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Abstract

Score-based (denoising diffusion) generative models have recently gained a lot of
success in generating realistic and diverse data. These approaches define a forward
diffusion process for transforming data to noise and generate data by reversing it.
Unfortunately, current score-based models generate data very slowly due to the
sheer number of score network evaluations required by numerical SDE solvers.
In this work, we aim to accelerate this process by devising a more efficient SDE
solver. Our solver requires only two score function evaluations per step, rarely
rejects samples, and leads to high-quality samples. Our approach generates data
2 to 10 times faster than EM while achieving better or equal sample quality. For
high-resolution images, our method leads to significantly higher quality samples
than all other methods tested. Our SDE solver has the benefit of requiring no step
size tuning.

1 Introduction

Score-based generative models [Song and Ermon, 2019, Ho et al., 2020, Jolicoeur-Martineau et al.,
2020, Piché-Taillefer, 2021] have been very successful at generating data from various modali-
ties[Song et al., 2020a, Chen et al., 2020, Kong et al., 2020, Niu et al., 2020]. These models generally
achieve superior performances in terms of quality and diversity than the historically dominant Gener-
ative Adversarial Networks (GANs) [Goodfellow et al., 2014]. Although very powerful, score-based
models generate data through an undesirably long iterative process; meanwhile, other state-of-the-art
methods such as GANs generate data from a single forward pass of a neural network. Increasing the
speed of the generative process is thus an active area of research.

Existing methods for acceleration Chen et al. [2020], San-Roman et al. [2021], Song et al. [2020a,b]
often require considerable step size/schedule tuning and do not always work for both Variance
Exploding (VE) and Variance Preserving (VP) processes (the two most popular diffusion processes
for score-based models). To improve speed and remove the need for step size/schedule tuning, we
propose to solve the reverse diffusion process using SDE solvers with adaptive step sizes.

† Equal contribution
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Figure 1: Comparison between our novel SDE solver at various values of error tolerance and Euler-
Maruyama for an equal computational budget. We measure speed through the Number of score
Function Evaluations (NFE) and the quality of the generated images through the Fréchet Inception
Distance (FID; lower is better). See Table 1-2 for more details.

It turns out that off-the-shelf SDE solvers are ill-suited for generative modeling and exhibit either (1)
divergence, (2) slower data generation than the baseline, or (3) significantly worse quality than the
baseline. This can be attributed to: (1) the extremely high-dimensionality; (2) the high compute of
evaluating the score function; (3) the low required precision of the solution because we are satisfied
as long as the error is not perceptible (e.g., one RGB increment on an image).

We devise our own SDE solver with these features in mind, resulting in an algorithm that can get
around the problems encountered by off-the-shelf solvers.

2 Background

2.1 Score-based modeling with SDEs

Let x(0) ∈ Rd be a sample from the data distribution pdata. The sample is gradually corrupted over
time through a Forward Diffusion Process (FDP), a common type of Stochastic Differential Equation
(SDE):

dx = f(x, t)dt+ g(t)dw, (1)

where f(x, t) : Rd × R→ Rd is the drift, g(t) : R→ R is the diffusion coefficient and w(t) is the
Wiener process indexed by t ∈ [0, 1]. Data points and their probability distribution evolve along
the trajectories {x(t)}1t=0 and {pt(x)}1t=0 respectively, with p0 ≡ pdata. The functions f and g are
chosen such that x(1) be approximately Gaussian and independent from x(0). Inference is achieved
by reversing this diffusion, drawing x(1) from its Gaussian distribution and solving the Reverse
Diffusion Process (RDP) equal to:

dx =
[
f(x, t)− g(t)2∇x log pt(x)

]
dt+ g(t)dw̄, (2)

where∇x log pt(x) is referred to as the score of the distribution at time t [Hyvärinen, 2005] and w̄(t)
is the Wiener process in which time flows backward [Anderson, 1982]. The RDP requires the score
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(or pt), which can be estimated by a neural network (referred to as the score network) by optimizing
the following objective:

L(θ) = Ex(t)∼p(x(t)|x(0)),x(0)∼pdata

[
λ(t)

2

∥∥sθ(x(t), t)−∇x(t) log pt(x(t)|x(0))
∥∥2
2

]
, (3)

where λ(t) : R→ R is chosen to be inversely proportional to E
[∥∥∇x(t) log pt(x(t)|x(0))

∥∥2
2

]
.

