
Under review as a conference paper at ICLR 2024

BDQL: OFFLINE RL VIA BEHAVIOR DIFFUSION
Q-LEARNING WITHOUT POLICY CONSTRAINT

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline reinforcement learning (RL) algorithms often constrain the policy or regu-
larize the value function within an off-policy actor-critic framework to overcome
the overestimation on out-of-distribution (OOD) actions. And the on-policy style
offline algorithms also cannot escape from these constraints (or regularization).
In this paper, we propose an on-policy style algorithm, Behavior Diffusion Q-
Learning (BDQL), which has the potential to solve offline RL without introduc-
ing any potential constraints. BDQL first recovers the behavior policy through the
diffusion model and then updates this diffusion-based behavior policy using the
behavior Q-function learned by SARSA. The update of BDQL exhibits a special
two-stage pattern. At the beginning of the training, thanks to the precise mod-
eling of the diffusion model, the on-policy guidance of the behavior Q-function
over the behavior policy is effective enough to solve the offline RL. As training
processes, BDQL suffers from the OOD issue, causing the training fluctuation
or even collapse. Consequently, OOD issue arises after BDQL solves the offline
problem which means the policy constraint is not necessary for solving offline RL
in BDQL. Although the policy constraint can overcome the OOD issue and then
completely address the training fluctuation, it also has a negative impact on solv-
ing the offline problem in the first stage. Therefore, we introduce the stochastic
weight averaging (SWA) to mitigate the training fluctuation without affecting the
offline solution. Experiments on D4RL demonstrate the special two-stage training
phenomenon, where the first stage does have the capability to solve offline RL.

1 INTRODUCTION

Offline reinforcement learning (RL) (Levine et al., 2020) differs from traditional online reinforce-
ment learning (Sutton et al., 1998) in that it only allows learning from a pre-collected offline dataset
(Fu et al., 2020; Lange et al., 2012) and does not permit interaction with the environment. Off-policy
learning in traditional RL learns from a replay buffer, which bears some resemblance to learning
from the offline dataset. As a result, early researches attempt to apply the classical Actor-Critic
(AC) framework (Sutton et al., 1999; Konda & Tsitsiklis, 1999; Degris et al., 2012) from off-policy
learning to offline RL, but the performance is disappointing (Fujimoto et al., 2019). This is because
in policy evaluation, the agents tend to poorly estimate the value of state-action pairs out of the
offline dataset. The poor estimation in turn affects policy improvement, where agents choose out-
of-distribution (OOD) actions with highly overestimated value. There are two main approaches to
address this OOD issue: During the policy evaluation, regularizing the value function from assigning
excessively high values to out-of-distribution state-action pairs (Kumar et al., 2020; Kostrikov et al.,
2021; Bai et al., 2022). During the policy improvement, constraining the policy from deviating too
far from the behavior policy (Fujimoto & Gu, 2021; Wu et al., 2019; Tarasov et al., 2023).

Some researches attempt to analyze offline RL from an on-policy learning perspective. These algo-
rithms first learn a behavior policy using behavior cloning (BC) (Pomerleau, 1988) and then optimize
this policy by the behavior Q-function learned via SARSA along with some constraints. R-BVE
(Gulcehre et al., 2021) and Onestep RL (Brandfonbrener et al., 2021) transforms off-policy style al-
gorithms into an on-policy form with all the regularization or constraints maintained. Starting from
the offline monotonic policy improvement, BPPO (Zhuang et al., 2023) proposes that the classical
online on-policy PPO (Schulman et al., 2017) is naturally able to solve offline RL since the “clip”
operation of PPO is essentially the policy constraint through Total Variational (TV) Distance.

1

Under review as a conference paper at ICLR 2024

In this paper, we propose an on-policy style offline algorithm called Behavior Diffusion Q-Learning
(BDQL) which has the potential to solve offline RL without any policy constraints. First, we re-
cover the behavior policy through behavior cloning (BC) (Pomerleau, 1988). The true behavior
policy can encompass multiple policies, expert demonstrations or artificially designed planners

 !!"#$%&'()(*%)&
&+,-+,

&./&01&'#!!2*#3$&

&'45

&'45&6&+7,

.%8(9#3:

;<=2$>)#3$&

.%8(9#3:&43"#>1&

Figure 1: The overview of BDQL where
DPG is the deterministic policy gradient
and SWA is stochastic weight averaging.

(Fu et al., 2020), leading to complex multi-modal distri-
bution in offline dataset (Wang et al., 2022; Shafiullah
et al., 2022). This poses a significant challenge for pre-
cisely recovering the true behavior policy. Inspired by
the success in continuous action modeling (Pearce et al.,
2023; Wang et al., 2022), we adopt the diffusion (Ho
et al., 2020) as the behavior policy. Then we calculate
the behavior Q-function using SARSA (Rummery & Ni-
ranjan, 1994) and finally update the diffusion-based be-
havior policy by this fixed behavior Q-function using the
deterministic policy gradient (DPG) (Silver et al., 2014).

Why BDQL can solve offline RL without introducing policy constraint to address the OOD issue?

To address this, we analyze if BDQL can converge to the optimal policy and its tenable condition.
Specifically, this condition requires that the distance between the estimated behavior policy and the
true one is sufficiently small, which highlights the role of diffusion in BC. Furthermore, we roughly
divide the training into two stages based on the distance between the current training policy and the
true behavior policy. The OOD issue only arises in the second stage when this distance becomes too
large, leading to training fluctuations or even collapse. However, the early policy training adheres to
the guarantee of optimality. This implies BDQL can solve offline RL before OOD occurs. Therefore,
constraint is not mandatory for solving offline problem. Only the training fluctuation caused by OOD
should be addressed. So we introduce stochastic weight averaging (SWA) Izmailov et al. (2018),
which has made the online learning more stable (Nikishin et al., 2018). SWA won’t change the
actual optimization direction of BDQL, only stabilizing the fluctuation or mitigating the collapse.

Experiments on D4RL (Fu et al., 2020) indeed exhibits a two-phase phenomenon of the BDQL
training process. The policy first ascends to high performance, followed by potential fluctuation
or even collapse that results in a sharp performance drop. The BDQL peak performance of the
first stage, namely the best result, is even comparable with ensemble-based methods (An et al.,
2021). This indicates BDQL can solve the offline RL without the policy constraint before ODD
occurs. However, training fluctuation or collapse leads to unsatisfactory last results. Constraint can
completely overcome the fluctuation but the performance is unavoidably harmed since constraint
conflicts with the behavior Q-function. In contrast, BDQL along with the SWA achieves a significant
improvement in the last result, comparable to the classical baselines, with little best result decline.

2 PRELIMINARIES

2.1 OFFLINE REINFORCEMENT LEARNING

Reinforcement Learning (RL) is a framework of sequential decision. Typically, this problem is
formulated by a Markov decision process (MDP) M = {S,A, r, p, d0, γ}, with state space S,
action space A, scalar reward function r, transition dynamics p, initial state distribution d0(s0) and
discount factor γ (Sutton et al., 1998). The MDP is often called the environment and the agent is a
policy, which predicts an action based on the current state at = π (st), where at ∈ A, st ∈ S. When
the policy interacts with the environmentM, a sequence full of states and actions called trajectory
τ = (s0,a0, · · · , sT ,aT) is generated. The goal of RL is learn a policy that can maximize the
expectation of the discounted accumulated return J (π) = Eτ

[∑T
t=0 γ

tr(st,at)
]
. This objective

can also be measured by a state-action value function, Q-function Q (s,a), the expected discounted
accumulated return given the action a in state s: Q (s,a) = Eτ

[∑T
t=0 γ

tr(st,at)|s0 = s,a0 = a
]
.

