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ABSTRACT

Deep learning models have revolutionized various fields, from image recognition
to natural language processing, by achieving unprecedented levels of accuracy.
However, their increasing energy consumption has raised concerns about their en-
vironmental impact, disadvantaging smaller entities in research and exacerbating
global energy consumption. In this paper, we explore the trade-off between model
accuracy and electricity consumption, proposing a metric that penalizes large con-
sumption of electricity. We conduct a comprehensive study on the electricity con-
sumption of various deep learning models across different GPUs, presenting a de-
tailed analysis of their accuracy-efficiency trade-offs. By evaluating accuracy per
unit of electricity consumed, we demonstrate how smaller, more energy-efficient
models can significantly expedite research while mitigating environmental con-
cerns. Our results highlight the potential for a more sustainable approach to deep
learning, emphasizing the importance of optimizing models for efficiency. This
research also contributes to a more equitable research landscape, where smaller
entities can compete effectively with larger counterparts. This advocates for the
adoption of efficient deep learning practices to reduce electricity consumption,
safeguarding the environment for future generations whilst also helping ensure a
fairer competitive landscape.

1 INTRODUCTION

Deep learning has emerged as a powerful technology, achieving remarkable breakthroughs across
various domains. From image recognition and natural language processing to autonomous driving
and healthcare diagnostics, deep learning models have redefined the boundaries of what machines
can accomplish. The stunning advances in accuracy have transformed industries, offering new solu-
tions to long-standing problems.

However, these strides in deep learning come at a significant cost, both in terms of energy consump-
tion Desislavov et al. (2021) and environmental impact Selvan et al. (2022). As models grow larger
and more complex, they demand increasingly substantial computational resources. This insatiable
appetite for electricity not only drives up operational costs but also has alarming implications for the
environment. The environmental footprint of training large-scale deep learning models is substantial
Anthony et al. (2020); Strubell et al. (2019), contributing to growing concerns about climate change
and resource depletion.

In a landscape where cutting-edge deep learning research often necessitates access to colossal com-
putational infrastructure, small companies and academic institutions find themselves at a disad-
vantage. Competing with tech giants and well-funded organizations on the basis of computational
resources alone is an unattainable goal for many. This stark inequality not only hampers innovation
but also perpetuates a power imbalance in the field, potentially biasing progress toward the economic
interests of these dominant companies.

The current environmental situation is dire, with climate change accelerating, species going extinct
at alarming rates, and pollution threatening human health around the globe. Meanwhile, the growth
of deep learning and AI is exacerbating these environmental crises. Training complex AI models
requires vast amounts of data and computing power, consuming massive amounts of electricity. For
example, training a single large language model can emit as much carbon as a car over its lifetime
Bannour et al. (2021). As these models get even bigger, their energy consumption and carbon
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Figure 1: Bridging the Energy Divide: Deep Learning Models vs. Everyday Power Hogs. For easy
comparison, we list the amount of electricity consumed per month by an appliance or by the average
household in the UK.

emissions skyrocket. Take for example, a Boeing 747 flying from Heathrow to Edinburgh, a distance
of 530 kilometers, emits approximately 400 tonnes of CO2 emissions while training the GPT model
in one of the most carbon-intensive areas results in emissions of approximately 200 tonnes of CO2
Khowaja et al. (2023). In terms of electricity consumption, the OPT-175B Meta model consumes
a staggering 356,000 kWh of electricity during training and the GPT-3-175B model developed by
OpenAI consumes an astonishing 1,287,000 kWh of electricity during its training process Khowaja
et al. (2023). For reference, a hypermarket in the UK (average area of 6262 square metres) uses
2,523,586 kWh electricity in a year Kolokotroni et al. (2019).

This is unsustainable at a time when we urgently need to cut emissions and transition to clean energy.
While AI and deep learning offer many benefits, their development must become far more energy-
efficient. Researchers must prioritize creating more efficient methods and hardware so that AI’s
growth does not continue worsening environmental degradation. With climate change accelerating,
we need to rein in AI’s energy and data appetites before it’s too late.

To address this issue, this paper takes a critical step towards achieving a more balanced and sustain-
able approach to deep learning research. We investigate the trade-off between model accuracy and
electricity consumption, introducing a metric that levels the playing field for all participants in the
deep learning arena. We take image classification as the main task to study this trade-off, considering
models from VGG16 Simonyan & Zisserman (2014b) to the latest transformer models Dosovitskiy
et al. (2020); Touvron et al. (2021); Liu et al. (2021), including self-supervised He et al. (2022);
Radford et al. (2021) learning models. Additionally, we extend our analysis to image segmentation
and video action recognition, taking into account not only the cost of training the models themselves
but also the pre-training costs.

By evaluating accuracy per unit of electricity consumed, we also empower smaller entities, including
universities and startups, to compete effectively with industry leaders. Furthermore, we advocate for
the adoption of energy-efficient model architectures, which not only reduce electricity consumption
but also expedite research, enhancing overall efficiency. In Figure 1, we look at some deep learning
models and their cost in comparison to a real-life estimate using similar electricity. We compare
a few deep learning models with day-to-day appliances and for the larger models estimate it with
respect to the electricity consumption of an entire household BritishGas (2023).