There are two primary choices for the FDP in the literature, which we discuss below.

2.2 Variance Exploding (VE) process

The Variance Exploding (VE) process consists in the following FDP:

dx =

√
d [σ2(t)]

dt
dw.

Its associated transition kernel is:

x(t)|x(0) ∼ N (x(0), [σ2(t)− σ2(0)]I) ≈ N (x(0), σ2(t)I).

Given a large enough σ2(1), x(1) is approximately distributed as N (0, σ2(1)I).

2.3 Variance Preserving (VP) process

The Variance Preserving (VP) process consists in the following FDP:

dx = −1

2
β(t)xdt+

√
β(t)dw.

Its associated transition kernel is:

x(t)|x(0) ∼ N (x(0) e−
1
2

∫ t
0
β(s)ds, (1− e−

∫ t
0
β(s)ds) I).

x(1) is approximately distributed as N (0, I) and does not depend on x(0).

2.4 Solving the Reverse Diffusion Process (RDP)

There are many ways to solve the RDP; the most basic one being Euler-Maruyama (EM) [Kloeden
and Platen, 1992], the SDE analog to Euler’s method for solving ODEs. Song et al. [2020a] also
proposed Reverse-Diffusion, which consists in ancestral sampling [Ho et al., 2020] with the same
discretization used in the FDP. With the Reverse-Diffusion, [Song et al., 2020a] obtained poor results
unless applying an additional Langevin dynamics step after each Reversion-Diffusion step; this
approach is only heuristically motivated.

3 Efficient Method for Solving Reverse Diffusion Processes

3.1 Integration method

To dynamically adjust the step size over time, thereby gaining speed over a fixed-step size algorithm,
two integration methods are employed. A lower-order (x′) method is used conjointly with a higher-
order (x′′) one. The local error E(x′,x′′) = x′ − x′′ is used to determine how stable the lower-order
method is at the current step size; the closer to zero, the more appropriate the step size is. From this
information, the step size can be dynamically adjusted and x′ can be accept or rejected.

While higher-order solvers may achieve lower discretization errors, they require more function
evaluations, and the improved precision might not be worth the increased computation cost [Lehn
et al., 2002, Lamba, 2003]. For this reason, we use EM (order 1) and stochastic Improved Euler
[Roberts, 2012] (order 2) for the lower and higher integration methods . This approach only requires
two score function evaluations; however, it leads to images of poor quality. Thankfully, by using
extrapolation (accepting x′′ instead of x′ as our proposal), we improve over the baseline approach.
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3.2 Tolerance

In ODE/SDE solvers, the local error is divided by a tolerance term. We calculate the mixed tolerance
through the maximum of the current and previous sample:

δ(x′,x′prev) = max(εabs, εrelmax(|x′|, |x′prev|)). (4)
For image generation, we can set εabs a priori. During training, images are represented as floating-
point tensors with range [ymin, ymax], but when evaluated, they are converted to 8-bit color images:
scaled to [0, 255] and converted to the nearest integer. This means that an absolute tolerance εabs =
ymax−ymin

256 corresponds to tolerating local errors of at most one color (e.g., x′ij with Red=5 and
x′′ij with Red=6 is accepted, while Red=7 is not) channel-wise. One-color differences are not
perceptible and should not influence the metrics used for evaluating the generated images. To control
speed/quality, we vary εrel.

3.3 Norm of the scaled error

The scaled error (the error scaled by the mixed tolerance) is calculated as

Eq =

∥∥∥∥ x′ − x′′

δ(x′,x′prev)

∥∥∥∥
q

.

Many algorithms use q = ∞ [Lamba, 2003, Rackauckas and Nie, 2017a], where ||x||∞ =
max(x1, ...,xk) over all k elements of x. This is highly problematic for high-dimensional SDEs
such as those in image-space because a single channel of a single pixel (out of 65536 pixels for a
256× 256 color image) with a large local error will cause the step size to be reduced for all pixels.
To that effect, we instead use a scaled `2 norm (the `2 norm multiplied by

√
k).