In offline RL (Levine et al., 2020), the agent only has access to a fixed dataset with transitions
D =

{
(st,at, rt, st+1,at+1)

T
t=1

}
collected by some arbitrary unknown process. For the sake of

clarity and conciseness, we formally refer to this collect process as the behavior policy πb. Offline
RL expects the agent to infer a policy from the dataset without interacting with the environmentM.

2

Under review as a conference paper at ICLR 2024

2.2 ON-POLICY LEARNING AND OFF-POLICY LEARNING

In online reinforcement learning, based on the source of experience for policy updates, we can
categorize the algorithm into two major classes: on-policy online RL and off-policy online RL. In
on-policy learning, the policy first interacts with the environment to collect the experience and then
uses the experience to improve itself. The following is a classic actor-critic (AC) framework in
on-policy learning (Konda & Tsitsiklis, 1999; Sutton et al., 1999), which alternates between policy
evaluation and policy improvement with the randomly initialized Qϕ0

, πθ0 :

Qϕk+1
← argmin

ϕ
E(s,a,s′,a′)∼πθk

[
(r (s,a) + γQϕk

(s′,a′)−Qϕ (s,a))
2
]
,

πθk+1
← argmax

θ
Es∼πθk

,a∼πθ

[
Qϕk+1

(s,a)
]
,

here both (s,a, s′,a′) ∼ πθk and s ∼ πθk denote the experience is only from the policy πθk . While
for off-policy learning, the experience used to improve the policy originates not only from itself πθk
but can also other polices πθk−1

, πθk−2
, · · · , πθ0 . All the experience composes the online replay

buffer D+ (Degris et al., 2012). Then the AC framework evolves into the following off-policy style:

Qϕk+1
← argmin

ϕ
E(s,a,s′)∼D+,a′∼πθk

[
(r (s,a) + γQϕk

(s′,a′)−Qϕ (s,a))
2
]
, (1)

πθk+1
← argmax

θ
Es∼D+,a∼πθ

[
Qϕk+1

(s,a)
]
. (2)

While both offline RL and online off-policy learning learn from a pre-collected collection of expe-
riences (D or D+), naively applying the off-policy actor-critic framework to offline RL can lead to
poor performance (Fujimoto et al., 2019; Levine et al., 2020). Specifically, Equation 1 may query the
estimated Qϕk

(s′,a′) on out-of-distribution (OOD) actions that lie far away from the offline dataset
D, resulting in pathological value Qϕk+1

(s,a) that incurs large error. Furthermore, this error will
cause the inferred policy πθk+1

to be biased towards OOD actions with erroneously overestimated
values but actually with low rewards. For simplicity, we summarize the problem of offline RL as the
overestimation of OOD actions and even abbreviates it to “OOD issue” when understanding is clear.

2.3 DIFFUSION MODEL

Since both reinforcement learning and diffusion process share the concept of timesteps, we use sub-
scripts t ∈ {1, . . . , T} to denote trajectory timestep in RL and superscripts n ∈ {1, . . . , N} to de-
note diffusion timestep. Diffusion-based models (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song
& Ermon, 2019) are a special kind of generative models which learns the data distribution q(x) from
a distribution p

(
x0

)
. Diffusion models assume pθ

(
x0

)
:=

∫
pθ

(
x0:N

)
dx1:N , where x1, . . . ,xN

are latent variables of the same dimensionality as the data x0 ∼ p
(
x0

)
. A forward diffusion

chain gradually adds noise to the data x0 ∼ q
(
x0

)
in N steps with a pre-defined variance sched-

ule βn , expressed as q
(
x1:N |x0

)
:=

∏N
n=1 q

(
xn|xn−1

)
=

∏N
n=1N

(
xn;
√
1− βnxn−1, βnI

)
.

On the contrary, the reverse diffusion chain denoises and is constructed as pθ
(
x0:N

)
:=

N
(
xN ;0, I

)∏N
n=1 pθ

(
xn−1|xn

)
. Starting with the Gaussian noise, samples are then iteratively

generated through the reverse denoising process. The diffusion model is then optimized by maxi-
mizing the evidence lower bound defined as Eq

[
ln pθ

(
x0:N

)
− ln q

(
x1:N |x0

)]
(Blei et al., 2017;

Jordan et al., 1999). After training, sampling from the diffusion model consists of sampling
xN ∼ p

(
xN

)
and running the reverse diffusion chain to go from n = N to n = 0 . Diffusion

models can be straightforwardly extended to conditional models by conditioning pθ
(
xn−1|xn, c

)
.

3 BEHAVIOR DIFFUSION Q-LEARNING

Offline RL has traditionally been studied from an off-policy perspective. Various policy constraints
or value regularization are introduced to the off-policy AC to address the OOD issue (Kumar et al.,
2020; Fujimoto & Gu, 2021). Some works have attempted to study offline RL from an on-policy
perspective (Brandfonbrener et al., 2021; Gulcehre et al., 2021; Zhuang et al., 2023) and these on-
policy style methods still cooperate with constraints or regularization although the constraint may
inherently originate from the online method (Zhuang et al., 2023). In this paper, we propose an on-
policy style algorithm, which has the potential to solve offline RL without introducing constraints.

3

Under review as a conference paper at ICLR 2024

Behavior Diffusion Policy Similar to previous on-policy style methods, the first step is to recover
an estimated behavior policy πθ from the offline dataset D. But the distribution of offline dataset
often exhibit highly complex characteristics, such as skewness and multi-modality (Wang et al.,
2022; Shafiullah et al., 2022), which may pose an obstacle in accurately modeling the behavior
policy. Inspired by the tremendous success in modeling the continuous action spaces (Wang et al.,
2022; Hansen-Estruch et al., 2023) and human behavior (Pearce et al., 2023), we introduce the
diffusion model (Ho et al., 2020) to estimate the behavior policy at = πθ(st). Concretely, the action
at is modeled via the reverse process pθ conditioned on the corresponding state st:

pθ
(
a0:Nt |st

)
= N

(
aNt ;0, I

) N∏
n=1

pθ
(
an−1
t |ant , st

)
. (3)

The end sample of the reverse chain, a0t , is the action used in RL while others are noised actions. We
follow the DDPM (Ho et al., 2020) to represent the reverse process pθ

(
an−1
t |ant , st

)
as a Gaussian

distribution with a conditional noise prediction model ϵθ:

pθ
(
an−1
t |ant , st

)
= N

(
an−1
t ;µθ (a

n
t , st, n) ,Σθ (a

n
t , st, n)

)
(4)

= N
(
an−1
t ;

1√
αn

(
ant −

βn

√
1− ᾱn

ϵθ (a
n
t , st, n)

)
, βnI

)
.

