
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRANSDUCTION IS ALL YOU NEED FOR STRUCTURED
DATA WORKFLOWS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper introduces Agentics, a functional agentic AI framework for building
LLM-based structured data workflow pipelines. Designed for both research and
practical applications, Agentics offers a new data-centric paradigm in which agents
are embedded within data types, enabling logical transduction between structured
states. This design shifts the focus toward principled data modeling, providing a
declarative language where data types are directly exposed to large language models
and composed through transductions triggered by type connections. We present a
range of structured data workflow tasks and empirical evidence demonstrating the
effectiveness of this approach, including data wrangling, text-to-SQL parsing, and
domain-specific multiple-choice question answering.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities in natural language
understanding, reasoning, and tool use. Recent advances in LLM-based agent systems—equipped
with human-level text generation and conversational abilities—have opened promising directions in
software engineering, scientific research, and a wide range of tasks that can be automated (Hosseini &
Seilani, 2025; Agashe et al., 2025). In the emerging paradigm of agentic AI, LLMs are integrated with
external tools, structured knowledge sources, and memory modules to form specialized agents. These
agents, each designed with distinct functions and behaviors, collaborate through modular reasoning
to solve complex tasks (Acharya et al., 2025; Moshkovich & Zeltyn, 2025; Huang & Huang, 2025;
Han et al., 2024).

Despite growing interest in agentic AI, current systems remain poorly suited for structured data
workflows, where inputs and outputs are governed by explicit schemas and semantics (Hopkins et al.,
2022). Embedding structured data into natural language often fails in enterprise use cases such as
analytics and data transformation (Sarirete et al., 2022; Heck, 2024; Putri & Athoillah, 2024), due to
the lack of compositional guarantees, which leads to brittle workflows, cascading errors, and limited
reproducibility.

While existing frameworks (LangChain, 2025; CrewAI Inc., 2025; Pydantic, 2025b; Dibia et al.,
2024; Khattab et al., 2024) offer modular agent composition and tool integration, they fall short
of addressing the foundational challenge. Namely, how to endow agentic systems with algebraic
structure that ensures robustness, modularity, and interpretability. As a result, these pipelines remain
fragile, i.e., lacking formal semantics and struggling with structured data integration.

To overcome these limitations, we introduce Agentics, a framework for agentic AI grounded in
logical transduction algebra, a formalism for representing and composing transformations between
structured inputs, intermediate states, and outputs. Agentics provides a unifying programming
model for generative structured data workflows, treating each step as an asynchronous transduction
rather than a prompt-chained interaction. This abstraction enables modularity, parallelism, and
schema-constrained transduction, addressing the fragility and lack of formal semantics in existing
agentic pipelines.

At the core of Agentics lies the notion of logical transduction: a typed transformation that maps an
input object of one schema into an output object of another. The key distinction is that Agentics
treats agents as stateless transducers operating over well-defined data types, hence shifting away
from chat-or event-based multi-agent architectures toward a data-centric, functional pipeline. Unlike

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

class ProductReview(BaseModel):
reviewer: str
text: str
stars: int

class SentimentSummary(BaseModel):
sentiment: Literal["positive",

"neutral", "negative"]
reason: str

{"reviewer": "Alice", "text": "Excellent
product quality and fast delivery!", "
stars": 5},

{"reviewer": "Bob", "text": "It’s okay, but
the package was damaged", "stars": 3},

{"reviewer": "Carol", "text": "Terrible
experience, broken after one use!", "
stars": 1}

{"sentiment": "positive",
"reason": "Excellent quality and fast

delivery"},
{"sentiment": "neutral", "reason": "Okay

product, but package issues"},
{"sentiment": "negative",
"reason": "Broke after one use"
}

Figure 1: Logical Transduction Applied to Sentiment Summary

conversational agents that rely on serialized dependencies and multi-turn dialogue, Agentics
agents support fully asynchronous execution.

By design, Agentics exposes a programmatic interface to LLMs in which all input and output data
are represented as typed objects, ensuring schema validation and constraint checking. Interestingly,
such structured types are particularly well handled by LLMs, and align with function-calling patterns,
making them particularly well-suited for reliable and interpretable inference(Rossiello et al., 2021;
2023). Figure 1 illustrates a simple example of logical transduction. A ProductReview object
containing a reviewer’s name, review text, and rating is transduced into a new object that includes a
sentiment label and a rationale. The LLM generates these new fields based on the structured input
and the schema of the target type, no additional prompt engineering is required. Beyond individual
transductions, Agentics introduces an asynchronous map-reduce style programming model for
asynchronous workflow composition, enabling scalable, and controllable pipelines. In Agentics
programming model, every step is a typed transformation, enabling reproducibility and adaptability
in real-world applications.

Section 2 summarizes the related works and highlight the key difference between Agentics and
existing frameworks. Section 3 develops logical transduction algebra and asynchronous programming
model, Section 4 develops technical implementation of the proposed framework as a Python library,
Section 5 shows experiment results on a wide variety of tasks that are closely related to generative
structured data workflow tasks such as data wrangling Narayan et al. (2022) and text-to-SQL semantic
parsing (Hendrix et al., 1978; Androutsopoulos et al., 1995). We also evaluate schema rich domain-
sensitive multiple choice question answering tasks.1

In this paper, we focus on proposing a new programming model for agentic AI, rather than introducing
novel algorithms or engineered solutions aimed at improving task-specific performance. Nevertheless,
our evaluation shows that Agentics achieves competitive or improved results due to the structured
prompting compared to carefully selected baselines. Our emphasis is on the advantages of shifting
toward a data-centric paradigm, demonstrating how this approach simplifies the development of
LLM-based workflows while enhancing compositionality, scalability, and execution efficiency.

2 RELATED WORK

For decades, AI has been framed as an effort to emulate human intelligence. The Turing Test exempli-
fies this anthropomorphic ideal: a machine is deemed intelligent if its conversation is indistinguishable
from a human’s. The rise of LLMs has amplified this framing. By enabling rapid prototyping of intel-
ligent systems through natural language prompts, developing AI agents has become more intuitive
and accessible. Consequently, many agentic AI frameworks adopt agentic metaphors such as memory,
planning, and tool use, often realized via chat-based interfaces.

This approach has driven remarkable progress in consumer applications. Yet, as tasks demand greater
semantic precision, prompt-centric methods often prove brittle, opaque, and hard to scale, especially in

1Due to the space limitation, we provide details of implementation of each task and additional tasks in the
Appendix.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

structured data environments where reproducibility and accuracy are paramount. Agentic frameworks
typically position the agent as the locus of intelligence, with data as passive input. While effective
for open-ended tasks, this model struggles in deterministic workflows. In enterprise settings where
querying, transformation, and integration of structured data are common, conversational agents can
introduce error propagation and unpredictable behavior.

To address the limitations of prompt-centric agentic systems, recent research has introduced tech-
niques such as guardrails (Ouyang et al., 2022; Dong et al., 2024; Zhang et al., 2024), self-reflection
(Shinn et al., 2023; Asai et al., 2024), and correction strategies (Madaan et al., 2023; Pan et al.,
2024). While these methods enhance reliability, most frameworks still depend on free-form text or
loosely structured prompts that remain fragile and difficult to verify, especially in tasks requiring
high semantic precision. In practice, techniques that offer more reliable interfaces such as structured
decoding based on predefined schemas (Rossiello et al., 2023; Kwon et al., 2023a) or type-safe
libraries (Pydantic, 2025a) have gained traction. These approaches are increasingly supported by
modern software stacks built around LLMs.

The shift toward structured data computation is reflected in several emerging frameworks.
Pydantic-AI (Pydantic, 2025b) emphasizes type-safe agentic programming and serves as agent
framework for building structured AI applications using Pydantic types and multi-agent systems.
LangGraph (LangChain, 2025) enables orchestration of stateful agents over finite state machines,
supporting complex control flows. CrewAI (CrewAI Inc., 2025) demonstrates strong performance
in multi-agent coordination and message passing between agents and tools. DSPy (Khattab et al.,
2024) pioneers declarative abstractions for prompt engineering and optimization, tightly coupled
with structured templates. While these frameworks have evolved toward conversational multi-agent
coordination in networked environments, Agentics proposes a shift toward computation centered
on data semantics and type-driven transformations—enabling more robust, scalable, and interpretable
workflows for generative structured data tasks.

3 LOGICAL TRANSDUCTION ALGEBRA

Agentics leverages asynchronous, parallel LLM inference to support enterprise-scale workflows
over structured data. To ground this capability, we introduce Logical Transduction Algebra (LTA): a
typed, compositional calculus for building, analyzing, and optimizing LLM-powered pipelines. Our
work is closely related to relational algebra (Codd, 1970) and the MapReduce programming model
(Dean & Ghemawat, 2008). Here, we present an abridged version of the formal Logical Transduction
Algebra in the main paper. The full details are provided in the Appendix.

A logical transduction is a semantically grounded transformation from an object x of type X to
an object y of type Y such that each field of y is logically justified by information in x under the
constraints of the source/target schemas. Concretely, schemas are realized as Pydantic types
in Python library implementation, which allows type-checking and constraints make intermediate
states explicit and auditable, while aligning naturally with LLM function-calling behaviors. Logical
transduction is executed between any two Agentics (AGs).

Definition: Agentics (AG) Let Θ be the universe of types. A type T ∈Θ is a finite set of named
slots T = {(si, Tsi)} with Tsi ∈Θ. An Agentic structure AG bundles a schema and a list of instances:

AG := { satype :Θ, sstates :List[satype] }.

We write AG[X] for an agentic structure with schema X and x=AG[X] for a particular instance
list. Concatenation of state lists endows instances of a fixed AG[X] with a monoid structure, giving a
simple but useful algebra over batches.

Definition: Transduction operator (≪) The basic operator of LTA is the left-shift ≪, which maps
a source object into the target schema:

y := AG[Y] ≪ x where y.sstates = { y : y satisfies Y and is logically inferred from x }.

Operationally, ≪ renders typed inputs into prompts, invokes an LLM (optionally with tools/RAG/few-
shot), and parses/validates the result into the target type Y .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Definition: Prompt function (P) A prompt function P : List[T]→str serializes typed states to
text, bridging structured data and LLM inputs. Zero-shot transduction applies P per state:

y[i] = AG[Y] ≪ P (x[i]),

. The default prompt function of AG is the pydantic model dump() method with returns a json
dictionary representing the state.

Lemma: Properties of LTA Let the transduction context , i.e. the LLM, decoding settings, tools,
and few-shot used by the AG, fixed. Then the following conditions applies:

• Conditional determinism: Re-invoking ≪ on the same x under the same context yields the
same y, enabling reproducibility.

• Statelessness: y depends only on x and the context, not on other inputs, enabling asyn-
chronous parallel execution.

• Compositionality: If y = AG[Y] ≪ x and z = AG[Z] ≪ y, then z = AG[Z] ≪
AG[Y] ≪ x, giving functional-style pipeline composition.

aType Operators In LTA, operations among agentic types (aTypes) provide the foundation for
composing and reasoning about structured workflows. Each type X is defined as a set of named
slots (si, Tsi), and standard set operations are applied component-wise: the union X ∪ Y collects all
slots present in either schema, the intersection X ∩ Y keeps only shared slots, the difference X \ Y
removes slots from X that also appear in Y, and the Cartesian product X × Y builds composite types
pairing slots from both. At the level of instances, Agentic structures AG[X] (a schema plus a list of
states) form a monoid under concatenation of state lists, with the empty instance as identity.

Asynchronous MapReduce. To scale beyond single-step transduction, LTA provides two higher-
order operators:

aMap : (AG[X], f) → AG[Y], Reduce : (AG[X], g) → AG[Y],

where f : X → List[Y] is applied independently to each xi (filter/transform/fan-out), and
g : List[X] → Y aggregates many states (summaries, rankings, joins). Because ≪ is stateless,
aMap execute the function f, which might embed transductions, in asynchronous fashion. In con-
trast, Reduce functions takes all the states of the input agentic at once, and therefore cannot be
asyncronously executed.

In short, LTA provides a formalism to make assumptions explicit; ≪ provides a uniform contract
between stages; aMap/aReduce expose parallel structure and enable hierarchical summaries; and
conditional determinism/statelessness support reproducible, high-throughput execution. Together,
LTA turns LLM pipelines from brittle prompt chains into modular, optimized, and auditable programs.

4 TECHNICAL IMPLEMENTATION

Agentics framework is distributed as a Python library As briefly introduced in the logical transduc-
tion algebra, we define the Agentic structure AG as a container for a list of typed objects. Within this
framework, LLM inference is conceptualized as logical transduction, i.e., the process of inducing one
object from another based on a predefined type schema. The framework is built upon two essential
components: the Agentic structure, implemented as the metaclass AG, and the Transducer, built on
top of Pydantic to enable type-safe object transformation. In this section, we describe these core
elements and present examples that illustrate the Agentic programming model in practice.

4.1 EXAMPLE USAGE OF META-CLASS AG

The meta-class AG is a lightweight yet expressive container for typed data and its execution context.
It provides the following three essential capabilities. First, it binds a typed schema, which we call
atype, a pydantic.BaseModel subclass. Second, it holds a list of states, where each state
is a validated instance of atype. Third, it carries an execution context of transducer, such as llm,
tools, prompt template, batch size, and decoding parameters.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Meta-Class AG The meta-class AG allows structured states to be natively represented in Python,
while remaining agnostic to the specific LLM providers (e.g., OpenAI, Google DeepMind, Anthropic,
Meta AI, WatsonX, etc). The following pseudo code shows an example of AG.

