 2025-07-15.

Kiran Ramnath, Kang Zhou, Sheng Guan, Soumya Smruti Mishra, Xuan Qi, Zhengyuan Shen, Shuai
Wang, Sangmin Woo, Sullam Jeoung, Yawei Wang, et al. A systematic survey of automatic prompt
optimization techniques. arXiv preprint arXiv:2502.16923, 2025.

Gaetano Rossiello, Nandana Mihindukulasooriya, Ibrahim Abdelaziz, Mihaela Bornea, Alfio Gliozzo,
Tahira Naseem, and Pavan Kapanipathi. Generative relation linking for question answering over
knowledge bases. In International Semantic Web Conference, pp. 321-337, 2021.

Gaetano Rossiello, Md Faisal Mahbub Chowdhury, Nandana Mihindukulasooriya, Owen Cornec, and
Alfio Massimiliano Gliozzo. Knowgl: Knowledge generation and linking from text. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 37, pp. 16476-16478, 2023.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (4th Edition). Pearson,
2020. ISBN 9780134610993.

Akila Sarirete, Zain Balfagih, Tayeb Brahimi, Miltiadis D Lytras, and Anna Visvizi. Artificial
intelligence and machine learning research: Towards digital transformation at a global scale.
Journal of Ambient Intelligence and Humanized Computing, 13(7):3319-3321, 2022.

12

Under review as a conference paper at ICLR 2026

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634—-8652, 2023.

Claudio Spiess, Mandana Vaziri, Louis Mandel, and Martin Hirzel. Autopdl: Automatic prompt
optimization for llm agents. arXiv preprint arXiv:2504.04365, 2025.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Ly, et al. Qwen3 Technical Report. arXiv preprint arXiv:2505.09388,
2025.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2024.

Qinyuan Ye, Mohamed Ahmed, Reid Pryzant, and Fereshte Khani. Prompt engineering a prompt
engineer. In Findings of the Association for Computational Linguistics ACL 2024, pp. 355-385,
2024.

Zhexin Zhang, Leqi Lei, Lindong Wu, Rui Sun, Yongkang Huang, Chong Long, Xiao Liu, Xuanyu
Lei, Jie Tang, and Minlie Huang. SafetyBench: Evaluating the safety of large language models. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 15537-15553,
Bangkok, Thailand, August 2024. Association for Computational Linguistics.

Danna Zheng, Mirella Lapata, and Jeff Z Pan. Archer: A human-labeled text-to-sql dataset with
arithmetic, commonsense and hypothetical reasoning. 2024.

Wenliang Zheng, Sarkar Snigdha Sarathi Das, Yusen Zhang, and Rui Zhang. Greaterprompt: A
unified, customizable, and high-performing open-source toolkit for prompt optimization. arXiv
preprint arXiv:2504.03975, 2025.

13

Under review as a conference paper at ICLR 2026

A EXPERIMENTS DETAILS

A.1 COMPUTING INFRASTRUCTURE

In the experiments, we benchmark open-weight instruct tuned models ranging from larger or smaller
parameter version of GPT-OSS-120B, Llama-3.3, Llama-4, Qwen-3, and Mistral. For the experiment
that measures the running time, we host LLMs in local vLLM (Kwon et al., 2023b) server with four
A-100-80GB GPUs for Llama-3-3-70B model, and one A-100-80GB GPU for other 8B parameter
models.

* In the Text-to-SQL experiment, we used GPT-OSS-120B, Llama-3.3-70B, Mistral-Large,
and Llama-4-Maverick-17B models. These models were also run in a cloud computing
environment.

* In the schema matching and data imputation experiments, we used GPT-OSS-120B, and
Llama-4-Maverick-17B models. These models were also run in a cloud computing environ-
ment

* In the Domain Specific MCQA experiments, we used instruction-tuned models such as
Qwen3-8B, Llama-3.3-70B, Mistral-Large, and Llama-3-405B. We locally hosted the
Qwen3-8B model to measure running time, while the other three models were used in
a cloud computing environment.

* In automatic prompt optimization experiment, we locally hosted Qwen3-8B and Llama-3.3-
70B models.

The following shows the parameters for hosing Qwen3-8B and Llama-3.3-70B models with vVLLM
(Kwon et al., [2023b]).

GPUS=4

CPUS=16

MEM=200GB

MODEL=

LEN=16000
vllm serve S${MODEL} \
——-max-model-len ${LEN} \
—-—tensor-parallel-size ${GPUS} \
——gpu-memory-utilization 0.9

GPUS=1

CPUS=8

MEM=64GB

LEN=8000

MODEL=

vllm serve S${MODEL} \
—-max-model-len ${LEN} \
-—tensor-parallel-size ${GPUS} \
——gpu-memory-utilization 0.9

Listing 1: vLLM parameters and computing resources

A.2 TEXT-TO-SQL

We evaluated various text-to-SQL pipelines on the challenging Bird-bench (Li et al., [2023) -dev
dataset. We observe that by composing various components such as few-shot examples, schema
linker outputs, keywords from topic models, and sub-questions with optimized prompts, each model
significantly improves execution match results, achieving up to a 10.33% increase over the baseline
performance of Llama-3.3-70B.

Previously, a summary result table of individual experiments were shown, whereas here we expand
on the performance by conducting and aggregating multiple runs (5) against the benchmark. This
includes setting a high model temperature of 0.9, thus diversifying the generated transduction samples.

14

Under review as a conference paper at ICLR 2026

The resultant Table [[|highlights the performance gains on average by including additional transduc-
tions on top of the base prompt. We note that every individual transduction (i.e. FS /KW /SQ/SL
/ OP) does not in fact improve average performance on all models. However, techniques such as
schema linking and prompt-optimization yield greater improvements on a few models than the other
approaches. Interestingly, when including all the transductions together (i.e. FS + KW + SQ + SL +
OP), performance significantly improves in a manner that is greater than the sum of its parts. This
result indicates that models can be pushed into greater performance by stipulating the right prompt
programs to captures the task. Having a simple modeling framework, like Agentics, allows for
more sophisticated augmentations and feedback loops to improve the creation of such programs.

Future attempts at modeling more complex prompt programs include the addition of feedback and
self-correction loops by running failed samples on the database and re-prompting. Additionally,
model-dependent optimizations can be illuminated upon, since the performance of the executed
program is dependent on the model itself and should therefore be guided by the model more closely.

Model
llama-3-3 . llama-4-maverick
Method 70b-instruct | Mistral-large | g 28e-instruct-fp8
P 50.51 £0.71 | 47.20 £0.78 53.88 £ 1.37
P+ES 50.32£0.52 | 45.63 £0.9 53.47 £ 0.56
(—0.19) (—1.57) (—0.41)
PAKW 50.32£0.32 | 45.09 +0.81 53.03 £0.82
(—0.19) (—2.11) (—0.85)
P+SQ 51.58 £20.58 | 46.15 +0.44 52.33 £0.62
(+1.07) (—1.05) (—1.55)
P4SL 52.75£0.07 | 49.54 +£1.23 50.46 £ 0.05
(+2.24) (+2.34) (—3.42)
P+OP 54.90 £0.53 | 48.93£0.5 53.15 £ 0.65
(+4.39) (+1.73) (—0.74)
60.84 £ 0.7 55.41+1.2 56.94 + 0.23
PHESHRWHSQESLAOP | (11 33) (+8.21) (+3.06)

Table 1: Execution accuracy on BIRD-dev, testing a prompt P with the simplified task vs. additional
transductions in the composite workflow. SL replaces the full DDL schema with a linked schema,
KW includes keyword topic modeling, FS randomly generates sql-validated few-shot question-query
pairs, SQ extracts sub-questions, and OP optimizes the prompt template.

The following Table 2| summarizes the evaluation result on Archer dataset.