We first sample aNt ∼ N (0, I) and then denote the reverse diffusion chain parameterized by θ as

an−1
t |ant =

ant√
αn
− βn√

αn (1− ᾱn)
ϵθ (a

n
t , st, n) +

√
βnϵ, ϵ ∼ N (0, I), for n = N, . . . , 1. (5)

Following DDPM (Ho et al., 2020), when n = 1, ϵ is set as 0 to improve the sampling quality. We
minimize the simplified objective of DDPM to recover the behavior policy πθ:

πθ = argmin
θ

En∼U,ϵ∼N (0,I),(st,at)∼D

[∥∥∥ϵ− ϵθ

(√
ᾱnat +

√
1− ᾱnϵ, st, n

)∥∥∥2] , (6)

where U is a uniform distribution over the discrete set as {1, . . . , N}.
The diffusion-based policy can be efficiently optimized by sampling a single diffusion step n for
each (st,at) pair since the calculation of forward process is non-iterative. But the reverse sampling
which requires iteratively computing ϵθ networks N times, which is the main bottleneck for the
running time. In order to improve efficiency, also reduce the value of N , we adopt the following
format of βn = 1 − αn = 1 − e−βmin(1/N)−0.5(βmax−βmin)(2n−1)/N2

, where βmin = 0.1 and
βmax = 10.0. This noise schedule is derived under the variance preserving SDE (Song et al., 2020).

Behavior Q-function The experience within the offline dataset D can be viewed as the on-policy
samples of the behavior policy. So we regard the Q-function directly calculated via SARSA (Rum-
mery & Niranjan, 1994) as an behavior Q-function:

Qϕ = argmin
ϕ

E(st,at,rt,st+1,at+1)∼D

[(
rt + γQ̄ϕ (st+1,at+1)−Qϕ (st,at)

)2]
, (7)

where Q̄ϕ is target network of Qϕ.

Fixed Q-function Update Finally, we update the estimated diffusion behavior policy πθ by max-
imizing the fixed behavior Q-function Qϕ. The output of the diffusion policy is the deterministic
action rather than the distribution of action, so the update is based on the deterministic policy gradi-
ent (DPG) theorem (Silver et al., 2014):

πθ∗ = argmax
θ

Est∼D [Qϕ (st, πθ (st))] . (8)

Here the Q-function Qϕ corresponds to the the behavior policy, so strictly speaking, the policy that
takes the action should be πb rather than the estimated behavior policy πθ from Equation (6). In the
following section, we will analyze the error introduced by this approximation (also the difference
between πb and πθ) and then highlight the role of precise behavior modeling by diffusion model.
Our method is an on-policy style algorithm that updates the diffusion-based behavior policy using
the fixed behavior Q-function, so we name it as Behavior Diffusion Q-Learning (BDQL).

4

Under review as a conference paper at ICLR 2024

4 ANALYSIS

In this section, we analyze our algorithm from the theoretical perspective. For the sake of conve-
nience in the proof, we rewrite Equation (8) in the following form:

πθ∗ = argmax
πθ

Ĵ (πθ) = argmax
πθ

Est∼D,at∼πθ
[Qb (st,at)] , (9)

here the fixed behavior Q-function Qb updates the estimated behavior policy πθ. An ideal and
rigorous formulation should demand the action is taken by the true behavior policy πb:

J (πb) = Est∼D,at∼πb
[Qb (st,at)] , (10)

where Qb is also fixed. Then we will demonstrate the optimality of the theoretical form J (πb) and
analyze the gap between J (πb) and the BDQL practical form Ĵ (πb). Concretely, the theoretical
formulation eventually derives an policy whose value function can recover the optimal one in offline
RL. And the gap between J (πb) and Ĵ (πb) relates to the distance between policies πb and πθ.

Optimality of J (πb): We denote the policies obtained by maximizing J (πb) as
πb, πb′ , πb′′ , · · · , πb∗ respectively. To demonstrate the optimality of πb∗ , we introduce the
support-constraint value function (Kostrikov et al., 2021; Kumar et al., 2019; Wu et al., 2022),
where the action distribution is constrained to the behavior policy: Vπ (s) = E a∼π

s.t. πb(a|s)>0
Qπ (s,a).

Theorem 1. For any state s, the support-constraint value function of πb∗ converges to the offline
optimal Q-function:

Vπb∗ (s) −→ max
a∈A

s.t. πb(a|s)>0

Q∗ (s,a) , (11)

where Q∗ (s,a) is an optimal support-constraint Q-function and defined as

Q∗ (s,a) = r (s,a) + γEs′∼p(·|s,a)

 max
a′∈A

s.t. πb(a′|s′)>0

Q∗ (a′, s′)

 (12)

Proof Sketch. We first show that the support-constraint value functions of all policies do not
surpass the optimal support-constraint Q-function Vπb

(s) ,Vπb′ (s) ,Vπb′′ (s) , · · · ,Vπb∗ (s) ≤
max a∈A

s.t. πb(a|s)>0
Q∗ (s,a). Then, we extend policy improvement from online to offline scenarios

to prove the improvement of the support-constraint value function Vπb
(s) ≤ Vπb′ (s) ,Vπb′ (s) ≤

Vπb′′ (s) , · · · . Combining these two points completes the proof. See Appendix A for details.

Gap between J (πb) and Ĵ (πb): In the above Theorem 1, we have demonstrated the opti-
mality of policy obtained by maximizing the theoretical form J (πb). Now we analyze the gap∣∣∣J (πb)− Ĵ (πθ)

∣∣∣ and find this gap relates to the distance between πb and πθ. In the following theo-

rem, we use the Total Varitional distance DTV (πθ∥πb) [s] =
1
2Ea |πθ (a|s)− πb (a|s)| for analysis.

Theorem 2. The Gap between the theoretical form (10) the practical implementation in (9) can be
bounded by the Total Varitional distance between the true and estimated behavior policies:∣∣∣J (πb)− Ĵ (πθ)

∣∣∣ ≤ 2 · Cπb

D · Est∼D [DTV (πθ∥πb) [st]] , (13)

here Cπb

D = max
st∼D,at∈A

Qb (st,at) is a constant and the proof is presented in Appendix B.

Combining above Theorem 1 and 2, we can conclude that:

Conclusion

The support-constraint value of policy πθ∗ derived from the BDQL update (8) will approach
the optimal offline value function (Vπθ∗ (s) −→ max a∈A

s.t. πb(a|s)>0
Q∗ (s,a)) when and only

when the distance is small enough (Est∼D [DTV (πθ∥πb) [st]] −→ 0).

5

Under review as a conference paper at ICLR 2024

Based on this conclusion, the role of the diffusion model in BDQL can be more clearly highlighted.
Compared to traditional behavior cloning, the diffusion policy can more accurately model the offline
dataset, that is, a smaller distance DTV (πθ∥πb), which furthermore ensures the optimality. This is
the unique role of the diffusion behavior policy under the BDQL framework.

Two training stages of BDQL We denote the intermediate policy during BDQL training as
πθ̃. Then the training process can be roughly divided into two stages according to the distance
DTV

(
πθ̃∥πb

)
. During the early training stage, the distance DTV

(
πθ̃∥πb

)
remains at a relatively

small level, ensuring the guarantee of optimality as Conclusion 4 claimed. As training processes,
the policy gradually deviates from the initial policy πθ and the distance DTV

(
πθ̃∥πb

)
starts to in-

crease, which results in a gradual weakening of the guarantee of optimality. Simultaneously, the
policy indeed generates the OOD state-action pairs, and the fixed Q-function may not provide accu-
rate estimation of them. This error won’t be accumulated and amplified since the Q-function is no
longer updated. But the OOD issue may cause the training fluctuation or even collapse at last.

We can employ any policy constraint to address the OOD issue, thus completely resolving the po-
tential training fluctuation. For example, we can add additional behavior cloning term in Equation
(8), which is similar to the Diffusion Q-Learning (Wang et al., 2022) or TD3+BC (Fujimoto & Gu,
2021). However, such constraint would inevitably pose a negative impact on the optimality of the
first training stage. It seems like we are caught in a dilemma where we cannot address the OOD
issue while retaining the optimality. One question thus arises:

Does the OOD problem really need to be addressed during the learning process of BDQL?

