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Abstract
While deep learning models often lack inter-
pretability, concept bottleneck models (CBMs)
provide inherent explanations via their concept
representations. Moreover, they allow users to per-
form interventional interactions on these concepts
by updating the concept values and thus correct-
ing the predictive output of the model. Up to this
point, these interventions were typically applied
to the model just once and then discarded. To
rectify this, we present concept bottleneck mem-
ory models (CB2Ms), which keep a memory of
past interventions. Specifically, CB2Ms leverage
a two-fold memory to generalize interventions to
appropriate novel situations, enabling the model
to identify errors and reapply previous interven-
tions. This way, a CB2M learns to automatically
improve model performance from a few initially
obtained interventions. If no prior human inter-
ventions are available, a CB2M can detect poten-
tial mistakes of the CBM bottleneck and request
targeted interventions. Our experimental evalua-
tions on challenging scenarios like handling dis-
tribution shifts and confounded data demonstrate
that CB2Ms are able to successfully generalize in-
terventions to unseen data and can indeed identify
wrongly inferred concepts. Hence, CB2Ms are a
valuable tool for users to provide interactive feed-
back on CBMs, by guiding a user’s interaction
and requiring fewer interventions.

1. Introduction
Deep learning models are often deemed black-box mod-
els that make it difficult for human users to understand
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their decision processes (Adadi & Berrada, 2018; Cam-
bria et al., 2023; Saeed & Omlin, 2023) and interact with
them (Schramowski et al., 2020; Teso et al., 2023). To
address these issues, one recent branch within explainable
artificial intelligence focuses on the potential of concept bot-
tleneck models (CBMs) (Koh et al., 2020; Stammer et al.,
2021). These are designed to be partially interpretable
and perform inference (such as bird image classification
cf. Fig. 1 top) by transforming the initial raw input into a
set of human-understandable concepts (e.g., wing shape or
color) with a bottleneck network. Subsequently, a predictor
network provides a final task prediction based on the activa-
tion of these concepts. These concept activations serve as
an inherent explanation of the model’s decision (Teso et al.,
2023). Arguably even more valuable, these activations can
be used by humans to perform interventional interactions,
e.g., for querying further explanations (Abid et al., 2022) or
correcting concept predictions (Koh et al., 2020).

In fact, a recent surge of research has focused on the benefits
of leveraging interactions in AI models in general (Ouyang
et al., 2022; Miller, 2019), and also CBMs in particu-
lar (Teso et al., 2023). Multiple such approaches focus
on leveraging interactions for mitigating errors of the pre-
dictor network (Bontempelli et al., 2021; Stammer et al.,
2021). So far, little work has focused on mitigating errors
in the initial bottleneck network. Moreover, although in-
terventional interactions on a CBM’s concept activations
are a natural tool for this purpose, they have received little
attention since their introduction by Koh et al. (2020). One
likely reason for this is that interventions according to (Koh
et al., 2020) represent a singular-use tool for updating model
performance by adding human-provided concept labels to
an increasing number of randomly selected concepts. For
sustainably improving a model’s performance, however, this
approach is inefficient and potentially demands a large num-
ber of repetitive user interactions. Providing such repeated
feedback has been identified to lead to a loss in focus of
human users (Amershi et al., 2014) if not infeasible at all.

In this work, we therefore argue to harvest the rich infor-
mation present in previously collected interventions in a
multi-use approach. Specifically, let us suppose a user cor-
rects a model’s inferred concepts through a targeted inter-
vention. In that case, the intervention carries information
on where the model did not perform well. As shown in
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Figure 1. Reusing a CBM intervention can correct model mistakes for multiple examples. Top: CBMs generate a human interpretable
concept representation via bottleneck (g) to solve the final task with a predictor (f ). Human users can correct these concept predictions
via targeted interventions (blue) influencing the final prediction. Bottom: Human interventions hold valuable information reusable in the
right situations to automatically correct model errors without further human interactions.

Fig. 1 bottom, this information can be used to improve pre-
dictions in similar future situations. In this context, we
introduce Concept Bottleneck Memory Models (CB2Ms)
as a novel and flexible extension to CBMs. CB2Ms are
based on adding a two-fold memory of interventions to the
CBM architecture, which allows to keep track of previous
model mistakes as well as previously applied interventions.
This memory enables two important properties for improved
interactive concept learning. Specifically, a CB2M can (1)
reapply interventions when the base CBM repeats previous
mistakes. It thereby automatically corrects these mistakes
without the need for additional human feedback. Overall,
human feedback may, however, not always be readily avail-
able, and obtaining it can be costly. CB2M thus mitigates
this issue by (2) its ability to detect potential model mistakes
prior to initial human feedback. Its memory module can be
used to select data points for human inspection, and thus
guide human feedback to where it is really needed. Thus
ultimately, CB2Ms allow to overcome the issue of one-time
interventions of standard CBMs and enables the model to
learn more effectively from targeted human feedback.

We illustrate the full potential of CB2M in our experimental
evaluations on several challenging tasks, such as handling
distribution shifts and confounding factors across several
datasets. In summary, we make the following contribu-
tions: (i) We identify the potential of extracting generaliz-
able knowledge from human interventions as a means of
correcting concept bottleneck models. (ii) We introduce
CB2M, a flexible extension to CBM-like architectures for
handling such interactive interventions. (iii) Our experi-
mental evaluations show that CB2Ms can truly learn from
interventions by generalizing them to unseen examples. (iv)
We further show that CB2Ms are also able to detect model
mistakes without the need for initial human knowledge and

thus allow to query a user for targeted interventions 1.

We proceed as follows: Sec. 2, provides a brief background
followed by the introduction of CB2M. The experiment
evaluations are presented in Sec. 3. Afterwards, we relate
CB2M to other work in Sec. 4 before concluding the paper
together with potential future research directions in Sec. 5.

2. Concept Bottleneck Memory Models
(CB2Ms)

Let us first introduce the background notations on CBMs
and interventions before presenting CB2Ms to improve in-
teractive concept learning via detecting of model mistakes
and generalizing of interventions to novel, unseen examples.

2.1. Background

A CBM that solves the task of transforming inputs X to
outputs Y consists of two parts. The bottleneck model
g : x → c transforms an input x ∈ X into its concept rep-
resentation c. Afterward, the predictor network f : c→ y
uses this representation to generate the final target output
y ∈ Y . The ground-truth values for c and y are written as
c∗ and y∗, respectively. We refer to overall model (task)
accuracy as Accf and to concept accuracy as Accg . Human
interactions with concept representations are called inter-
ventions. An intervention i ∈ I in the context of CBMs is
a set of tuples i = {(c′j , j)|j ∈ Ji}, with updated concept
values c′j and concept indices j. Ji is the set of all indices
for intervention i. Applying an intervention to a sample x
overwrites the predicted concept values with those of the
intervention, which we denote as x|i. This naturally builds
on the assumption that correcting concepts via interventions
will improve the output of the CBM which necessitates

1code is available at: https://github.com/ml-research/CB2M
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Figure 2. Overview of CB2M to detect mistakes or generalize interventions. A vanilla CBM (grey), consisting of bottleneck (g) and
predictor (f ), is extended with a two-fold memory (orange and green). The memory compares encodings of new samples to known
mistakes to (i) detect model errors or (ii) automatically correct the model via reuse of interventions.

training an independent CBM in contrast to jointly trained
CBMs (Koh et al., 2020; Shin et al., 2023).