Model With Commonsense Without Commonsense
GPT-0SS-120B 0.35% =+ 0.02 0.28% =+ 0.02
Llama-3.3-70B 0.15% + 0.01 0.15% 4+ 0.01
Llama-4-17B 0.30% =+ 0.02 0.25% + 0.032

Table 2: Execution accuracy on Archer-dev. We evaluted 104 dev problems with and without com-
monsense knowledge provided in the dataset.

A.3 SCHEMA MATCHING

Schema matching is an important task in data integration which is defined as the task of identify
mappings between semanticaly identical elements in two relational schemas such that they refer to
the same real world concepts. Recent works such as |Parciak et al.|(2024a) have explored the use of
LLMs for the schema matching task.

In this section, we present an experiment that demonstrates how the schema matching task can be
formulated as a transduction using the Agentics framework.

Dataset: we have used the benchmark datasets from |Parciak et al.| (2024a) which contains 9 datasets
each containing a source table from MIMIC-IVdataset{Johnson et al.|(2023) and a target table from

15

Under review as a conference paper at ICLR 2026

OHDSI OMOP Common Data Model OHDSI (2019)). True matches between the columns of the
two tables are annotated in the ground truth. Table [3|illustrates the 9 benchmark datasets with their
corresponding table names and columns.

Following the same patterns as in [Parciak et al.| (2024a), we have implemented the task in two
variations: /-to-1 and I-to-N. In the I-to-1 setting, each prompt contains a pair of columns from the
source and the target table, and the LLM is tasked to determine if they are semantically equivalent or
not. In the /-fo-N setting, each prompt contains a column from the source table and N columns from
the target table. The LLM is tasked with matching all possible pairs and identifying all semantically
equivalent pairs in a single inference.

MIMIC OMOP

Dataset Candidates GT Matches
table name columns table name columns
AdCO admissions 16 condition_occurrence 16 256 2
AdVD admissions 16 visit_detail 19 304 5
AdVO admissions 16 visit_occurrence 17 272 8
DiCO diagnoses_icd 5 condition_occurrence 16 80 2
LaMe labevents 10 measurement 20 200 10
PaPe patients 6 person 18 108 5
PrDE prescriptions 17 drug_exposure 23 391 6
SeVD services 5 visit_detail 19 95 5
TrvD transfers 7 visit_detail 19 133 6
Total 1839 49

Table 3: The list of datasets with the name of the table from MIMIC and OMOP schemas along
with the number of columns in each table. GT matches illustrate how many true schema matches are
present between the columns of the given tables.

Results: Table d]illustrates the results of the experiments. We have implemented the schema matching
task in Agentics and enesembled results from two open source models gpt-oss and llama4.

1-to-1 1-to-N

Datasets

GPT 3.5 Agentics GPT 3.5 Agentics

Baseline gpt-oss & llama4 Baseline gpt-oss & llama4
AdCO 0.000 0.500 0.133 0.250
AdVD 0.000 0.330 0.083 0.250
AdVO 0.235 0.400 0.320 0.143
DiCO 0.667 0.500 0.800 0.667
LaMe 0471 0.364 0.500 0.500
PaPe 0.571 0.000 0.500 0.667
PrDE 0.222 0.000 0.417 0.211
SeVD 0.000 0.500 0.400 0.400
TrVD 0.000 0.333 0.429 0.600
Mean 0.241 0.325 0.398 0.382

Table 4: Schema matching F1 scores. GPT 3.5 baseline results are from [Parciak et al.| (2024a)).

A.4 DATA IMPUTATION

Data imputation constitutes a critical task in the remediation of incomplete or noisy datasets. For a
given record in tabular format containing one or more missing attribute values, the objective is to
reconstruct the missing entries with plausible substitutions.

Data imputation serves as an illustrative use case for demonstrating the capability of the proposed
framework in handling structured input—output tasks with LLMs. Specifically, the input record -

16

Under review as a conference paper at ICLR 2026

excluding the missing value- can be modeled as a semantic type, while the output can be represented
as an extension that compels the LLM to predict the missing entry by leveraging the attributes of the
input type as contextual information.

We evaluate our method on the Buy and Restaurant datasets |[Narayan et al.|(2022). In the Buy dataset,
given a product name and its description, the model is tasked with predicting the manufacturer as the
missing value. In the Restaurant dataset, the goal is to infer the type of restaurant based on its name,
address, and phone number.

The results of our framework in zero- and few-shot settings are presented in Table [5]

Dataset Model zero-shot few-shot
gpt-oss 70.77 70.77

Buy Ilama-3.3 49.23 58.46
llama-4 72.31 75.38
gpt-0ss 79.07 80.23

Restaurant llama-3.3 67.44 48.84
llama-4 66.28 47.67

Table 5: Accuracy results for different models and few-shot settings on Buy and Restaurant data imputation
tasks.

A.5 DOMAIN-SPECIFIC MULTI-CHOICE QUESTION ANSWER

FailureSensorlQ benchmark (Constantinides et al., [2025) is recently proposed domain-specific
multiple choice QA benchmark to test LLMs’ ability to reason about failure modes and sensor
relationships. The leaderboard shows that the best performing openai /ol model scores 60.4%.

Dataset We evaluated 2,667 single-correct MCQA instances spanning various industrial assets,
with questions around identifying the right sensor which can detect a given failure mode for a given
asset, or identifying the right failure mode that a given asset and sensor can detect. This requires
nuanced understanding of sensor behavior, failure propagation, and asset-specific operational logic,
and performing logical deductions across the different knowledge about the asset. An example query
may be:

{

Methods Baseline results are obtained from the leaderboard that evaluates the standardized prompts
with at most three trials for invalid responses.

Our approach leverages the Agentics framework to perform schema-constrained transduction
from structured input to structured output. Each input instance is represented using a subset of fields
from the FailureSensorlQ schema—specifically, the question, asset name, option ids, options, and
subject—which are sufficient to ground the reasoning process in both linguistic and domain-specific
context.

To improve inference efficiency, Agent ics supports parallel batch execution via the aMap opera-
tion. This distributes multiple structured prompts across concurrent model invocations, significantly
reducing total runtime. Unlike sequential prompting, which processes one question at a time, batch
transduction enables scalable evaluation and deployment.

Experimental Configuration We evaluate four models ranging from 8B to 405B parameters:
Qwen3-8B (Yang et al., [2025), Llama-3.3-70B-Instruct (Touvron et al.| [2023), Mistral-Large-
Instruct-2407 (Jiang et al., 2024}, Llama-3-405B-Instruct (Touvron et al., [2023). Models are
tested using both the original FailureSensorIQ baseline pipeline and the Agent ics framework. The

17

Under review as a conference paper at ICLR 2026

baseline uses loosely formatted natural language prompts and retries up to three times if the output
is invalid. In contrast, Agentics uses structured prompting and schema-constrained decoding.
To measure execution time, we host Qwen3-8B on a dedicated node with an 2100 80GB GPU
running VLLM (Kwon et al., 2023b)). Other models are accessed via cloud computing platform. We
vary batch sizes to assess scalability and throughput.

Accuracy Improvement Table|6[shows the accuracy comparison. Agent ics improves the per-
formance on all evaluated models, with smaller models benefiting the most. Notably, Qwen3-8B
achieves a major improvement of +14.32%, getting right behind openai-o1l, 60.4%. This suggests
that prompting through logical transduction helps unlock latent reasoning capabilities, even in models
with limited parameter counts.

Model | #Params | Baseline | Agentics

Qwen3-8B 8B 45.86 60.18 (+14.32)
Llama-3.3-70B 70B 41.69 50.73 (+9.04)
Mistral-Large 123B 50.09 58.41 (+8.32)
Llama-3-405B 405B 51.26 52.90 (+1.64)

Table 6: Accuracy (%) of on 2,667 FailureSensorIQ instances.