Not necessarily! BDQL’s early training stage does not encounter OOD issues and exhibits strong
optimality guarantees. Thus, BDQL has the potential to obtain a policy capable of addressing offline
RL before the occurrence of OOD, which is the unique characteristic of BDQL. Therefore, we only
need to address the potential training fluctuations caused by OOD. Stochastic Weight Averaging
(SWA) can only stabilize the training from fluctuation and not alter the early training.

Stochastic Weight Averaging (SWA) averages the multiple checkpoints during the optimization.
After training for a certain number of steps K, SWA equally averages the checkpoints every c steps:

πSWA
θk

=
πSWA
θk−c
· k−K

c + πθk

k−K
c + 1

, if mod (k −K, c) = 0, (14)

where the initial SWA checkpoint is πSWA
θk

= πθK . At the next training step k + 1, the Equation
8 still updates the original checkpoint πθk rather than the SWA checkpoint πSWA

θk
. In other words,

SWA checkpoints do not participate in training. They are only the average of the original check-
points throughout the whole training process. This implies that SWA does not alter the optimization
direction of the original BDQL, which is different from any constraint.

However, SWA can significantly alleviate the training fluctuation. If the checkpoint πθk experiences
intense training fluctuation, the performance of the πSWA

θk
won’t plummet dramatically thanks to the

presence of the previously checkpoints. As subsequent checkpoints becomes stable, the performance
fluctuation of the the checkpoint πθk becomes negligible in some degree. This demonstrates that
SWA can significantly stabilize the entire training process. Sometimes, the performance of BDQL
first rises and then continues to decline, that is, BDQL suffers from the training collapse. The
presence of previous high-performance checkpoints can relatively averages the latter performance
declined checkpoints, mitigating the onset of the performance collapse phase.

5 RELATED WORK

Offline Reinforcement Learning Classical online off-policy actor-critic framework (Konda &
Tsitsiklis, 1999; Sutton et al., 1999; Degris et al., 2012) often fails in offline RL due to the distri-
bution shift (Levine et al., 2020) or extrapolation error (Fujimoto et al., 2019). Offline RL methods
within this framework be divided into two categories. One category is policy constraint, which con-
strains the learned policy stay close to the behavior policy. A variety of methods are proposed based
on different “distance” such as batch constrained (Fujimoto et al., 2019), KL divergence (Wu et al.,
2019), MMD distance (Kumar et al., 2019) and MSE constraint (Fujimoto & Gu, 2021). Another

6

Under review as a conference paper at ICLR 2024

category is value regularization, which regularizes the value function to assign low values on OOD
state-action pairs (Kumar et al., 2020; Kostrikov et al., 2021; Bai et al., 2022). The strongest set
of baselines is the ensemble-based methods (An et al., 2021; Yang et al., 2022; Ghasemipour et al.,
2022), where the Q-function is estimated by the minimum of a large number of Q-networks.

Some offline methods understands and solve offline RL from the perspective of on-policy learning.
R-BVE (Gulcehre et al., 2021) and Onestep RL (Brandfonbrener et al., 2021) both transform off-
policy algorithms (such as CRR (Wang et al., 2020), BCQ (Fujimoto et al., 2019), BRAC (Wu et al.,
2019)) into on-policy style with constraint or regularization remained, where the estimated behav-
ior policy is updated by the behavior Q-function learned through SARSA (Rummery & Niranjan,
1994). BPPO (Zhuang et al., 2023) finds that online on-policy method PPO (Schulman et al., 2017)
can naturally solve offline RL and the only modification is the calculation of advantage function.
This is because the clip operation of PPO has a strong connection with policy constraint with Total
Varitional Distance. The success of these on-policy style methods also depends on the constraint.
We propose BDQL, an on-policy style offline RL algorithm but no policy constraint is introduced.

Diffusion Model in Reinforcement Learning Diffusion model (Ho et al., 2020) has been intro-
duced into offline RL to model different distributions, including the trajectories, states or actions.
Diffuser (Janner et al., 2022) models the trajectory distribution with unconditional diffusion model
and requires a trained reward function on noisy state-action pairs. Decision Diffuser (Ajay et al.,
2022) only models the distribution of the states sequence by diffusion model conditioned on the
return, skills or constraints and trains another inverse dynamics model to recover the actions from
states sequence. In the last category, diffusion model serves as the policy. Diffusion policy can en-
hance the offline algorithms such as Diffusion Q-Learning (Wang et al., 2022) and IDQL (Hansen-
Estruch et al., 2023), accurately model the human behavior (Pearce et al., 2023) or serve as goal-
conditioned policy for imitation learning (Reuss et al., 2023). In Select from Behavior Candidates
(SfBC) (Chen et al., 2022), the policy is defined as diffusion model with importance reweighting.
The behavior policy in BDQL is implemented by the conditional diffusion model and trained by BC.

6 EXPERIMENTS

We conduct a series of experiments on D4RL Gym (v2) tasks (Fu et al., 2020) to 1) evaluate the
theoretical and practical performance of BDQL compared with classical, advanced and ensemble-
based baselines, 2) analyze the role of each design components including diffusion policy, SWA and
No policy constraint 3) and demonstrate the special two-stage training phenomenon of BDQL where
the first stage is indeed able to solve the offline RL with no policy constraint introduced.

Table 1: The normalized best and last results on D4RL Gym tasks. We bold the best results and
the results of D-BC, BDQL, BDQL-SWA are calculated by averaging the mean returns over 10
evaluation trajectories and five random seeds. (Abbreviations: HalfCheetah→ HC, Hopper→ HP,
Walker2d→WK, medium→ m, medium-replay→ mr, medium-expert→ me.)

Tasks
Best Result

BC TD3+BC AWAC CQL IQL D-QL ReBRAC SAC-N EDAC D-BC BDQL BDQL-SWA

HC-m 43.6 48.9 50.06 47.62 48.84 51.50 65.62 72.21 69.72 42.11±0.39 53.09±0.28 52.37±0.15
HC-mr 40.52 45.84 46.35 46.43 45.35 48.30 52.22 67.29 66.55 35.85±2.45 44.74±0.60 44.09±0.17
HC-me 79.69 96.59 96.11 97.04 95.38 97.20 108.89 111.73 110.62 48.84±6.93 96.36±0.16 95.59±0.28
HP-m 69.04 70.44 97.9 70.8 80.46 96.60 103.19 101.79 103.26 48.42±3.51 103.54±0.43 102.84±0.33
HP-mr 68.88 98.12 100.91 101.63 102.69 102.00 102.57 103.83 103.28 24.93±8.39 103.78±0.37 102.93±1.31
HP-me 90.63 113.22 103.82 112.84 113.18 112.30 113.16 111.24 111.8 56.36±7.69 112.85±0.40 111.23±1.71
WK-m 80.64 86.91 83.37 84.77 87.58 87.30 87.79 90.17 95.78 66.48±2.41 91.58±0.45 90.10±1.42
WK-mr 48.41 91.17 86.51 89.39 89.94 98.00 91.11 85.18 89.69 24.46±8.96 103.94±1.58 101.13±1.76
WK-me 109.95 112.21 108.28 111.63 113.06 111.20 112.49 116.93 116.52 94.32±6.68 116.51±1.07 116.56±1.39
Average 70.15 84.83 85.92 84.68 86.28 89.30 93.00 95.00 96.36 49.05 91.82 90.76