As CBMs consist of two processing modules, the bottle-
neck and predictor networks, errors can occur in either, with
different consequences on how to handle these (Bontem-
pelli et al., 2021). If the bottleneck makes an error, this
error will most likely also negatively influence the predic-
tor. On the other hand, it is also possible that the predictor
makes a wrong final prediction despite having received a
correct concept representation. In the latter case, the con-
cept space is either insufficient to solve the task, or the
predictor network is susceptible to, e.g., some spurious cor-
relations. Where other works have investigated handling
an insufficient concept space through additional (unsuper-
vised) concepts (Sawada & Nakamura, 2022), or correcting
a predictor with spurious correlations (Stammer et al., 2021)
CB2M, focuses on mitigating errors that originate from the
bottleneck model. This is achieved by utilizing interventions
in the concept space. Let us now discuss this in more detail.

2.2. Concept Bottleneck Memory Models

Let us now introduce Concept Bottleneck Memory Models
(CB2Ms) as a flexible extension to CBM architectures. The
bottleneck and predictor networks of the CBM remain un-
changed but are extended by a two-fold memory moduleM
which consists of a mistake memoryMM coupled with an
intervention memoryMI . The mistake memory operates on
encodings xe, i.e., the input of the last layer of the bottle-
neck network. It measures the similarity between two data
points x and x′, i.e., via the euclidean distance of their en-
codings, d(xe, x

′
e) = ∥xe − x′

e∥. The intervention memory
directly keeps track of known interventions and associates

them to elements of the mistake memory, meaning that the
memorized intervention i can be used to correct the memo-
rized mistake of xe. We denote an associated encoding and
intervention as α(xe, i).

Overall, the mistake memory can be used to detect model
mistakes (orange in Fig. 2) or, together with the intervention
memory, enable the automatic reuse of memorized inter-
ventions (green in Fig. 2), which we explain in detail in
the following paragraphs. Importantly, the character of this
memory is independent of the overall CB2M framework.
It can be constructed in a differentiable manner, e.g., with
neural nearest neighbors (Plötz & Roth, 2018) or, based on
traditional nearest neighbor algorithms.

By extending the vanilla CBM with a memory, CB2M can
be used for two distinct tasks (cf. Fig. 2): (i) detecting
potential model mistakes and (ii) generalizing interventions
to new examples. Besides the general advantage of knowing
when an AI model has made an incorrect prediction, this
knowledge is even more relevant for CBMs as human users
can be queried for interventions in a targeted fashion. Thus,
the ability to handle task (i) via CB2M is especially relevant
when humans want to provide interventional feedback to
a CBM. Furthermore, after humans have intervened on a
CBM, they have, in fact, provided valuable knowledge for
future situations. We claim that this information should not
be discarded as in the original work of Koh et al. (2020), but
be reused when similar mistakes occur again. This is where
task (ii) of CB2M comes into play.

Detecting Wrongly Classified Instances. Intuitively, if
a data point is similar to other examples where the model
made mistakes, the model will more likely repeat these mis-
takes on the novel data point. Therefore, in CB2Ms the mis-
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take memory Mm is utilized to keep track of previous mis-
takes (cf. Alg. 1 in the appendix). First, the memory is filled
with encodings of datapoints, for which the model did not
initially generate the correct output and for which the con-
cept accuracy is smaller than a threshold ta ∈ [0, 1]. This
leads to: MM = {xe : f(g(x)) ̸= y∗ ∧ Accg(x) < ta}.
For a new unseen instance x̂, we then compare its encoding
x̂e with the mistakes in the memoryMM . If we find k mis-
takes with a distance to x̂e smaller than td, we consider a
model to be making a known mistake. Formally, we predict
a model mistake for a new unseen instance x̂ if:

∀j ∈ {1, ... , k} : ∃xe,j ∈MM : d(x̂e, xe,j) ≤ td (1)

This mistake memory can initially be filled with known
model mistakes. Yet, once the CB2M is in use, the memory
of mistakes will continuously be updated via interactive
feedback and new encodings will be added. This can con-
stantly improve detection during deployment as corrective
interventions can immediately be requested after detecting
a potentially misclassified sample.

Generalization of Interventions. Next to detecting model
errors with the mistake memory, we can use both the mistake
memory and the intervention memory jointly to generalize
interventions. As initially introduced in (Koh et al., 2020),
interventions for correcting predicted concept activations
only apply to a single sample. However, we claim that these
interventions also contain valuable information for further
samples and should thus be reused, thereby reducing the
need for additional future human interactions. Intuitively,
if an intervention is applicable for one example, it is likely
also relevant for similar inputs, at least to a certain degree.

To achieve such intervention generalization from one sam-
ple to several, we utilize both parts of the CB2M mem-
ory. Specifically, whenever an intervention i is applied to a
model, we keep the encoding of the original input point in
the mistake memoryMM and store the intervention in the
intervention memoryMI and keep track of corresponding
entries with α(xe, i). When the model gets a new sample x̂,
we next check for similar encodings in the mistake memory
MM according to Eq. 1. Here, we use k = 1, considering
only the most similar mistake and its intervention. If there
is indeed an encoding of a mistake xe within distance td of
x̂e, we apply its associated intervention i (with α(xe, i)) to
the new data point x̂. If there is no similar mistake, we let
the model perform its prediction as usual.