This paper presents an in-depth analysis of deep learning model efficiency and its implications for
research, industry, and the environment. It emphasizes the need for a fundamental shift in the way
we measure and optimize deep learning models, highlighting the importance of sustainability in the
era of AI.
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2 RELATED WORK

2.1 WORKS ABOUT EFFICIENCY

Improving the efficiency of neural networks has become an important area of research in deep learn-
ing. As neural networks have grown larger in size and complexity, their computational costs for
training and inference have also increased. This has led to novel techniques that optimize neural
network efficiency without significantly sacrificing accuracy.

One approach is pruning Blalock et al. (2020), which removes redundant or non-critical connections
in a trained neural network. Studies have shown large parts of neural networks can be pruned
with minimal impact on performance. This leads to smaller, faster models. Another technique is
quantization Weng (2021), which converts 32-bit floating point weights and activations to lower
precision representations like 8-bit integers. While quantization can lead to some loss in accuracy,
re-training the quantized model can help recover the lost accuracy.

Another family of methods is efficient neural architectures, such as depth-wise separable convolu-
tions used in Xception Chollet (2017) and MobileNets Howard et al. (2017), or using squeeze-and-
excitation Hu et al. (2018) blocks which require fewer computations. Knowledge distillation Hinton
et al. (2015) is another efficiency technique, where a small and fast student model is trained to mimic
a large teacher model, allowing the student to achieve comparable accuracy.

Architectures for video understanding face high computational costs due to complex operations han-
dling spatiotemporal information Tran et al. (2015); Carreira & Zisserman (2017b). Alternative ap-
proaches include 2D CNN-based models Simonyan & Zisserman (2014a), temporal shift modules
Lin et al. (2019), and decomposing spatiotemporal information into multiple subspaces Feichten-
hofer et al. (2019); Pan et al. (2021), focusing on more efficient architectures without consider-
ing input video characteristics. Certain action recognition methods attain efficiency by selectively
choosing a subset of frames from an input video for prediction, by utilizing either a lightweight net-
work Korbar et al. (2019); Gowda et al. (2021) or multiple reinforcement learning agents Wu et al.
(2019; 2020) to determine the frames to be passed into the full backbone models.

Defining efficiency in neural networks is nuanced, as there are multiple cost indicators that can
be considered, such as FLOPs, inference time, training time, and memory usage Dehghani et al.
(2021). Improvements in one dimension, such as FLOPs reduction, do not necessarily translate to
better efficiency in other dimensions like training time or memory usage. As such, it is important to
consider the specific goals and hardware constraints when evaluating and comparing the efficiency
of neural network models.

2.2 ENVIRONMENTAL IMPACT

Research on the environmental impact of deep learning models is an exciting emerging field. Ligozat
et al. (2022) reviews existing tools for evaluating the environmental impacts of AI and presents a
framework for life cycle assessment (LCA) to comprehensively evaluate the direct environmental
impacts of an AI service. It highlights the need for energy-efficient algorithms and hardware to
reduce AI’s environmental footprint. However, this work only talks from a theoretical perspective
without diving deep into the actual numbers involved.

Large deep learning models can have high computational costs during training, leading to significant
carbon emissions and energy usage Strubell et al. (2019). For example, Strubell et al. (2019) esti-
mated that training a large transformer-based language model can emit as much as 626,000 pounds
of carbon dioxide, equivalent to nearly 5 times the lifetime emissions of an average American car.

Several studies have investigated methods to reduce the carbon footprint of deep learning. Schwartz
et al. (2020) examined techniques like early stopping and neural architecture search to optimize
and reduce training compute. Bender et al. (2021) proposed that model card documentation should
include details on compute infrastructure and carbon emissions.

There is also research quantifying the electricity usage and carbon emissions of various models.
Lacoste et al. (2019) measured the energy consumption of common AI tasks on hardware like CPUs
and GPUs. Patterson et al. (2021) estimated training the GPT-3 model emitted over 552 tonnes of

3



Under review as a conference paper at ICLR 2024

carbon dioxide. Both studies emphasize the importance of hardware efficiency and carbon account-
ing in deep learning.

Optimizing model architecture, training procedures, and hardware efficiency are important ways
researchers are working to limit the environmental impacts of deep learning. More transparency
around carbon emissions and energy use will also help advance sustainability efforts.

2.3 COMBATING THE IMPACT

Yarally et al. (2023) highlighted the importance of balancing accuracy and energy consumption in
deep learning. By analyzing layer-wise energy use, they showed model complexity reduction can
significantly lower training energy. This work advocates energy-efficient model design for sus-
tainability. Getzner et al. (2023) proposed an energy estimation pipeline to predict model energy
consumption without execution. However, GPU measurement was not covered and CPU-based es-
timation has limitations.