Tasks
Last Result

BC TD3+BC AWAC CQL IQL D-QL ReBRAC SAC-N EDAC D-BC BDQL BDQL-SWA

HC-m 42.4 48.1 49.46 47.04 48.31 51.10 64.04 68.2 67.7 42.11±0.39 52.23±0.38 51.87±0.14
HC-mr 35.66 44.84 44.7 45.04 44.46 47.80 51.18 60.7 62.06 35.85±2.45 42.95±0.98 42.74±0.32
HC-me 55.95 90.78 93.62 95.63 94.74 96.80 103.8 98.96 104.76 48.84±6.93 93.79±1.03 93.73±1.51
HP-m 53.51 60.37 74.45 59.08 67.53 90.50 102.29 40.82 101.7 48.42±3.51 86.00±9.51 102.30±0.54
HP-mr 29.81 64.42 96.39 95.11 97.43 101.30 94.98 100.33 99.66 24.93±8.39 99.31±4.46 96.80±4.88
HP-me 52.3 101.17 52.73 99.26 107.42 111.10 109.45 101.31 105.19 56.36±7.69 37.28±8.01 71.36±16.72
WK-m 63.23 82.71 66.53 80.75 80.91 87.00 85.82 87.47 93.36 66.48±2.41 80.70±3.72 86.72±1.91
WK-mr 21.8 85.62 82.2 73.09 82.15 95.50 84.25 78.99 87.1 24.46±8.96 73.25±21.57 85.06±5.59
WK-me 98.96 110.03 49.41 109.56 111.72 110.10 111.86 114.93 114.75 94.32±6.68 113.88±1.42 115.00±1.65
Average 50.4 76.45 67.72 78.28 81.63 88.00 89.74 83.52 92.92 49.05 75.48 82.8

7

Under review as a conference paper at ICLR 2024

6.1 BENCHMARK RESULTS

To comprehensively evaluate the performance of BDQL, we assess it from both the best and last
results. The best results are obtained through online evaluation while the last results are the last
training checkpoint. We compare BDQL with a wide range of baselines, including classical, ad-
vanced, and ensemble-based baselines. Classical baselines are BC (Pomerleau, 1988), TD3+BC
(Fujimoto & Gu, 2021), AWAC (Nair et al., 2020), CQL (Kumar et al., 2020), and IQL (Kostrikov
et al., 2021). These algorithms are proposed relatively early and each one represents a classic idea.
Advanced baselines are Diffusion Q-Learning (D-QL) (Wang et al., 2022) and ReBRAC (Tarasov
et al., 2023). The advanced baselines offer more sophisticated tricks compared to the basic ones.
D-QL replaces the behavior cloning term in TD3+BC with the diffusion model and ReBRAC in-
corporates numerous effective implementations on top of BRAC (Wu et al., 2019). Ensemble-based
baselines are SAC-N and EDAC (An et al., 2021), which are the strongest class of offline baselines.
These methods approximate the true Q value using the minimum from a large number of Q net-
works. The D-QL results are extracted from its appendix while others are from the Clean Offline
Reinforcement Learning (CORL) that aims to provide fair comparison (Tarasov et al., 2022).

BDQL BQL BDQL+BC BDQL+SWA BQL+SWA

0 100 200 300 400 500
Steps

0

10

20

30

40

50

N
or

m
al

iz
ed

 R
et

ur
n

 Best Last
 53.58 53.28
 52.29 -4.50
 47.67 47.14
 52.77 52.60
 52.21 52.01

(a) HalfCheetah-medium

0 100 200 300 400 500
Steps

0

10

20

30

40

N
or

m
al

iz
ed

 R
et

ur
n Best Last

 45.51 44.73
 41.92 -2.55
 43.88 43.29
 44.10 43.51
 41.48 -2.54

(b) HalfCheetah-medium-replay

0 100 200 300 400 500
Steps

40

50

60

70

80

90

N
or

m
al

iz
ed

 R
et

ur
n

 Best Last
 96.62 78.54
 97.63 84.93
 95.17 94.92
 96.16 95.53
 96.64 86.49

(c) HalfCheetah-medium-expert

0 100 200 300 400 500
Steps

0

20

40

60

80

100

N
or

m
al

iz
ed

 R
et

ur
n

 Best Last
 104.22 104.21
 105.76 5.16
 73.68 62.23
 103.06 102.93
 105.36 104.75

(d) Hopper-medium

0 100 200 300 400 500
Steps

20

40

60

80

100

N
or

m
al

iz
ed

 R
et

ur
n

 Best Last
 104.43 103.75
 103.33 56.44
 64.97 35.20
 100.48 78.58
 102.86 77.32

(e) Hopper-medium-replay

0 100 200 300 400 500
Steps

60

80

100

N
or

m
al

iz
ed

 R
et

ur
n

 Best Last
 114.16 70.91
 114.40 78.23
 111.81 98.57
 112.81 110.30
 113.85 106.64

(f) Hopper-medium-expert

0 100 200 300 400 500
Steps

0

20

40

60

80

N
or

m
al

iz
ed

 R
et

ur
n

 Best Last
 91.97 76.80
 89.95 84.77
 84.01 81.72
 90.95 89.06
 88.82 87.96

(g) Walker2d-medium

0 100 200 300 400 500
Steps

0

20

40

60

80

100

N
or

m
al

iz
ed

 R
et

ur
n

 Best Last
 106.13 94.67
 102.08 -0.01
 86.13 70.65
 91.88 71.97
 84.27 -0.01

(h) Walker2d-medium-replay

0 100 200 300 400 500
Steps

20

40

60

80

100

120

N
or

m
al

iz
ed

 R
et

ur
n

 Best Last
 118.23 115.94
 114.71 19.01
 110.01 109.90
 118.43 118.30
 113.65 111.03

(i) Walker2d-medium-expert

Figure 2: The learning curves of BDQL, BQL, BDQL+BC, BDQL+SWA and BQL+SWA. In each
sub-figures, we list the best and last results of these by turn. The total training steps is 50,000 with
an evaluation performed every 100 steps. Therefore, the step on the x-axis of the figure is 500.

The column D-BC in Table 1 is the last checkpoint of the diffusion-based behavior policy of BDQL,
so we list it on the left side of BDQL. Training Fluctuation: Calculating the percentage decrease
from best to last results, we find that BDQL experiences 17.8% decrease, only better than BC and
AWAC. This substantial decrease indicates that BDQL indeed suffers from training fluctuation or

8

Under review as a conference paper at ICLR 2024

even collapse. Best Results: However, BDQL demonstrates exceptional best results. In environment
HalfCheetah, BDQL is better than the classical baselines and D-QL. In environment Hopper
and Walker2d, BDQL has achieved the best performance and even surpasses all the baselines on
Walker2d-medium-replay tasks. Last Results: With the help of SWA, the fluctuation caused
by OOD issue has been significantly alleviated. And the last results of BDQL-SWA is better than
all the classical baselines with OOD issue remained, which is quite amazing and interesting.

6.2 ABLATION STUDY

We demonstrate the learning curves of BDQL and its four variants on Gym tasks in Figure 2. BDQL
is the basic setting where the diffusion-based behavior policy is updated by the fixed behavior Q-
function. In BQL, the behavior policy is modeled by MLP (Multi-Layer Perceptron). BDQL+BC
represents additional behavior cloning constraint term has been added in Equation (8) to deal with
the potential OOD issue. BDQL+SWA represents the BDQL along with the Stochastic Weight
Averaging (SWA) that aims to stabilize the training fluctuation. BQL+SWA is the BQL with SWA.