The threshold td is crucial for intervention generalization,
as it directly controls the necessary similarity to reapply
memorized interventions. Selecting a suitable value for td
differs from the mistake prediction as we want to generalize
as many interventions as possible under the constraint that
the generalized interventions remain valid. To this end, we
call an intervention i for a sample x valid if the class predic-

tion after intervening is not worse than before. We write this
as valid(x, i) : f(g(x)) = y∗ =⇒ f(g(x|i)) = y∗. With
that, we maximize td, while keeping:

∀x, x′ ∈ X : d(xe, x
′
e) ≤ td

⇒ ∀i ∈ I : valid(x, i)⇒ valid(x′, i)
(2)

We can also express this in terms of full datasets, where
our dataset accuracy after applying interventions should
be greater or equal to the accuracy without interventions:
Accf (X|M) ≥ Accf (X ). Here X|M is the dataset X with
applied interventions from the memoryM:

X|M = {x|i : x ∈ X : ∃x′
e ∈MM : ∃i ∈MI :

d(xe, x
′
e) ≤ td ∧ α(x′

e, i)}
∪{x : x ∈ X : ¬∃x′

e ∈MM : d(xe, x
′
e) ≤ td}

(3)

Thus, we want to find the largest td satisfying these
constraints. To this end, we can set up M based on the
validation set by adding all model mistakes to MM and
simulating corresponding interventions with ground-truth
labels for MI . The selection of td is done on the
training set. This results in the filled mistake memory
MM = {xe : x ∈ Xval ∧ f(g(x)) ̸= y∗ ∧Accg(x) < ta}
and the filled intervention memory:

MI = {i : i ∈ I ∧ xe ∈MM∧
α(xe, i) ∧ ∀j ∈ Ji : c′j = c∗j}

(4)

3. Experimental Evaluations
To evaluate the potential of CB2Ms in intervention general-
ization and mistake detection, we perform various evalua-
tions. These include testing the ability of CB2Ms to detect
similar data points, but also evaluations in context of unbal-
anced and confounded data or data affected by distribution
shifts. Let us first describe the experimental setup.

Data: The Caltech-UCSD Birds (CUB) dataset (Wah et al.,
2011) consists of roughly 12 000 images of 200 bird classes.
We use the data splits provided by Koh et al. (2020), result-
ing in training, validation, and test sets with 40, 10, and
50% of the total images. Additionally, we add 4 training
and validation folds to perform 5-fold validation. Images
in the dataset are annotated with 312 concepts (e.g., beak-
color:black, beak-color:brown, etc.), which can be grouped
into concept groups (one group for all beak-color: con-
cepts). We follow the approach of previous work (Koh et al.,
2020; Chauhan et al., 2022) and use only concepts that oc-
cur for at least 10 classes and then perform majority voting
on the concept values for each class. This results in 112
concepts from 28 groups. We also include experiments on
a new, confounded version of CUB, noted as CUB (conf.).
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Table 1. CB2M generalizes interventions to unseen data points. Top: Performance of CBM, finetuned CBM (ft), and CB2M on the
full dataset. Generalizing interventions with CB2M improves upon the base CBM in all cases. At the same time, CB2M is on par with
the resource-intense CBM (ft), except on Parity C-MNIST. Bottom: Comparison between base CBM and CB2M on the error samples
identified by CB2M. CB2M selects samples for intervention generalization where the base model performance is lacking and successfully
improves there. (Best values bold; average and standard deviation over augmented test set versions CUB (Aug.) or 5 runs (other)).

Concept Acc. (↑) Class Acc. (↑)
Dataset Set. CBM CBM (ft) CB2M CBM CBM (ft) CB2M

CUB (Aug.) Full 94.7± 0.6 96.2± 0.3 98.7± 3.5 64.8± 2.7 74.7± 1.8 69.1± 5.5
P MNIST (ub) Full 97.5± 0.2 97.9± 0.1 98.0± 0.3 91.2± 0.1 91.8± 0.4 94.0± 1.2
P C-MNIST Full 87.1± 0.0 95.0± 0.1 88.4± 0.4 68.6± 0.3 88.1± 0.8 74.9± 2.1

CUB (Aug.) Id 86.4± 2.7 - 99.0± 0.7 5.0± 1.7 - 88.7± 5.4
P MNIST (ub) Id 85.3± 2.6 - 98.7± 0.4 22.5± 5.7 - 93.7± 1.9
P C-MNIST Id 82.2± 0.6 - 95.5± 1.2 20.1± 7.1 - 85.9± 4.7

In this version, each image in the training and validation set
has a small colored patch in a corner. The color is the same
for all images of a class and not present at test time.

We further provide evidence based on the MNIST (LeCun
& Cortes, 1998), confounded ColorMNIST (C-MNIST)
(Rieger et al., 2020) and SVHN (Netzer et al., 2011) datasets.
For all three, we train the model for the parity MNIST task
as in (Mahinpei et al., 2021). Hereby, the digit in the im-
age is considered the concept, and the class label describes
whether the digit is even or odd. Furthermore, rather than
evaluating on the original MNIST dataset, we focus on an
unbalanced version of this task. In this setting, we remove
95% of the training data of one class (for the results in the
main paper, the digit “9”, for other digits cf. App. A.4). We
refer to App. A.3 for results on the original MNIST dataset,
indicating that current base models yield very high perfor-
mances and make additional interventions unnecessary. We
use the standard train and test splits for these datasets and
create validation sets with 20% of the training data. As for
CUB, we generate 5 training and validation folds in total.
When considering human interventions, we follow the com-
mon assumption that humans provide correct concept values
as long as the requested concepts are present in the input
(e.g., visible in an image).

Models: For CUB, we use the model setup as (Koh et al.,
2020) and that of (Mahinpei et al., 2021) for the MNIST
variants and SVHN. All CBMs are trained with the inde-
pendent scheme. Further training details can be found in
App. A.1. We use CB2M (cf. Sec. 2.2) to enable the gener-
alization of interventions and detection of model mistakes.
CB2M parameters are tuned for generalization and detection
separately on the training and validation set (cf. App. A.8).
For all detection experiments, the memory of CB2M is filled
with wrongly classified instances of the validation set ac-
cording to the parameters. For generalization experiments,
we simulate human interventions on the validation set and

use CB2M to generalize them to the test set.

Metrics: We use both concept and class accuracy of the
underlying CBM (with and without CB2M) to observe im-
provements in the final task and to investigate the interme-
diate concept representation. We evaluate the detection of
model mistakes using the area under the receiver operating
characteristic (AUROC) and the area under the precision-
recall curve (AUPR), in line with related work (Ramalho
& Miranda, 2019). To observe how interventions improve
model performance, we propose normalized relative im-
provement (NRI), which measures improvement indepen-
dent of baseline values. NRI measures the percentage of the
maximum possible improvement in class accuracy achieved
as NRI = ∆/∆max = (Accf − Accf,base)/(Accf,max −
Accf,base). Accf (Accf,base) refers to the model accuracy
after (before) applying interventions and Accf,max is the
maximum possible accuracy to achieve through interven-
tions, estimated, e.g., by the accuracy of the predictor given
ground-truth concept information on the validation set.