1 class AG(BaseModel):
2 atype: Type[BaseModel] # target schema (Pydantic model)
3 states: List[BaseModel] = [] # instances of ’atype’
4 # execution context
5 llm: Any = None # LLM client/handle
6 tools: Optional[List[Tool]] = [] # optional tool registry
7 prompt_fn: Optional[Callable] = lambda x: x.model_dump()
8 batch_size: int = 20 # async batch size

Given an atype and a list of typed instances, an instance of AG carries the states and manages
their transformation either through logical transduction or via asynchronous functions in a map/reduce-
style program.

Pydantic Models as Schemas An atype can be any subclass of Pydantic BaseModel. For
instance, a news schema StockNews may be defined as follows, and an AG class news can be
instantiated with states of type StockNews.

1 class StockNews(BaseModel):
2 ticker: str # e.g., "AAPL"
3 content: str # raw news article text
4 date: datetime # publication time
5

6 news = AG(atype=StockNews, states=[StockNews(ticker="AAPL", content="
Apple shares surged after record iPhone sales were announced.",date="
2025-01-15")])

Note that AG instances behave like a typed list enriched with a type system.

1 news = AG.from_csv("apple_news.csv")
2 for article in news: # iterate states like a list
3 print(article.ticker)
4 news.add_attribute("sentiment", str)
5 news.rebind_atype(StockNews) # rebind to new schema with added attribute.

Logical Transduction (≪) Agentics framework overloads the ≪ operator to express logical
transduction between agentic structures. The left operand is the target AG, which becomes populated
by transducing the states of the right operand. The following examples shows application of logical
transduction to sentiment summary by populating the SentimentScore instances from news.

1 class SentimentScore(BaseModel):
2 ticker: str
3 sentiment: float # normalized score in [-1, 1]
4 label: str # "pos", "neutral", "neg"
5 output = await (AG(atype=SentimentScore) << news)
6 #output[0]: SentimentScore(ticker="AAPL", sentiment=0.8, label="pos")

Map/Reduce Paradigm The meta-class AG applies asynchronous mapping to its list of states,
executing either logical transduction or a (possibly asynchronous) function f via AG.amap(f) on
each state independently. Since transductions are stateless, amap evaluations over multiple states
can run asynchronously in parallel. In other words, the mapping can be batched for efficiency. In
contrast, AG.aReduce(f) aggregates a collection of states into a single (or small set of) output(s).
Because it consumes the entire list of states, it operates synchronously and is not parallelizable.

Example Workflow By chaining logical transduction (≪), aMap, and aReduce, a complex
workflow can be expressed declaratively. For example, a sentiment-driven stock ranking can be built

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

as follows. This combination of typed schemas, logical transduction, and asynchronous map–reduce
execution yields workflows that are modular, interpretable, and highly scalable.

1 # (1) Gather news for each ticker
2 news_ag = await AG(atype=StockNews).amap(fetch_news_for_ticker)
3 # (2) Extract sentiment per article
4 scores_ag = await AG(atype=SentimentScore) << news_ag
5 # (3) Aggregate to stock-level sentiment
6 stock_sentiment = scores_ag.aReduce(group_by_ticker_mean)
7 # (4) Rank portfolio by sentiment
8 portfolio_ranking = stock_sentiment.aReduce(rank_portfolio)

4.2 PYDANTICTRANSDUCER

Logical transduction triggers the creation and execution of a PydanticTransducer, which is a
stateless agent whose role is to generate a valid instance of the target atype given text input. The
textual input can represent virtually any concept accessible to an LLM, while the structured output
ensures reliability in downstream tasks. Because agents in Agentics avoids shared conversational
memory, it naturally supports asynchronous execution and efficient scale-out.

Figure 2: Average time (sec) per question

To ensure high throughput and responsiveness
across datasets of varying sizes, the transduction
operator processes data in configurable batches,
typically ranging from 8 to 32 items. As shown
in the figure on the right, execution time de-
creases as batch size increases from 1, with per-
formance gains saturating around a batch size of
32. This trend reflects near-linear improvements
in processing speed across all tasks, highlighting
the efficiency of batched execution. The under-
lying asynchronous map/reduce programming
model—grounded in a logical transduction alge-
bra—enables scalable and robust computation,
adapting seamlessly to diverse data workloads.

5 EXPERIMENTS

In this paper, we evaluate Agentics, a programming framework for building generative data workflows
with a focus on computational efficiency, scalability, ease of design, and accuracy. While prior work
on agentic AI frameworks has emphasized capabilities such as planning and tool use, we focus on
the quality and structure of agentic workflow pipelines, particularly in data-centric tasks. We test
the following hypotheses: (1) Agentics supports a data-centric paradigm through declarative data
modeling via type schemas, which decouples logical agent workflows from chat-centric paradigms.
This enables intuitive and functional composition of pipelines., (2) Structured prompts induced
from declarative data models reduce the burden of manual prompt engineering while maintaining or
improving task performance. They are effective in tasks that benefit from clear contexts.

5.1 DATA WORKFLOW TASKS

We evaluate canonical structured data workflow tasks such as schema matching with healthcare data
(Parciak et al., 2024b), data imputation with the Buy and Restaurant datasets (Narayan et al., 2022),
and text-to-SQL with challenging benchmarks (Zheng et al., 2024; Li et al., 2023).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5.1.1 SCHEMA MATCHING

Schema matching is a canonical data workflow task that identifies mappings between semantically
identical elements in two relational schemas. Recent works such as (Parciak et al., 2024a) have
explored the use of LLMs for the schema matching task. The schema matching benchmark by Parciak
et al. (2024a) contains 9 datasets, each consisting of a source table from the MIMIC-IV dataset John-
son et al. (2023) and a target table from the OHDSI OMOP Common Data Model OHDSI (2019).
Specifically, the mapping problem involves identifying which source column can be matched to
a column in the target table. We provide details of the experiment in the Appendix. The schema
of the source and target table follows the following data model with table and column names and
descriptions. Attributes defines a list of Attribute states.

1 class Attribute(BaseModel):
2 relation_name: Optional[str] = Field(None, description="table name")
3 relation_description: Optional[str] = Field(None, description="table description")
4 attribute_name: Optional[str] = Field(None, description="column name")
5 attribute_description: Optional[str] = Field(None, description="column description")
6 class Attributes(BaseModel):
7 attributes: Optional[list[Attribute]] = Field(None, description="list of Attributes")

Logical Transduction Given a source table with M columns and a target table with N columns,
we implemented the mapping task as described in (Parciak et al., 2024a) in two variations: 1-to-1
and 1-to-N. In the 1-to-1 setting, each prompt contains a pair of columns from the source and target
tables, and the LLM is tasked with determining whether they are semantically equivalent. This setting
requires MN LLM calls. In the 1-to-N setting, each prompt contains a column from the source table
and N columns from the target table, requiring only M LLM calls. The LLM evaluates all possible
pairs and identifies all semantically equivalent matches in a single inference.

The following pseudocode shows the Agentics program that creates Agentics objects for the source
and target tables. To parallelize the mapping, mimic omop creates a product of the two Agentics
objects and adds an invertible attribute to transduce the truth assessment of the mappings.

1 mimic_data = AG.from_states(mimic_states, Attribute)
2 omop_data = AG.from_states(omop_states, Attributes)
3 mimic_omop = mimic_data.product(omop_data)
4 mimic_omop = mimic_omop.add_attribute(slot_name = "invertible", slot_type = list[bool])
5 mimic_omop = await mimic_omop.self_transduction(mimic_omop.fields, ["invertible"])

F1-score Result We have implemented the schema matching task in Agentics and ensembled
results from two open-source models, GPT-OSS and LLaMA-4.2 The mean F1-score over 9 datasets
is summarized as follows. For the 1-to-1 setting, the GPT-3.5 baseline achieves 0.241, while Agentics
achieves 0.325. For the 1-to-N setting, the GPT-3.5 baseline achieves 0.398, and Agentics achieves
0.382, slightly behind.3 Note that we achieved significantly better performance with smaller-parameter
models in the 1-to-1 setting, and slightly worse results in the 1-to-N setting.

5.1.2 TEXT-TO-SQL

We evaluated text-to-SQL pipelines composed of multiple components on challenging text-to-SQL
benchmarks. The dev set of BIRD-bench (Li et al., 2023) contains 1,534 questions across 11 databases,
and the dev set of the Archer dataset (Zheng et al., 2024) contains 104 questions across 10 databases.4
In our evaluation, we focus on the data-centric design aspects of Agentic text-to-SQL pipelines.
Composing various components such as few-shot examples, schema linker outputs, keywords from
topic models, and sub-questions with optimized prompts—collectively improves execution match
results by 10.33% over the baseline performance of Llama-3.3-70B.

2Ensembling the two pipelines from different models takes the disjunction of their assessments, which may
decrease accuracy but increase recall.

3Detailed F1-scores are available in the Appendix.
4State-of-the-art performance on both benchmarks is available on the official leaderboards. The best dev

performance is 76.14% on BIRD-bench (https://bird-bench.github.io/) and 38.46% on Archer (https://sig4kg.
github.io/archer-bench/).

7

https://bird-bench.github.io/
https://sig4kg.github.io/archer-bench/
https://sig4kg.github.io/archer-bench/

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Asynchronous Pipeline The text-to-SQL task can introduce the following data model for each
problem in the dataset, where a natural language question and the SQL ddl scripts for creating
the database tables are the input fields provided, and the remaining fields are generated by passing
through asynchronous pipelines. The enrichment field annotates semantic meanings for the tables
and columns, sql query is the generated SQL from LLMs, and execution result is the
resulting data frame obtained by executing the sql query.

1 class Text2SQLTask(BaseModel):
2 question: str = Field(description="The input natural language question")
3 ddl: str = Field(description="The database schema in DDL")
4 enrichment: Optional[DB] = Field(description="Additional database enrichments")
5 few_shots: Optional[Problem] = Field(description="question, sql pair")
6 sql_query: Optional[str] = Field(description="SQL query generated")
7 execution_result: Optional[List[Dict[str, str]]] = Field(description="resulting table")

The asynchronous pipeline concatenates the logical transductions in order, as shown in the pseudo-
code below. A series of logical transductions generates the empty fields in the Text2SQLTask
state object. Note that the overall execution of all state objects is performed concurrently, either per
transduction step or per line of the pseudo-code.

1 text2sql("enrichment.keywords")<<text2sql("enrichment.description")<<text2sql("ddl_schema")
2 text2sql("enrichment.subquestions") << text2sql("question")
3 text2sql("enrichment.linked_schema") << text2sql("enrichment.ddl_schema", "enrichment.

subquestions", "question")
4 text2sql("few_shots.question", "few_shots.sql_query")<<text2sql("ddl_schema", "enrichment.

description")
5 text2sql("few_shots") = text2sql.filter(valid_sql, "few_shots")
6 text2sql("sql_query") << text2sql("question", "enrichment", "few_shots")
7 text2sql("execution_result") = text2sql.amap(execute_sql_query)

Brid-Dev Result We evaluated execution accuracy on BIRD-dev using a simple prompt and a
composite workflow that includes additional logical transductions with randomly generated few-
shot examples (FS), keyword enrichment (KW), sub-question enrichment (SQ), schema linking
enrichment (SL), and an optimized prompt template (OP). Across all models, the composite work-
flow consistently improved performance. Llama-3.3-70B showed the largest gain, improving from
50.51% ± 0.71 to 60.84% ± 0.53, a 10.33% increase. Mistral-Large improved by 8.21%, and
Llama-4-maverick-17B saw a more modest gain of 3.06%. These results demonstrate that structured
prompting and modular transductions in Agentics can significantly enhance execution accuracy.
Inspecting the impact of each individual component, as shown in the Appendix, SL and OP con-
tributed 2.24% and 4.49% individually, while other components did not improve accuracy on their
own. However, combining all components results in a higher gain of 10.33%, exceeding the sum of
individual improvements.

Archer-Dev Result The Archer benchmark presents challenges that require LLMs to perform
commonsense, arithmetic, and hypothetical reasoning in order to correctly generate SQL expres-
sions from natural language questions. In our experiments, we adopt a simplified pipeline that
bypasses intermediate components and directly generates the sql query from the ddl and op-
tional commonsense knowledge hints.

We evaluate three LLMs, GPT-OSS-120B, Llama-3.3-70B, and Llama-4-17B under two conditions,
with and without commonsense knowledge. Based on the average execution match over 10 trials, GPT-
OSS-120B shows a clear improvement when commonsense knowledge is incorporated, increasing
from 0.28% to 0.35%. Llama-3.3-70B performs identically in both settings 0.15%, and Llama-4-17B
also improved execution match performance from 0.25% to 0.30%. For reference, the best reported
performance on the Archer dev set is 38.46% using the GPT-o1 model. Our results with GPT-OSS-
120B demonstrate comparable performance, highlighting its effectiveness despite the simplified
pipeline and smaller parameter models.

5.1.3 DATA IMPUTATION

The data imputation task is also a canonical example in generative structured data workflows. We
consider the task of filling in missing entries with plausible substitutions for a given tabular record
containing one or more missing field values. In Agentics, the input record can be defined as a
semantic data type. The missing attribute is then transduced from the known attributes using logical

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

transduction. We evaluate data imputation implemented in Agentics on the Buy and Restaurant
datasets Narayan et al. (2022). The zero-shot accuracy performance of the GPT-OSS-120B and Llama-
4-17B models is 70.77% and 72.31% on the Buy dataset, and 79.07% and 66.28% on the Restaurant
dataset, respectively. These results are comparable to the baseline performance of GPT-3-175B, which
achieves 84.5% on Buy and 70.9% on Restaurant.