In contrast to prior studies, our research offers a comprehensive analysis spanning from foundational
deep learning models like VGG16 to the latest iterations of the vision transformer. Our evaluation
extends beyond image classification, encompassing tasks like action recognition and semantic seg-
mentation, thus providing a more extensive assessment. Recognizing the resource disparities be-
tween smaller university labs and companies in comparison to larger enterprises, we introduce a
novel metric that factors in a deep learning model’s power consumption alongside traditional per-
formance metrics like accuracy or mIoU. This metric aims to level the playing field, acknowledging
that individuals from smaller organizations may face hardware limitations that preclude them from
training exceptionally large models.

2.4 TRACKING POWER CONSUMPTION

A number of easily available open-source tools help with the goal of tracking emissions and elec-
tricity consumption. CodeCarbon Henderson et al. (2021) is an open-source Python package that
can estimate the CO2 emissions and electricity usage of running code, including ML training and
inference. It integrates with popular libraries like PyTorch and TensorFlow and can be used as a
decorator to seamlessly quantify emissions. Similarly, CarbonTracker Anthony et al. (2020) instru-
ments ML code to monitor energy consumption throughout experiments, giving insights into the
most carbon-intensive parts of model development. Other popular tools include TraCarbon Valeye
(2023), Eco2AI Budennyy et al. (2022) among others.

We use CodeCarbon for all our experiments and show linear dependency between data and number
of epochs/iterations in our experiments (please see Appendix). Based on this, authors would only
need to train on 1% of data and 1 epoch to scale up the estimated power consumption, making it an
easy and non-tedious job to do.

3 PROPOSED METRIC

Achieving high accuracy may require substantial computational resources, creating a trade-off be-
tween performance and environmental sustainability. In this context, there is a clear need for a com-
prehensive metric that not only evaluates the error rate but also accounts for power consumption.
Such a metric would encourage responsible resource usage, promote energy-efficient computing
practices, and foster fair comparisons between different systems or models.

We propose ‘GreenQuotientIndex (GQI)’ to help us with this. GQI is defined in Eq. 1. Where
‘accuracy’ refers to the accuracy rate (in range 0 to 1), ‘electricity’ is the total electricity con-
sumed in KwH and ‘α’ and ‘β’ are constants that help in scaling up the GQI for better understanding
of the values. We set ‘α’ and ‘β’ to 5 based on our experiments and discuss this in Section A.5 in
the Appendix. GQI effectively computes the cost of power per accuracy percentage point. Although
the most straightforward way to compute this would be a simple ratio of accuracy divided by power,
this has two issues. The first is that power consumption varies widely across models, making com-
parison difficult. Thus, we take the logarithm of the power consumption to make values more easily
comparable. The second issue is that not all accuracy points are created equal, and compute and
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accuracy follow some sort of Pareto principle 1. In general, it is easier to improve a method from 30
to 40% than it is to improve from 80 to 90%. In other words, it is much easier to correctly classify
some parts of the dataset than others. Therefore, the metric needs to take into account this difference
and reward those approaches that achieve very high accuracy. We do this by taking the power of the
accuracy.

GQI = β × accuracyα

log10(electricity)
(1)

Overall, GQI effectively penalizes high electricity consumption while simultaneously reinforcing the
importance of accuracy improvements, thereby encouraging innovation in more sustainable model
development without undermining the valuable contributions of cutting-edge technologies like vi-
sion transformers.

3.1 PROPERTIES OF THE METRIC

• Range: Range for denominator is from [0, inf], range for numerator is from [0, inf], there-
fore the range for GQI is [0, inf].

• Scaling Down: The metric scales down both accuracy rate (as it is a power function of
a number less than 1) and electricity consumption through logarithmic transformations,
ensuring that the values are on a consistent scale for meaningful comparison.

• Penalizes High Power Consumption: It penalizes models with high power consumption,
promoting energy-efficient and environmentally responsible computing practices.

• Promotes Accuracy: While penalizing power consumption, the metric still encourages
improvements in accuracy by considering the trade-off between error rate and energy use.

• Non-Negative: The metric is always non-negative, which is an important property for any
evaluation metric, as negative values wouldn’t make sense in this context.

• Comparability: It enables fair comparisons between different computational systems or
models, facilitating informed choices based on efficiency and sustainability.

• Sensitivity: The metric is sensitive to variations in both error rate and power consumption,
making it suitable for detecting small changes in system performance and power usage.

• Resource-Agnostic: The metric is versatile and can be applied to a wide range of compu-
tational systems or models, regardless of the specific technology or domain.

4 ENERGY CONSUMPTION ACROSS TASKS

We address a range of tasks encompassing image classification, semantic segmentation, and action
recognition in videos. Given that the majority of these tasks employ an ImageNet-pretrained back-
bone, we designate ImageNet as the dataset for image classification. Additionally, we extend our
analysis to encompass semantic segmentation and action recognition tasks, evaluating the overall
costs by factoring in both pretraining costs and the expenses associated with training the models.