3.4 Hyperparameters of the dynamic step size algorithm

Upon calculating the scaled error, we accept the proposal x′′ if Eq ≤ 1 and increment the time by h.
Whether or not it is accepted, we update the next step size h in the usual way:

h← min(hmax, θhE
−r
q ),

where hmax is the maximum step size, θ is the safety parameter, and r is an exponent-scaling term.
Although ODE theory tells which r is optimal, there is no such theory for SDEs [Rackauckas and
Nie, 2017a]. Following Rackauckas and Nie [2017a], we empirically testing values and found
r ∈ [0.8, 0.9] to work well (see Appendix E). We arbitrarily chose r = 0.9, θ = 0.9 , and hmax as
the largest step size possible, namely the remaining time t. We have now defined every aspect of
the algorithm needed to numerically solve the Equation (2) for images. The resulting algorithm is
described in Algorithm 1.

4 Experiments

We apply our method to pre-trained VP or VE models from Song et al. [2020a] on CIFAR-10
[Krizhevsky et al., 2009] (32x32) and higher-res (256x256) LSUN-Church [Yu et al., 2015], and
Flickr-Faces-HQ (FFHQ) [Karras et al., 2019]. We measure performance through the Fréchet
Inception Distance (FID) [Heusel et al., 2017] and the Inception Score (IS) [Salimans et al., 2016],
whereas low FID and high IS correspond to higher quality/diversity. We used ≤ 4 V100 GPUs to
run the experiments. Results are presented in Figure 1 (and Tables 1 and 2). Probability Flow [Song
et al., 2020a] solves an ODE instead of an SDE using Runge-Kutta 45 [Dormand and Prince, 1980]
and denoising diffusion implicit models (DDIM) [Song et al., 2020b] is only defined for VP models.

5 Conclusion

We built an SDE solver to generate images of comparable (or better) quality to Euler-Maruyama at a
much faster speed. Our approach makes image generation with score-based models more accessible
by shrinking the required computational budgets by a factor of 2 to 5×, and presenting a sensible
way of compromising quality for additional speed. Nevertheless, data generation remains slow (a few
minutes) compared to other generative models, which can generate data in a single forward pass of a
neural network.
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Appendices

A More details on the forward processes

A.1 Variance Exploding (VE) process

In practice, we let σ(t) = σmin

(
σmax

σmin

)t
, where σmin = 0.01 and σmax ≈ maxi

∑N
j=1 ||x(i) −

x(j)|| is the maximum Euclidean distance between two samples from the dataset {x(i)}Ni=1 [Song
and Ermon, 2020]. Using the maximum Euclidean distance ensures that x(1) does not depend on
x(0); thus, x(1) is approximately distributed as N (0, σ2(1)I).

A.2 Variance Preserving (VP) process

In practice, we let β(t) = βmin + t (βmax − βmin), where βmin = 0.1 and βmax = 20. Thus, x(1)
is approximately distributed as N (0, I) and does not depend on x(0).

B Algorithm

Algorithm 1 Dynamic step size extrapolation for solving Reverse Diffusion Processes

Require: sθ, εrel, εabs, hinit = 0.01, r = 0.9, θ = 0.9 . for images: εabs = ymax−ymin

256
t← 1
h← hinit
Initialize x
x′prev ← x
while t > 0 do

Draw z ∼ N (0, I)

x′ ← x− hf(x, t) + hg(t)2sθ(x, t) +
√
hg(t)z . Euler-Maruyama

x̃← x− hf(x′, t− h) + hg(t− h)2sθ(x′, t− h) +
√
hg(t− h)z

x′′ ← 1
2 (x
′ + x̃) . Improved Euler (SDE version)

δ ← max(εabs, εrelmax(|x′|, |x′prev|)) . Element-wise operations
E2 ← 1√

n
‖(x′ − x′′) /δ‖2

if E2 ≤ 1 then . Accept
x← x′′ . Extrapolation
t← t− h
x′prev ← x′

h← min(t, θhE−r2 ) . Dynamic step size update
return x
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C Tables of the results

Table 1: Number of score Function Evaluations (NFE) / Fréchet Inception Distance (FID) on CIFAR-
10 (32x32) from 50K samples