5.2 DOMAIN-SPECIFIC MULTI-CHOICE QUESTION ANSWER

We evaluate the FailureSensorIQ dataset, a recently proposed domain-specific multiple-choice QA
benchmark designed to assess understanding of sensor relationships and failure modes (Constantinides
et al., 2025). We demonstrate the stable performance of structured prompting in Agentics across
both the original single-correct MCQA and its perturbation variants. The single-correct MCQA set
contains 2,667 questions spanning various industrial assets. The perturbations are designed to be
knowledge-invariant. The simple perturbation involves renaming option letters, while the complex
perturbation combines option letter renaming with question rephrasing.

Logical Self Transduction Each problem in FailureSensorIQ dataset has multiple fields, answer
options, industrial asset name, relevancy context, question type, subject of the
question, and the answer to the question. The structured prompting compose the input prompt from
the data model and the Agentics framework performs self-transduction from all other fields to the
answer with additional instruction as follows.

1 fsiq_benchmark = await fsiq_benchmark.self_transduction(
2 input_fields=["question", "options", "option_ids", "asset_name", "relevancy", "

question_type", "subject"],
3 output_fields=["answer"],
4 instructions=("Read the input questions, all possible answers, and background task

information. This is a multiple choice test, where one of the options is true and the
others are false. Select the answer with the highest likelihood of being correct,
and return it along with a confidence score and a verbal assessment explaining your
judgment."))

Accuracy and Robustness Result We evaluated accuracy on 2,667 FailureSensorIQ instances
across four models with varying parameter sizes. Agentics consistently improved performance over
the baseline prompt performance for all models. Qwen3-8B showed the largest gain, improving from
45.86% to 60.18%. Llama-3.3-70B and Mistral-Large saw gains of 9.04% and 8.32%, respectively.
The largest model, Llama-3-405B, showed a modest improvement of 1.64%, Notably, Qwen3-8B
achieves a major improvement of 14.32%, placing it just behind openai-o1, 60.4%. These results
suggest that prompting through logical transduction helps unlock latent reasoning capabilities, even
in models with limited parameter counts.

Agentics demonstrates robustness against knowledge-invariant perturbations. In the original
FailureSensorIQ experiments, all models experienced significant drops in performance, ranging
from 5% to 20% . However, Agentics showed minimal change, ranging from just 0.08% to 0.19%
under the simple perturbation, and from 2.21% to 2.44% under the complex perturbation.

6 CONCLUSION

We present a principled framework for agentic AI, grounded in a novel logical transduction algebra
and a scalable asynchronous programming model. This framework redefines how agents interact with
data through a declarative, type-driven approach, enabling robust and efficient execution across diverse
tasks. Despite its strengths, the current framework has several limitations. First, it primarily focuses
on type-driven transduction, which may not generalize well to tasks requiring richer contextual
understanding or instruction-following behavior. Many real-world tasks involve implicit signals or
external context that go beyond type annotations. Second, the integration of tool usage remains
underexplored. Future work will explore several promising directions. One is transduction that
incorporates instruction or retrieval. Another is enhanced tool integration, enabling agents to invoke
external tools within the transduction pipeline. Additionally, extending the framework to support
interoperability with other agentic AI frameworks could unlock broader capabilities of agentic
systems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Ethics Statement Our approach does not involve human subjects, personally identifiable infor-
mation, or synthetic data generation that could be misused. We do not deploy models in production
settings, and all evaluations are conducted with open source dataset and open weight models. On
the usage of large language models. We used large language models to polish the writing for fixing
syntax errors or latex command errors.

Reproducibility Statement We provide several materials to ensure the reproducibility of our work.
First, we have anonymized the Python library code and included it as supplementary material. The
library can be installed locally, and the provided examples are sufficient to reproduce the experiments.
In the Appendix, we include pseudocode for the experiments described in the paper, which aids
in understanding the implementation details. We use publicly available open-source datasets, and
all data sources are freely accessible. To support data preprocessing, we also provide the relevant
scripts—such as those used for schema matching and data imputation experiments. We also provide
details about the computing resources and the large language models used in our experiments, which
are documented in the Appendix. For the theoretical contributions related to logical transduction
algebra, we include the full version with complete proofs in the Appendix.

REFERENCES

Deepak Bhaskar Acharya, Karthigeyan Kuppan, and B Divya. Agentic AI: Autonomous intelligence
for complex goals–a comprehensive survey. IEEE Access, 2025.

Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s: An open
agentic framework that uses computers like a human. In The Thirteenth International Conference
on Learning Representations, 2025. URL https://openreview.net/forum?id=lIVRgt4nLv.

Ion Androutsopoulos, Graeme D Ritchie, and Peter Thanisch. Natural language interfaces to
databases–an introduction. Natural language engineering, 1(1):29–81, 1995.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-RAG: Learning to
retrieve, generate, and critique through self-reflection. In The Twelfth International Conference on
Learning Representations, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Edgar F Codd. A relational model of data for large shared data banks. Communications of the ACM,
13(6):377–387, 1970.

Christodoulos Constantinides, Dhaval Patel, Shuxin Lin, Claudio Guerrero, Sunil Dagajirao Patil,
and Jayant Kalagnanam. FailuresensorIQ: A multi-choice QA dataset for understanding sensor
relationships and failure modes. arXiv preprint arXiv:2506.03278, 2025.

CrewAI Inc. CrewAI, 2025. 2025-07-15.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

Victor Dibia, Jingya Chen, Gagan Bansal, Suff Syed, Adam Fourney, Erkang Zhu, Chi Wang, and
Saleema Amershi. AUTOGEN STUDIO: A no-code developer tool for building and debugging
multi-agent systems. In Proceedings of the 2024 Conference on Empirical Methods in Natural Lan-
guage Processing: System Demonstrations, pp. 72–79. Association for Computational Linguistics,
2024.

Yi Dong, Ronghui Mu, Gaojie Jin, Yi Qi, Jinwei Hu, Xingyu Zhao, Jie Meng, Wenjie Ruan, and
Xiaowei Huang. Building guardrails for large language models. In Kristin Bennett and Vivek
Srikumar (eds.), Proceedings of the 41st International Conference on Machine Learning (ICML),
volume 235 of Proceedings of Machine Learning Research, pp. 235–249. PMLR, 2024.

10

https://openreview.net/forum?id=lIVRgt4nLv

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Shanshan Han, Qifan Zhang, Yuhang Yao, Weizhao Jin, Zhaozhuo Xu, and Chaoyang He. LLM
multi-agent systems: Challenges and open problems. CoRR, abs/2402.03578, 2024.

Petra Heck. What about the data? a mapping study on data engineering for AI systems. In Proceedings
of the IEEE/ACM 3rd International Conference on AI Engineering-Software Engineering for AI,
pp. 43–52, 2024.

Gary G Hendrix, Earl D Sacerdoti, Daniel Sagalowicz, and Jonathan Slocum. Developing a natural
language interface to complex data. ACM Transactions on Database Systems (TODS), 3(2):
105–147, 1978.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations, 2021.

Danielle Hopkins, Debra J Rickwood, David J Hallford, and Clare Watsford. Structured data vs.
unstructured data in machine learning prediction models for suicidal behaviors: A systematic
review and meta-analysis. Frontiers in Digital Health, 4:945006, 2022.

Soodeh Hosseini and Hossein Seilani. The role of agentic ai in shaping a smart future: A systematic
review. Array, pp. 100399, 2025.

Ken Huang and Jerry Huang. AI Agent Tools and Frameworks. In Agentic AI: Theories and Practices,
pp. 23–50. Springer, 2025.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of Experts. arXiv preprint arXiv:2401.04088, 2024.

Alistair EW Johnson, Lucas Bulgarelli, Lu Shen, Alvin Gayles, Ayad Shammout, Steven Horng,
Tom J Pollard, Sicheng Hao, Benjamin Moody, Brian Gow, et al. Mimic-iv, a freely accessible
electronic health record dataset. Scientific data, 10(1):1, 2023.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller, Matei
Zaharia, and Christopher Potts. DSPy: Compiling declarative language model calls into state-of-
the-art pipelines. In The Twelfth International Conference on Learning Representations, ICLR
2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
22199–22213, 2022.

Woosuk Kwon, Zhuohan Li, Siyuan Liu, Joseph Orth, Yaohan Ding, Dean Sheng, Eric Liang, and
Matei Zaharia. Efficiently scaling transformer inference. In Proceedings of Machine Learning and
Systems, pp. 555–572, 2023a.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with PagedAttention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023b.

LangChain. LangGraph, 2025. 2025-07-15.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Ruiying Geng, Nan Huo, et al. Can llm already serve as a database interface? a big bench for
large-scale database grounded text-to-sqls. Advances in Neural Information Processing Systems,
36:42330–42357, 2023.

Wenwu Li, Xiangfeng Wang, Wenhao Li, and Bo Jin. A survey of automatic prompt engineering: An
optimization perspective. arXiv preprint arXiv:2502.11560, 2025.

Zhiyong Li, Yong Guan, Cong Yan, Xiaotong Li, Jie Li, Yonggang Li, Xin Jin, Shaoting Ji, and Ying
Wei. MedQA: A dataset of medical question answering. arXiv preprint arXiv:2007.03233, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Processing Systems, 36:46534–46594, 2023.

Dany Moshkovich and Sergey Zeltyn. Taming uncertainty via automation: Observing, analyzing, and
optimizing agentic AI systems. arXiv preprint arXiv:2507.11277, 2025.

Avanika Narayan, Ines Chami, Laurel J. Orr, and Christopher Ré. Can foundation models wrangle
your data? Proc. VLDB Endow., 16(4):738–746, 2022.

OHDSI. The Book of OHDSI: Observational Health Data Sciences and Informatics. OHDSI, 2019.

Krista Opsahl-Ong, Michael Ryan, Josh Purtell, David Broman, Christopher Potts, Matei Zaharia,
and Omar Khattab. Optimizing instructions and demonstrations for multi-stage language model
programs. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, pp. 9340–9366, 2024.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback. In Proceedings
of the 36th International Conference on Neural Information Processing Systems, Red Hook, NY,
USA, 2022. Curran Associates Inc. ISBN 9781713871088.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak Nathani, Xinyi Wang, and William Yang Wang.
Automatically correcting large language models: Surveying the landscape of diverse automated
correction strategies. Transactions of the Association for Computational Linguistics, 12:484–506,
2024.

Marcel Parciak, Brecht Vandevoort, Frank Neven, Liesbet M Peeters, and Stijn Vansummeren.
Schema matching with large language models: an experimental study. In Proceedings of 2nd
International Workshop on Tabular Data Analysis (TaDA) at VLDB 2024, 2024a.

Marcel Parciak, Brecht Vandevoort, Frank Neven, Liesbet M Peeters, and Stijn Vansummeren.
Schema matching with large language models: an experimental study. Proceedings of the VLDB
Endowment. ISSN, 2150:8097, 2024b.

Rani Kurnia Putri and Muhammad Athoillah. Artificial intelligence and machine learning in digital
transformation: Exploring the role of AI and ML in reshaping businesses and information sys-
tems. In Advances in Digital Transformation-Rise of Ultra-Smart Fully Automated Cyberspace.
IntechOpen, 2024.

Pydantic. Pydantic, 2025a.

Pydantic. Pydantic-AI, 2025b. 2025-07-15.

Kiran Ramnath, Kang Zhou, Sheng Guan, Soumya Smruti Mishra, Xuan Qi, Zhengyuan Shen, Shuai
Wang, Sangmin Woo, Sullam Jeoung, Yawei Wang, et al. A systematic survey of automatic prompt
optimization techniques. arXiv preprint arXiv:2502.16923, 2025.

Gaetano Rossiello, Nandana Mihindukulasooriya, Ibrahim Abdelaziz, Mihaela Bornea, Alfio Gliozzo,
Tahira Naseem, and Pavan Kapanipathi. Generative relation linking for question answering over
knowledge bases. In International Semantic Web Conference, pp. 321–337, 2021.

Gaetano Rossiello, Md Faisal Mahbub Chowdhury, Nandana Mihindukulasooriya, Owen Cornec, and
Alfio Massimiliano Gliozzo. Knowgl: Knowledge generation and linking from text. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 37, pp. 16476–16478, 2023.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (4th Edition). Pearson,
2020. ISBN 9780134610993.

Akila Sarirete, Zain Balfagih, Tayeb Brahimi, Miltiadis D Lytras, and Anna Visvizi. Artificial
intelligence and machine learning research: Towards digital transformation at a global scale.
Journal of Ambient Intelligence and Humanized Computing, 13(7):3319–3321, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023.

Claudio Spiess, Mandana Vaziri, Louis Mandel, and Martin Hirzel. Autopdl: Automatic prompt
optimization for llm agents. arXiv preprint arXiv:2504.04365, 2025.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Lv, et al. Qwen3 Technical Report. arXiv preprint arXiv:2505.09388,
2025.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2024.

Qinyuan Ye, Mohamed Ahmed, Reid Pryzant, and Fereshte Khani. Prompt engineering a prompt
engineer. In Findings of the Association for Computational Linguistics ACL 2024, pp. 355–385,
2024.