Running Time Figure [3a illustrates the average time (sec) per question for Qwen3—-8B across
varying batch sizes. As shown, parallel batch execution yields substantial speedups, from 8 seconds
per question at batch size 1 to less than 1 second per question at batch sizes greater than 16. This
improvement is nearly linear as the batch size increases from 1 to 4, after which it begins to saturate.

Perturbation Study We follow FailureSensorIQ’ s perturbation study using the Agentics
framework to study if there are any robustness benefits that comes with the structured workflows that
our framework offers. We experiment with the following knowledge invariant perturbations:

* Option letter renaming; changing the option letters from of A., B., C., to other letters like P.,
Q., R. We’ll call this “Simple” Perturbation.

* Option letter renaming and question rephrasing done by an LLM. We’ll call this “Complex”
Perturbation.

We use the already prepared perturbed datasets from the original paper.

Agentics execution time vs batch size Perturbation Effect on Model Performance

80 01 xS XS
3 2)) % %0 120 quen® aorae 2 53700 334004
Batch Size st ame” \ame”

(a) Average time per question for Qwen3-8B across (b) Performance remains high even after the perturba-
varying batch sizes. tions with minimal drop.

Figure 3: Domain Specific MCQA Running Time and Perturbation Results.

A.6 PROMPT OPTIMIZATION

Automatic prompt optimization (APO) is essential, as LLM performance is highly sensitive to prompt
structure, tone, and formatting. The prompt function in Definition [9] plays a central role in logical
transduction, which can be conceptualized as a negotiation of meaning between agents. Among
various APO approaches (Ramnath et al.} 2025} [Li et al.} [2023), logical transduction algebra naturally

18

Under review as a conference paper at ICLR 2026

supports OPRO-style methods (Yang et al.,[2024; Ye et al., 2024; Opsahl-Ong et al., [2024)), which
follow a local search procedure based on a cycle of generate-select-evaluate. In the Agentics
framework, the candidate prompt templates are generated by logical transduction from the meta-type
that describes the prompt optimization task. Additionally, logical transduction algebra naturally
parallelizes local search, such as generating and evaluating candidate promptsﬂ

Dataset We evaluated GSM8K (Cobbe et al., [2021) and FailureSensorIQ (Constantinides et al.,
2025)) benchmarks. The former enables direct comparison with existing APO techniques. For GSM8K,
we use the first 500 training examples for prompt optimization and evaluate the final performance
on the full test set. The latter benchmark allows us to assess additional gains beyond the default
prompting provided by logical transduction. We randomize the dataset, selecting 500 examples for
training and fixing 1,000 examples for the test set. In APO, the training set is used to construct
demonstrations for candidate generation and to evaluate candidates during optimization.

Methods We designed the meta-prompt for prompt generation by analyzing those from OPRO
(Yang et al.,[2024) and PE2 (Ye et al.} 2024ﬂ Our focus is on the impact of local search hyperpa-
rameters on final test performance and the overall running time. Following|Yang et al.| (2024), the
optimization meta-prompt includes 3 demonstration tasks and the top 8 candidates, along with their
evaluated scores in ascending order. In our experiments, we vary the number of parallel candidate
generations from 1 to 8, and the batch size for asynchronous LLM API calls from 1 to 20.

Optimization Scope Following the common experiment settings (Yang et al.||2024; Ye et al.| [2024;
Zheng et al.| 2025} [Spiess et al.|[2025])), we optimize the prompt template for the zero-shot chain of
thought technique (Kojima et al.,[2022) by specifying the role, goal, expected output types, and the
description of input task as well. This can be flexibly incorporated into APO, as candidate generation
follows logical transduction from field descriptions to a prompt template. We initialize all prompt
components as empty strings and iteratively refine them.

To understand the impact of prompt components, we manually constructed a prompt using the
parameters and evaluated it with the LLaMA-3.3-70B model. The default prompt, which only shows
the input and output field names, achieved just 5% accuracy. Adding an expected output description
increased accuracy to 66%, and including all prompt parameters further improved it to 67%. These
results suggest that optimizing both output expectations and imperative phrasing is essential for
effective prompt design.

Performance Improvement We present experiment results showing the improvement of test scores
on both the GSM8K and MCQA datasets.

* The optimized prompt templates improve the test scores to 85 for Llama-3.3-70B and
91 for Qwen3-8B, which is consistent with findings reported in the literature. For the
FailureSensorIQ dataset, the test score of Llama-3.3-70B was further improved to 54%.

* The plots with batch size 1 indicate that the Llama-3.3-70B model discovered better prompts
when using a larger batch size. In contrast, the Qwen3-8B model identified a good prompt
with a smaller batch size. However, it’s important to note that the Qwen3 series models have
been trained on data derived from the GSM8K dataset as well as other math-related datasets.
This prior exposure may contribute to their relatively strong performance on GSM8K, even
with smaller batch sizes or less prompt optimization effort, and should be considered when
interpreting the results.

Running Time Figure [5|shows the average running time per iteration during prompt optimization
for the GSM8K amd MCQA dataset.

» In GSMSK, we observe that the improvement in running time is most significant at a batch
size of 4, after which the gap gradually decreases. Beyond a batch size of 10, the running
time saturates or increases due to the overhead caused by invalid outputs in the batch results.

3See Appendix for implementation details.
SRelevant open-source implementations are |https://github.com/psunlpgroup/GreaterPrompt, https://github
com/stanfordnlp/dspy, https://github.com/google-deepmind/opro,

19

https://github.com/psunlpgroup/GreaterPrompt
https://github.com/stanfordnlp/dspy
https://github.com/stanfordnlp/dspy
https://github.com/google-deepmind/opro

Under review as a conference paper at ICLR 2026

GSM8K Test Scores with Batch Size 1 GSMB8K Test Scores with Batch Size 10
—t) E— G AN S s ae] e ansssnsl
95 e i +—% * $ 90.0
87.5
90 .
g e | 2501 \aa
S e 0825
3 85 =®= llama-70b,nopts8 8 52
o == qwen-8b,nopts1 = 80.0
9 80 #= qwen-8b,noptsd w0 : =@= llama-70b,noptsl
<) m= qwen-8b,nopts8 2775 llama-70b,nopts4
=@= llama-70b,nopts8
75 75.0. eeseesecseed - =i s opisT
72.5 4= qwen-8b,noptsd
70 . == qwen-8b,nopts8
2 4 6 8 10 12 70.0 0 5 10 15 20 25 30
Iteration Iteration
MCQA Test Scores with Batch Size 1 MCQA Test Scores with Batch Size 10
53.0 54.01 o= =@= llama-70b,nopts1
llama-70b,nopts4
52.5 53.5 =®= llama-70b,nopts8
©52.0 e e e e e e e a ©53.0 oJ
o o
s G
w515 n 52.5
@ B
12 51.0 2520
50.5 =@= llama-70b,nopts1 51.5
llama-70b,nopts4
50.0 =@= llama-70b,nopts8 51.0
2 4 6 8 10 12 14 0 5 10 15 20 25
Iteration Iteration

Figure 4: Improvement of test score over iterations: The x-axis represents the number of iterations,
and the y-axis shows the test score evaluated using the best prompt template found up to that iteration.

* The running time results from the MCQA dataset follow similar trends to those observed
with the GSM8K dataset. For smaller models like Qwen3-8B, if the model fails to follow
instructions and produce output in the expected structured format, the transduction step
often fails to return a valid JSON object. This leads to increased running time due to the
additional overhead of the error recovery process.