5 EXPERIMENTAL ANALYSIS

5.1 IMAGE CLASSIFICATION

In our study, we employ an extensive array of models and methodologies to comprehensively eval-
uate performance across tasks. These include well-known architectural models like MobileNetv2
Sandler et al. (2018), MobileNetv3 Howard et al. (2019), ResNet He et al. (2016) series, VGG16
Simonyan & Zisserman (2014b), Inception v3 Szegedy et al. (2016), RegNetY Radosavovic et al.
(2020) and DenseNet Huang et al. (2017), as well as more recent advancements such as EfficientNet
v1 Tan & Le (2019), v2 Tan & Le (2021) and ViT (Vision Transformer) Dosovitskiy et al. (2020)
models.

1https://en.wikipedia.org/wiki/Pareto_principle
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Figure 2: Here, we see how the proposed GQI helps achieve a better trade-off between accuracy
and electricity used. In (a) we see models like Mobilenet, ResNet, EfficientNet etc much lower
in the graph due to their relatively lower accuracy in comparison to models like ViT-H. Using the
GQI, in (b) we see models like ViT-H and CLIP being penalized for the huge amounts of electricity
being consumed and models like EfficientNet and MobileNet scaling much higher in the graph. The
marker points for each model is scaled up to reflect the amount of electricity consumed (Zoom in
for better clarity).

We incorporate novel approaches like Swin Transformers Liu et al. (2021), DeIT (Data-efficient
Image Transformer) Touvron et al. (2021), DaViT (Dual Attention Vision Transformers) Ding et al.
(2022), and BEiT (BERT Pre-training of Image Transformers) Bao et al. (2021), EfficientFormer
Li et al. (2022) and ConvNeXt Liu et al. (2022), along with their adaptations to pretraining (Ima-
geNet21k Ridnik et al. (2021) or JFT Sun et al. (2017)). Notably, we also investigate CLIP (Con-
trastive Language–Image Pre-training) Radford et al. (2021) and MAE (Masked Autoencoders) He
et al. (2022) techniques to encompass a broad spectrum of cutting-edge methods for thorough eval-
uation.

We use 1 NVIDIA RTX A6000 48 GB GPU for all experiments in this scenario. We use 10 %
of the ImageNet Deng et al. (2009) dataset randomly sampled and use a fixed batch size of 32 for
all experiments. Image size is fixed to the size used in the original implementations. All other
hyperparameters are also fixed based on the source paper. We use the Pytorch Image Models (timm)
2 for all implementations.

In Figure 2 (a), we have plotted model accuracies on the x-axis against the logarithm of each model’s
electricity consumption on the y-axis. Lower values on the y-axis indicate greater efficiency. The
size of each marker in the plot is determined by the model’s electricity consumption, making models
with higher electricity usage appear significantly larger in scale. This visualization clearly illustrates
a pattern where higher accuracy is associated with models that consume more electricity. However,
as discussed earlier, this trend is not practical. On the other hand, Figure 2 (b) introduces a novel
metric known as the proposed GQI, which dramatically shifts this pattern. The GQI penalizes mod-
els that require a substantial amount of electricity to achieve only marginal gains in accuracy. Con-
sequently, in this graph, we observe that models such as MobileNet and EfficientNet perform much
better, highlighting the crucial significance of efficient training and model architecture. Given the
current environmental concerns and the challenges of competing with resource-rich companies, we
believe that adopting such a sustainability-focused metric is essential for responsible research ad-
vancement. For a more detailed breakdown of the data presented in Figure 2, including information
on energy consumption, accuracy, and the proposed GQI, please refer to the Appendix, Table A.1.

5.2 SEMANTIC SEGMENTATION

For semantic segmentation, we conduct experiments on a number of representative approaches.
Specifically, these include two classical methods PSPNet Zhao et al. (2017) (backbone ResNet101)
and DeepLabv3 Chen et al. (2017) (backbone ResNet101), the real-time segmentation model
BiseNet Yu et al. (2018) (backbone ResNet18), ViT-based architectures Segmenter Strudel et al.
(2021) (backbone ViT-L) and SETR Zheng et al. (2021) (backbone ViT-L), a universal segmenta-

2https://huggingface.co/timm
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Train Test
Dataset Models GFLOPs Parameters Electricity mIoU GQI Electricity

Cityscapes

PSPNet 256G 65.6M 67.9001 80.2 0.906 0.019259
DeepLabv3 348G 84.7M 79.5025 81.3 0.935 0.031512

BiSeNet 14.8G 13.3M 27.0179 77.7 0.989 0.004970
Segmenter 400G 334M 1243.6126 81.3 0.574 0.074713

SETR 417G 310M 1243.4491 81.6 0.585 0.073880
Mask2Former 90G 63M 48.5331 82.2 1.113 0.005852

ADE20K BEiT 605G 162M 1562.5031 45.6 0.031 0.053533
MAE 605G 162M 1902.9770 48.1 0.039 0.035615

Table 1: A comparison of electricity consumed, accuracy and the proposed metric over multiple
models. When we look at models using 2D CNN backbones, we see that they use much less elec-
tricity compared to ViT backbones. Surprisingly, they can still compete with and sometimes even
outperform ViT models. Our GQI analysis confirms this by ranking these methods much higher in
terms of efficiency and performance.

tion model Mask2Former Cheng et al. (2022) (backbone ResNet50), and two self-supervised learn-
ing models BEiT Bao et al. (2021) and MAE He et al. (2022) (both using ViT-B backbones).