3.1. Results

Beyond One-Time Interventions. First, we analyze how
well CB2M generalizes interventions to unseen data points.
If a standard CBM receives a new input similar to a previous
datapoint with a corresponding intervention, that interven-
tion is not further used. CB2M, on the other hand, allows
the reuse of information provided in previous interventions.
As CB2M has access to more information than the base
CBM, we also compare it against a CBM, which is fine-
tuned on the data used to generate interventions for CB2M
for different numbers of finetuning steps (until convergence).
Specifically, CBM (ft) was finetuned for 10 epochs on CUB
and 5 epochs on the Parity MNIST variants. To evaluate
the generalization of CB2M to datapoints similar to the in-
tervened samples, we provide results on a modified version
of the CUB dataset: CUB (Aug.). We augment the dataset
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Table 2. CB2M detects wrongly classified instances. AUROC and AUPR values on the test set. For the confounded Parity C-MNIST,
CB2M can even achieve substantially better detection than the baselines. (Best values bold, average and standard deviations over 5 runs.)

Dataset Confounded Metric Random Softmax CB2M

CUB No AUROC (↑) 51.1± 0.7 83.7± 1.1 84.8± 0.7
AUPR (↑) 77.3± 0.4 94.0± 0.6 94.6± 0.3

CUB (conf) Yes AUROC (↑) 49.4± 0.8 77.4± 1.1 85.1± 0.5
AUPR (↑) 76.7± 0.4 91.5± 0.7 94.6± 0.3

Parity MNIST No AUROC (↑) 50.5± 0.1 90.7± 1.7 88.7± 0.4
(unbalanced) AUPR (↑) 91.2± 0.1 98.8± 0.3 98.5± 0.1

Parity C-MNIST Yes AUROC (↑) 50.3± 0.7 65.7± 0.3 83.4± 0.8
AUPR (↑) 69.0± 0.6 79.8± 0.3 91.5± 0.4

with color jitter, blurring, blackout, as well as salt&pepper,
and speckles noise, to obtain images that correspond to sim-
ilarly challenging natural image recording conditions, e.g.,
a change in lighting. We then fill CB2M with simulated hu-
man interventions on the unmodified test set and generalize
them to the novel augmented test set version. The results of
these evaluations in Tab. 1 show that indeed CB2M substan-
tially improves upon the base CBM on instances identified
(Id) for intervention generalization, and consequently also
on the full data set (Full)2. (cf. App. A.5 for further informa-
tion on false positive/negative rates and discussions about
the variance of the results).

Next, we evaluate CB2M under more challenging settings,
training with highly unbalanced or confounded data. As
seen in Tab. 1 the base CBM struggles to learn the under-
represented digit in the unbalanced Parity MNIST dataset.
On the confounded Parity C-MNIST dataset3 the CBM is
strongly influenced by the confounding factor which nega-
tively impacts the bottleneck performance during test time.
By generalizing from few human interventions, CB2Ms can
substantially improve performance compared to the vanilla
CBM on both datasets. Specifically, the reapplied inter-
ventions boosting the concept accuracy from around 80%
(which is at the performance of random guessing as nine
of ten concepts are always zero) to close to 100%, showing
that the interventions successfully correct the bottleneck
errors. The improvement in class accuracy on the identified
instances is even more substantial, as the base CBM com-
pletely fails to solve the task there. Overall, these results
show that CB2Ms are very successful in generalizing inter-
ventions. This holds not only for naturally similar inputs
but also for scenarios like unbalanced and confounded data.

We note that, while CB2M shows superior performances

2This distinction is not relevant for CBM (ft) as it does not
explicitly identify model mistakes.

3For this dataset, we assume that we have access to some
human interventions on unconfounded data.

than CBM, extended finetuning (CBM (ft)) also provides
improvements, particularly for Parity C-MNIST. However,
next to the raw performance, there are other aspects to con-
sider when comparing CB2M to finetuning the base CBM.
Specifically, (loss-based) finetuning of a model can be costly,
even more so if the model is very large. This can render
repeated finetuning on interventional data during deploy-
ment infeasible. In contrast, the memory of CB2M can be
directly and easily adapted without additional optimization
costs. Moreover, CB2M can provide potential benefits in
an online setting over vanilla fine-tuning when the model
should be continuously updated with new interventional
data., e.g., via explicitly memorizing previous mistakes. In
general, finetuning removes all other benefits of having an
accessible memory in the context of interpretability and in-
teractability. E.g., removing already applied interventions
from the finetuned model, if it turns out the interventions
were incorrect or inspecting the representation of the fine-
tuned model where in CB2M a user can simply inspect the
model’s memory. Overall, our results and considerations
suggest that (loss-based) parameter finetuning and CB2M
can be viewed as complementary approaches for model
revisions via interventions.

Asking for Interventions. Next, we go from the general-
ization of provided interventions to the second use case of
CB2Ms, namely for detecting model mistakes prior to hu-
man feedback. For this, we compare CB2M to two baselines.
The random baseline for mistake detection simply marks
random samples as mistakes. In contrast, softmax based
detection of mistakes uses the softmax probability of the
strongest activated class as a proxy to predict whether the
model made a mistake (Hendrycks & Gimpel, 2017), and
therefore uses the validation data to calibrate its decision
threshold. Where the softmax baseline uses information
from the end of the model, i.e., after the predictor network,
CB2Ms estimate model errors only based on the bottleneck
network. While detecting mistakes of the whole model cov-
ers all potential model errors (i.e., bottleneck and predictor),
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Figure 3. Less is enough: Intervening on a subset of all concepts
already yields large improvements. CB2Ms can be combined
with methods which select subsets of concepts for interventions
(here ECTP) (Shin et al., 2023). (Mean and std over 5 runs)

Table 3. Interventions based on CB2M detection successfully
improve model performance. NRI of interventions on identified
instances and full test set. As expected, interventions improve
performance on identified instances for all methods. More impor-
tantly, using CB2M leads to considerably larger improvements on
the full dataset. (Best values bold, mean and std over 5 runs.)

Setting Random Softmax CB2M

CUB
Identified 95.4± 0.6 96.3± 0.6 95.9± 0.5
Full Set 34.3± 5.7 70.1± 3.1 75.5± 4.5

Parity MNIST (unbalanced)
Identified 100.0± 0.0 100.0± 0.0 100.0± 0.0
Full Set 13.2± 4.2 62.1± 4.9 69.6± 4.1

Parity C-MNIST
Identified 100.0± 0.0 100.0± 0.0 100.0± 0.0
Full Set 60.0± 9.8 87.3± 0.8 89.7± 6.1

we hypothesize that detecting mistakes of the bottleneck net-
work directly via CB2M is more suitable for interventions,
as they are tied to the bottleneck network. We compare
CB2M to the baselines on CUB and the Parity MNIST (un-
balanced) datasets. Additionally, we evaluate the detection
on Parity C-MNIST and CUB (conf), where the methods
have access to a small number of unconfounded data points.
Our results in Tab. 2 indicate that the mistake detection of
CB2Ms performs on par with softmax on CUB and Parity
MNIST (unbalanced). But particularly mistake detection
via CB2Ms is superior to softmax on the two confounded
datasets, as it is able to make better use of the small number
of unconfounded samples.