Method VP VP-deep VE VE-deep

Reverse-Diffusion & Langevin 1999 / 4.27 1999 / 4.69 1999 / 2.40 1999 / 2.21
Euler-Maruyama 1000 / 2.55 1000 / 2.49 1000 / 2.98 1000 / 3.14

DDIM 1000 / 2.86 1000 / 2.69 – –

Ours (εrel = 0.01) 329 / 2.70 330 / 2.56 738 / 2.91 736 / 3.06
Euler-Maruyama (same NFE) 329 / 10.28 330 / 10.00 738 / 2.99 736 / 3.17

DDIM (same NFE) 329 / 4.81 330 / 4.76 – –

Ours (εrel = 0.02) 274 / 2.74 274 / 2.60 490 / 2.87 488 / 2.99
Euler-Maruyama (same NFE) 274 / 14.18 274 / 13.67 490 / 3.05 488 / 3.21

DDIM (same NFE) 274 / 5.75 274 / 5.74 – –

Ours (εrel = 0.05) 179 / 2.59 180 / 2.44 271 / 3.23 270 / 3.40
Euler-Maruyama (same NFE) 179 / 25.49 180 / 25.05 271 / 3.48 270 / 3.76

DDIM (same NFE) 179 / 9.20 180 / 9.25 – –

Ours (εrel = 0.10) 147 / 2.95 151 / 2.73 170 / 8.85 170 / 10.15
Euler-Maruyama (same NFE) 147 / 31.38 151 / 31.93 170 / 5.12 170 / 5.56

DDIM (same NFE) 147 / 11.53 151 / 11.38 – –

Ours (εrel = 0.50) 49 / 72.29 48 / 82.42 52 / 266.75 50 / 307.32
Euler-Maruyama (same NFE) 49 / 92.99 48 / 95.77 52 / 169.32 50 / 271.27

DDIM (same NFE) 49 / 37.24 48 / 38.71 – –

Probability Flow (ODE) 142 / 3.11 145 / 2.86 183 / 7.64 181 / 5.53

Table 2: Number of score Function Evaluations (NFE) / Fréchet Inception Distance (FID) on LSUN-
Church (256x256) and FFHQ (256x256) from 5K samples

Method VE (Church) VE (FFHQ)

Reverse-Diffusion & Langevin 3999 / 29.14 3999 / 16.42

Euler-Maruyama 2000 / 42.11 2000 / 18.57

Ours (εrel = 0.01) 1104 / 25.67 1020 /15.68
Euler-Maruyama (same NFE) 1104 / 68.24 1020 / 20.45

Ours (εrel = 0.02) 1030 / 26.46 643 / 15.67
Euler-Maruyama (same NFE) 1030 / 73.47 643 / 44.42

Ours (εrel = 0.05) 648 / 28.47 336 / 18.07
Euler-Maruyama (same NFE) 648 / 145.96 336 / 114.23

Ours (εrel = 0.10) 201 / 45.92 198 / 24.02
Euler-Maruyama (same NFE) 201 / 417.77 198 / 284.61

Probability Flow (ODE) 434 / 214.47 369 / 135.50

D DifferentialEquations.jl

Here, we report the preliminary experiments we ran with the DifferentialEquations.jl Julia package
[Rackauckas and Nie, 2017b] before devising our own SDE solver. As can be seen, most methods
either did not converge (with warnings of "instability detected") or converged, but were much slower
than Euler-Maruyama. The only promising method was Lamba’s method [Lamba, 2003]. Note that
an algorithm has strong-order p when the local error from t to t+ h is O(hp+1)).
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Table 3: Short experiments with various SDE solvers from DifferentialEquations.jl on the VP model
with a small mini-batch.

Method Strong-Order Adaptive Speed

Euler-Maruyama (EM) 0.5 No Baseline speed
SOSRA [Rößler, 2010] 1.5 Yes 5.92 times slower
SRA3 [Rößler, 2010] 1.5 Yes 6.93 times slower

Lamba EM (default) [Lamba, 2003] 0.5 Yes Did not converge
Lamba EM (atol=1e-3) [Lamba, 2003] 0.5 Yes 2 times faster

Lamba EM (atol=1e-3, rtol=1e-3) [Lamba, 2003] 0.5 Yes 1.27 times faster
Euler-Heun 0.5 No 1.86 times slower