We run all experiments for 2k iterations on 4 NVIDIA V100 32GB GPUs with batch size 8. All
implementations are based on the opensource toolbox MMsegmentation 3 and two widely used
segmentation datasets, Cityscapes Cordts et al. (2016) and ADE20K Zhou et al. (2017). FLOPS are
estimated using an input size of 3× 512× 512.

In Table 5.2, we present a comparative analysis of power efficiency among selected model variants
for segmentation. Examining models with 2D CNN backbones, we find that they consume far less
electricity than ViT backbones, yet they can still rival or even surpass ViT models in performance.
Our GQI analysis underscores this by giving these methods a significantly higher ranking.

5.3 ACTION RECOGNITION

In this section, we perform experiments to evaluate the performance in the video action recognition
task. Our evaluation encompasses various models, including the TimeSformer Bertasius et al. (2021)
model based on the ViT architecture, classical CNN-based models like MoViNet Kondratyuk et al.
(2021), I3D Carreira & Zisserman (2017a), TSM Lin et al. (2019), and TRN Zhou et al. (2018), as
well as the UniFormerV2 Li et al. (2023) model, which combines the advantages of ViTs and CNNs.

All the experiments in this task were carried out using 2 NVIDIA RTX 3090 24GB GPUs. We
configured the batch size as 8, keeping all other hyperparameters and image sizes consistent with
those outlined in the source paper. We utilized the official implementations in this task. The experi-
ments were evaluated on two widely used datasets: Kinetics-400 Kay et al. (2017) and Something-
Something V2 Goyal et al. (2017).

In Table 5.3, we present a comparative analysis of power efficiency among selected model variants
in the context of action recognition. We compare the electricity consumed with the GQI. By using
the GQI, we manage to strike a more favorable balance between accuracy and electricity consump-
tion. For instance, in the context of the SSv2 dataset, which is characterized by significant temporal
classes, TSM emerges as the top-performing model, primarily because it consumes minimal elec-
tricity despite its lower accuracy compared to Uni v2 (CLIP). However, the scenario changes when
we consider the Kinetics dataset, where there is a more substantial gap in accuracy, leading to TSM
securing a lower ranking.

5.4 DATA VS POWER CONSUMPTION

One evident aspect of pre-training on extensive datasets is the significant electricity consumption it
entails. Nevertheless, in light of the concerns regarding the limited availability of public data (such
as the JFT dataset or the dataset used by CLIP), the lack of access to the necessary hardware for

3https://github.com/open-mmlab/mmsegmentation
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Dataset Timesformer Uni V2 (IN21K) Uni V2 (CLIP) MoviNet I3D TSM TRN
GFlops 590G 3600G 3600G 2.71G 65G 65G 42.94G
Params 121.4M 163.0M 163.0M 3.1M 12.1M 24.3M 26.64M

SSv2

Train Ele 1328.0169 1421.4425 7614.0746 303.3792 118.4572 107.3610 100.5043
Acc 59.5 67.5 69.5 61.3 49.6 63.4 47.65

Test Ele 0.2245 0.2899 0.2899 1.9653 1.9604 0.5178 0.2569
GQI 0.119 0.222 0.209 0.174 0.072 0.252 0.061

K400

Train Ele 1337.1037 1466.8697 7632.2455 421.3966 136.6454 124.6118 —
Acc 78.0 83.4 84.4 65.8 73.8 74.1 —

Test Ele 0.1790 0.2312 0.2312 1.5673 1.5634 0.4128 —
GQI 0.462 0.637 0.552 0.235 0.513 0.533 —

Table 2: A comparison of electricity consumption, accuracy, and the proposed metric across multiple
models in the action recognition task on the Something-something v2 dataset and the Kinetics-400
dataset. Timesformer corresponds to the divided space-time attention and Uni V2 (IM21k) uses a
ViT-B pre-trained on IM21k and similary Uni V2 (CLIP) corresponds to the pre-trained CLIP model.
‘Train Ele’ and ‘Test Ele’ corresponds to the electricity consumed at train and test time respectively.
Using GQI we achieve a better trade-off between accuracy and electricity consumed.

Figure 3: Comparing the effect of pre-training on Swin and ViT in terms of accuracy and electricity
consumption.

pretraining on these datasets, and the environmental repercussions of such pre-training endeavors,
we raise the fundamental question: is large-scale pre-training truly justifiable?

To address this query, we scrutinize the relative enhancements observed in models like Swin (trained
on Im21k) and ViT (trained on JFT). In our exploration, as detailed in Appendix A.4.2, we identify
a linear correlation between the volume of data and the projected electricity consumption for pre-
training on these datasets. Our investigation delves into the performance shifts attributed to pre-
training, as illustrated in Figure 3.