Zhexin Zhang, Leqi Lei, Lindong Wu, Rui Sun, Yongkang Huang, Chong Long, Xiao Liu, Xuanyu
Lei, Jie Tang, and Minlie Huang. SafetyBench: Evaluating the safety of large language models. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 15537–15553,
Bangkok, Thailand, August 2024. Association for Computational Linguistics.

Danna Zheng, Mirella Lapata, and Jeff Z Pan. Archer: A human-labeled text-to-sql dataset with
arithmetic, commonsense and hypothetical reasoning. 2024.

Wenliang Zheng, Sarkar Snigdha Sarathi Das, Yusen Zhang, and Rui Zhang. Greaterprompt: A
unified, customizable, and high-performing open-source toolkit for prompt optimization. arXiv
preprint arXiv:2504.03975, 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A EXPERIMENTS DETAILS

A.1 COMPUTING INFRASTRUCTURE

In the experiments, we benchmark open-weight instruct tuned models ranging from larger or smaller
parameter version of GPT-OSS-120B, Llama-3.3, Llama-4, Qwen-3, and Mistral. For the experiment
that measures the running time, we host LLMs in local vLLM (Kwon et al., 2023b) server with four
A-100-80GB GPUs for Llama-3-3-70B model, and one A-100-80GB GPU for other 8B parameter
models.

• In the Text-to-SQL experiment, we used GPT-OSS-120B, Llama-3.3-70B, Mistral-Large,
and Llama-4-Maverick-17B models. These models were also run in a cloud computing
environment.

• In the schema matching and data imputation experiments, we used GPT-OSS-120B, and
Llama-4-Maverick-17B models. These models were also run in a cloud computing environ-
ment

• In the Domain Specific MCQA experiments, we used instruction-tuned models such as
Qwen3-8B, Llama-3.3-70B, Mistral-Large, and Llama-3-405B. We locally hosted the
Qwen3-8B model to measure running time, while the other three models were used in
a cloud computing environment.

• In automatic prompt optimization experiment, we locally hosted Qwen3-8B and Llama-3.3-
70B models.

The following shows the parameters for hosing Qwen3-8B and Llama-3.3-70B models with vLLM
(Kwon et al., 2023b).

1 GPUS=4
2 CPUS=16
3 MEM=200GB
4 MODEL="meta-llama/Llama-3.3-70B-Instruct"
5 LEN=16000
6 vllm serve ${MODEL} \
7 --max-model-len ${LEN} \
8 --tensor-parallel-size ${GPUS} \
9 --gpu-memory-utilization 0.9

10

11 GPUS=1
12 CPUS=8
13 MEM=64GB
14 LEN=8000
15 MODEL="Qwen/Qwen3-8B"
16 vllm serve ${MODEL} \
17 --max-model-len ${LEN} \
18 --tensor-parallel-size ${GPUS} \
19 --gpu-memory-utilization 0.9

Listing 1: vLLM parameters and computing resources

A.2 TEXT-TO-SQL

We evaluated various text-to-SQL pipelines on the challenging Bird-bench (Li et al., 2023) -dev
dataset. We observe that by composing various components such as few-shot examples, schema
linker outputs, keywords from topic models, and sub-questions with optimized prompts, each model
significantly improves execution match results, achieving up to a 10.33% increase over the baseline
performance of Llama-3.3-70B.

Previously, a summary result table of individual experiments were shown, whereas here we expand
on the performance by conducting and aggregating multiple runs (5) against the benchmark. This
includes setting a high model temperature of 0.9, thus diversifying the generated transduction samples.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

The resultant Table 1 highlights the performance gains on average by including additional transduc-
tions on top of the base prompt. We note that every individual transduction (i.e. FS / KW / SQ / SL
/ OP) does not in fact improve average performance on all models. However, techniques such as
schema linking and prompt-optimization yield greater improvements on a few models than the other
approaches. Interestingly, when including all the transductions together (i.e. FS + KW + SQ + SL +
OP), performance significantly improves in a manner that is greater than the sum of its parts. This
result indicates that models can be pushed into greater performance by stipulating the right prompt
programs to captures the task. Having a simple modeling framework, like Agentics, allows for
more sophisticated augmentations and feedback loops to improve the creation of such programs.

Future attempts at modeling more complex prompt programs include the addition of feedback and
self-correction loops by running failed samples on the database and re-prompting. Additionally,
model-dependent optimizations can be illuminated upon, since the performance of the executed
program is dependent on the model itself and should therefore be guided by the model more closely.

Model

Method llama-3-3
70b-instruct mistral-large llama-4-maverick

17b-128e-instruct-fp8
P 50.51± 0.71 47.20± 0.78 53.88± 1.37

P+FS 50.32± 0.52
(−0.19)

45.63± 0.9
(−1.57)

53.47± 0.56
(−0.41)

P+KW 50.32± 0.32
(−0.19)

45.09± 0.81
(−2.11)

53.03± 0.82
(−0.85)

P+SQ 51.58± 0.58
(+1.07)

46.15± 0.44
(−1.05)

52.33± 0.62
(−1.55)

P+SL 52.75± 0.07
(+2.24)

49.54± 1.23
(+2.34)

50.46± 0.05
(−3.42)

P+OP 54.90± 0.53
(+4.39)

48.93± 0.5
(+1.73)

53.15± 0.65
(−0.74)

P+FS+KW+SQ+SL+OP 60.84± 0.7
(+10.33)

55.41± 1.2
(+8.21)

56.94± 0.23
(+3.06)

Table 1: Execution accuracy on BIRD-dev, testing a prompt P with the simplified task vs. additional
transductions in the composite workflow. SL replaces the full DDL schema with a linked schema,
KW includes keyword topic modeling, FS randomly generates sql-validated few-shot question-query
pairs, SQ extracts sub-questions, and OP optimizes the prompt template.

The following Table 2 summarizes the evaluation result on Archer dataset.

Model With Commonsense Without Commonsense
GPT-OSS-120B 0.35%± 0.02 0.28%± 0.02

Llama-3.3-70B 0.15%± 0.01 0.15%± 0.01

Llama-4-17B 0.30%± 0.02 0.25%± 0.032

Table 2: Execution accuracy on Archer-dev. We evaluted 104 dev problems with and without com-
monsense knowledge provided in the dataset.

A.3 SCHEMA MATCHING

Schema matching is an important task in data integration which is defined as the task of identify
mappings between semanticaly identical elements in two relational schemas such that they refer to
the same real world concepts. Recent works such as Parciak et al. (2024a) have explored the use of
LLMs for the schema matching task.

In this section, we present an experiment that demonstrates how the schema matching task can be
formulated as a transduction using the Agentics framework.

Dataset: we have used the benchmark datasets from Parciak et al. (2024a) which contains 9 datasets
each containing a source table from MIMIC-IVdataset Johnson et al. (2023) and a target table from

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

OHDSI OMOP Common Data Model OHDSI (2019). True matches between the columns of the
two tables are annotated in the ground truth. Table 3 illustrates the 9 benchmark datasets with their
corresponding table names and columns.

Following the same patterns as in Parciak et al. (2024a), we have implemented the task in two
variations: 1-to-1 and 1-to-N. In the 1-to-1 setting, each prompt contains a pair of columns from the
source and the target table, and the LLM is tasked to determine if they are semantically equivalent or
not. In the 1-to-N setting, each prompt contains a column from the source table and N columns from
the target table. The LLM is tasked with matching all possible pairs and identifying all semantically
equivalent pairs in a single inference.

Dataset MIMIC OMOP Candidates GT Matches
table name columns table name columns

AdCO admissions 16 condition occurrence 16 256 2
AdVD admissions 16 visit detail 19 304 5
AdVO admissions 16 visit occurrence 17 272 8
DiCO diagnoses icd 5 condition occurrence 16 80 2
LaMe labevents 10 measurement 20 200 10
PaPe patients 6 person 18 108 5
PrDE prescriptions 17 drug exposure 23 391 6
SeVD services 5 visit detail 19 95 5
TrVD transfers 7 visit detail 19 133 6

Total 1839 49

Table 3: The list of datasets with the name of the table from MIMIC and OMOP schemas along
with the number of columns in each table. GT matches illustrate how many true schema matches are
present between the columns of the given tables.

Results: Table 4 illustrates the results of the experiments. We have implemented the schema matching
task in Agentics and enesembled results from two open source models gpt-oss and llama4.

Datasets 1-to-1 1-to-N

GPT 3.5
Baseline

Agentics
gpt-oss & llama4

GPT 3.5
Baseline

Agentics
gpt-oss & llama4

AdCO 0.000 0.500 0.133 0.250
AdVD 0.000 0.330 0.083 0.250
AdVO 0.235 0.400 0.320 0.143
DiCO 0.667 0.500 0.800 0.667
LaMe 0.471 0.364 0.500 0.500
PaPe 0.571 0.000 0.500 0.667
PrDE 0.222 0.000 0.417 0.211
SeVD 0.000 0.500 0.400 0.400
TrVD 0.000 0.333 0.429 0.600

Mean 0.241 0.325 0.398 0.382

Table 4: Schema matching F1 scores. GPT 3.5 baseline results are from Parciak et al. (2024a).

A.4 DATA IMPUTATION

Data imputation constitutes a critical task in the remediation of incomplete or noisy datasets. For a
given record in tabular format containing one or more missing attribute values, the objective is to
reconstruct the missing entries with plausible substitutions.

Data imputation serves as an illustrative use case for demonstrating the capability of the proposed
framework in handling structured input–output tasks with LLMs. Specifically, the input record -

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

excluding the missing value- can be modeled as a semantic type, while the output can be represented
as an extension that compels the LLM to predict the missing entry by leveraging the attributes of the
input type as contextual information.

We evaluate our method on the Buy and Restaurant datasets Narayan et al. (2022). In the Buy dataset,
given a product name and its description, the model is tasked with predicting the manufacturer as the
missing value. In the Restaurant dataset, the goal is to infer the type of restaurant based on its name,
address, and phone number.

The results of our framework in zero- and few-shot settings are presented in Table 5.

Dataset Model zero-shot few-shot

Buy
gpt-oss 70.77 70.77
llama-3.3 49.23 58.46
llama-4 72.31 75.38

Restaurant
gpt-oss 79.07 80.23
llama-3.3 67.44 48.84
llama-4 66.28 47.67

Table 5: Accuracy results for different models and few-shot settings on Buy and Restaurant data imputation
tasks.

A.5 DOMAIN-SPECIFIC MULTI-CHOICE QUESTION ANSWER

FailureSensorIQ benchmark (Constantinides et al., 2025) is recently proposed domain-specific
multiple choice QA benchmark to test LLMs’ ability to reason about failure modes and sensor
relationships. The leaderboard shows that the best performing openai/o1 model scores 60.4%.

Dataset We evaluated 2,667 single-correct MCQA instances spanning various industrial assets,
with questions around identifying the right sensor which can detect a given failure mode for a given
asset, or identifying the right failure mode that a given asset and sensor can detect. This requires
nuanced understanding of sensor behavior, failure propagation, and asset-specific operational logic,
and performing logical deductions across the different knowledge about the asset. An example query
may be:

1 {
2 "Question": "For electric motor, if a failure event rotor windings fault occurs, which

sensor out of the choices is the most relevant sensor regarding the occurrence of the
failure event?",

3 "Options":["A. partial discharge", "B. resistance", "C. oil debris", "D. current", "E.
voltage"]

4 }

Methods Baseline results are obtained from the leaderboard that evaluates the standardized prompts
with at most three trials for invalid responses.

Our approach leverages the Agentics framework to perform schema-constrained transduction
from structured input to structured output. Each input instance is represented using a subset of fields
from the FailureSensorIQ schema—specifically, the question, asset name, option ids, options, and
subject—which are sufficient to ground the reasoning process in both linguistic and domain-specific
context.

To improve inference efficiency, Agentics supports parallel batch execution via the aMap opera-
tion. This distributes multiple structured prompts across concurrent model invocations, significantly
reducing total runtime. Unlike sequential prompting, which processes one question at a time, batch
transduction enables scalable evaluation and deployment.

Experimental Configuration We evaluate four models ranging from 8B to 405B parameters:
Qwen3-8B (Yang et al., 2025), Llama-3.3-70B-Instruct (Touvron et al., 2023), Mistral-Large-
Instruct-2407 (Jiang et al., 2024), Llama-3-405B-Instruct (Touvron et al., 2023). Models are
tested using both the original FailureSensorIQ baseline pipeline and the Agentics framework. The

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

baseline uses loosely formatted natural language prompts and retries up to three times if the output
is invalid. In contrast, Agentics uses structured prompting and schema-constrained decoding.
To measure execution time, we host Qwen3-8B on a dedicated node with an A100 80GB GPU
running VLLM (Kwon et al., 2023b). Other models are accessed via cloud computing platform. We
vary batch sizes to assess scalability and throughput.

Accuracy Improvement Table 6 shows the accuracy comparison. Agentics improves the per-
formance on all evaluated models, with smaller models benefiting the most. Notably, Qwen3-8B
achieves a major improvement of +14.32%, getting right behind openai-o1, 60.4%. This suggests
that prompting through logical transduction helps unlock latent reasoning capabilities, even in models
with limited parameter counts.

Model # Params Baseline Agentics
Qwen3-8B 8B 45.86 60.18 (+14.32)
Llama-3.3-70B 70B 41.69 50.73 (+9.04)
Mistral-Large 123B 50.09 58.41 (+8.32)
Llama-3-405B 405B 51.26 52.90 (+1.64)

Table 6: Accuracy (%) of on 2,667 FailureSensorIQ instances.