Improving detected mistakes. Next, we show that once
model mistakes have been detected, human interventions
provide a straightforward way to improve a model via the
detected mistakes. Specifically, for this, we evaluate the

effect of interventions on model performance when these
are applied to the previously detected mistakes of CB2Ms.
In Tab. 3, we report the normalized relative improvement
(NRI) on the test set to evaluate the improvement due to
interventions that were applied to previously detected mis-
takes. We observe that both for CUB and Parity MNIST
(unbalanced), interventions can improve model performance
on detected mistakes, resulting in (close to) 100% test ac-
curacy. This results in similar NRIs for all methods on the
identified instances. More important, however, is the effect
observed on the full dataset. Here, we can see that inter-
ventions after random selection only have a small effect.
Interventions applied after the softmax baseline and CB2M
yield substantially larger improvements, though, overall the
results hint that CB2Ms can detect mistakes more suitable
for interventions.

Interventions on subsets of concepts. Often, intervening
on a few concepts is already sufficient because they carry
most of the relevant information. As human interactions are
expensive, we want to only ask for interventions on the rele-
vant concepts. As shown in (Shin et al., 2023) and (Chauhan
et al., 2022), selecting specific concepts for interventions
can greatly reduce the required human interactions. To show
that this holds also in the context of CBMs, in Fig. 3, we
exemplarily combine CB2M with the concept subset selec-
tion method ECTP (Shin et al., 2023). This figure shows the
increase in performance when applying interventions after
CB2M detection for a progressive number of concepts. One
can observe that interventions on a few concept groups (10)
already yield a large portion of the maximum improvement
(60%). Applying interventions beyond 19 concept groups
barely shows further improvements. This highlights that
we do not necessarily need interventions on all concepts
to achieve benefits of CB2Ms, but they can be combined
with existing methods that perform concept selection for
individual samples.

Effect of the memory size. In Fig. 4 we provide an addi-
tional ablation study investigating the effect of the memory
size on the results of Fig. 1. Therefore, we used different
fractions (25%, 50% and 75%) of the available intervention
data from the validation sets on CUB (Aug.), Parity MNIST
(unbalanced) and Parity C-MNIST and evaluated the gen-
eralization of interventions as in Tab. 1. We observe on
CUB that concerning both the concept and class accuracy
CB2M scales roughly linear with the memory size. This is
to be expected, as interventions mostly get generalized to
augmented versions of a mistake. However, particularly for
Parity MNIST and C-MNIST, we observe improvements to
the baseline CBM even for 25% of the validation set as mem-
ory. Ultimately, this suggests that in situations where CB2M
generalizes interventions to prevent systematic errors of the
base CBM, the memory does not require large amounts of
human interventions. Furthermore, we note that the perfor-
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Table 4. CB2M generalization under distribution shift. The
CBM is trained on Parity MNIST and evaluated on SVHN. Despite
the low base model performance, CB2M can still generalize human
interventions on SVHN. (Best values bold, mean and std over 5
runs.)

Concept Acc. (↑) Class Acc. (↑)
Setting CBM CB2M CBM CB2M

Identified 63.1± 1.2 87.3± 0.1 39.9± 0.3 60.8± 0.4
Full set 68.0± 0.9 75.3± 0.4 51.0± 0.1 57.3± 0.2

mance of CB2M on the identified instances is substantially
better than the performance of the base CBM independent
of the memory size (cf. Fig. 5 in the appendix). Overall,
our results suggest that the effectiveness of CB2M is not
tightly coupled to the size of the memory which represents
a beneficial finding for real-world deployment.

Generalization under Distribution Shift. Lastly, we eval-
uate the benefits of CB2M when the base CBM is affected
by a distribution shift. To that end, we first train a CBM
on Parity MNIST and then evaluate it on Parity SVHN. As
seen in Tab. 4, the base model does not perform well under
the shift, with a class accuracy of barely over 50% (which
is equal to random guessing). Nevertheless, we observe that
if we add human-generated interventions to CB2M, we can
greatly improve the model performance despite the distribu-
tion shift, indicating the great potential of CB2Ms also in
other learning settings such as online learning.

Limitations. With CB2Ms, we leverage human feedback
to improve upon CBMs. To this end, it is assumed that the
feedback provided by humans is correct. This is a common
assumption in work on CBMs (Koh et al., 2020; Chauhan
et al., 2022) and (inter)active learning in general (Settles,
2009; Berg et al., 2019). However, despite a human’s abil-
ity (e.g., sufficient expertise) to provide correct feedback, a
user with malicious intentions could actively provide wrong
feedback. This has to be considered when incorporating
human feedback, i.e., also in the context of CB2M. Recent
work has begun tackling this issue e.g., in the context of ex-
planatory interactive learning (Friedrich et al., 2023), toxic
language (Ju et al., 2022) and specifically concept-based AI
systems (Collins et al., 2023). Moreover, inefficient search
and memory storage can affect the usability of CB2Ms in
large-scale practical settings. Lastly, a more fundamental
issue of CBMs is that a high sample variance in terms of
concept encodings can potentially lead to a higher amount
of required interventions.

4. Related Work
Concept Bottleneck Models. Concept bottleneck models
as a general network architecture were popularized recently
by Koh et al. (2020). The two-staged model first computes

intermediate concept representations before generating the
final task output. Since their introduction, various exten-
sions and variations of the standard CBM architecture have
been introduced. To depend less on supervised concept
information, CBM-AUC (Sawada & Nakamura, 2022) com-
bine explicit concept supervision with unsupervised concept
learning. Similarly, PostHoc CBMs (Yüksekgönül et al.,
2022) and label-free CBMs (Oikarinen et al., 2023) encom-
pass concepts from concept libraries (e.g., with CAV (Kim
et al., 2018)) to require less concept supervision and Stam-
mer et al. (2022) learn concepts directly with weak su-
pervision based on discretizing prototype representations.
Other extensions to CBMs aim to mitigate concept leak-
age (Margeloiu et al., 2021), ensuring the inherent inter-
pretability of CBMs. Examples are GlanceNets (Marconato
et al., 2022) and CEM (Zarlenga et al., 2022). In another
line of work, Lockhart et al. (2022) enable CBMs to drop
the concept predictions if not enough knowledge is avail-
able. This large variety of CBM-like architectures makes
the flexibility of our presented CB2M desirable. The only
requirements to combine CB2M with other CBM architec-
tures are access to the model encodings and the ability to
apply interventions.