Lamba Euler-Heun [Lamba, 2003] 0.5 Yes 1.75 times faster
SOSRI [Rößler, 2010] 1.5 Yes 8.57 times slower

RKMil (at various tolerances) [Kloeden and Platen, 1992] 1.0 Yes Did not converge
ImplicitRKMil [Kloeden and Platen, 1992] 1.0 Yes Did not converge

ISSEM 0.5 Yes Did not converge

E Effects of modifying Algorithm 1

Table 4: Effect of different settings on the [Inception score (IS) / Fréchet Inception Distance (FID) /
Number of score Function Evaluations (NFE)] from 10k samples (with mini-batches of 1k samples)
with the VP - CIFAR10 model.

Change(s) in Algorithm 1 IS FID NFE

No change
[
q = 2, r = 0.9, δ(x′,x′prev)

]
9.38 4.70 3972

Small modifications

δ(x′) 9.26 4.69 4166
No Extrapolation (thus, using Euler–Maruyama) 9.58 11.73 3978
q =∞ 9.48 4.90 14462
r = .5 9.41 4.69 4104
r = .8 9.36 4.68 3938
r = 1 9.41 4.69 4048

Variations of Lamba [2003] Algorithm

r = 0.5, Lamba integration 7.80 52.98 1468
r = 0.5, Lamba integration, Extrapolation 7.32 64.65 1438
r = 0.5, Lamba integration, q =∞ 9.28 21.09 2360
r = 0.5, Lamba integration, q =∞, θ = 0.8 9.21 18.82 2346

As can be seen, most chosen settings lead to better results. However, r seems to have little impact on
the FID. Still, using r ∈ [0.8, 0.9] lead to a little bit less score function evaluations and sometimes
lead to lower FID.
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Table 5: Effect of different settings on the [Inception score (IS) / Fréchet Inception Distance (FID) /
Number of score Function Evaluations (NFE)] from 10k samples (with mini-batches of 1k samples)
with the VE - CIFAR10 model.

Change(s) in Algorithm 1 IS FID NFE

No change
[
q = 2, r = 0.9, δ(x′,x′prev)

]
9.39 4.89 8856

Small modifications

δ(x′) 9.39 4.99 17514
No Extrapolation (thus, using Euler–Maruyama) 9.58 6.57 8802
q =∞ 9.41 5.03 39500
r = 0.5 9.47 4.87 9594
r = 0.8 9.45 4.84 8952
r = 1 9.43 4.93 8784

Variations of Lamba [2003] Algorithm

r = 0.5, Lamba integration 9.08 18.28 2492
r = 0.5, Lamba integration, Extrapolation 3.70 169.78 2252
r = 0.5, Lamba integration, q =∞ 9.42 6.80 5886
r = 0.5, Lamba integration, q =∞, θ = 0.8 9.35 6.20 2970
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F Implementation Details

We started from the original code by Song et al. [2020a] but changed a few settings concerning the
SDE solving. This creates some very minor difference between their reported results and ours. For
the VP and VP-deep models, we obtained 2.55 and 2.49 instead of the original 2.55 and 2.41 for the
baseline method (EM). For the VE and VE-deep models, we obtained 2.40 and 2.21 instead of the
original 2.38 and 2.20 for the baseline method (Reverse-Diffusion with Langevin).

When solving the SDE, time followed the sequence t0 = 1, ti = ti−1 − 1−ε
N , where N = 1000 for

CIFAR-10, N = 2000 for LSUN, ε = 1e− 3 for VP models, and ε = 1e− 5 for VE models.

Meanwhile, the actual step size h used in the code for Euler-Maruyama (EM) was equal to 1
N . Thus,

there was a negligible difference between the step size used in the algorithm (h = 1
N ) and the actual

step size implied by t (h = 1−ε
N ). Note that this has little to no impact.

The bigger issue is at the last predictor step was going from t = ε to t = ε− 1
N < 0. Thus, t was

made negative. Furthermore the sample was denoised at t < 0 while assuming t = ε. There are two
ways to fix this issue: 1) take only a step from t = ε to t = 0 and do not denoise (since you cannot
denoise with the incorrect t or with t = 0), or 2) stop at t = ε and then denoise. Since denoising is
very helpful, we took approach 2; however, both approaches are sensible.