GSM8K Average Time (sec) per Iteration MCQA Average Time (sec) per Iteration
7000 w=@= llama-70b,noptsl 6000 @@= llama-70b,nopts1 A
llama-70b,nopts4 6 llama-70b,nopts4
6000 =@= llama-70b,nopts8 5000 =@= llama-70b,nopts8 .
== qwen-8b,noptsl == qwen-8b,noptsl
< 5000 #= qwen-8b,noptsd o) 4000 = qwen-8b,noptsd _
ﬁ 4000 m= qwen-8b,nopts8 ;g/
>
g 3000 o 3000
= 2000 F 2000
1000 1000 ‘ —t
0 R — — —t
2.5 5.0 7.5 10.0 125 15.0 175 20.0 25 5.0 7.5 10.0 125 15.0 17.5 20.0
Batch Size Batch Size

Figure 5: Average running time per iteration: The x-axis represents the batch size of the asynchronous
execution, and the y-axis shows the average running time in seconds.

B LOGICAL TRANSDUCTION ALGEBRA

B.1 FORMALIZATION

We presented an abridged version of the formal Logical Transduction Algebra in the main paper.
Our work is closely related to relational algebra and the MapReduce programming
model (Dean & Ghemawat, [2008)). This enables the composition of data transformation pipelines
and supports an efficient programming model that leverages the stateless and asynchronous nature of
LLM inference.

B.1.1 ALGEBRAIC STRUCTURES
Types and Agentic Structure We define types and meta-types, collectively referred to as the
Agentic Structure (AG), and establish a sound algebra over the types and states within it.

Definition 1 (Types). Let © denote the universe of all possible types, @ = {X,Y, Z, T, ...}, where
each type T' € O is a collection of named fields (s;, T,):

i

T:={(s1,Ts;), (52, Ts5)s - ($n:Ts,) },

20

Under review as a conference paper at ICLR 2026

with each s; representing a string-valued slot name, and each T, € © denoting the corresponding
type of that slot.

Definition 2. Given two types X and Y, we define standard set operations component-wise:

XUY ={(s4,Ts,) | (8;,Ts,) € X or (s;,Ts,) €Y},

XNY ={(s:,Ts,) | (5:,Ts,) € X and (s, Ts,) € Y},
X\Y ={(s:,Ts,) | (s4,Ts;) € X and (s;,Ts,) ¢ Y},

X xY ={((si,T5,), (55, T5,)) | (56, Ts,) € X, (85, T5;) € Y}

Definition 3 (Agentic Structure AG). An Agentic structure AG is a meta-type that bundles a type
schema s,ype |'|and a corresponding list of instances, referred to as states Sgges:

) Satype - o,
AG = {sm : List[@]}

Notation conventions: Types are denoted by uppercase letters. Instances of types are denoted by
lowercase letters, with ¢ : T" indicating that ¢ is an instance of type 7T'. Lists are written in boldface,
so t : T represents a list of instances of type T'. We use the shorthand AG[X] to denote an Agentic
structure with syype = X. A boldface lowercase symbol, such as x = AG[X], represents an instance
of AG[X]. We also overload the notation to access the list of states: x; = x[i] = X.Sguates[i] refers to
the ¢-th state of the Agentic instance x.

In Logical Transduction Algebra, we focus on structured data and its transformation around agents
encapsulating LL.Ms. The algebraic structure of composing two Agentic instances of the same type
can be shown as follows.

Proposition 1 (Monoid of Agentic Instances). Let AG[X] be an Agentic structure and let £ be the
set of all instances of AG[X]. Define a binary operation o on £ such that for any x1, x5 € &, their
composition X = X; o Xg is an Agentic instance whose state list is the concatenation: X.Sges :=
X1 -Sstates © X2-Sstates- Lhen, the pair (€, o) forms a monoid, where the identity element is the Agentic
instance with an empty state list: €.Sges =

Proof. We verify the three monoid properties:

Closure: Let x1,%x5 € €. Then x = x; 0 X5 has a state list formed by concatenating two valid state
lists, which is itself valid. Hence, x € &.

Associativity: For any x1, X3, X3 € &,
((Xl o XZ) o X3)~Sstates = (X1~Sstates o X2~Sslales) O X3.Sstates

X1 -Sstates © (X2~Sslales o X3~Sstates)

= (X1 0 (X2 0X3))-Sstates-

Identity: Let e € £ be the Agentic instance with an empty state list. Then for any x € &,

(e o X)~Sstates = [] O X.Sgtates — X.Sstatesy
(X o e)~sstates = X.Sstates © [] = X.Sgtates-
Thus, (£, o) satisfies closure, associativity, and identity, and is therefore a monoid. O

The standard operators follow standard algebraic principles such as the product, x X y for x €AG[X]
and y € AG[Y], the equivalence, x; ~ Xz for x1,x2 € AG[X], and the quotient, z/y for z €
AG[X xY]andy € AG[Y].

"Given two types X and Y, the standard set operations such as union, intersection, complement, and product
can be defined component-wise.

21

Under review as a conference paper at ICLR 2026

Product of the Agentic Structure Next, we define the product of Agentic structures, a construction
that plays a foundational role in modeling and executing complex, multi-dimensional data workflows.
By combining two Agentic structures into a single product structure, we can represent composite
types—such as paired entities, coupled processes, or input-output relationships—within a unified
algebraic framework. This formulation ensures that operations applied to states remain well-defined,
type-safe, and composable, preserving the monoidal properties of each component. The product
structure is especially valuable in scenarios involving joint reasoning, parallel transformations, or
structured transductions across heterogeneous data streams.

Definition 4 (Product of Agentic Structures). Let AG[X] and AG[Y] be two Agentic structures
defined over distinct types X and Y, respectively. We define their product as a new Agentic structure
AG|T), where the type T is the Cartesian product of the two types:

T: X xY.
Given instances x : AG[X] and y : AG[Y], we define an instance t : AG[T] such that:

t.Sstates = (X~Sstale57 y~Sstates)a

i.e., the state list of t is the pair of state lists from x and y.

Proposition 2 (Monoid of Agentic Product). Let {x and &y be the set of all instances of AG[X] and
AG|Y], respectively, and let &7 be the set of all instances of AG[T].

Define a binary operation o on &7 as follows:
(x1,¥1) © (X2, ¥2) := (X1 0 X2,y1 0 y2),
where o on each component denotes concatenation of state lists:
(Xl o X2>-sstates ‘= X1 .Sstates © X2-Sstates

and similarly for y; o yo.

Then, the structure ({7, o) forms a monoid, with the identity element given by the pair of Agentic
instances with empty state lists:

er = (eX, eY)) where €X .Sstates — []7 €y .Sstates = []

Proof. We verify the three monoid properties for ({7, 0).

Closure: Let (x1,y1), (X2,y2) € &r. Then their composition is:

(Xl O0X2,¥Y10 Y2)7
where each component is a valid Agentic instance due to closure in ({x,0) and (¢y, o). Hence, the

result is in &p.

Associativity: Let (x1,¥1), (X2,¥2), (X3,y3) € &7. Then:

(x10X2,y10Yy2) 0 (X3,¥3)

= ((x1 0x2) ox3,(y1°¥2) °0y3)
= (x10(x20%3),y10(y20¥3))
= (x1,¥y1) o ((x2,¥2) © (x3,¥3)),

((x1,y1) 0 (x2,y2)) 0 (X3,y3) =

using associativity in each component.

Identity: Let er := (ex, ey), where ex and ey are identity elements in £x and &y, respectively.
Then for any (x,y) € &t

(ex,ey)o(x,y) = (ex ox,ey oy) = (x,y),
(x,y)o(ex,ey) = (xoex,yoey)=(x,y).

Hence, er is the identity element. L]

22

Under review as a conference paper at ICLR 2026

Quotient of the Agentic Structure To complement the expressiveness of product structures, the
quotient of Agentic structures provides a principled mechanism for abstraction and generalization. By
defining an equivalence relation over Agentic instances—such as grouping together states that differ
only in irrelevant or redundant dimensions—we can collapse fine-grained distinctions into coarser,
semantically meaningful categories. This is especially useful in scenarios involving behavioral
equivalence, or clustering of similar agentic behaviors. The quotient structure enables reasoning
at a higher level of abstraction while preserving the algebraic properties of the original system. In
distributed settings, it supports compression, deduplication, and aggregation of stateful computations.