As a two-stage model, CBMs have many advantages com-
pared to standard deep models, but their structure can make
error analysis more difficult (Marconato et al., 2023). Due
to the separate processing of inputs via the bottleneck and
predictor networks, error sources also have to be tackled
individually (Bontempelli et al., 2021). Where several pre-
vious works have tackled mitigating errors in the predictor
network (Sawada & Nakamura, 2022; Stammer et al., 2021;
Teso et al., 2023), interventions are a tool to tackle bottle-
neck errors. However, the initial introduction of interven-
tions applies them to random concepts for all samples (Koh
et al., 2020), which is no efficient use of human interactions.
Since then, Shin et al. (2023) proposed several heuristics to
order concepts for intervention and SIUL (Sheth et al., 2022)
uses Monte Carlo Dropout to estimate concept uncertainty
for the same purpose. Interactive CBMs (Chauhan et al.,
2022) extend the idea by providing a policy to optimize
concept selection under consideration of intervention costs.
Still, all these works only consider the ordering of concepts
for interventions. With CB2M, we provide a mechanism
to handle bottleneck errors via interventions specifically
when they occur. And even more importantly, CB2M allows
interventions to have more than a one-time effect.

Uncertainty Estimation for Error Detection. One use
case of CB2Ms is to detect potential model mistakes (which
can then be improved via interventions). Detecting data
points where models perform poorly is often touched upon
in research on uncertainty estimation. While the construc-
tion of uncertainty-aware networks provides benefits in
terms of mistake detection (Gawlikowski et al., 2021), our
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Figure 4. CB2M also proves effective with fewer interventions in the memory. This ablation evaluates the effect of the validation size
on the concept and class accuracy on the full set. The CB2M was provided with 25%, 50%, 75% or 100% of the validation set mistakes as
interventions. We present the baseline CBM results (gray) for comparisons.

work is more related to methods without particular assump-
tions on the model architecture. This ensures that CB2M
can be combined with different CBM architectures. A pop-
ular approach to detect model mistakes is using softmax
probabilities of the most likely class (Hendrycks & Gimpel,
2017). However, these methods are not specifically tailored
to CBMs. They are able to detect model mistakes in general,
while CB2M can specifically detect mistakes related to the
bottleneck, which can be corrected via interventions. In
contrast, NUC (Ramalho & Miranda, 2019) learn a neural
network on top of a KNN of latent model representations
to predict uncertainty. We do not learn a neural network on
top of similarity information, thus keeping our technique
simpler and more flexible e.g., when novel details about
model mistakes arrive at model deployment, which happens
every time a human provides an intervention.

5. Conclusion
In this work, we have introduced CB2M, a flexible extension
to CBM models. We have shown that the two-fold memory
of CB2Ms can be used to generalize interventions to previ-
ously unseen datapoints, thereby overcoming the issue of
current one-time intervention approaches without the neces-
sity of further human interactions. Furthermore, we have
demonstrated that CB2Ms can be utilized to detect model
mistakes prior to any human interactions, allowing humans
to efficiently provide interventional feedback in a targeted
manner, based on model-identified mistakes. Overall, our
experimental evidence on several tasks and datasets shows
that CB2Ms can be used to greatly improve intervention
effectiveness for efficient interactive concept learning.

A promising avenue for future enhancements of CB2M is
instantiating the memory in a differentiable way allowing
to learn parameters directly instead of relying on heuristics.
Aggregating interventions from multiple similar mistakes,
i.e., using k > 1 for generalization could increase the ro-
bustness of reapplied interventions, while aggregating them
in the memory via prototypes could keep the memory small
and better understandable. It is further important to investi-

gate the potential use-case of CB2Ms in the context of con-
tinual learning (e.g., concerning robustness to catastrophic
forgetting) and the potential of combining CB2M with im-
portant previous works e.g., (Aljundi et al., 2019). Finally,
an interesting direction is the combination of CB2M with
other concept-based models, for example CEM (Zarlenga
et al., 2022), post-hoc CBMs (Yüksekgönül et al., 2022),
tabular CBMs (Zarlenga et al., 2023), but also extending our
evaluations to probabilistic settings (Kim et al., 2023).

Acknowledgments
This work benefited from the Hessian Ministry of Science
and the Arts (HMWK) projects ”The Third Wave of Arti-
ficial Intelligence - 3AI”, ”The Adaptive Mind” and Hes-
sian.AI, the Hessian research priority program LOEWE
within the project WhiteBox, the ”ML2MT” project from
the Volkswagen Stiftung as well as from the ICT-48 Network
of AI Research Excellence Center “TAILOR” (EU Hori-
zon 2020, GA No 952215) and the EU-funded “TANGO”
project (EU Horizon 2023, GA No 57100431).

Impact Statement
Our work shows the potential of improving the effectiveness
of human interactions on CBMs via CB2Ms. Our frame-
work thereby represents an important step in making CBMs
more applicable in real-world scenarios. However, memo-
rizing previous interventions can also have negative effects.
E.g., if a malicious user is able to intentionally add wrong
interventions to the memory, they can negatively affect the
model outcome in the future. The fact that the memory of
CB2Ms is explicitly inspectable can, however, prove to be
helpful in limiting such malicious interventions.

9



Learning to Intervene on Concept Bottlenecks

References
Abid, A., Yüksekgönül, M., and Zou, J. Meaningfully de-

bugging model mistakes using conceptual counterfactual
explanations. In International Conference on Machine
Learning, (ICML), pp. 66–88, 2022.

Adadi, A. and Berrada, M. Peeking inside the black-box: A
survey on explainable artificial intelligence (XAI). IEEE
Access, 6:52138–52160, 2018.

Aljundi, R., Lin, M., Goujaud, B., and Bengio, Y. Gradient
based sample selection for online continual learning. In
Wallach, H. M., Larochelle, H., Beygelzimer, A., d’Alché-
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A. Appendix
A.1. Additional Experimental Details

Model Training: For CUB, we use the same model setup as (Koh et al., 2020), instantiating the bottleneck model with
the Inception-v3 architecture (Szegedy et al., 2016) and the predictor network with a simple multi-layer perceptron (MLP).
On the Parity MNIST, SVHN, and C-MNIST datasets, we used an MLP both for the bottleneck and predictor networks.
The bottleneck is a two-layer MLP with a hidden dimension of 120 and ReLU activation functions, while the predictor is a
single-layer MLP. The bottlenecks are trained using the specific dataset’s respective training and validation sets. Notably,
for the Parity MNIST (unbalanced), the training unbalance is not present in the validation data. For the generalization and
mistake detection experiments on C-MNIST, the human-provided interventions are from the unconfounded data, which is
10% of the original C-MNIST test dataset, which was neither used for training nor evaluation. Evaluation is done on the
remainder of the test set. For the distribution shift experiment of SVHN, we used a validation set of 20% of the training set
as a base for the interventions.