Running Time Figure 3a illustrates the average time (sec) per question for Qwen3-8B across
varying batch sizes. As shown, parallel batch execution yields substantial speedups, from 8 seconds
per question at batch size 1 to less than 1 second per question at batch sizes greater than 16. This
improvement is nearly linear as the batch size increases from 1 to 4, after which it begins to saturate.

Perturbation Study We follow FailureSensorIQ’s perturbation study using the Agentics
framework to study if there are any robustness benefits that comes with the structured workflows that
our framework offers. We experiment with the following knowledge invariant perturbations:

• Option letter renaming; changing the option letters from of A., B., C., to other letters like P.,
Q., R. We’ll call this “Simple” Perturbation.

• Option letter renaming and question rephrasing done by an LLM. We’ll call this “Complex”
Perturbation.

We use the already prepared perturbed datasets from the original paper.

(a) Average time per question for Qwen3-8B across
varying batch sizes.

(b) Performance remains high even after the perturba-
tions with minimal drop.

Figure 3: Domain Specific MCQA Running Time and Perturbation Results.

A.6 PROMPT OPTIMIZATION

Automatic prompt optimization (APO) is essential, as LLM performance is highly sensitive to prompt
structure, tone, and formatting. The prompt function in Definition 9 plays a central role in logical
transduction, which can be conceptualized as a negotiation of meaning between agents. Among
various APO approaches (Ramnath et al., 2025; Li et al., 2025), logical transduction algebra naturally

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

supports OPRO-style methods (Yang et al., 2024; Ye et al., 2024; Opsahl-Ong et al., 2024), which
follow a local search procedure based on a cycle of generate-select-evaluate. In the Agentics
framework, the candidate prompt templates are generated by logical transduction from the meta-type
that describes the prompt optimization task. Additionally, logical transduction algebra naturally
parallelizes local search, such as generating and evaluating candidate prompts 5.

Dataset We evaluated GSM8K (Cobbe et al., 2021) and FailureSensorIQ (Constantinides et al.,
2025) benchmarks. The former enables direct comparison with existing APO techniques. For GSM8K,
we use the first 500 training examples for prompt optimization and evaluate the final performance
on the full test set. The latter benchmark allows us to assess additional gains beyond the default
prompting provided by logical transduction. We randomize the dataset, selecting 500 examples for
training and fixing 1,000 examples for the test set. In APO, the training set is used to construct
demonstrations for candidate generation and to evaluate candidates during optimization.

Methods We designed the meta-prompt for prompt generation by analyzing those from OPRO
(Yang et al., 2024) and PE2 (Ye et al., 2024)6. Our focus is on the impact of local search hyperpa-
rameters on final test performance and the overall running time. Following Yang et al. (2024), the
optimization meta-prompt includes 3 demonstration tasks and the top 8 candidates, along with their
evaluated scores in ascending order. In our experiments, we vary the number of parallel candidate
generations from 1 to 8, and the batch size for asynchronous LLM API calls from 1 to 20.

Optimization Scope Following the common experiment settings (Yang et al., 2024; Ye et al., 2024;
Zheng et al., 2025; Spiess et al., 2025), we optimize the prompt template for the zero-shot chain of
thought technique (Kojima et al., 2022) by specifying the role, goal, expected output types, and the
description of input task as well. This can be flexibly incorporated into APO, as candidate generation
follows logical transduction from field descriptions to a prompt template. We initialize all prompt
components as empty strings and iteratively refine them.

To understand the impact of prompt components, we manually constructed a prompt using the
parameters and evaluated it with the LLaMA-3.3-70B model. The default prompt, which only shows
the input and output field names, achieved just 5% accuracy. Adding an expected output description
increased accuracy to 66%, and including all prompt parameters further improved it to 67%. These
results suggest that optimizing both output expectations and imperative phrasing is essential for
effective prompt design.

Performance Improvement We present experiment results showing the improvement of test scores
on both the GSM8K and MCQA datasets.

• The optimized prompt templates improve the test scores to 85 for Llama-3.3-70B and
91 for Qwen3-8B, which is consistent with findings reported in the literature. For the
FailureSensorIQ dataset, the test score of Llama-3.3-70B was further improved to 54%.

• The plots with batch size 1 indicate that the Llama-3.3-70B model discovered better prompts
when using a larger batch size. In contrast, the Qwen3-8B model identified a good prompt
with a smaller batch size. However, it’s important to note that the Qwen3 series models have
been trained on data derived from the GSM8K dataset as well as other math-related datasets.
This prior exposure may contribute to their relatively strong performance on GSM8K, even
with smaller batch sizes or less prompt optimization effort, and should be considered when
interpreting the results.

Running Time Figure 5 shows the average running time per iteration during prompt optimization
for the GSM8K amd MCQA dataset.

• In GSM8K, we observe that the improvement in running time is most significant at a batch
size of 4, after which the gap gradually decreases. Beyond a batch size of 10, the running
time saturates or increases due to the overhead caused by invalid outputs in the batch results.

5See Appendix for implementation details.
6Relevant open-source implementations are https://github.com/psunlpgroup/GreaterPrompt, https://github.

com/stanfordnlp/dspy, https://github.com/google-deepmind/opro.

19

https://github.com/psunlpgroup/GreaterPrompt
https://github.com/stanfordnlp/dspy
https://github.com/stanfordnlp/dspy
https://github.com/google-deepmind/opro

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 4: Improvement of test score over iterations: The x-axis represents the number of iterations,
and the y-axis shows the test score evaluated using the best prompt template found up to that iteration.

• The running time results from the MCQA dataset follow similar trends to those observed
with the GSM8K dataset. For smaller models like Qwen3-8B, if the model fails to follow
instructions and produce output in the expected structured format, the transduction step
often fails to return a valid JSON object. This leads to increased running time due to the
additional overhead of the error recovery process.

Figure 5: Average running time per iteration: The x-axis represents the batch size of the asynchronous
execution, and the y-axis shows the average running time in seconds.

B LOGICAL TRANSDUCTION ALGEBRA

B.1 FORMALIZATION

We presented an abridged version of the formal Logical Transduction Algebra in the main paper.
Our work is closely related to relational algebra (Codd, 1970) and the MapReduce programming
model (Dean & Ghemawat, 2008). This enables the composition of data transformation pipelines
and supports an efficient programming model that leverages the stateless and asynchronous nature of
LLM inference.

B.1.1 ALGEBRAIC STRUCTURES

Types and Agentic Structure We define types and meta-types, collectively referred to as the
Agentic Structure (AG), and establish a sound algebra over the types and states within it.
Definition 1 (Types). Let Θ denote the universe of all possible types, Θ = {X,Y, Z, T, . . . }, where
each type T ∈ Θ is a collection of named fields (si, Tsi):

T := {(s1, Ts1), (s2, Ts2), . . . , (sn, Tsn)},

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

with each si representing a string-valued slot name, and each Tsi ∈ Θ denoting the corresponding
type of that slot.

Definition 2. Given two types X and Y , we define standard set operations component-wise:

X ∪ Y = {(si, Tsi) | (si, Tsi) ∈ X or (si, Tsi) ∈ Y },
X ∩ Y = {(si, Tsi) | (si, Tsi) ∈ X and (si, Tsi) ∈ Y },
X \ Y = {(si, Tsi) | (si, Tsi) ∈ X and (si, Tsi) /∈ Y },
X × Y = {((si, Tsi), (sj , Tsj)) | (si, Tsi) ∈ X, (sj , Tsj) ∈ Y }

Definition 3 (Agentic Structure AG). An Agentic structure AG is a meta-type that bundles a type
schema satype

7 and a corresponding list of instances, referred to as states sstates:

AG :=

{
satype : Θ,

sstates : List[Θ]

}

Notation conventions: Types are denoted by uppercase letters. Instances of types are denoted by
lowercase letters, with t : T indicating that t is an instance of type T . Lists are written in boldface,
so t : T represents a list of instances of type T . We use the shorthand AG[X] to denote an Agentic
structure with satype = X . A boldface lowercase symbol, such as x = AG[X], represents an instance
of AG[X]. We also overload the notation to access the list of states: xi = x[i] = x.sstates[i] refers to
the i-th state of the Agentic instance x.

In Logical Transduction Algebra, we focus on structured data and its transformation around agents
encapsulating LLMs. The algebraic structure of composing two Agentic instances of the same type
can be shown as follows.

Proposition 1 (Monoid of Agentic Instances). Let AG[X] be an Agentic structure and let ξ be the
set of all instances of AG[X]. Define a binary operation ◦ on ξ such that for any x1,x2 ∈ ξ, their
composition x = x1 ◦ x2 is an Agentic instance whose state list is the concatenation: x.sstates :=
x1.sstates ◦ x2.sstates. Then, the pair (ξ, ◦) forms a monoid, where the identity element is the Agentic
instance with an empty state list: e.sstates := [].

Proof. We verify the three monoid properties:

Closure: Let x1,x2 ∈ ξ. Then x = x1 ◦ x2 has a state list formed by concatenating two valid state
lists, which is itself valid. Hence, x ∈ ξ.

Associativity: For any x1,x2,x3 ∈ ξ,

((x1 ◦ x2) ◦ x3).sstates = (x1.sstates ◦ x2.sstates) ◦ x3.sstates

= x1.sstates ◦ (x2.sstates ◦ x3.sstates)

= (x1 ◦ (x2 ◦ x3)).sstates.

Identity: Let e ∈ ξ be the Agentic instance with an empty state list. Then for any x ∈ ξ,

(e ◦ x).sstates = [] ◦ x.sstates = x.sstates,

(x ◦ e).sstates = x.sstates ◦ [] = x.sstates.

Thus, (ξ, ◦) satisfies closure, associativity, and identity, and is therefore a monoid.

The standard operators follow standard algebraic principles such as the product, x×y for x∈AG[X]
and y ∈AG[Y], the equivalence, x1 ∼ x2 for x1,x2 ∈ AG[X], and the quotient, z/y for z ∈
AG[X×Y] and y ∈ AG[Y].

7Given two types X and Y , the standard set operations such as union, intersection, complement, and product
can be defined component-wise.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Product of the Agentic Structure Next, we define the product of Agentic structures, a construction
that plays a foundational role in modeling and executing complex, multi-dimensional data workflows.
By combining two Agentic structures into a single product structure, we can represent composite
types—such as paired entities, coupled processes, or input-output relationships—within a unified
algebraic framework. This formulation ensures that operations applied to states remain well-defined,
type-safe, and composable, preserving the monoidal properties of each component. The product
structure is especially valuable in scenarios involving joint reasoning, parallel transformations, or
structured transductions across heterogeneous data streams.

Definition 4 (Product of Agentic Structures). Let AG[X] and AG[Y] be two Agentic structures
defined over distinct types X and Y , respectively. We define their product as a new Agentic structure
AG[T], where the type T is the Cartesian product of the two types:

T : X × Y.

Given instances x : AG[X] and y : AG[Y], we define an instance t : AG[T] such that:

t.sstates = (x.sstates,y.sstates),

i.e., the state list of t is the pair of state lists from x and y.

Proposition 2 (Monoid of Agentic Product). Let ξX and ξY be the set of all instances of AG[X] and
AG[Y], respectively, and let ξT be the set of all instances of AG[T].

Define a binary operation ◦ on ξT as follows:

(x1,y1) ◦ (x2,y2) := (x1 ◦ x2,y1 ◦ y2),

where ◦ on each component denotes concatenation of state lists:

(x1 ◦ x2).sstates := x1.sstates ◦ x2.sstates,

and similarly for y1 ◦ y2.

Then, the structure (ξT , ◦) forms a monoid, with the identity element given by the pair of Agentic
instances with empty state lists:

eT := (eX , eY), where eX .sstates = [], eY .sstates = [].

Proof. We verify the three monoid properties for (ξT , ◦).
Closure: Let (x1,y1), (x2,y2) ∈ ξT . Then their composition is:

(x1 ◦ x2,y1 ◦ y2),

where each component is a valid Agentic instance due to closure in (ξX , ◦) and (ξY , ◦). Hence, the
result is in ξT .

Associativity: Let (x1,y1), (x2,y2), (x3,y3) ∈ ξT . Then:

((x1,y1) ◦ (x2,y2)) ◦ (x3,y3) = (x1 ◦ x2,y1 ◦ y2) ◦ (x3,y3)

= ((x1 ◦ x2) ◦ x3, (y1 ◦ y2) ◦ y3)

= (x1 ◦ (x2 ◦ x3),y1 ◦ (y2 ◦ y3))

= (x1,y1) ◦ ((x2,y2) ◦ (x3,y3)),

using associativity in each component.

Identity: Let eT := (eX , eY), where eX and eY are identity elements in ξX and ξY , respectively.
Then for any (x,y) ∈ ξT :

(eX , eY) ◦ (x,y) = (eX ◦ x, eY ◦ y) = (x,y),

(x,y) ◦ (eX , eY) = (x ◦ eX ,y ◦ eY) = (x,y).

Hence, eT is the identity element.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Quotient of the Agentic Structure To complement the expressiveness of product structures, the
quotient of Agentic structures provides a principled mechanism for abstraction and generalization. By
defining an equivalence relation over Agentic instances—such as grouping together states that differ
only in irrelevant or redundant dimensions—we can collapse fine-grained distinctions into coarser,
semantically meaningful categories. This is especially useful in scenarios involving behavioral
equivalence, or clustering of similar agentic behaviors. The quotient structure enables reasoning
at a higher level of abstraction while preserving the algebraic properties of the original system. In
distributed settings, it supports compression, deduplication, and aggregation of stateful computations.