For instance, ViT-B exhibits a notable 6% performance enhancement compared to training from
scratch, while requiring significantly fewer training epochs. However, it is important to note that
achieving this 6% improvement consumes ten times the electricity as training from scratch. This
cost-benefit analysis holds more weight for larger ViT models, which tend to exhibit underper-
formance when trained from scratch. While large-scale pre-training undeniably offers advantages
across multiple tasks, our primary focus here pertains to image classification. Nonetheless, the
crux of our inquiry is whether the electricity expended in this pursuit is commensurate with the
gains achieved and if improved accuracies using publically unavailable datasets is fair for compar-
ing against.
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Figure 4: Comparing the cost of self-supervised pre-training and then fine-tuning along with in-
ference of BEiT and MAE in terms of electricity consumption. The inference cost is so low in
comparison that it is not even visible in the graph.

5.5 WHY IS SELF-SUPERVISED LEARNING USEFUL?

Self-supervised learning has been a major breakthrough in research because it empowers models to
learn directly from vast amounts of unlabeled data, significantly reducing the dependency on expen-
sive and time-consuming human annotation, and thereby accelerating progress in various domains.
The representations learned through self-supervised learning can be leveraged across multiple down-
stream tasks, providing a versatile foundation that enables improved performance, transferability,
and efficiency in various domains.

In our experiments, we explore two self-supervised methods, namely BEiT and MAE. Although self-
supervised methods can be resource-intensive during training, as previously discussed in the context
of large-scale pre-training, they offer the advantage of direct applicability to multiple downstream
tasks. In our experiments, we specifically focus on image classification and semantic segmentation,
however, MAE also reports on object detection.

In Figure 4, it’s clear that self-supervised pre-training contributes to over 90% of the total training
cost. This emphasizes the efficiency of fine-tuning these methods for various downstream tasks or
datasets, highlighting the significant advantages of self-supervised learning in real-world applica-
tions. It suggests that self-supervised learning yields robust and transferable feature representations,
making it highly valuable.

6 CONCLUSION

In conclusion, our study delves comprehensively into the critical intersection of deep learning model
performance and energy consumption. While deep learning has unquestionably transformed numer-
ous fields with its unparalleled accuracy, the escalating energy requirements of these models have
given rise to environmental concerns and presented challenges for smaller research entities. To
address this issue of escalating electricity consumption by models, we propose an innovative met-
ric that places significant emphasis on accuracy per unit of electricity consumed. This metric not
only levels the competitive field but also empowers smaller university labs and companies to com-
pete effectively against their larger counterparts. Through an extensive examination of various deep
learning models across different tasks, we have uncovered invaluable insights into the trade-offs
between accuracy and efficiency. Our findings highlight the potential for more sustainable deep
learning practices, where smaller, energy-efficient models can expedite research efforts while mini-
mizing environmental impact. This research not only fosters a fairer research environment but also
advocates for the adoption of efficient deep learning practices to reduce electricity consumption,
ensuring a greener future for generations to come.
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A APPENDIX

A.1 IMAGE CLASSIFICATION RESULTS

A detailed analysis of the projected numbers can be found in Table A.1. In the main paper, we show
some of these results in Figure 2 for better visualization. However, we report the projected electricity
consumption along with the GQI for various methods and their variants. As expected, methods that
perform large-scale pre-training or self-supervised learning tend to use the most electricity.

A.2 HOW MUCH DOES HARDWARE AFFECT ENERGY CONSUMPTION?

In evaluating the performance of various deep learning models on GPUs with different memory ca-
pacities, including the A100 with 40GB, Tesla T4 with 16GB, and A6000 with 48GB, an intriguing
observation emerges. Despite the substantial variance in GPU memory, the utilization of a logarith-
mic scale, such as log(electricity) as a performance metric, effectively mitigates the discrepancies
in raw performance metrics. This scaling allows for a fairer comparison, as it emphasizes relative
improvements rather than absolute values. Consequently, even though the GPUs exhibit significant
differences in memory size and hardware capabilities, the transformed data reveals that the models’
performances remain remarkably consistent. This underscores the robustness of the chosen met-
ric, which accommodates varying hardware configurations and ensures a reliable evaluation of deep
learning model performance across diverse computing environments. This can be seen in Figure 6.
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Train Test
Models GFLOPs Parameters Electricity Accuracy GQI Electricity

MobileNetv2 0.3 3.5M 16.152 72.5 0.829 0.001622
MobileNet v3 0.2 5.5M 48.75 74 0.658 0.001427

ResNet18 1.8 11.7M 24.4134 69.7 0.593 0.005862
ResNet50 4.1 25.6M 31.506 76.1 0.852 0.009672

ResNet101 7.8 44.5M 41.694 77.4 0.858 0.012668
ResNet152 11.5 60.2M 55.6464 78.3 0.844 0.015516

VGG16 15.5 138.4M 50.0475 71.6 0.554 0.012264
VGG19 19.6 143.7M 55.9575 72.4 0.57 0.013352

DenseNet121 2.8 8.0M 55.91 74.4 0.653 0.010241
DenseNet161 7.7 28.7M 98.01 77.1 0.685 0.016241
Inception v3 5.7 27.2M 71.698 79.8 0.873 0.013816