Assumptions About Human Feedback. With CB2Ms, we leverage human feedback to improve upon CBMs. To this end,
it is assumed that the feedback provided by humans is correct. This is a common assumption in work on CBMs (Koh et al.,
2020; Chauhan et al., 2022) and (inter)active learning in general (Settles, 2009; Berg et al., 2019). For humans, it is often
easier to provide concept information than to provide information on the complete task. For example, when considering
bird species classification cf. Fig. 1, it is easier to identify the bird’s color than its species. This phenomenon occurs when
concepts are ”low-level” and human-understandable. In other domains, such as the medical one, providing correct concept
labels may require expert domain knowledge, but it is still possible and easier to infer concept labels than class labels.

Size of the Memory Module. When more and more interventions get added to the memory, this increases the evaluation time
to reapply interventions. However, as various other work in the context of knowledge-based question answering has shown
(Borgeaud et al., 2022; Lewis et al., 2020), it is possible to scale neighbor-based retrievers to millions of data points. In
particular, approximate nearest neighbor inference (e.g., FAISS (Johnson et al., 2021)), allows scaling NNs. Furthermore, it
is unlikely that the memory of CB2M would reach such dimensions, as it is filled based on human interactions. Therefore we
argue that even if the size of the memory has an impact on the evaluation runtime, this is not a major drawback. Nevertheless,
a large memory can cause certain drawbacks, as e.g., reduced interpretability of the memory. Therefore, we think that
methods to reduce the number of elements in the memory (e.g., prototypes), could be a promising avenue for future research.

A.2. Algorithms for Intervention Generalization and Mistake Detection

For reference, we present algorithms with pseudo-code for mistake detection (Alg. 1) and intervention generalization
(Alg. 2).

Algorithm 1 Detection of Model Mistakes. Given: Parameters td, ta and k, data set for memory setup (e.g. validation set)
Xval and a CBM with bottleneck f and predictor g.
1: Memory setup:MM ← {xe : x ∈ Xval ∧ f(g(x)) ̸= y∗ ∧Accg(x) < ta}
2: x̂← New unseen instance; j ← 0
3: for m ∈MM do
4: if d(x̂e,m) ≤ td then
5: j ← j + 1
6: end if
7: end for
8: if j ≥ k then
9: return Mistake

10: else
11: return No mistake
12: end if

A.3. Results on Parity MNIST

For reference, we provide results when applying CB2M to Parity MNIST. The performance of the base CBM on this task is
already pretty good, as it achieves a concept accuracy of 98.9% and a class accuracy of 97.7%. The few errors that the model
makes are due to singular outliers. As discussed in Sec. 5, the CB2M performs well when the model is subject to some kind
of systematic error, e.g., when the model is subject to a shift in data distribution or due to data imbalance at training time.
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Algorithm 2 Generalize Interventions to Unseen Images Given: CBM with bottleneck g and predictor f , threshold
parameter td and a memoryM = (MM ,MI) of reference mistakes with respective interventions.

1: x̂← New unseen instance
2: Obtain x̂e through g
3: find x′ ∈MM with minimal d(x̂e, x

′
e)

4: if d(x̂e, x
′
e) < td then

5: if ∃i ∈MI : α(x′
e, i) then

6: x← (x, i)
7: end if
8: end if
9: Model Output: y = f(x)

Table 5. Detection of model mistakes on Parity MNIST. For mistake detection on models with a low error rate (with errors being
outliers close to the decision boundaries), CB2M performs worse than softmax. (Best values bold, standard deviations over 5 runs.)

Random Softmax CB2M

AUROC (↑) 49.0± 0.4 93.3± 0.2 64.6± 1.0
AUPR (↑) 97.4± 0.0 99.8± 0.0 98.8± 0.1

When model mistakes are just a few individual examples, which are getting confused with different classes, CB2M does
not perform as well (Tab. 5, 6). As the base CBM performance is already good, further intervention generalization is not
suitable, as the remaining model mistakes are not similar to each other (Tab. 7). Further adjustments like including positive
examples in the memory or using an explicit view on mistake density could potentially improve results in these situations.

A.4. Further Results on Parity MNIST (unbalanced)

The unbalanced version of Parity MNIST is generated by dropping 95% of the training data of one class. In the main paper,
we exemplarily showed the results when removing digit 9. In Tab. 8, we show the average results for all other digits. The
base mode does not capture the training imbalance properly in three cases, resulting in larger standard deviations for all
results.

A.5. Further Details on Generalization Results

In Sec. 3.1, we show the generalization capabilities of CB2Ms on various datasets. To further detail these results, the number
of generalized interventions is presented in Tab. 9. This describes to how many unseen examples the human interventions
have been generalized. The standard deviation is generally relatively large, especially for the CUB dataset. This is most
likely due to two reasons. First, the threshold parameter td was selected the same for all augmentations, possibly not optimal
for all augmented versions. Additionally, the two augmentations salt&pepper and speckles noise have a disruptive effect on
the model encodings, causing substantially fewer samples to be selected for intervention generalization than for the other
augmented versions. The number of generalized interventions for the parity MNIST to SVHN dataset is considerably larger,
as this dataset has more datapoints, and the model makes more mistakes after the distribution shift.

To further investigate the effect of finetuning on the interventional data, we provide more results in Tab. 10. We compare
finetuning for a short amount of time (1 epoch), to extended finetuning (5 epochs for MNIST variants and 10 epochs on

Table 6. Interventions after detection on Parity MNIST. NRI on identified instances and full set. Interventions successfully improve
identified instances. However, worse detection than softmax results in smaller improvement via CB2M. (Best values bold, standard
deviations over 5 runs.)

Setting Random Softmax CB2M

Identified 100.0± 0.0 100.0± 0.0 100.0± 0.0
Full Set 1.6± 0.7 57.6± 1.5 5.9± 2.9
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Table 7. Generalization of CB2M does not impact results on Parity MNIST. As model mistakes are not similar to each other, no
instances have been identified for intervention generalization, therefore applying CB2M does not impact model performance. (Best values
bold, standard deviations over 5 runs.)

Setting CBM CB2M

Concept Acc. (↑) Identified ∅ ∅
Full set 98.9± 0.0 98.9± 0.0

Class Acc. (↑) Identified ∅ ∅
Full set 97.7± 0.0 97.7± 0.0

Table 8. Further results on Partiy MNIST (unbalanced). Results of all main experiments for all versions of the Parity MNIST
(unbalanced) dataset (where the digits 0 to 8 where the underrepresented digits respectively). (Average and standard deviation over
unbalance with digits 0 to 8.)

Mistake Detection
Random Softmax CB2M

AUROC (↑) 49.5± 1.0 91.2± 7.2 83.8± 10.77
AUPR (↑) 92.8± 3.5 99.3± 0.4 98.9± 0.3

Performance after Interventions (NRI)
Setting Random Softmax CB2M

Identified 100.0± 0.0 100.0± 0.0 100.0± 0.0
Full Set 24.3± 21.3 70.7± 13.8 75.6± 14.6

Generalization of Interventions
Setting CBM CB2M

Concept Acc. (↑) Identified 91.8± 2.1 97.4± 2.3
Full Set 98.4± 0.0 98.6± 0.3

Class Acc. (↑) Identified 37.2± 26.4 87.1± 11.4
Full Set 92.9± 3.5 95.0± 2.9

Table 9. Number of generalized interventions for the different datasets. For SVHN, the number of model mistakes is considerably larger,
therefore there are more possible generalizations. (Average and standard deviations over 5 runs.)