Definition 5 (Equivalence Relation on Agentic Instances). Let ξX be the set of Agentic instances
over type X .

An equivalence relation ∼ on ξX is defined by a relation R on state lists s : X such that for any
x,y ∈ ξX ,

x ∼ y ⇐⇒ R(x.sstates,y.sstates),

where R satisfies the following properties:

• Reflexivity: R(s, s) for all state lists s.

• Symmetry: If R(s1, s2), then R(s2, s1).

• Transitivity: If R(s1, s2) and R(s2, s3), then R(s1, s3).

The specific form of R depends on the semantics of the Agentic structure. A common choice is
statewise equivalence, defined below.

Definition 6 (Statewise Equivalence of Agentic Instances). Let ξX be the set of Agentic instances
over type X .

Define an equivalence relation ∼ on ξX such that for any x,y ∈ ξX ,

x ∼ y ⇐⇒ x.sstates ≡ y.sstates,

where ≡ denotes elementwise equivalence of state lists. That is,

x.sstates = [x1, x2, . . . , xn], y.sstates = [y1, y2, . . . , yn],

and for all i = 1, . . . , n, we have xi ≈ yi under a given equivalence relation ≈ on X .

The relation ≈ on X may be defined in various ways, such as:

• Syntactic equality: xi = yi.

• Observational equivalence: f(xi) = f(yi) for some observable function f : X → O.

• Abstract equivalence: xi and yi belong to the same equivalence class under a domain-specific
partition of X .

This relation groups Agentic instances whose state trajectories are equivalent up to the equivalence of
individual states.

Definition 7 (Quotient of Agentic Structure). Let AG[X] be an Agentic structure over type X , and
let ∼ be an equivalence relation on the set of Agentic instances ξX .

The quotient Agentic structure, denoted AG[X/ ∼], is defined as follows:

• The type X/ ∼ is the set of equivalence classes of X under the induced relation ≈ on
individual states.

• The set of instances ξX/∼ consists of equivalence classes ⟨x⟩ of Agentic instances x ∈ ξX ,
where

⟨x⟩ := {y ∈ ξX | y ∼ x}.

• The state list of an equivalence class ⟨x⟩ is defined as:

⟨x⟩.sstates := {y.sstates | y ∼ x}.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

This structure abstracts over individual Agentic instances by identifying those whose states are
equivalent.
Proposition 3 (Monoid Structure on Quotient Agentic Structure). Let (ξX , ◦) be a monoid of Agentic
instances over type X , and let ∼ be a congruence relation on ξX , i.e., for all x1 ∼ x2 and y1 ∼ y2,
we have:

x1 ◦ y1 ∼ x2 ◦ y2.

Then, the quotient structure (ξX/ ∼, ◦) forms a monoid, where:

• Elements are equivalence classes ⟨x⟩.

• The operation is defined by:
⟨x⟩ ◦ ⟨y⟩ := ⟨x ◦ y⟩.

• The identity is ⟨e⟩, where e is the identity in (ξX , ◦).

Proof. We verify the monoid properties on the quotient structure:

Well-definedness: If x1 ∼ x2 and y1 ∼ y2, then by congruence:
x1 ◦ y1 ∼ x2 ◦ y2,

so ⟨x1 ◦ y1⟩ = ⟨x2 ◦ y2⟩.
Associativity: Follows from associativity in ξX :

⟨x⟩ ◦ (⟨y⟩ ◦ ⟨z⟩) = ⟨x ◦ (y ◦ z)⟩ = ⟨(x ◦ y) ◦ z⟩ = (⟨x⟩ ◦ ⟨y⟩) ◦ ⟨z⟩.

Identity: For any ⟨x⟩,
⟨e⟩ ◦ ⟨x⟩ = ⟨e ◦ x⟩ = ⟨x⟩, ⟨x⟩ ◦ ⟨e⟩ = ⟨x ◦ e⟩ = ⟨x⟩.

Example 1 (Quotient of a Product Agentic Structure). Let AG[X] and AG[Y] be Agentic structures
over types X and Y , respectively. Their product AG[T] is defined by

satype = X × Y, sstates = (x.sstates,y.sstates)

for instances x ∈ AG[X] and y ∈ AG[Y].

We define an equivalence relation ∼ on ξT such that for any t1, t2 ∈ ξT ,

t1 ∼ t2 ⇐⇒ ∀i, x(1)
i ≈ x

(2)
i ,

where x
(1)
i and x

(2)
i are the first components of the i-th state in t1 and t2, respectively, and ≈ is an

equivalence relation on X .

As a concrete example, let the types and the equivalence ≈ be defined as:

• X = {Red,Green,Blue} (colors),

• Y = {Circle,Square} (shapes),

• Define ≈ on X by:
Red ≈ Green, Blue ̸≈ Red, Blue ̸≈ Green.

Consider two Agentic instances:
t1.sstates = [(Red,Circle), (Green,Square)],
t2.sstates = [(Green,Circle), (Red,Square)].

Then t1 ∼ t2 because:
Red ≈ Green, Green ≈ Red.

Note that the shape components (second elements) are not constrained by the equivalence relation.

The quotient Agentic structure AG[T/ ∼] consists of equivalence classes ⟨t⟩ of Agentic instances
under ∼, where:

⟨t⟩ := {t′ ∈ ξT | t′ ∼ t}.

This structure abstracts over differences in the first component of the state tuples according to ≈,
while preserving the full state list structure.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

B.1.2 THE TRANSDUCTION OPERATOR

Equipped with Agentic structures that form a monoid, we obtain a sound abstraction for composing
the data workflows in a functional programming style. This foundation enables the introduction of
the logical transduction operator, which utilizes LLMs as transductive inference engines. We now
define a series of logical transduction operators, organized by increasing levels of complexity. These
operators are designed with explicit consideration of types and Agentic structures.

Transduction Operator Overloading
Definition 8 (Transduction). Given an information object x and a target Agentic structure AG[Y],
the transduction of x into AG[Y] is defined as:

y := Y ≪ x =
⋃
i

(yi, Tsi),

where each yi ∈ Tsi is a value assigned to slot si of type Tsi , logically inferred from x. Here,
the operator ≪ denotes a logical transduction process, implemented via an LLM, that maps x to a
structured output conforming to the type Y .

To support the definition of logical transduction operators, we introduce a generic function that
renders typed objects into textual representations suitable for LLM input.
Definition 9 (Prompt Function). Given a type T ∈ Θ, a prompt function P is a mapping that renders
a list of states t : T into an information object, leveraging the string-valued slot names associated
with T . Formally, P : List[T] → str.

Prompt functions serve as a bridge between structured data and natural language, enabling logical
transduction operators to interface with LLMs by converting typed instances into semantically
meaningful prompts.

We now define two specific forms of logical transduction: zero-shot and few-shot.
Definition 10 (Zero-Shot Logical Transduction). Let x = AG[X] and y = AG[Y] be Agentic
structures over types X and Y , respectively. A zero-shot logical transduction from x to y is defined
component-wise as:

y[i] = Y ≪ P (x[i]),
where P : X → str is a prompt function that renders each instance x[i] into a textual prompt.

Next, we also show more overloaded transduction operators in the case of the few-shot transduction,
y[i] = Y ≪ (P (x[i])⊕ FS(x,y)) with a few-shot function FS(x,y) := P ((x′,y′)), and a
syntactic sugar such as self-transduction.
Definition 11 (Few-Shot Logical Transduction). Let x = AG[X] and y = AG[Y] be Agentic
structures over types X and Y , respectively. A few-shot logical transduction from x to y is defined
for all indices i such that y[i] = ∅ as:

y[i] = Y ≪ (P (x[i])⊕ FS(x,y)) ,

where:

• P : X → str is a prompt function that renders an instance x[i] into a textual prompt.

• ⊕ denotes prompt concatenation.

• FS(x,y) is the few-shot context, defined as:
FS(x,y) := P ((x′,y′)) ,

where (x′,y′) is the projection of (x,y) onto the subset of indices for which y[i] ̸= ∅.

Finally, we introduce self-transduction as syntactic sugar within the programming model for logical
transductions.
Definition 12 (Self Transduction). Let x ∈ AG[X] be an Agentic structure, and let Y,Z ⊂ X be two
disjoint subsets of types. A self transduction is a function that produces a modified Agentic structure
x′ ∈ AG[X], defined as:

x′ = x ≪Y,Z := x ∪ (x[Y] ≪ x[Z]) ,
where x[Y] denotes the rebind operator, which extracts an AG[Y] from x by retaining only the slots
in Y that overlap with X .

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Properties of Transduction Operator Next, we formalize key properties of the transduction oper-
ator. These properties are foundational for enabling scalable, parallel, and composable computation.

Proposition 4 (Conditional Determinism). Let σ denote a fixed transduction context, which may
include components such as a few-shot context, additional instructions, external tools, or memory.
Let the LLM configuration—comprising model weights, temperature, and decoding strategy—also
be fixed. Then, for any input xi, the transduction yi := Y ≪ xi is deterministic.

Proof. When the model parameters and transduction context σ are fixed, and the LLM is configured
with deterministic settings (e.g., temperature set to zero and caching enabled), the output yi is uniquely
determined by the input xi and the context σ. Therefore, the transduction process is deterministic
under these conditions.

Proposition 5 (Statelessness). Logical transduction operators are stateless. The output of a transduc-
tion yi := Y ≪ xi depends only on xi and the transduction context, and not on any prior or future
transductions.

Proof. By definition, the transduction operator ≪ does not rely on conversational memory or sequen-
tial state. Each yi is computed independently from xi and σ, enabling asynchronous evaluation.

Proposition 6 (Compositionality). Let AG[X], AG[Y], and AG[Z] be Agentic structures over types
X , Y , and Z, respectively. Suppose y′ = y ≪ x, and z′ = z ≪ y′. Then the composite transduction
holds, z′ = z ≪ y ≪ x.

Proof. Each transduction step applies ≪ component-wise to the state list of the input Agentic
structure. Since the output of y ≪ x is an Agentic structure AG[Y], it can be used as input to the
next transduction. Thus, the composition is well-defined and yields z′.

Implications for Distributed and Concurrent Computing These properties make the transduc-
tion operator ≪ particularly well-suited for distributed and concurrent computing paradigms. The
Conditional Determinism ensures reproducibility and traceability in distributed pipelines, the State-
lessness enables parallel execution, allowing transductions to be mapped across shards of data without
coordination or shared state, and the Compositionality supports modular pipeline construction, akin
to functional composition in MapReduce, where intermediate Agentic structures can be chained and
reused.

B.1.3 ASYNCHRONOUS MAPREDUCE

The programming model of the Agentics supports asynchronous execution of mapping and
reduction operations over Agentic structures, enabling scalable and composable data workflows.
We formalize these operations as aMap and aReduce, which extend the MapReduce by Dean &
Ghemawat (2008).

Definition 13 (Asynchronous Map (aMap)). Let AG[X] be an Agentic structure over type X , and
let f : X → List[Y] be an asynchronous mapping function. Then the asynchronous map operator is
defined as:

aMap : (AG[X], f) → AG[Y],

where the output Agentic structure y = aMap(x, f) satisfies: y.sstates =
⋃

i f(xi), and the union
preserving the original order of inputs.

The function f may return an empty list by removing xi from the output acting as a filter, map each
xi to a single output acting as a transformer, or map each xi to multiple outputs acting as fan-out.
Note that aMap operator is executed asynchronously across all input states, enabling parallelism and
scalability in distributed environments.

The aMap operator is executed asynchronously across all input states, enabling parallelism and
scalability in distributed environments.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Definition 14 (Asynchronous Reduce (aReduce)). Let AG[X] be an Agentic structure and let
f : List[X] → Y be an asynchronous reduction function. Then the asynchronous reduce operator is
defined as:

aReduce : (AG[X], f) → AG[Y],

where the output Agentic structure y = aReduce(x, f) satisfies: y.sstates = f(x).

Unlike aMap, which applies f to each state individually, aReduce applies f to the entire states x
at once. This is useful for summarization or aggregation, such as generating a report or computing
statistics over the full dataset. Since LLMs have limited context windows, applying aReduce to a
large dataset may be intractable. In such cases, scalable strategies such as hierarchical or batched
reduction can be employed by applying aReduce to random subsets and merging the results.

Composability with Logical Transduction aMap and aReduce can be composed with the logical
transduction operator ≪ to build expressive and modular workflows. For example,

y = aMap(x, x 7→ Y ≪ x), z = aReduce(y, f),

where the transduction Y ≪ x is embedded within the mapping function. As we can see, Agentic
structure enables distributed, asynchronous, and semantically typed computation over structured data.

C DESIGN PATTERNS AND USE CASES

The Agentics framework provides a concrete realization of the logical transduction algebra. We
elaborate on various design patterns and use cases for domain-specific multi-choice QA, text-to-
SQL pipelines, clustering, and automatic prompt optimization. This section demonstrates how the
Agentics framework supports a wide range of generative structured data workflows through
reusable design patterns. Each use case highlights a different aspect of the Agentics programming
model, showcasing its flexibility, scalability, and composability.

C.1 SEMANTIC PARSING TEXT-TO-SQL

Text-to-SQL is an essential task for broadening the accessibility of structured data interaction,
allowing users to query databases without needing to understand the underlying decisions made by
data engineers. Loosely considered a translation task, questions are posed to a database and first
translated into SQL queries before being executed and answers retrieved and answers retrieved. In
practice, this task involves multiple stages of reasoning, whereby one has to interact with the schema
of the structured data, as well as understand and decompose the question into its constituent parts.