0.7 0.8 0.9 1.0
P(X > Y)

WK-me
WK-mr
WK-m
HP-me
HP-mr
HP-m
HC-me
HC-mr
HC-m
MLP

WK-me
WK-mr
WK-m
HP-me
HP-mr
HP-m
HC-me
HC-mr
HC-m

Diffusion

Figure 3: Total Varitional distance imple-
mented by MLP is larger than Diffusion.

Diffusion Policy v.s. MLP Policy Conclusion
4 claims that the optimality of BDQL lies in the
small Total Varitional (TV) distance DTV (πθ∥πb).
We compare this distance implemented by diffu-
sion with MLP via rliable package (Agarwal et al.,
2021) in Figure 3 and find diffusion behavior pol-
icy significantly reduces this distance. In the Figure
(2a,2b,2d,2e,2h,2i), BQL shows a noticeable decline
in performance in the later stages of training. In con-
trast, BDQL stably reaches convergence, which also
indicates the role of diffusion model as behavior policy.

SWA v.s. Policy Constraint BDQL later training stage may suffer from intense training fluctu-
ation or even collapse. For example, in Figure (2a,2b,2d), the BDQL is relatively stable while in
Figure (2c,2e), BDQL training fluctuates and a sharp drop even occurs in Figure (2f). Policy con-
straint can make the training process (BDQL+BC) become very stable, such as Figure (2f), since
the OOD issue has been completely overcame. However, the cost of stable training is that the con-
straint interfered with the original optimization direction, resulting in overall poor performance. In
Hopper environment, Figure (2d,2e,2f), BDQL+BC hardly improves during the training. So we
choose Stochastic Weight Averaging (SWA), which makes training robust to the rapid changes. Also
in Figure (2d,2e,2f), BDQL+SWA not only stabilizes training but also improves gradually.

6.3 SPECIAL TRAINING PHENOMENON

0 100 200 300 400 500
Steps

60

80

100

N
or

m
al

iz
ed

 R
et

ur
n

BDQL
BDQL+BC
BDQL+SWA

0 100 200 300 400 500
Steps

0.085

0.090

0.095

0.100

To
ta

l V
ar

iti
on

al
 D

is
ta

nc
e

BDQL
BDQL+SWA
BDQL+BC

Figure 4: The special two-stage training phenomenon
of BDQL (left) and distance DTV

(
πθ̃∥πb

)
(right).

We analyze the unique two-stage training
process of BDQL. When DTV

(
πθ̃∥πb

)
>

0.090, BDQL suffers from OOD issue and
collapse. When DTV

(
πθ̃∥πb

)
< 0.090, it

has reached its peak performance, indicat-
ing offline RL is resolved before OOD oc-
curred. For BDQL+SWA and BDQL+BC,
the DTV is always less than 0.090 and the
training is stable. This result well matches
with theoretical analysis in section 4.

7 DISCUSSION, LIMITATIONS AND FUTURE WORK

For previous most offline algorithms, solving offline RL is inextricably linked with addressing OOD
issue. But our proposed on-policy style offline algorithm Behavior Diffusion Q-Learning (BDQL)
exhibits a novel two-stage training phenomenon where offline RL is solved before the OOD issue
occurs. In other words, BDQL uniquely decouples the resolution of offline RL and the occurrence
of OOD into two distinct training stages, which eliminates the necessity of policy constraints.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural Informa-
tion Processing Systems, 2021.

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal.
Is conditional generative modeling all you need for decision-making? arXiv preprint
arXiv:2211.15657, 2022.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline re-
inforcement learning with diversified q-ensemble. Advances in neural information processing
systems, 34:7436–7447, 2021.

Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhihong Deng, Animesh Garg, Peng Liu, and Zhaoran
Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. arXiv
preprint arXiv:2202.11566, 2022.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisti-
cians. Journal of the American statistical Association, 112(518):859–877, 2017.

David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. Offline rl without off-
policy evaluation. Advances in neural information processing systems, 34:4933–4946, 2021.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning
via high-fidelity generative behavior modeling. arXiv preprint arXiv:2209.14548, 2022.

Thomas Degris, Martha White, and Richard S Sutton. Off-policy actor-critic. arXiv preprint
arXiv:1205.4839, 2012.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Kamyar Ghasemipour, Shixiang Shane Gu, and Ofir Nachum. Why so pessimistic? estimating
uncertainties for offline rl through ensembles, and why their independence matters. Advances in
Neural Information Processing Systems, 35:18267–18281, 2022.

Caglar Gulcehre, Sergio Gómez Colmenarejo, Ziyu Wang, Jakub Sygnowski, Thomas Paine, Konrad
Zolna, Yutian Chen, Matthew Hoffman, Razvan Pascanu, and Nando de Freitas. Regularized
behavior value estimation. arXiv preprint arXiv:2103.09575, 2021.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit q-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wil-
son. Averaging weights leads to wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

10

Under review as a conference paper at ICLR 2024

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction
to variational methods for graphical models. Machine learning, 37:183–233, 1999.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. In International Conference on Machine Learning,
pp. 5774–5783. PMLR, 2021.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy q-
learning via bootstrapping error reduction. Advances in Neural Information Processing Systems,
32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforce-
ment learning: State-of-the-art, pp. 45–73. Springer, 2012.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Evgenii Nikishin, Pavel Izmailov, Ben Athiwaratkun, Dmitrii Podoprikhin, Timur Garipov, Pavel
Shvechikov, Dmitry Vetrov, and Andrew Gordon Wilson. Improving stability in deep reinforce-
ment learning with weight averaging. In Uncertainty in artificial intelligence workshop on uncer-
tainty in Deep learning, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu, Ser-
gio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, et al. Imitating human
behaviour with diffusion models. arXiv preprint arXiv:2301.10677, 2023.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural
information processing systems, 1, 1988.

Moritz Reuss, Maximilian Li, Xiaogang Jia, and Rudolf Lioutikov. Goal-conditioned imitation
learning using score-based diffusion policies. arXiv preprint arXiv:2304.02532, 2023.

Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist systems, vol-
ume 37. University of Cambridge, Department of Engineering Cambridge, UK, 1994.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Nur Muhammad Shafiullah, Zichen Cui, Ariuntuya Arty Altanzaya, and Lerrel Pinto. Behavior
transformers: Cloning k modes with one stone. Advances in neural information processing sys-
tems, 35:22955–22968, 2022.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning, pp.
387–395. Pmlr, 2014.

11

Under review as a conference paper at ICLR 2024

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. PMLR, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning, volume 135. MIT
press Cambridge, 1998.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

Denis Tarasov, Alexander Nikulin, Dmitry Akimov, Vladislav Kurenkov, and Sergey Kolesnikov.
CORL: Research-oriented deep offline reinforcement learning library. In 3rd Offline RL Work-
shop: Offline RL as a ”Launchpad”, 2022. URL https://openreview.net/forum?id=
SyAS49bBcv.

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the
minimalist approach to offline reinforcement learning. arXiv preprint arXiv:2305.09836, 2023.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E
Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression. Advances in Neural Information Processing Systems, 33:7768–7778, 2020.

Jialong Wu, Haixu Wu, Zihan Qiu, Jianmin Wang, and Mingsheng Long. Supported policy opti-
mization for offline reinforcement learning. Advances in Neural Information Processing Systems,
35:31278–31291, 2022.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Rui Yang, Chenjia Bai, Xiaoteng Ma, Zhaoran Wang, Chongjie Zhang, and Lei Han. Rorl: Ro-
bust offline reinforcement learning via conservative smoothing. Advances in Neural Information
Processing Systems, 35:23851–23866, 2022.