EfficientNet B0 0.4 5.3M 222.894 77.1 0.581 0.011948
Efficient Net B3 1.8 12.2M 376.432 81.6 0.703 0.017964
EfficientNet B7 37.8 66.3M 1031.695 84.3 0.707 0.03876
EfficientNetv2 S 8.4 21.5M 177.06 83.9 0.925 0.010084
EfficientNetv2 M 24.6 54.1M 275.73 85.1 0.915 0.013908
EfficientNetv2 L 56.1 118.5M 467.49 85.7 0.866 0.021164
RegNetY-16GF 15.9 84.0M 136.05 80.4 0.788 0.018048
ViT-B-scratch 17.6 86.6M 389.76 77.9 0.554 0.020572
ViT-L-scratch 61.5 304.3M 1177.62 76.5 0.427 0.057576
ViT-B-Im21k 17.6 86.6M 1304.656 83.9 0.668 0.020572
ViT-L-Im21k 61.5 304.3M 3941.887 85.1 0.621 0.057576
ViT-H-Im21k 167.3 632.0M 10188.512 85.1 0.557 0.155936

ViT-B-JFT 17.6 86.6M 2139.002 84.1 0.632 0.020572
ViT-L-JFT 61.5 304.3M 12925.5576 87.1 0.61 0.057576
ViT-H-JFT 167.3 632.0M 33337.3983 88 0.584 0.155936

Swin-T 4.5 28.3M 224.01 81.3 0.756 0.013468
Swin-S 8.7 49.6M 357.318 83 0.772 0.019724
Swin-B 15.4 87.8M 516.69 83.5 0.749 0.027082

Swin-B+PT on Im21k 15.4 87.8M 1769.1457 85.2 0.692 0.027082
Swin-v2-T 5.9 28.4M 307.044 82.8 0.783 0.020242
Swin-v2-S 11.5 49.7M 493.512 84.1 0.782 0.029232
Swin-v2-B 20.3 87.9M 789.69 84.6 0.748 0.042056

Swin-v2-B+PT on Im21k 20.3 87.9M 2703.898 87.1 0.731 0.042056
DeIT-T-300Ep 1.3 6.0M 244.194 74.5 0.481 0.004764
DeIT-S-300Ep 4.6 22.0M 315.18 81.2 0.707 0.012444
DeIT-B-300Ep 17.6 87.0M 527.436 83.4 0.742 0.020772
DeIT-T-1000Ep 1.3 6.0M 496.53 76.6 0.49 0.004764
DeIT-S-1000Ep 4.6 22.0M 733.15 82.6 0.671 0.012444
DeIT-B-1000Ep 17.6 87.0M 1440.67 84.2 0.67 0.020772

ViT-B-MAE 17.6 86.6M 1824.06 83.6 0.627 0.020572
ViT-L-MAE 61.6 304.3M 2659.35 85.9 0.683 0.057576
ViT-H-MAE 167.3 632.0M 6801.35 86.9 0.647 0.155936

DaViT-T 4.5G 28.3M 264.21 82.8 0.804 0.015764
DaViT-S 8.8G 49.7M 410.112 84.2 0.81 0.021372
DaViT-B 15.5G 87.9M 577.71 84.6 0.785 0.028792
Clip-B/16 17.5G 83.0M 7697.28 86.6 0.627 0.029212
Clip-L/14 80.7G 506.0M 20916.06 88 0.611 0.072422
BEiT-L 61.7G 307.0M 4025.685 85.2 0.623 0.072732

BEiTv2-B 17.6G 86.0M 2668.149 85.5 0.667 0.026452
BEiTv2-L 61.7G 307.0M 8135.588 87.3 0.649 0.071682

EfficientFormer-L1 1.3G 12.3M 277.26 79.2 0.638 0.009224
EfficientFormer-L3 3.9G 31.3M 356.01 82.4 0.745 0.013852
EfficientFormer-L7 9.8G 82.1M 545.274 83.3 0.733 0.022664

EfficientFormer-v2-s0 0.4G 3.6M 282.546 75.7 0.508 0.011532
EfficientFormer-v2-s1 0.7G 6.1M 308.352 79 0.619 0.012544
EfficientFormer-v2-s2 1.3G 12.6M 369.15 81.6 0.705 0.017844
EfficientFormer-v2-l 2.6G 26.1M 479.184 83.3 0.749 0.024532

ConvNEXT-T 4.5G 29M 308.508 82.1 0.75 0.007552
ConvNeXt-S 8.7G 50M 500.022 83.1 0.735 0.020024
ConvNeXt-B 15.4G 89M 714.384 83.8 0.725 0.027264
ConvNeXt-L 34.4G 198M 1239.204 84.3 0.689 0.045711

ConvNEXT-T-Im22PT 4.5G 29M 1056.331 82.9 0.648 0.007552
ConvNeXt-S-Im22PT 8.7G 50M 1712.0753 84.6 0.671 0.020024
ConvNeXt-B-Im22PT 15.4G 89M 2446.0508 85.8 0.687 0.027264
ConvNeXt-L-Im22PT 34.4G 198M 4243.0345 86.6 0.672 0.045711

ConvNeXt-XL-Im22PT 60.9G 350M 6300.9886 87 0.656 0.073708

Table 3: A comparison of electricity consumed, accuracy and the proposed metric over multiple
models. All reported results are on ImageNet1K Deng et al. (2009).
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Figure 6: Model Performance Across Batch Sizes: The Need for Fixed Batch Sizes is Necessary for
Fair Comparison.