Data Models Agentics supports this workflow by chaining multiple transduction steps and
integrating them with traditional Python logic. First, let’s consider setting up the Pydantic types with
the required task information.

1 class Text2SQLTask(BaseModel):
2 question: str = Field(description="The input natural language question.")
3 ddl: str = Field(description="The database schema in DDL format (e.g., CREATE TABLE

statements).")
4 sql_query: Optional[str] = Field(description="The SQL query to be generated from the

question.")
5 execution_result: Optional[List[Dict[str, str]]] = Field(description="The resulting table

from executing the SQL query.")

Listing 2: Data model for the simplified Text2SQL task

From the above Pydantic types, the simplified task is to map the question and DDL to the sql query.
However, we can break down this complex operation into declarative data modeling steps to improve
task performance, including:

• enriching the database so that there are additional fields like description of the schema and
business descriptions

• decompose the user question into constituent parts input that can be also a part of optimiza-
tion!

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

• optimize the prompt template using the final input fields.

1 class Text2SQLTask(BaseModel):
2 question: str = Field(description="The input natural language question.")
3 ddl: str = Field(description="The database schema in DDL format (e.g., CREATE TABLE

statements).")
4 enrichment: Optional[DB] = Field(description="Additional database enrichments that

applies to all problem instances")
5 sql_query: Optional[str] = Field(description="The SQL query to be generated from the

question.")
6 execution_result: Optional[List[Dict[str, str]]] = Field(description="The resulting table

from executing the SQL query.")
7
8 class DB(BaseModel):
9 description: Optional[str] = Field(description="A Description of the business purpose of

the db, what use cases it is good for how what type of information it contain")
10 keywords: Optional[list[str]] = Field(description="A list of keywords describing the

content of the database. Produce Keywords that are: Domain-Relevant: Reflects the
thematic area (e.g., education, healthcare, finance). Purpose-Oriented: Indicates the
type of insights the database supports (e.g., performance tracking, demographic
analysis). Unambiguous: Avoids generic or overly broad terms. Interoperable: Aligns
with standard taxonomies when possible (e.g., DataCite or UNSDG classification).
Examples of Strong Keywords: student_outcomes, climate_metrics, financial_forecasting
, public_health_indicators, supply_chain_kpis")

11 few_shots: Optional[list[QuestionSQLPair]] = Field(description="A selection of the
generated question-sql pair to be used as examples of how to generate a sql from a
question.")

12 subquestions: Optional[list[str]] = Field(description="a list of subquestions inside
question")

13 schema_link: Optional[str] = Field(description="the output of the schema linker in the
form of DDL script showing relevant table, column, and values for the question")

14
15 class QuestionSQLPair(BaseModel):
16 question: Optional[str]
17 sql_query: Optional[str]

Listing 3: Data model for the compositional Text2SQL task

Meta-Prompts and Prompt Templates We define the initial prompt that performs the main text-
to-SQL task. The following shows the prompt template used as input to the experiment, which may
be optionally modified by the automated prompt optimization flag.

1 prompt_template = "
2 Translate the input natural language **question** to a valid SQLite query that can be executed

on the following database in **dbs**.
3 Do your best to apply the following rules when generating SQL.
4 - Cleary understand the **question** and given database description in **dbs**.
5 - Database description is given in the **dbs** with the following fields.
6 - The database description under **dbs** contains DDL scripts or natural language description

of the database, tables, columns, and values.
7 - Only SELECT statements are allowed, do not produce any DDL or DML.
8 - When writing ‘SELECT <column>‘, only include the columns specifically mentioned in the

question.
9 - Use **evidence** to find correct column names or the values of the columns or other

expressions.
10 - If you see ’None’ or ‘None‘ in the [Value examples] for a column, prioritize using ‘JOIN <

table>‘ or ‘WHERE <column> IS NOT NULL‘ to handle potential missing data effectively.
11 - Use ‘WHERE <column> IS NOT NULL‘ in ‘WHERE‘ if you are sorting with ‘<column>‘.
12 - Use alias in ‘SELECT‘ is consistently in the expressions.
13 - Use ‘WHERE <alias> IS NOT NULL‘ in ‘WHERE‘ if you are sorting with ‘<alias>‘.
14
15 Input is provided under SOURCE.
16 "{input_spec_str}"
17
18 Generate Output as JSON decodable format
19 "{{"
20 generated_sql_query: a valid SQLite query that translates nautral language question
21 "}}"\n
22 "

Listing 4: The Prompt Template and Meta-Prompt for Automatic Prompt Optimization

Main Algorithm Next, we show how to define the compositional text-to-SQL pipeline in
Agentics. We see that the entire pipeline can be implemented through compositions of logical
transductions defined over the data models.

1 text2sql("enrichment.keywords") << text2sql("enrichment.description") << text2sql("ddl_schema"
)

2 text2sql("few_shots.question", "few_shots.sql_query") << text2sql("ddl_schema", "enrichment.
description") # synthetic pair

3 text2sql("few_shots") = text2sql("few_shots") + k_shot # additional augmentations

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

4 text2sql("few_shots") = text2sql.filter(valid_sql, "few_shots") # executes sql
5 text2sql("enrichment.subquestions") << text2sql("question")
6 text2sql("enrichment.linked_schema") << text2sql("enrichment.ddl_schema", "enrichment.

subquestions", "question")
7 input_fields = ["question", "enrichment"]
8 text2sql.instructions = optimize(prompt_template, input_fields)
9 text2sql("sql_query") << text2sql(*input_fields)

10 text2sql("execution_result") = text2sql.amap(execute_sql_query)

Listing 5: Pseudo-code for the Compositional Text-to-SQL Workflow

C.2 DOMAIN-SPECIFIC MULTIPLE CHOICE QUESTION ANSWERING

Domain-specific Multiple Choice Question Answering (MCQA) tasks present unique challenges for
LLMs, particularly when grounded in technical domains that are unfamiliar or underrepresented in
pretraining corpora.

FailureSensorIQ Benchmark In this subsection, we demonstrate how the Agentics framework
supports structured reasoning and robust performance on the FailureSensorIQ benchmark—a dataset
designed to evaluate LLMs’ understanding of failure modes and sensor relationships in Industry 4.0
(Constantinides et al., 2025).

Unlike widely used QA datasets such as MMLU (Hendrycks et al., 2021) or MedQA Li et al.
(2020), FailureSensorIQ introduces a novel domain with no prior exposure to the models under
evaluation. This makes it a strong testbed for assessing generalization and reasoning capabilities
in high-stakes, real-world industrial contexts. The benchmark includes 8,296 questions across 10
assets, with both single- and multi-answer formats. Despite the presence of strong reasoning models,
the best-performing openai-o1 achieves only 60.4 precent accuracy on single-answer questions,
underscoring the dataset’s difficulty.

Schema-Guided LLM Reasoning The Agentics approach to MCQA leverages self-transduction
and schema-driven prompting using Pydantic models. This structured prompt format contrasts
with the loosely formatted natural language prompts used in baseline evaluations. By explicitly
encoding the input-output schema (e.g., JSON fields for question, options, and selected answers),
Agentics reduces decoding errors and enforces type safety. This is particularly beneficial in
multi-answer settings, where ambiguity in output formatting can lead to evaluation mismatches and
degraded performance.

We observe that this structured prompting pattern not only improves accuracy but also enhances robust-
ness to perturbations. For example, when question phrasing or distractor options are altered, schema-
constrained decoding helps maintain consistent model behavior. This suggests that Agentics’
structured approach offers a degree of perturbation resilience, addressing one of the key weaknesses
identified in the original FailureSensorIQ benchmark.

In addition to accuracy improvements, the Agentics framework enables parallel batch execution
of MCQA tasks, significantly reducing inference time. This is achieved through the aMap operation,
which distributes structured prompts across multiple model invocations. Compared to sequential
prompting, this design pattern yields substantial speedups, making it practical for large-scale evalua-
tion and deployment.

Data Model The data model for domain-specific MCQA in Agentics is defined using
Pydantic, which enforces structural constraints and type safety during both prompt construc-
tion and response decoding. This schema-guided approach ensures that the model’s outputs conform
to expected formats, reducing parsing errors and improving evaluation reliability.

The FailureSensorIQ class encapsulates the core components of each QA instance, including
the question text, list of options, associated metadata (e.g., asset name, question type), and the model-
generated answer. The nested Answer class captures the model’s selected answer, a numerical
confidence score, and a free-text explanation that provides insight into the model’s reasoning process.

1 class Answer(BaseModel):
2 answer_letter: str = Field(description="The selected answer letter")
3 confidence: float = Field(description="Confidence score")
4 assessment: str = Field(description="Rationale for the answer")

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

5
6 class FailureSensorIQ(BaseModel):
7 id: int = Field(description="Unique identifier for the question")
8 question: str = Field(description="The question text")
9 options: List[str] = Field(description="List of answer options")

10 option_ids: List[str] = Field(description="List of option identifiers")
11 asset_name: str = Field(description="Name of the industrial asset")
12 relevancy: str = Field(description="Relevancy context or metadata")
13 question_type: str = Field(description="Type of question")
14 subject: str = Field(description="Subject or topic of the question")
15 system_answer: Answer = Field(description="Model-generated answer object")

Listing 6: Data Model for Domain-Specific Multiple Choice QA

Main Algorithm The workflow begins by instantiating an AG object with the
FailureSensorIQ schema and a specified batch size. Each example from the dataset is
parsed into a structured FailureSensorIQ instance and appended to the agent’s internal state.

The core operation is the self transduction, which performs schema-guided inference over the specified
input fields—such as question, options, and asset name—and generates structured outputs in the
system answer field. The transduction is guided by a natural language instruction that defines the task:
selecting the most plausible answer from a set of options, along with a confidence score and rationale.

1 # Initialize the \texttt{Agentics} benchmark with the FailureSensorIQ schema and batch size
2 fsiq_benchmark = AG(atype=FailureSensorIQ, batch_size=40)
3
4 # Load dataset and populate agent states
5 dataset = load_dataset("cc4718/FailureSensorIQ")
6 for example in dataset:
7 fsiq_benchmark.states.append(FailureSensorIQ(**example))
8
9 # Run self-transduction with structured input and output fields

10 fsiq_benchmark = await fsiq_benchmark.self_transduction(
11 input_fields=[
12 "question", "options", "option_ids",
13 "asset_name", "relevancy", "question_type", "subject"
14],
15 output_fields=["system_answer"],
16 instructions=(
17 "Read the input questions, all possible answers, and background task information. "
18 "This is a multiple choice test, where one of the options is true and the others are

false. "
19 "Select the answer with the highest likelihood of being correct, and return it along

with "
20 "a confidence score and a verbal assessment explaining your judgment."
21)
22)

Listing 7: Pseudo Code for Domain-Specific Multiple Choice QA

C.3 PROMPT OPTIMIZATION

Prompt optimization is a critical component in leveraging large language models (LLMs) for complex
tasks. The performance of LLMs is highly sensitive to variations in prompt structure, tone, and even
the positioning of textual components. Minor changes—such as rephrasing imperative sentences or
reordering blocks—can significantly impact the model’s output.

Prompts typically follow a structured format, often divided into system and user sections. The system
prompt provides general context, instructions, and expectations for the output, while the user prompt
contains task-specific information. Common elements include task descriptions, constraints, few-shot
examples, input/output format specifications, and guiding phrases like “Let’s think step by step”.
These components are frequently organized using structured formats such as Markdown or JSON
schemas.

General Framework for Prompt Optimization Ramnath et al. (2025) and Li et al. (2025) have
summarized existing prompt optimization techniques into a generic prompt optimization framework.
Algorithm 1 presented in Ramnath et al. (2025), formalizes the process of prompt optimization as
follows. Given a task model Mtask, an initial prompt ρ ∈ V , the goal of an prompt optimization
system MPO is to obtain the best performing prompt-template ρopt under a metric f ∈ F and eval-set
Dval that maximizes expected performance:

ρopt := argmax
ρ∈V

Ex∼Dval [f (Mtask(ρ⊕ x))] .

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Since the objective function is not tractable due to the combinatorial nature of discrete token-sequence
search spaces, the optimization process typically follows a generate-select-evaluate cycle, akin to
local search algorithms (Russell & Norvig, 2020). Most methods begin with a predefined prompt
template that specifies the structure and content to be included. An initial prompt may be constructed
manually or generated automatically using an LLM.

Given a specific task, the dataset is usually partitioned into training and validation sets. The training
set is used to optimize the prompt, while the validation set is employed for tuning hyperparameters.
Additionally, a held-out test set is used to evaluate final performance. Candidate prompts are generated,
filtered based on performance metrics, and refined over successive iterations, with incremental
improvements guided by feedback from model outputs.