Zifeng Zhuang, Kun Lei, Jinxin Liu, Donglin Wang, and Yilang Guo. Behavior proximal policy
optimization. arXiv preprint arXiv:2302.11312, 2023.

12

https://openreview.net/forum?id=SyAS49bBcv
https://openreview.net/forum?id=SyAS49bBcv

Under review as a conference paper at ICLR 2024

A PROOF OF THEOREM 1

Proof. We first prove Vπb
(s) ,Vπb′ (s) ,Vπb′′ (s) , · · · ,Vπb∗ (s) ≤ max a∈A

s.t. πb(a|s)>0
Q∗ (s,a):

Vπ (s) = E a∼π
s.t. πb(a|s)>0

Qπ (s,a) (15)

≤ E a∼π
s.t. πb(a|s)>0

Q∗ (s,a)

≤ E a∼π
s.t. πb(a|s)>0

max
a

Q∗ (s,a)

= max
a∈A

s.t. πb(a|s)>0

Q∗ (s,a)

Replacing π in the above inequality with πb, πb′ , πb′′ , · · · , πb∗ completes the proof.

Secondly, we prove the improvement relation Vπb
(s) ≤ Vπb′ (s) ,Vπb′ (s) ≤ Vπb′′ (s) , · · · . Max-

imizing J (πb) = Est∼D,at∼πb
[Qb (st,at)] makes Vπb

(s) ≤ Qb (s, πb′(s)) and then we have

Vπb
(s) ≤ Qπb

(s, πb′(s)) (16)
= Eπb′ [rt + γV πb (St+1) | St = s]

≤ Eπb′ [Rt + γQπb (St+1, π
′ (St+1)) | St = s]

= Eπb′

[
Rt + γRt+1 + γ2Vπb′ (St+2) | St = s

]
≤ Eπb′

[
Rt + γRt+1 + γ2Rt+2 + γ3Vπb′ (St+3) | St = s

]
...

≤ Eπb′

[
Rt + γRt+1 + γ2Rt+2 + γ3Rt+3 + · · · | St = s

]
= Vπb′ (s)

Now we have Vπb
(s) ≤ Vπb′ (s) ≤ Vπb′′ (s) ≤ · · · ≤ Vπb∗ (s) ≤ max a∈A

s.t. πb(a|s)>0
Q∗ (s,a). So,

as policy updates, Vπb∗ (s) −→ max a∈A
s.t. πb(a|s)>0

Q∗ (s,a).

B PROOF OF THEOREM 2

Proof. The key to proof lies in the clever application of the Hölder’s inequality:∣∣∣J (πb)− Ĵ (πθ)
∣∣∣ = |Est∼D,at∼πb

[Qb (st,at)]− Est∼D,at∼πθ
[Qb (st,at)]| (17)

≤ Est∼D |Eat∼πb
[Qb (st,at)]− Eat∼πθ

[Qb (st,at)]|
(Hölder’s inequality) ≤ Est∼D ∥πb (at|st)− πθ (at|st)∥1 ∥Qb (st,at)∥∞

= 2Est∼DDTV (πθ∥πb) [st] · max
at∈A

|Qb (st,at)|

≤ 2 · max
st∼D,at∈A

Qb (st,at) · Est∼DDTV (πθ∥πb) [st]

C ALGORITHM

Algorithm 1 Behavior Diffusion Q-Learning (BDQL)

1: Estimate behavior policy πθ by Equation 6;
2: Calculate behavior Q-function Qϕ by Equation 7;
3: Update the optimal policy πθ∗ by Equation 8;
4: Stochastic Weight Averaging (SWA) by Equation 14.

13

Under review as a conference paper at ICLR 2024

D EXPERIMENTAL DETAILS

Software We use the following software versions:

• Python 3.8
• Pytorch 2.0.1 (Paszke et al., 2019)
• Gym 0.23.1 (Brockman et al., 2016)
• MuJoCo 2.3.7 (Todorov et al., 2012)
• mujoco-py 2.1.2.14

All the D4RL datasets (Fu et al., 2020) use the v2 version.

Our BDQL framework consists of two procedures: pre-training and fine-tuning. In the pre-training
phase, it is important to highlight that the actor and critic are trained separately. The actor is trained
using behavior cloning, where it learns by imitating the behavior of an expert actor based on their
trajectory data. This training process focuses on teaching the actor to mimic the expert’s actions and
exhibit similar behavior. Simultaneously, the critic is also trained using the SARSA method with
the same dataset. The critic estimates the value function for each state-action pair, allowing it to
evaluate the quality of the actor’s actions and provide feedback.

Consequently, in the fine-tuning phase following pre-training, the actor is refined with the assistance
of the critic to attain an enhanced policy. This separation of training allows the actor and critic to
fulfill distinct roles in the BDQL framework. The actor focuses on learning the desired behavior,
while the critic provides guidance through rewards and corrections to improve the actor’s policy.
By emphasizing the individual training of the actor and critic, the BDQL framework combines their
complementary strengths, ultimately leading to improved performance and more effective decision-
making.

Table 2: Algorithm Parameters

Hyperparameters Value

BDQL

Optimizer Adam (Kingma & Ba, 2014)
Critic learning rate 3e-4
Actor learning rate 3e-4

Mini-batch size 256
Discount factor 0.99

BDQL learning rate 1e-5/1e-7
actor pretrain steps 1e6
critic pretrain steps 1e6

Layer Normalization True

Architecture

Critic hidden dim 256
Critic hidden layers 3

Critic activation function Mish
Actor hidden dim 256

Actor hidden layers 3
Actor activation function Mish

SWA
start step 100

update rate 1
SWA learning rate 1e-5/1e-7

Hyperparameters Our implementation of Diffusion-BC (Wang et al., 2022) is based on the
author-provided implementations from GitHub. In the implementation, the BDQL policy is an
MLP-based conditional diffusion model. Both the BDQL policy and the critic share the same MLP
architecture, which consists of three-layer MLPs with Mish activation function and 256 hidden
units. We also employ gradient normalization parameters from Diffusion-QL, which can be found
in the same GitHub repository as Diffusion-BC. During the fine-tuning phase, the learning rate
plays a crucial role. A larger learning rate can lead to quick collapse, so we set it to 1e-5. How-
ever, in the Hopper-medium-expert and Halfcheetah-medium-expert environments,

14

Under review as a conference paper at ICLR 2024

we found that the learning rate was too large, resulting in instability. Therefore, we set the learning
rate to 1e-7 in these environments. The learning rate of the SWA is set to the same value as the
regular BDQL learning rate. The SWA starts at step 100, and the update frequency is set to 1 step to
ensure stable fine-tuning.

We outline the hyperparameters used by vary environments of D4RL in Table 2.

E EXPLORATORY DATA ANALYSIS

In BDQL framework, since the actor and critic are trained separately, it is necessary to explore the
data distribution for each of them. We conduct separate analyses of the distribution of state-action
and the distribution of state-reward.