Dataset Number of Intervention Generalizations

CUB 289.4± 215.5
Parity MNIST (unbalanced) 416.2± 206.5
Parity C-MNIST 913.4± 342.8
Parity MNIST to SVHN 7809± 512
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Table 10. Finetuning a CBM on the validation set. Short and long refer to the number of finetuning steps, i.e. 1 epoch for short and 10
epochs for finetuning on CUB and 5 epochs for finetuning on the MNIST versions. (Average and standard deviations over 5 runs.)

Concept Acc. (↑) Class Acc. (↑)
Dataset CBM (short) CBM (long) CBM (short) CBM (long)

CUB 95.2± 0.1 96.28± 0.3 67.38± 1.9 74.66± 1.8

Parity MNIST (unbalanced) 98.2± 0.1 97.9± 0.1 91.77± 0.5 91.78± 0.4

Parity C-MNIST 89.9± 0.1 95.0± 0.1 70.6± 0.4 88.1± 0.8

Table 11. False positive rates and false negative rates for the identification of samples to reapply an intervention (Tab. 1).
Dataset FPR FNR

CUB 0.84± 0.43 86.94± 8.76
Parity MNIST (unbalanced) 1.14± 0.80 64.39± 15.4
Parity C-MNIST 3.23± 0.17 73.25± 1.07

CUB (Aug.)). One can observe that longer finetuning is necessary to obtain its benefits, as short finetuning does not surpass
the performance of CB2M. Additionally, for Parity MNIST (unbalanced), finetuning independent of the number of steps
does not provide noticeable improvements.

In Tab. 11, we provide the false positive rate (FPR) and false negative rate (FNR) for all generalization experiments of Tab. 1.
The FPR is the fraction of negative samples (no mistake of the CBM), which gets a reapplied intervention. The FNR on the
other hand describes the fraction of positive samples (mistakes of the CBM), that did not get a reapplied intervention. The
FNR of CB2M is quite large, mainly due to two reasons: (i) CB2Ms are designed to generally have a low FPR rather than a
low FNR, as the output of CB2M should be reliable, even if it does not detect all possible mistakes/cases for generalization.
Second (ii), the model mistake consist both of natural model mistakes (e.g. due to outliers), which CB2M is not designed to
handle as well as systematic errors, which can be mitigated by CB2M. This larger number of potential errors inflates the
FNR.

A.6. Further Details on Mistake Detection

In the experimental evaluation, we compared both CB2M and softmax for detecting model mistakes. These methods are
however not exclusive, but could also be combined. In Tab. 12, we show the results of the mistake detection when combining
both softmax and CB2M. We combined both methods either by full agreement, i.e., only detect a mistake if both methods do
so, or by partial-detection, i.e., already detecting a mistake if only one of the methods does so. Selecting the exact strategy
on the validation set enabled the combination of both methods to always perform as well as the previously better method,
successfully combining both CB2M and softmax.

Table 12. Combination of CB2M and softmax for detection
Dataset Metric Softmax CB2M Combined

CUB AUROC (↑) 83.7± 1.1 84.8± 0.7 85.0± 0.5
AUPR (↑) 94.0± 0.6 94.6± 0.3 94.8± 0.3

CUB (conf) AUROC (↑) 77.4± 1.1 85.1± 0.5 85.4± 0.5
AUPR (↑) 91.5± 0.7 94.5± 0.3 94.7± 0.3

Parity MNIST AUROC (↑) 90.7± 1.7 88.7± 0.4 90.7± 1.7
(unbalanced) AUPR (↑) 98.8± 0.3 98.5± 0.1 98.8± 0.3

Parity C-MNIST AUROC (↑) 65.7± 0.3 83.4± 0.8 83.6± 0.5
AUPR (↑) 79.8± 0.3 91.5± 0.4 91.6± 0.3
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Figure 5. Ablation on the effect of the memory size on the performance of CB2M. Specifically, the performance on the identified instances
is shown. The CB2M was provided with 25%, 50%, 75% or 100% of the validation set mistakes as interventions. We present the baseline
CBM results (gray) for comparisons. Overall, CB2Ms performance is not affected much by the memory size and vastly surpasses the base
CBM performance.

Exp Dataset k td ta

Tab 1 CUB (a) 1 3.5 -
Parity MNIST (ub) 1 5, 5, 4, 4, 4 -
Parity CMNIST 1 7.5, 8.0, 7.0, 7.5, 8.5 -

Tab 2;3 CUB 3, 2, 3, 2, 4 10, 11, 10, 10, 11 0.99, 0.97, 0.99, 0.99, 0.99
CUB (conf) 1, 5, 4, 5, 3 12, 12, 12, 11, 12 0.99, 0.98, 0.98, 0.99, 0.97
Parity MNIST (ub) 2, 2, 1, 1, 1 6, 6, 6, 5, 6 0.99, 0.99, 0.98, 0.99, 0.99
Parity CMNIST 1, 3, 4, 3, 2 3, 3, 4, 3, 3 0.98, 0.99, 0.99, 0.97, 0.99

Table 13. Used hyperparameters for all combinations of experiment and dataset. Cells contain values for all 5 seeds (except for CUB (a)
where we have the same hyperparameter setting for all augmentations.

A.7. Further Results of the Ablation Study

The ablation study evaluates the effect of the memory size on the performance of CB2M. In the main paper, we showed
that the accuracy on the identified instances increases already with smaller memory sizes. Here (cf. Tab. 5, we provide the
results of the ablation study on the instances identified for reapplied interventions. Interestingly, the accuracy of CB2M on
these instances drops with larger memory sizes. However, this is sensible, as a larger memory also leads more possibilities
for incorrectly generalized interventions, as the encoding space is covered more and more. Nevertheless, compared to the
performance of the base CBM, CB2M yields drastic improvements for all datasets and memory sizes.

A.8. Hyperparameters

To get values for the hyperparameters of CB2M, we performed a straightforward grid-based hyperparameter optimization
for td, ta, and k, using training and validation set. For the selection of the distance threshold, we first computed the average
distance of encodings from the validation set to have a suitable starting point for td. As the evaluation of a hyperparameter
setting for CB2M does not entail any model training, the evaluation of different hyperparameter sets is computationally
inexpensive. The detailed hyperparameter for each setup can be found in Tab. 13. For further training setup, e.g., learning
rates, we refer to the code.
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