Algorithm 1: Prompt Optimization Framework

1: P0 := {ρ1, ρ2, . . . , ρk} ▷ Initial seed prompts
2: Dval := {(x1, y1)}ni=1 ▷ Validation set
3: f1, . . . , fm ∈ F ▷ Inference evaluation
4: for t = 1, 2, . . . , N do ▷ Iteration depth
5: Gt := MPO(P,Dval, F) ▷ Generate prompt candidates with MPO

6: Pt := Select(Gt, Dval, F) ▷ Filter and retain candidates
7: if fconvergence ≤ ϵ then ▷ Optionally check for early convergence
8: exit
9: return argmaxρ∈PN Ex∼Dval

[f(Mtask(ρ⊕ x))]

Parallelizing Prompt Optimization with Transduction Algebra Within the Agentics frame-
work, the prompt function defined in Definition 9 maps type information into structured information
objects for transduction. Prompt optimization in this context is naturally expressed using transduc-
tion algebra. Since candidate prompts can be generated by logical transduction, we adopt meta-
prompt-based optimization strategies similar to those proposed in (Yang et al., 2024; Ye et al., 2024;
Opsahl-Ong et al., 2024). Our approach emphasizes two key aspects:

• The Agentics framework supports a declarative style of prompting, where prompts are
constructed to encode rich contextual and type-level information rather than procedural
instructions.

• The optimization process follows the generate-select-evaluate cycle described in Algorithm 1.
Importantly, the transduction algebra enables this optimization loop to be expressed in a
functional and parallelizable manner. Prompt candidates can be generated and evaluated
independently, allowing for efficient execution. This abstraction not only improves scalability
but also decouples the optimization logic from the underlying execution strategy.

In summary, the Agentics framework provides a principled and extensible foundation for prompt
optimization. It integrates declarative prompt construction, transduction algebra, and parallel search
strategies into a unified system that supports both expressiveness and scalability. Next, we present
a functional design pattern for implementing prompt optimization using transduction algebra, ab-
stracting away procedural details common in existing approaches. In Section A.6, our experiments
demonstrate that declarative context optimization improves performance and that parallelization
yields substantial runtime gains.

Data Models We begin by defining two data models using Pydantic: OptimizationTask and
GSM8K. The OptimizationTask schema captures the components of a prompt template—such
as role, goal, expected output, and imperative instructions—along with a score field for evaluation.
The GSM8K schema represents the target task, including the question, ground-truth answer, model-
generated reasoning, and correctness flag.

1 class OptimizationTask(BaseModel):
2 # a list of demo tasks used to guide prompt generation
3 demos: list[Any] = Field(description="optimization demo tasks")
4 # role description to be embedded in the prompt (e.g., ’You are a math tutor’)
5 role: str = Field(description="New role instruction")
6 # goal statement describing what the prompt aims to achieve
7 goal: str = Field(description="New goal instruction")

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

8 # criteria for what constitutes a good or acceptable output
9 expected_output: str = Field(description="New expected_output instruction")

10 # imperative phrase (e.g., ’Let’s think step by step’)
11 imperative: str = Field(description="New imperative")
12 # evaluation score assigned to the prompt after testing on validation data
13 score: int = Field(description="evaluation score")
14
15 class GSM8K(BaseModel):
16 question: str = Field(description="a grade school math question.")
17 answer: str = Field(description="the ground-truth answer")
18 response_think: str = Field(description="the step by step reasoning")
19 response_answer: str = Field(description="the final answer")
20 # boolean flag indicating whether the response answer is correct
21 correct: bool

Listing 8: Data Models for GSM8K Prompt Optimization

Meta Prompt and Optimized Prompts The meta-prompt (OPT META INSTRUCTION) guides
the generation of new prompt templates by describing the structure and expectations for the optimizer.
It includes historical context from previous iterations and instructs the model to avoid redundancy. The
user prompt template (USER PROMPT TEMPLATE) is instantiated with the optimized parameters
and used to evaluate candidate prompts on the validation set.

The following shows the meta-prompt used for optimizing the prompt template for the GSM8K
dataset.

1 OPT_META_INSTRUCTION = "Your proposed prompt template will be used in the following way.
2 * You are "role" -- this role must be suitable for solving the demo task.
3 * Your personal goal is: "goal" -- the goal achieves the outputs given inputs.
4 * This is the expected criteria for your final answer "expected_output" -- this constrains the

output format.
5 * You can add a short imperative instruction "imperative" -- this comes after the input of the

task.
6
7 [[Several demo tasks of input and outputs will be provided when you solve problem.]]
8
9 [[The previous optimized prompt templates with scores appear from the worst to the best.]]

10 {optimization_history}
11
12 * Given the previous optimization results, don’t generate duplicate or similar prompt

templates.
13 * Generate prompt template that achieves the best score, and succint and concise instructions.
14 "
15
16
17 USER_PROMPT_TEMPLATE = "
18 You are {role}.
19 Your personal goal is: {goal}.
20 This is the expected criteria for your final answer: {expected_output}.
21
22 solve the following task.
23 {question}
24
25 {imperative}
26 "

Listing 9: Meta Prompt and Template for GSM8K Prompt Optimization

In the following, we show the prompts returned by APO, including both system and user prompts.
The system prompt consists of three components: role, goal, and expected output. In the user prompt,
an imperative statement appears after each question. A score of 89 was evaluated on the validation
set, using 100 problems sampled from the training set, which is higher than the test score of 85.

1 {
2 "role": "Elite Mathematical Problem Solver",
3 "goal": "To swiftly and accurately determine the precise numerical solution by meticulously

dissecting complex problem statements, identifying pivotal information, and applying a
comprehensive array of advanced mathematical concepts, formulas, and logical reasoning to
achieve an optimal solution, ensuring efficiency, precision, and reliability in all

calculations, while providing accurate and relevant answers",
4 "expected_output": "A single, exact numeric value that directly addresses and solves the given

mathematical problem, ensuring all calculations are correctly executed, based on the
information provided, and presented in a clear, concise manner, with strict adherence to
mathematical rules and consideration of all given data",

5 "imperative": "Thoroughly analyze the problem statement, extract key information, apply
pertinent mathematical principles and logical reasoning to derive the accurate numerical
answer, and provide the final answer in the required numeric format, while validating the
solution through re-evaluation of calculations and verification of the accuracy of the

obtained result, and ensuring precision, accuracy, and reliability in all steps of the
calculation process.",

6 "score": 89

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

7 }

Listing 10: Optimized Prompt for GSM8K using Llama-3.3-70B Model

The following result is obtained from the Qwen3-8B model. A score of 98 was evaluated on the
validation set, using 100 problems sampled from the training set. This score is higher than the test
score of 92.

1 {
2 "role": "Math Problem Solver",
3 "goal": "Solve complex problems by decomposing them into sequential steps, applying arithmetic

operations (percentages, fractions, averages), ensuring unit consistency, and presenting
the final answer in a boxed format.",

4 "expected_output": "A single numeric value boxed (e.g., \\boxed{64}) representing the solution
, derived through precise step-by-step calculations with attention to percentages,
fractions, and averages.",

5 "imperative": "Analyze the problem statement, execute calculations step-by-step with focus on
percentages, fractions, and unit conversions, then box the final numeric result.",

6 "score": 98
7 }

Listing 11: Optimized Prompt for GSM8K using Qwen3-8B Model

The following shows the meta prompt for optimizing the prompt template for MCQA dataset.

1 OPT_META_INSTRUCTION = "Your proposed prompt template will be used in the following way.
2 * You are "role" -- this role must be suitable for solving the demo task.
3 * Your personal goal is: "goal" -- the goal achieves the outputs given inputs.
4 * This is the expected criteria for your final answer "expected_output" -- this constrains the

output format.
5 * Extract"task_context" from demo tasks to explain the problem context -- this comes before

the input of the task.
6 * You can add a short imperative instruction "imperative" -- this comes after the input of the

task.
7
8
9 [[Several demo tasks of input and outputs will be provided when you solve problem.]]

10
11 [[The previous optimized prompt templates with scores appear from the worst to the best.]]
12 {optimization_history}
13
14 * Given the previous optimization results, don’t generate duplicate or similar prompt

templates.
15 * Generate prompt template that achieves the best score, and succint and concise instructions.
16 "
17
18 # Template used to instantiate a user prompt from the optimized parameters.
19 # This is applied to each validation example.
20 USER_PROMPT_TEMPLATE = "
21 You are {role}.
22 Your personal goal is: {goal}.
23 This is the expected criteria for your final answer: {expected_output}.
24
25 This is the general task context.
26 {task_context}
27
28 solve the following task.
29 {question}
30 {options}
31 {option_ids}
32 {asset_name}
33 {relevancy}
34 {question_type}
35 {subject}
36
37 {imperative}
38 "

Listing 12: Meta Prompt and Template for MCQA Prompt Optimization

In the following, we show the system and user prompts returned by APO. The system prompt includes
three components: role, goal, and expected output. In the user prompt, task context appears before
each question, and an imperative statement follows each question. The test score was 54.

1 {
2 "role": "Industrial Asset Diagnostician",
3 "goal": "To accurately identify the most relevant sensors for detecting specific failure modes

in various industrial assets and determine the least relevant failure events for
abnormal sensor readings, optimizing asset performance and reducing downtime",

4 "expected_output": "A concise description of the most relevant sensor for monitoring a
specific failure mode or the least relevant failure event that does not significantly
contribute to detecting a particular failure mode in the given asset, including the
option id or description",

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

5 "task_context": "The task involves analyzing the relationship between sensor readings, failure
modes, and industrial assets such as steam turbines, aero gas turbines, electric

generators, and compressors, to determine the most relevant sensors for monitoring
specific failure modes and the least relevant failure events for abnormal sensor readings
", "imperative": "Analyze the provided asset, sensor readings, and failure modes to
identify the most relevant sensor for monitoring a specific failure mode or the least
relevant failure event for an abnormal sensor reading, considering the relationship
between failure modes, sensors, and assets",

6 "score": 54}

Listing 13: Optimized Prompt for MCQA using Llama-3.3-70B Model

Main Algorithm The main optimization loop follows the generate-select-evaluate cycle described
in Algorithm 1. It begins by preparing the training and validation sets using the Agentics
(AG[GSM8K]). Demo tasks are extracted and transformed into OptimizationTask instances.

In each iteration, candidate prompt templates are generated via self-transduction using the meta-
prompt. These templates are applied to the validation set using the user prompt format. The responses
are evaluated using the grading function defined in GSM8K.grade, and scores are assigned. The
best-performing prompts are retained using a filtering function (keep best k). This loop continues
until convergence or a maximum number of iterations is reached. The use of transduction and
asynchronous execution enables parallel evaluation of prompt candidates, improving scalability and
runtime efficiency.

1 # load GSM8K training data into \texttt{Agentics} abstraction
2 trainset = AG.from_json("gsm8k_train.jsonl")
3 # truncate to a subset for training
4 trainset = trainset.truncate_states(num_trains)
5 # create demo tasks from training examples
6 demosets = create_optimization_demos(trainset, num_demos)
7 # convert demo tasks into OptimizationTask instances
8 optimization_tasks = OptimizationTask.create_optimization_tasks(demosets)
9 # prepare validation set from remaining examples

10 validationset = trainset.truncate_states(num_trains, num_trains + num_devs)
11
12 # initialize optimizer AG[OptimizationTask] with demo tasks
13 optimizer = AG.from_states(optimization_tasks, atype=OptimizationTask)
14
15 # set default parameters and prompt configuration
16 set_default_params(optimizer)
17 optimizer.prompt_template = "{{"demo tasks":{demos}}}"
18 optimizer.prompt_params = {"role": "Prompt optimizer.", "goal": "Propose diverse prompt

templates that achieves high performance for the demo task given as input.", "backstory":
"Understand the problem domain given the demo task example and propose what answer

should be generated.", "expected_output": "the outputs are role, goal, and the expected
output description, and imperative sentence for solving provided tasks."}

19
20 # initialize list to store optimized prompt tasks
21 optimized_tasks = []
22 for iter_ind in range(max_iter):
23 # generate candidate prompt templates using meta-prompt and transduction
24 # transduction from demos to prompt parameters
25 optimizer.instructions = OPT_META_INSTRUCTION.format(
26 optimization_history = get_history_string(optimized_tasks))
27 optimizer = asyncio.run(optimizer.self_transduction(
28 ["demos"],
29 ["role", "goal", "expected_output", "imperative"]))
30
31 # apply candidate prompts to validation set using user prompt format
32 opt_eval = optimizer * validationset
33 opt_eval.prompt_template = USER_PROMPT_TEMPLATE
34 opt_eval = asyncio.run(opt_eval.self_transduction(
35 ["role", "goal", "expected_output", "imperative", "question"],
36 ["response_think", "response_answer"]))
37
38 # evaluate responses using GSM8K grading function
39 executed_tasks = opt_eval / validationset
40 for ind, exectask in enumerate(executed_tasks):
41 exectask = asyncio.run(exectask.amap(GSM8K.grade))
42 setattr(optimizer[ind], "score", summary["score"])
43
44 # retain top-performing prompts for next iteration
45 optimized_tasks.extend(optimizer.states)
46 optimized_tasks = keep_best_k(optimized_tasks)

Listing 14: Pseudo Code for GSM8K Prompt Optimization

34

	Introduction
	Related Work
	Logical Transduction Algebra
	Technical Implementation
	Example Usage of Meta-Class AG
	PydanticTransducer

	Experiments
	Data Workflow Tasks
	Schema Matching
	Text-to-SQL
	Data Imputation

	Domain-Specific Multi-Choice Question Answer

	Conclusion
	Experiments Details
	Computing Infrastructure
	Text-to-SQL
	Schema Matching
	Data Imputation
	Domain-Specific Multi-Choice Question Answer
	Prompt Optimization

	Logical Transduction Algebra
	Formalization
	Algebraic Structures
	The Transduction Operator
	Asynchronous MapReduce

	Design Patterns and Use Cases
	Semantic Parsing Text-to-SQL
	Domain-Specific Multiple Choice Question Answering
	Prompt Optimization