Definition 5 (Equivalence Relation on Agentic Instances). Let {x be the set of Agentic instances
over type X.

An equivalence relation ~ on {x is defined by a relation R on state lists s : X such that for any

X,y € £X’
X~y — R(X~Sstatesv y'Sslales)7

where R satisfies the following properties:
* Reflexivity: R(s,s) for all state lists s.
o Symmetry: If R(s1,s2), then R(s2,s1).
* Transitivity: If R(s1,s2) and R(s2,s3), then R(s1, S3).

The specific form of R depends on the semantics of the Agentic structure. A common choice is
statewise equivalence, defined below.

Definition 6 (Statewise Equivalence of Agentic Instances). Let £x be the set of Agentic instances
over type X.

Define an equivalence relation ~ on & x such that for any x,y € ¢x,
X ~Y < X.Sstates = Y -Sstates;
where = denotes elementwise equivalence of state lists. That is,
X.Sstates — [1'1; 2, ... axn]a Y -Sstates = [yh Y2, .- 7yn]7
and for all: = 1,...,n, we have x; =~ y; under a given equivalence relation ~ on X.

The relation ~ on X may be defined in various ways, such as:
e Syntactic equality: x; = y;.
* Observational equivalence: f(x;) = f(y;) for some observable function f : X — O.

* Abstract equivalence: z; and y; belong to the same equivalence class under a domain-specific
partition of X.

This relation groups Agentic instances whose state trajectories are equivalent up to the equivalence of
individual states.

Definition 7 (Quotient of Agentic Structure). Let AG[X] be an Agentic structure over type X, and
let ~ be an equivalence relation on the set of Agentic instances &x.

The quotient Agentic structure, denoted AG[X/ ~], is defined as follows:

* The type X/ ~ is the set of equivalence classes of X under the induced relation =~ on
individual states.

* The set of instances { x,~. consists of equivalence classes (x) of Agentic instances x € {x,
where

(x):={yeéx |y ~x}.
* The state list of an equivalence class (x) is defined as:

<X>-Sstates = {y~sstates ‘ y~ X}'

23

Under review as a conference paper at ICLR 2026

This structure abstracts over individual Agentic instances by identifying those whose states are
equivalent.

Proposition 3 (Monoid Structure on Quotient Agentic Structure). Let ({x, o) be a monoid of Agentic
instances over type X, and let ~ be a congruence relation on {x, i.e., for all x; ~ x5 and y1 ~ yo,
we have:

X10y1 ~X20Y2.
Then, the quotient structure (x/ ~, o) forms a monoid, where:
* Elements are equivalence classes (x).
 The operation is defined by:
{x) o {y) = {xoy).
* The identity is (e), where e is the identity in ({x, o).

Proof. We verify the monoid properties on the quotient structure:

Well-definedness: If x; ~ x2 and y; ~ y2, then by congruence:
X10y1~X20Y2,
$0 (X1 0y1) = (X3 0 ya).
Associativity: Follows from associativity in {x:
(x) o ({y) o(z)) = (xo(yoz)) = ((xcy)oz) = ({x)o(y)) o (z).
Identity: For any (x),
(e)o(x) =(eox)=(x), (x)o(e)=(xoe)=(x).
O

Example 1 (Quotient of a Product Agentic Structure). Let AG[X] and AG[Y] be Agentic structures
over types X and Y, respectively. Their product AG[T] is defined by

Satype = X XY, Sstates = (x-sstalesv Y~3slales)
for instances x € AG[X] andy € AG[Y].
We define an equivalence relation ~ on &7 such that for any t1, to € &7,

t1 ~ty — VZ, 1'51) ~ (EZ(»2),

where :E,El) and :v,t(-z) are the first components of the i-th state in t; and to, respectively, and ~ is an
equivalence relation on X.

As a concrete example, let the types and the equivalence ~ be defined as:
* X = {Red, Green, Blue} (colors),
* Y = {Circle, Square} (shapes),
* Define ~ on X by:
Red ~ Green, Blue % Red, Blue % Green.

Consider two Agentic instances:
t1.Ssaes = [(Red, Circle), (Green, Square)],
to.Ssutes = [(Green, Circle), (Red, Square)].
Then t; ~ t, because:

Red ~ Green, Green = Red.
Note that the shape components (second elements) are not constrained by the equivalence relation.

The quotient Agentic structure AG[T'/ ~] consists of equivalence classes (t) of Agentic instances
under ~, where:

)y :={t' e&r |t ~t}.

This structure abstracts over differences in the first component of the state tuples according to =,
while preserving the full state list structure.

24

Under review as a conference paper at ICLR 2026

B.1.2 THE TRANSDUCTION OPERATOR

Equipped with Agentic structures that form a monoid, we obtain a sound abstraction for composing
the data workflows in a functional programming style. This foundation enables the introduction of
the logical transduction operator, which utilizes LLMs as transductive inference engines. We now
define a series of logical transduction operators, organized by increasing levels of complexity. These
operators are designed with explicit consideration of types and Agentic structures.

Transduction Operator Overloading

Definition 8 (Transduction). Given an information object x and a target Agentic structure AG[Y],
the rransduction of x into AG[Y'] is defined as:

y = Y << T = U(yﬂTS,),
i
where each y; € T, is a value assigned to slot s; of type T5,, logically inferred from x. Here,
the operator < denotes a logical transduction process, implemented via an LLM, that maps x to a
structured output conforming to the type Y.

To support the definition of logical transduction operators, we introduce a generic function that
renders typed objects into textual representations suitable for LLM input.

Definition 9 (Prompt Function). Given a type 7' € ©, a prompt function P is a mapping that renders
a list of states t : T into an information object, leveraging the string-valued slot names associated
with T'. Formally, P : List[T] — str.

Prompt functions serve as a bridge between structured data and natural language, enabling logical
transduction operators to interface with LLMs by converting typed instances into semantically
meaningful prompts.

We now define two specific forms of logical transduction: zero-shot and few-shot.
Definition 10 (Zero-Shot Logical Transduction). Let x = AG[X] and y = AG[Y] be Agentic
structures over types X and Y, respectively. A zero-shot logical transduction from x to y is defined
component-wise as:

yli] =Y < P(x[i)),
where P : X — str is a prompt function that renders each instance x[i] into a textual prompt.

Next, we also show more overloaded transduction operators in the case of the few-shot transduction,
yv[i] =Y <« (P(x[i])® FS(x,y)) with a few-shot function F'S(x,y) := P ((x’,y’)), and a
syntactic sugar such as self-transduction.

Definition 11 (Few-Shot Logical Transduction). Let x = AG[X] and y = AG[Y] be Agentic
structures over types X and Y, respectively. A few-shot logical transduction from x to y is defined
for all indices ¢ such that y[i] =) as:

yli] =Y < (P(x[i]) ® FS(x,y)),
where:

* P: X — str is a prompt function that renders an instance x[¢] into a textual prompt.
* & denotes prompt concatenation.

» FS(x,y) is the few-shot context, defined as:

FS(x,y) =P ((x.y),
where (x’,y’) is the projection of (x, y) onto the subset of indices for which y|i] # 0.

Finally, we introduce self-transduction as syntactic sugar within the programming model for logical
transductions.
Definition 12 (Self Transduction). Let x € AG[X] be an Agentic structure, and let Y, Z C X be two
disjoint subsets of types. A self transduction is a function that produces a modified Agentic structure
x' € AG[X], defined as:

x =x <y z=xU Y] < x[Z]),
where x[Y'] denotes the rebind operator, which extracts an AG[Y] from x by retaining only the slots
in Y that overlap with X.