E.1 STATE-ACTION DISTRIBUTION

To enable easy visualization, the state data is reduced to two dimensions, while the action data is
reduced to one dimension. Additionally, the datasets are standardized on a per-environment basis,
ensuring consistency in the comparison process, and normalize both types of data to a range of 0 to
1. This approach enables easier and more meaningful comparisons between different environments.
For the learning of Behavior Cloning (BC), a complex distribution of state-action pairs can lead to
poor performance (Table 1). This can be observed from the fact that BC struggles to converge on
the replay version dataset. The BC training phase of HalfCheetah shows the lowest overall stan-
dard deviation, which aligns with the distribution of state-action pairs depicted in the scatter plots
(Figure 5a,5b,5c). In some other plots (Figure 5d,5g,5i), The same pattern is observed. A clearer
distribution of state-action pairs leads to a more stable BC policy. On the other hand, for replay
version dataset with complex data distributions (Figure 5e,5h), both performance and stability are
negatively impacted. Based on the final experimental results (Table 1), it is evident that neither BQL
nor BQL+SWA effectively converge when dealing with complex data distributions from the replay
version dataset. However, BDQL outperforms the other methods on the replay version dataset. This
indicates that by harnessing the modeling capability of Diffusion, BDQL can effectively address this
issue and achieve improved performance.

E.2 STATE-REWARD DISTRIBUTION

For the distribution of state-reward, the same dimensional reduction and normalization process is
applied. The state data is reduced to two dimensions, while the rewards are normalized to a range
of 0 to 1. By examining the distribution of state-reward pairs directly, we can gain insights into
the learning dynamics of the rewards. This is particularly useful since the dataset stores data in the
form of transitions. According to the results of BDQL (Table 1), during the fine-tuning stage, the
critic demonstrates significant improvements in the Walker2d and Hopper environments. This
suggests that a rich amount of reward information has been learned in these environments. The
distribution of state-reward (Figure 6d,6e,6f,6g,6h,6i) supports this observation. In contrast, the
improvements in the HalfCheetah environment are limited. It can be observed that the reward
distribution in the HalfCheetah environment shows a significant bias (Figure 6a,6b,6c), con-
trasting with the other two environments where the reward distribution appears to be more uniform
(Figure 6d,6e,6f,6g,6h,6i). This biased reward distribution has hindered the learning of critic. As a
result, compared to the other two environments, the improvement brought by the critic in this case is
limited. This calls for the need to propose better methods for modeling rewards, such as employing
diffusion methods for BC. Unfortunately, no such method is presented at this time, and it will be left
for future exploration.

Combining these distribution plots, we observe that in offline RL, the learning of behavior and re-
ward face different challenges. By employing a two-stage approach, where the first stage focuses on
addressing behavior learning and Q learning separately, the second stage integrates both estimated
behavior and Q value, we can leverage this information more effectively and efficiently to tackle the
problems encountered during learning. This approach aligns naturally with the inherent nature of
the problem. In the future, further exploration of reward modeling and learning holds the potential
to enhance the performance of our framework and make it more universally applicable. By delv-

15

Under review as a conference paper at ICLR 2024

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0Action

(a) HalfCheetah-medium

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0Action

(b) HalfCheetah-medium-replay

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0Action

(c) HalfCheetah-medium-expert

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0

0.2

0.4

0.6

0.8

Action

(d) Hopper-medium

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0

0.2

0.4

0.6

0.8

Action

(e) Hopper-medium-replay

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0

0.2

0.4

0.6

0.8

Action

(f) Hopper-medium-expert

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.2

0.4

0.6

0.8

1.0Action

(g) Walker2d-medium

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.2

0.4

0.6

0.8

1.0Action

(h) Walker2d-medium-replay

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
y

0.2

0.4

0.6

0.8

1.0Action

(i) Walker2d-medium-expert

Figure 5: The scatter plots display the distribution of state-action in the D4RL dataset. The state
data is reduced to two dimensions, and the action data is reduced to one dimension. The x and y
axes represent the two reduced dimensions of state data, while the color of the points represents the
chosen action.

ing deeper into reward modeling and learning, we can potentially achieve better performance and
broader applicability of our framework.

E.3 TOTAL VARIATIONAL DISTANCE BETWEEN ESTIMATED BEHAVIOR POLICY AND
OFFLINE DATASET

Conclusion 4 indicates the optimality relates to the Total Variational distance between the estimated
behavior policy and the true behavior policy. We empirically calculate this distance by replace the
true behavior policy with offline dataset and then draw histograms in Figure 7. In comparison, the
distribution of the diffusion is more concentrated and has a narrower range, while the MLP has a
broader range. This also indicates that the diffusion more accurately models the behavior policy.

16

Under review as a conference paper at ICLR 2024

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0Reward

(a) HalfCheetah-medium

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0Reward

(b) HalfCheetah-medium-replay

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0Reward

(c) HalfCheetah-medium-expert

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0Reward

(d) Hopper-medium

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0Reward

(e) Hopper-medium-replay

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0Reward

(f) Hopper-medium-expert

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0Reward

(g) Walker2d-medium

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0Reward

(h) Walker2d-medium-replay

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0Reward

(i) Walker2d-medium-expert

Figure 6: The scatter plots display the distribution of state-reward in the D4RL dataset. The state
data is reduced to two dimensions, and the color of the scatter plot represents the reward value. The
rewards are normalized to a range of 0 to 1, where each reward corresponds to a specific state-action
pair in the dataset.

17

Under review as a conference paper at ICLR 2024

0 1 2 3
Total Varational Distance

0

500

1000

1500

2000

Fr
eq

ue
nc

y

MLP
Diffusion

(a) HalfCheetah-medium

0 1 2 3
Total Varational Distance

0

500

1000

1500

2000

Fr
eq

ue
nc

y

MLP
Diffusion

(b) HalfCheetah-medium-replay

0 1 2 3 4 5
Total Varational Distance

0

500

1000

1500

2000

2500

3000

Fr
eq

ue
nc

y

MLP
Diffusion

(c) HalfCheetah-medium-expert

0 2 4 6
Total Varational Distance

0

500

1000

1500

2000

2500

Fr
eq

ue
nc

y

MLP
Diffusion

(d) Hopper-medium

0 2 4 6 8 10
Total Varational Distance

0

500

1000

1500

Fr
eq

ue
nc

y

MLP
Diffusion

(e) Hopper-medium-replay

0 2 4 6
Total Varational Distance

0

500

1000

1500

2000

Fr
eq

ue
nc

y

MLP
Diffusion

(f) Hopper-medium-expert

0.0 0.5 1.0 1.5 2.0 2.5
Total Varational Distance

0

500

1000

1500

2000

2500

3000

Fr
eq

ue
nc

y

MLP
Diffusion

(g) Walker2d-medium

0 1 2 3 4
Total Varational Distance

0

500

1000

1500

2000

2500

Fr
eq

ue
nc

y

MLP
Diffusion

(h) Walker2d-medium-replay

0 1 2 3
Total Varational Distance

0

500

1000

1500

2000

Fr
eq

ue
nc

y

MLP
Diffusion

(i) Walker2d-medium-expert

Figure 7: The distribution of Total Varational distance between the estimated behavior policy (im-
plemented by MLP or Diffusion) and offline dataset.

18

	Introduction
	Preliminaries
	Offline Reinforcement Learning
	On-policy Learning and Off-policy Learning
	Diffusion Model

	Behavior Diffusion Q-learning
	Analysis
	Related Work
	Experiments
	Benchmark Results
	Ablation Study
	Special Training Phenomenon

	Discussion, limitations and Future work
	Proof of Theorem 1
	Proof of Theorem 2
	Algorithm
	Experimental Details
	Exploratory Data Analysis
	State-Action Distribution
	State-Reward Distribution
	Total Variational Distance between Estimated Behavior Policy and Offline Dataset