Finally, denoising was not implemented correctly before. Denoising was implemented as one
predictor step (Reverse-Diffusion or EM) without adding noise. This corresponds to:

x← x− h
[
f(x, t)− g(t)2∇x log pt(x)

]
.

At the last iteration, this incorrect denoising would be:

x← x +
d[σ2(t)]

dt

1

N
∇x log pt(x)

= x +
σmin
N

√
2 log

(
σmax
σmin

)
∇x log pt(x)

≈ x

for VE and

x← x +

√
βmin
N

∇x log pt(x)

≈ x

for VP.

Meanwhile, the correct way to denoise based on Tweedie formula [Efron, 2011] is:

x← x + Var[x(t)|x(0)]∇x log pt(x),

where Var[x(t)|x(0)] is the variance of the transition kernel: Var[x(t)|x(0)] = σmin = 0.01 for VE
and Var[x(t)|x(0)] = 1. This means that the correct Tweedie formula corresponds to

x← x + 0.012∇x log pt(x)

≈ x

for VE and
x← x +∇x log pt(x)

for VP.

As can be seen, denoising has a very small impact on VE so the difference between the correct and
incorrect denoising is minor. Meanwhile, for VP the incorrect denoising lead to a tiny change, while
the correct denoising lead to a large change. In practice, we observe that changing the denoising
method to the correct one does not significantly affect the FID with VE, but lowers down the FID
significantly with VP.
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G Inception Score on CIFAR-10

Table 6: Inception Score on CIFAR-10 (32x32) from 50K samples
Method VP VP-deep VE VE-deep

Reverse-Diffusion & Langevin 9.94 9.85 9.86 9.83

Euler-Maruyama 9.71 9.73 9.49 9.31
Ours (εrel = 0.01) 9.46 9.54 9.50 9.48
Ours (εrel = 0.02) 9.51 9.48 9.57 9.50
Ours (εrel = 0.05) 9.50 9.61 9.64 9.63
Ours (εrel = 0.10) 9.69 9.64 9.87 9.75

Probability Flow (ODE) 9.37 9.33 9.17 9.32

H Stability and Bias of the Numerical Scheme

The following constructions rely on the underlying assumption of the stochastic dynamics being
driven by a wiener process. More so, we also assume that the Brownian motion is time symmetrical.
Both assumptions are consistent and widely used in the literature; for example, see [Gardiner, 2009]
[Arnold, 1974].

The method described in Algorithm 1 gives us a significant speedup in terms of computing time and
actions. Albeit the speed up comes from a piece-wise step in the algorithm combining the traditional
Euler Maruyama (EM) with a form of adaptive step size predictor-corrector. Here we show that both
the stability and the convergence of the EM scheme are conserved by introducing the extra adaptive
stepsize of our new scheme. As a first step, we define the stability and bias in a Stochastic Differential
Equation (SDE) numerical solution.

We denote <(λ) as the real value of a complex-valued λ.

The linear test SDE is defined in the following way:

dxt = λxtdt+ σdwt (5)

with its numerical counterpart
yn+1 = < (hλ)yn + zn,

where the zn are random variables that do not depend on y0,y1......yn or λ and the EM scheme is

yn+1 = (1 + hλ)yn + zn.

A numerical scheme is asymptotically unbiased with step size h > 0 if, for a given linear SDE (5)
driven by a two-sided Wiener process, the distribution of the numerical solution yn converges as
n→∞ to the normal distribution with zero mean and variance σ2

2|λ| [Artemiev and Averina, 2011].
This stems from the fact that a solution of a linear SDE (5) is a Gaussian process whenever the initial
condition is Gaussian (or deterministic); thus, there are only two moments that control the bias in the
algorithm:

lim
n→∞

E [yn] = 0, lim
n→∞

E
[
y2
n

]
= − σ2

2 |λ|
.