25

Under review as a conference paper at ICLR 2026

Properties of Transduction Operator Next, we formalize key properties of the transduction oper-
ator. These properties are foundational for enabling scalable, parallel, and composable computation.

Proposition 4 (Conditional Determinism). Let o denote a fixed transduction context, which may
include components such as a few-shot context, additional instructions, external tools, or memory.
Let the LLM configuration—comprising model weights, temperature, and decoding strategy—also
be fixed. Then, for any input x;, the transduction y; := Y < x; is deterministic.

Proof. When the model parameters and transduction context ¢ are fixed, and the LLM is configured
with deterministic settings (e.g., temperature set to zero and caching enabled), the output y; is uniquely
determined by the input z; and the context o. Therefore, the transduction process is deterministic
under these conditions. O

Proposition 5 (Statelessness). Logical transduction operators are stateless. The output of a transduc-
tion y; := Y < z; depends only on z; and the transduction context, and not on any prior or future
transductions.

Proof. By definition, the transduction operator < does not rely on conversational memory or sequen-
tial state. Each y; is computed independently from x; and o, enabling asynchronous evaluation. [

Proposition 6 (Compositionality). Let AG[X], AG[Y], and AG[Z] be Agentic structures over types
X,Y,and Z, respectively. Suppose y’ =y < x, and z’ = z < y’. Then the composite transduction
holds, z’' =z < y < x.

Proof. Each transduction step applies < component-wise to the state list of the input Agentic
structure. Since the output of y < x is an Agentic structure AG[Y], it can be used as input to the
next transduction. Thus, the composition is well-defined and yields z’. [

Implications for Distributed and Concurrent Computing These properties make the transduc-
tion operator < particularly well-suited for distributed and concurrent computing paradigms. The
Conditional Determinism ensures reproducibility and traceability in distributed pipelines, the State-
lessness enables parallel execution, allowing transductions to be mapped across shards of data without
coordination or shared state, and the Compositionality supports modular pipeline construction, akin
to functional composition in MapReduce, where intermediate Agentic structures can be chained and
reused.

B.1.3 ASYNCHRONOUS MAPREDUCE

The programming model of the Agentics supports asynchronous execution of mapping and
reduction operations over Agentic structures, enabling scalable and composable data workflows.
We formalize these operations as aMap and aReduce, which extend the MapReduce by Dean &
Ghemawat| (2008)).

Definition 13 (Asynchronous Map (aMap)). Let AG[X] be an Agentic structure over type X, and
let f : X — List[Y] be an asynchronous mapping function. Then the asynchronous map operator is
defined as:

aMap : (AG[X], f) = AG[Y],

where the output Agentic structure y = aMap(x, f) satisfies: y.sqaes = J; f(2:), and the union
preserving the original order of inputs.

The function f may return an empty list by removing x; from the output acting as a filter, map each
x; to a single output acting as a transformer, or map each z; to multiple outputs acting as fan-out.
Note that aMap operator is executed asynchronously across all input states, enabling parallelism and
scalability in distributed environments.

The aMap operator is executed asynchronously across all input states, enabling parallelism and
scalability in distributed environments.

26

Under review as a conference paper at ICLR 2026

Definition 14 (Asynchronous Reduce (aReduce)). Let AG[X] be an Agentic structure and let
f : List{X] — Y be an asynchronous reduction function. Then the asynchronous reduce operator is
defined as:

aReduce : (AG[X], f) = AG[Y],

where the output Agentic structure y = aReduce(X, f) satisfies: y.Sgues = f(X).

Unlike aMap, which applies f to each state individually, aReduce applies f to the entire states x
at once. This is useful for summarization or aggregation, such as generating a report or computing
statistics over the full dataset. Since LLMs have limited context windows, applying aReduce to a
large dataset may be intractable. In such cases, scalable strategies such as hierarchical or batched
reduction can be employed by applying aReduce to random subsets and merging the results.

Composability with Logical Transduction aMap and aReduce can be composed with the logical
transduction operator < to build expressive and modular workflows. For example,

y = aMap(x, z — Y <« z), 2z = aReduce(y, f),

where the transduction Y < z is embedded within the mapping function. As we can see, Agentic
structure enables distributed, asynchronous, and semantically typed computation over structured data.

C DESIGN PATTERNS AND USE CASES

The Agent ics framework provides a concrete realization of the logical transduction algebra. We
elaborate on various design patterns and use cases for domain-specific multi-choice QA, text-to-
SQL pipelines, clustering, and automatic prompt optimization. This section demonstrates how the
Agentics framework supports a wide range of generative structured data workflows through
reusable design patterns. Each use case highlights a different aspect of the Agent ics programming
model, showcasing its flexibility, scalability, and composability.

C.1 SEMANTIC PARSING TEXT-TO-SQL

Text-to-SQL is an essential task for broadening the accessibility of structured data interaction,
allowing users to query databases without needing to understand the underlying decisions made by
data engineers. Loosely considered a translation task, questions are posed to a database and first
translated into SQL queries before being executed and answers retrieved and answers retrieved. In
practice, this task involves multiple stages of reasoning, whereby one has to interact with the schema
of the structured data, as well as understand and decompose the question into its constituent parts.

Data Models Agentics supports this workflow by chaining multiple transduction steps and
integrating them with traditional Python logic. First, let’s consider setting up the Pydantic types with
the required task information.

class Text2SQLTask (BaseModel) :
question: str = Field(description=)
ddl: str = Field(description=
)

sgl_query: Optional[str] = Field(description=
)

execution_result: Optional[List[Dict[str, str]]] = Field(description=

)
Listing 2: Data model for the simplified Text2SQL task

From the above Pydantic types, the simplified task is to map the question and DDL to the sql_query.
However, we can break down this complex operation into declarative data modeling steps to improve
task performance, including:

* enriching the database so that there are additional fields like description of the schema and
business descriptions

* decompose the user question into constituent parts input that can be also a part of optimiza-
tion!

27

w

14
15
16

Under review as a conference paper at ICLR 2026

* optimize the prompt template using the final input fields.

class Text2SQLTask (BaseModel) :
question: str = Field(description=)
ddl: str = Field(description=
)

enrichment: Optional[DB] = Field(description=
)
sql_query: Optional[str] = Field(description=
)
execution_result: Optional[List[Dict[str, str]]] = Field(description=

)

class DB (BaseModel) :
description: Optional[str] = Field(description=

keywords: Optional[list[str]] = Field(description=

)
few_shots: Optional[list[QuestionSQLPair]] = Field(description=
subquestions: Optional[list[str]] = Field(description=
)
schema_link: Optional[str] = Field(description=
class QuestionSQLPair (BaseModel) :
question: Optional([str]

sgl_query: Optional([str]

Listing 3: Data model for the compositional Text2SQL task

Meta-Prompts and Prompt Templates We define the initial prompt that performs the main text-
to-SQL task. The following shows the prompt template used as input to the experiment, which may
be optionally modified by the automated prompt optimization flag.

prompt_template =

{input_spec_str}

i
b}

Listing 4: The Prompt Template and Meta-Prompt for Automatic Prompt Optimization
Main Algorithm Next, we show how to define the compositional text-to-SQL pipeline in

Agentics. We see that the entire pipeline can be implemented through compositions of logical
transductions defined over the data models.

text2sqgl () << text2sqgl() << text2sqgl(
)
text2sqgl (o) << text2sqgl (o
) # synthetic pair
text2sgl () = text2sqgl() + k_shot # additional augmentations

28

o -

Under review as a conference paper at ICLR 2026

text2sql () = text2sqgl.filter (valid_sql,) # executes sql
text2sqgl () << text2sqgl ()
text2sqgl () << text2sqgl(7
)

’
input_fields = [P]
text2sgl.instructions = optimize (prompt_template, input_fields)
text2sqgl () << text2sqgl (xinput_fields)
text2sqgl () = text2sqgl.amap (execute_sqgl_query)

Listing 5: Pseudo-code for the Compositional Text-to-SQL Workflow

C.2 DOMAIN-SPECIFIC MULTIPLE CHOICE QUESTION ANSWERING

Domain-specific Multiple Choice Question Answering (MCQA) tasks present unique challenges for
LLMs, particularly when grounded in technical domains that are unfamiliar or underrepresented in
pretraining corpora.