A.3 HOW DO HYPERPARAMETERS AFFECT ENERGY CONSUMPTION?

To assess the electricity consumption of popular deep learning models, namely MobileNet v2, Effi-
cientNet v2-s, Swin-T, and Efficientformer-L3, we conducted a comprehensive analysis by varying
the batch sizes during testing. Our findings highlight an expected trend: as batch sizes decrease,
electricity consumption increases. This phenomenon is rooted in the intricate dynamics of deep
learning processes. Smaller batch sizes lead to reduced parallelization, resulting in longer training
times and, consequently, higher electricity consumption. Notably, when examining these differences
in electricity consumption on a logarithmic scale, the variations appear relatively modest. Neverthe-
less, it is imperative to emphasize that, for fair model comparisons using our metric, a fixed batch
size must be maintained. This standardization is essential because our metric’s basis is tied to elec-
tricity consumption, and any alteration in batch size could skew the results. In summary, while batch
size alterations do influence electricity consumption, our metric’s integrity hinges on maintaining a
consistent batch size for equitable model evaluations. This is shown in Figure 6.

A.4 HOW TO SCALE UP FOR QUICKER REPORTING OF RESULTS?

One challenge associated with this metric is its susceptibility to hardware variations, where the
efficiency may vary depending on the hardware used (for instance, TPUs might offer better perfor-
mance, or larger GPUs might allow for larger batch sizes). Consequently, if we were to assess our
models against this metric, we would need to re-run them multiple times using different hardware
configurations. However, our research demonstrates that this dependency is actually linear with re-
spect to the number of epochs and the percentage of data utilized. This means that we can initially
run each model for just one or five epochs on a small subset of data, such as 1% or 10%, and then
easily extrapolate the results to the entire dataset and the specified number of epochs mentioned in
each research paper.

A.4.1 DEPENDENCY OF ENERGY CONSUMPTION WITH NUMBER OF EPOCHS

We run MobileNet v2, ResNet50, EfficientNet B3, EfficientNetv2 M, ViT-B and EfficientFormer-L3
for a total of 20 epochs and calculate electricity consumption at each epoch. We plot this in Figure 7.
We see an approximately linear relationship and hence can easily scale up to any number of epochs.
Further, since we use log scale in the metric, any small variations are further diminished. We use
1% of the overall training data of ImageNet1k.

A.4.2 DEPENDENCY OF ENERGY CONSUMPTION WITH PERCENTAGE OF DATA

We run MobileNet v2, ResNet50, EfficientNet B3, EfficientNetv2 M, ViT-B and EfficientFormer-L3
for a total of 20 epochs and calculate electricity consumption at each epoch, but in this case we run
them on varying amounts of data starting from 1% then 10%, 20%, 50% and finally 100% of the
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Figure 7: Electricity Consumed Across Epochs: Linear Relationship Observed.

Figure 8: Electricity Consumed Across Different Percentages of Data: Linear Relationship Ob-
served.

data. We plot this in Figure 8. We see an approximately linear relationship and hence can easily
scale up to 100% of the data with just 1% of the data. Further, since we use log scale in the metric,
any small variations are further diminished.

17



Under review as a conference paper at ICLR 2024

A.4.3 WHY APPROXIMATIONS WORK?

The practice of approximating electricity consumption values by running models on a fraction of
the dataset and for a fraction of the total epochs is efficient and viable due to several key factors.
Firstly, the observed approximately linear relationships between energy consumption and both the
number of epochs and the percentage of data used allow for straightforward extrapolation, enabling
reliable estimates. Additionally, the use of a logarithmic scale in the energy consumption metric
mitigates the impact of minor variations, ensuring the robustness of these approximations. Moreover,
this approach significantly reduces computational load and time requirements, making it resource-
efficient, especially when dealing with extensive datasets or rapid model configuration assessments.
Lastly, the scalability of these approximations facilitates their application in scenarios involving
larger datasets or extended training periods, further enhancing their practical utility.

A.5 HYPERPARAMETERS OF THE METRIC

In the context of image classification, we established fixed values of α and β as 5. What we observed
was that, before setting α to 5, MobileNet v2 consistently achieved the highest GQI value, regardless
of more recent research findings. This was primarily attributed to MobileNet v2’s notably low power
consumption. However, upon setting α to 5, we found that EfficientNet v2 surpassed all others in
terms of GQI, while methods such as Swin and DeiT were competitive at a similar level.

When it came to setting β, our focus shifted to examining the GQI values when β was set to 1.
Within this range, GQI values fluctuated between 0.111 and 0.185, presenting challenges in terms of
interpretability. Consequently, we decided to increase the value of β to 5. This adjustment led to a
narrower GQI range, now spanning from 0.555 to 0.925, significantly enhancing the interpretability
of the results.

We ultimately opted to maintain these α and β values consistently for both action recognition and
semantic segmentation tasks, and our reported results in the tables reflect this choice.
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