A numerical scheme with step size h is numerically stable in mean if the numerical solution y
(h)
n

applied to a linear SDE satisfies
lim
n→∞

E [yn] = 0,

and is stable in mean square [Saito and Mitsui, 1996] if we have that

lim
h→0

(
lim
n→∞

E
[
|yn|

2
])

=
σ2

2<(λ)
.
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In what follows, we will trace the criteria for bias through our algorithm and show that it remains
unbiased. By construction, the first EM step remains unbiased, while for the RDP, we write down the
time reverse Wiener process as

ỹn+1 = (1 + λh) ỹn + z̃n

in the reverse time steps h i.e., t− nh, t− 2nh,

E
[
ỹn+1

]
= (1 + λ (t− h))E [ỹn]

= (1 + λ (t− h))E
[
(1 + λ (t− h)) ỹn−1

]
...

= (1 + λ (t− h))n+1 E [ỹ0]

= (1 + λ (t− h))n+1 E [y0] .

Thus, if
|1 + λ (t− h)| < 1,

then
lim
n→∞

E
[
y(h)
n

]
= 0.

In Algorithm 1, we are performing consecutive steps forward and backwards in time so t = 2h such
that

|1 + λh| < 1.

Thus, the scheme is both numerically stable and unbiased with respect to the mean.

Next, we focus on the numerical solution in mean square:

E
[∣∣ỹn+1

∣∣2] = |1 + λ (t− h)|2 E
[
|ỹn|

2
]
+ σ2h

= |1 + λ (t− h)|2
{
|1 + λ (t− h)|2 E

[∣∣ỹn−1∣∣2]+ σ2h
}
+ σ2h

...

= |1 + λ (t− h)|2(n+1) E [|y0|] +
|1 + λ (t− h)|2(n+1) − 1

2<λ+ |λ|2 (t− h)
σ2.

Under the same assumption of consecutive steps, we have that

E
[∣∣ỹn+1

∣∣2] = |1 + λh|2(n+1) E [|y0|] +
|1 + λh|2(n+1) − 1

2<(λ) + |λ|2 h
σ2,

lim
n→∞

E
[∣∣ỹn+1

∣∣2] = − σ2

2<(λ) + |λ|2 h
,

lim
h→0

(
lim
n→∞

E
[∣∣ỹn+1

∣∣2]) = − σ2

2<(λ)
.

Assuming the imaginary part of λ is null, we have that

lim
h→0

(
lim
n→∞

E
[∣∣ỹn+1

∣∣2]) = − σ2

2 |λ|
.

Thus, the numerical scheme is stable and unbiased in the mean square.

Following the two steps for computation of x′ and x̃, the step size decreases and does not change
size; thus, all the above statements hold, and the entire algorithm is stable and unbiased with respect
to both the mean and square mean.
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I Samples

(a) Dynamic-step Extrapolation (ε = 0.01) (b) Dynamic-step Extrapolation (ε = 0.02)

(c) Dynamic-step Extrapolation (ε = 0.05) (d) Dynamic-step Extrapolation (ε = 0.10)

Figure 2: VP - CIFAR10
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(a) Dynamic-step Extrapolation (ε = 0.01) (b) Dynamic-step Extrapolation (ε = 0.02)

(c) Dynamic-step Extrapolation (ε = 0.05) (d) Dynamic-step Extrapolation (ε = 0.10)

Figure 3: VP-deep - CIFAR10
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(a) Dynamic-step Extrapolation (ε = 0.01) (b) Dynamic-step Extrapolation (ε = 0.02)

(c) Dynamic-step Extrapolation (ε = 0.05) (d) Dynamic-step Extrapolation (ε = 0.10)

Figure 4: VE - CIFAR10
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(a) Dynamic-step Extrapolation (ε = 0.01) (b) Dynamic-step Extrapolation (ε = 0.02)

(c) Dynamic-step Extrapolation (ε = 0.05) (d) Dynamic-step Extrapolation (ε = 0.10)

Figure 5: VE-deep - CIFAR10
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(a) Dynamic-step Extrapolation (ε = 0.01) (b) Dynamic-step Extrapolation (ε = 0.02)

(c) Dynamic-step Extrapolation (ε = 0.05) (d) Dynamic-step Extrapolation (ε = 0.10)

Figure 6: VE - LSUN-Church (256x256)
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(a) Dynamic-step Extrapolation (ε = 0.01) (b) Dynamic-step Extrapolation (ε = 0.02)

(c) Dynamic-step Extrapolation (ε = 0.05) (d) Dynamic-step Extrapolation (ε = 0.10)

Figure 7: VE - FFHQ (256x256)
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