FailureSensorIQ Benchmark In this subsection, we demonstrate how the Agent i cs framework
supports structured reasoning and robust performance on the FailureSensorlQ benchmark—a dataset
designed to evaluate LLMs’ understanding of failure modes and sensor relationships in Industry 4.0
(Constantinides et al.,|2025)).

Unlike widely used QA datasets such as MMLU (Hendrycks et al., 2021) or MedQA [Li et al.
(2020), FailureSensorIQ introduces a novel domain with no prior exposure to the models under
evaluation. This makes it a strong testbed for assessing generalization and reasoning capabilities
in high-stakes, real-world industrial contexts. The benchmark includes 8,296 questions across 10
assets, with both single- and multi-answer formats. Despite the presence of strong reasoning models,
the best-performing openai-ol achieves only 60.4 precent accuracy on single-answer questions,
underscoring the dataset’s difficulty.

Schema-Guided LLM Reasoning The Agentics approach to MCQA leverages self-transduction
and schema-driven prompting using Pydant ic models. This structured prompt format contrasts
with the loosely formatted natural language prompts used in baseline evaluations. By explicitly
encoding the input-output schema (e.g., JSON fields for question, options, and selected answers),
Agentics reduces decoding errors and enforces type safety. This is particularly beneficial in
multi-answer settings, where ambiguity in output formatting can lead to evaluation mismatches and
degraded performance.

We observe that this structured prompting pattern not only improves accuracy but also enhances robust-
ness to perturbations. For example, when question phrasing or distractor options are altered, schema-
constrained decoding helps maintain consistent model behavior. This suggests that Agentics’
structured approach offers a degree of perturbation resilience, addressing one of the key weaknesses
identified in the original FailureSensorlQ benchmark.

In addition to accuracy improvements, the Agentics framework enables parallel batch execution
of MCQA tasks, significantly reducing inference time. This is achieved through the aMap operation,
which distributes structured prompts across multiple model invocations. Compared to sequential
prompting, this design pattern yields substantial speedups, making it practical for large-scale evalua-
tion and deployment.

Data Model The data model for domain-specific MCQA in Agentics is defined using
Pydantic, which enforces structural constraints and type safety during both prompt construc-
tion and response decoding. This schema-guided approach ensures that the model’s outputs conform
to expected formats, reducing parsing errors and improving evaluation reliability.

The FailureSensorIQ class encapsulates the core components of each QA instance, including
the question text, list of options, associated metadata (e.g., asset name, question type), and the model-
generated answer. The nested Answer class captures the model’s selected answer, a numerical
confidence score, and a free-text explanation that provides insight into the model’s reasoning process.

class Answer (BaseModel) :
answer_letter: str = Field(description=)
confidence: float = Field(description=)
assessment: str = Field(description=)

29

Under review as a conference paper at ICLR 2026

class FailureSensorIQ (BaseModel) :
id: int = Field(description=)
question: str = Field(description=)
options: List([str] = Field(description=)
option_ids: List[str] = Field(description=)
asset_name: str = Field(description=)
relevancy: str = Field(description=)
question_type: str = Field(description=)
subject: str = Field(description=)
system_answer: Answer = Field(description=)

Listing 6: Data Model for Domain-Specific Multiple Choice QA

Main Algorithm The workflow begins by instantiating an AG object with the
FailureSensorIQ schema and a specified batch size. Each example from the dataset is
parsed into a structured FailureSensorIQ instance and appended to the agent’s internal state.

The core operation is the self transduction, which performs schema-guided inference over the specified
input fields—such as question, options, and asset name—and generates structured outputs in the
system answer field. The transduction is guided by a natural language instruction that defines the task:
selecting the most plausible answer from a set of options, along with a confidence score and rationale.

Initialize the \texttt{Agentics} benchmark with the FailureSensorIQ schema and batct
fsig benchmark = AG(atype=FailureSensorIQ, batch_size=40)

ad dataset and populate agent states
dataset = load_dataset ()
for example in dataset:
fsig benchmark.states.append(FailureSensorIQ (xxexample))

Loac

Run self-transduction with structured input and output fields

fsig benchmark = await fsiq_benchmark.self;transduction(
input_fields=[

’ ’ ’

1,
output_fields=][1,
instructions=(

Listing 7: Pseudo Code for Domain-Specific Multiple Choice QA

C.3 PROMPT OPTIMIZATION

Prompt optimization is a critical component in leveraging large language models (LLMs) for complex
tasks. The performance of LLMs is highly sensitive to variations in prompt structure, tone, and even
the positioning of textual components. Minor changes—such as rephrasing imperative sentences or
reordering blocks—can significantly impact the model’s output.

Prompts typically follow a structured format, often divided into system and user sections. The system
prompt provides general context, instructions, and expectations for the output, while the user prompt
contains task-specific information. Common elements include task descriptions, constraints, few-shot
examples, input/output format specifications, and guiding phrases like “Let’s think step by step”.
These components are frequently organized using structured formats such as Markdown or JSON

schemas.

General Framework for Prompt Optimization |Ramnath et al.[(2025) and|Li et al.|(2025) have
summarized existing prompt optimization techniques into a generic prompt optimization framework.
Algorithm [I| presented in [Ramnath et al. (2025), formalizes the process of prompt optimization as
follows. Given a task model M,, an initial prompt p € V, the goal of an prompt optimization
system M po is to obtain the best performing prompt-template p°P* under a metric f € F and eval-set
D, that maximizes expected performance:

pr = arg Ipr.lea‘;(Bonpoy [f (Meask(p @ @))] -

30

1

Under review as a conference paper at ICLR 2026

Since the objective function is not tractable due to the combinatorial nature of discrete token-sequence
search spaces, the optimization process typically follows a generate-select-evaluate cycle, akin to
local search algorithms (Russell & Norvig| 2020). Most methods begin with a predefined prompt
template that specifies the structure and content to be included. An initial prompt may be constructed
manually or generated automatically using an LLM.

Given a specific task, the dataset is usually partitioned into training and validation sets. The training
set is used to optimize the prompt, while the validation set is employed for tuning hyperparameters.
Additionally, a held-out test set is used to evaluate final performance. Candidate prompts are generated,
filtered based on performance metrics, and refined over successive iterations, with incremental
improvements guided by feedback from model outputs.

Algorithm 1: Prompt Optimization Framework

1. Po:={p1,p2,---, Pk} > Initial seed prompts
2: Dyt = {(z1, 1)}, > Validation set
3 fi,.., fm €F > Inference evaluation
4: fort=1,2,...,Ndo > Iteration depth
5: Gy := Mpo(P, Dy, F) > Generate prompt candidates with Mpo
6: P, := Select(Gy, Dyai, F) > Filter and retain candidates
7: if feonvergence < € then > Optionally check for early convergence
8: exit

9: return arg max,cpy Ezp,,, [[(Miask(p ® x))]

Parallelizing Prompt Optimization with Transduction Algebra Within the Agentics frame-
work, the prompt function defined in Definition 9] maps type information into structured information
objects for transduction. Prompt optimization in this context is naturally expressed using transduc-
tion algebra. Since candidate prompts can be generated by logical transduction, we adopt meta-
prompt-based optimization strategies similar to those proposed in (Yang et al., 2024; Ye et al., [2024;
Opsahl-Ong et al.,[2024). Our approach emphasizes two key aspects:

* The Agentics framework supports a declarative style of prompting, where prompts are
constructed to encode rich contextual and type-level information rather than procedural
instructions.

* The optimization process follows the generate-select-evaluate cycle described in Algorithm [I]
Importantly, the transduction algebra enables this optimization loop to be expressed in a
functional and parallelizable manner. Prompt candidates can be generated and evaluated
independently, allowing for efficient execution. This abstraction not only improves scalability
but also decouples the optimization logic from the underlying execution strategy.

In summary, the Agentics framework provides a principled and extensible foundation for prompt
optimization. It integrates declarative prompt construction, transduction algebra, and parallel search
strategies into a unified system that supports both expressiveness and scalability. Next, we present
a functional design pattern for implementing prompt optimization using transduction algebra, ab-
stracting away procedural details common in existing approaches. In Section our experiments
demonstrate that declarative context optimization improves performance and that parallelization
yields substantial runtime gains.

Data Models We begin by defining two data models using Pydantic: Opt imizationTask and
GSM8K. The Opt imizationTask schema captures the components of a prompt template—such
as role, goal, expected output, and imperative instructions—along with a score field for evaluation.
The GSM8K schema represents the target task, including the question, ground-truth answer, model-
generated reasoning, and correctness flag.

class OptimizationTask (BaseModel) :

a ist of demo tasks used to guide prompt generation
demos: list[Any] = Field(description=)
role description to be embedded in the prompt (e.g., ’"You are a math tutor’)

Field(description=)
J stat ent describing what the prompt aims to achieve
goal: str = Field(description=)

31

1
S
4

W

Under review as a conference paper at ICLR 2026

criteria for what constitutes a good or acce
expected_output: str = Field(description=)
imperative phrase (e.g., '"Let’s think step by st)

imperative: str Field(description=)

evaluation score signed to the prompt after testing on validation data

score: int = Field(description=)

class GSM8K (BaseModel) :
question: str = Field(description=)
answer: str = Field(description=)
response_think: str = Field(description=)
response_answer: str = Field(description=)

boolean flag ndicating whether the response answer s correct

correct: bool

Listing 8: Data Models for GSM8K Prompt Optimization

Meta Prompt and Optimized Prompts The meta-prompt (OPT_-META_INSTRUCTION) guides
the generation of new prompt templates by describing the structure and expectations for the optimizer.
It includes historical context from previous iterations and instructs the model to avoid redundancy. The
user prompt template (USER_PROMPT_TEMPLATE) is instantiated with the optimized parameters
and used to evaluate candidate prompts on the validation set.

The following shows the meta-prompt used for optimizing the prompt template for the GSMSK
dataset.

OPT_META_INSTRUCTION =
role
goal
expected_output

imperative

USER_PROMPT_TEMPLATE =

Listing 9: Meta Prompt and Template for GSM8K Prompt Optimization

In the following, we show the prompts returned by APO, including both system and user prompts.
The system prompt consists of three components: role, goal, and expected_output. In the user prompt,
an imperative statement appears after each question. A score of 89 was evaluated on the validation
set, using 100 problems sampled from the training set, which is higher than the test score of 85.

{

: 89

32

Under review as a conference paper at ICLR 2026

Listing 10: Optimized Prompt for GSM8K using Llama-3.3-70B Model
The following result is obtained from the Qwen3-8B model. A score of 98 was evaluated on the

validation set, using 100 problems sampled from the training set. This score is higher than the test
score of 92.

{

: 98
Listing 11: Optimized Prompt for GSMS8K using Qwen3-8B Model

The following shows the meta prompt for optimizing the prompt template for MCQA dataset.

OPT_META_INSTRUCTION =

role
goal
expected_output
task_context
imperative
t Template used to instantiate a user prompt from the optimized parameters.
This is applied to each validation example.

USER_PROMPT_TEMPLATE =

Listing 12: Meta Prompt and Template for MCQA Prompt Optimization

In the following, we show the system and user prompts returned by APO. The system prompt includes
three components: role, goal, and expected_output. In the user prompt, task_context appears before
each question, and an imperative statement follows each question. The test score was 54.

{

33

20

RERECE TN N SR N TN)
SOOI h A DN —

LWL W W L
EORQ =

S

Under review as a conference paper at ICLR 2026

54}

Listing 13: Optimized Prompt for MCQA using Llama-3.3-70B Model

Main Algorithm The main optimization loop follows the generate-select-evaluate cycle described
in Algorithm [I] It begins by preparing the training and validation sets using the Agentics
(AG[GSM8K]). Demo tasks are extracted and transformed into Opt imizationTask instances.

In each iteration, candidate prompt templates are generated via self-transduction using the meta-
prompt. These templates are applied to the validation set using the user prompt format. The responses
are evaluated using the grading function defined in GSM8K . grade, and scores are assigned. The
best-performing prompts are retained using a filtering function (keep_best _k). This loop continues
until convergence or a maximum number of iterations is reached. The use of transduction and
asynchronous execution enables parallel evaluation of prompt candidates, improving scalability and
runtime efficiency.

load GSM8K training data into \texttt{Agentics} abstraction

trainset AG from_ json()

truncate to a subset for aining

trainset tralnset truncate states(num trains)

create demo tasks from training examples

demosets = create _optimization_ demos(tralnset, num demos)

convert demo tasks 1to OptimizationTask ins

optimization_tasks OptlmlzatlonTask create optlmlzatlon tasks (demosets)
prepare validation set from remaining examples

validationset = trainset.truncate_states(num_tralns, num_trains + num_devs)

initialize optimizer AG[OptimizationTask] with demo tasks
optimizer = AG.from_states (optimization_tasks, atype=OptimizationTask)

set default parameters and prompt configuration
set_default_params (optimizer)
optimizer.prompt_template = demo tasks
optimizer.prompt_params = { 8 P
’
’
}
initialize list to store optimized prompt tasks
optimized_tasks = []

for iter_ 1nd in range (max_iter):

meta prompt and transduction

o

S My 1
optimizer.instructions OPT META INSTRUCTION format(
optimization_history = get_history_string(optimized_tasks))
optimizer = asyncio.run (optimizer.self_ transduction (
[1,
[’ ’ ’ 1))

apply candidate prompts to validation set using user prompt format
opt_eval = optimizer x validationset

opt_eval.prompt_template = USER_PROMPT_TEMPLATE

opt_eval = asyncio.run (opt_eval.self transduction (

[’ ’ ’ ’ 1,

[’ 1))

s sing C 8K grading function
executed_tasks = opt eval / valldatlonset
for ind, exectask in enumerate (executed_tasks) :

exectask = asyncio.run (exectask.amap (GSM8K.grade))
setattr (optimizer[ind], , summary [1)

evaluate response

retain top-perfor mpts for next iteration
optimized_tasks.extend(optimizer.states)
optimized_tasks = keep_best_k (optimized_tasks)

Listing 14: Pseudo Code for GSM8K Prompt Optimization

34

	Introduction
	Related Work
	Logical Transduction Algebra
	Technical Implementation
	Example Usage of Meta-Class AG
	PydanticTransducer

	Experiments
	Data Workflow Tasks
	Schema Matching
	Text-to-SQL
	Data Imputation

	Domain-Specific Multi-Choice Question Answer

	Conclusion
	Experiments Details
	Computing Infrastructure
	Text-to-SQL
	Schema Matching
	Data Imputation
	Domain-Specific Multi-Choice Question Answer
	Prompt Optimization

	Logical Transduction Algebra
	Formalization
	Algebraic Structures
	The Transduction Operator
	Asynchronous MapReduce

	Design Patterns and Use Cases
	Semantic Parsing Text-to-SQL
	Domain-Specific Multiple Choice Question Answering
	Prompt Optimization

