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Abstract

3D shape completion methods typically assume scans are pre-aligned to a canonical
frame. This leaks pose and scale cues that networks may exploit to memorize
absolute positions rather than inferring intrinsic geometry. When such alignment
is absent in real data, performance collapses. We argue that robust generalization
demands architectural equivariance to the similarity group, SIM(3), so the model
remains agnostic to pose and scale. Following this principle, we introduce the first
SIM(3)-equivariant shape completion network, whose modular layers successively
canonicalize features, reason over similarity-invariant geometry, and restore the
original frame. Under a de-biased evaluation protocol that removes the hidden cues,
our model outperforms both equivariant and augmentation baselines on the PCN
benchmark. It also sets new cross-domain records on real driving and indoor scans,
lowering minimal matching distance on KITTI by 17% and Chamfer distance 1 on
OmniObject3D by 14%. Perhaps surprisingly, ours under the stricter protocol still
outperforms competitors under their biased settings. These results establish full
SIM(3) equivariance as an effective route to truly generalizable shape completion.
Project page: https://sime-completion.github.io.

1 Introduction

3D scans are often riddled with gaps due to occlusions and limited sensor coverage. Completing the
missing geometry lets robots plan stable grasps, autonomous vehicles reason about hidden traffic,
and curators digitize heritage artifacts without repeated scanning [1, 2, 3, 4]. However, most shape
completion methods [5, 6, 7, 8] are developed on curated benchmarks where every scan is pre-
aligned to a canonical frame with a fixed pose and scale relative to ground truth. These leaked cues
inadvertently bias learning: instead of inferring intrinsic geometry, neural networks tend to memorize
where shapes reside in that frame, leading to inflated performance that collapses once the alignment is
removed in practice [9, 10]. The resulting gap between benchmark success and real-world reliability
highlights the challenge of exploiting geometry without inheriting extrinsic transforms that convey it.

Data augmentation mitigates this alignment bias by randomizing transforms during training to
approximate inference-time invariance, but it entangles those transforms with underlying geometry
and leaves the core ambiguity unresolved. Architectural equivariance, by contrast, aims to ensure
that applying a transform to the input induces the same transform in the prediction, thereby isolating
geometry from transforms and sharpening learned representations [11, 12]. However, existing
equivariant methods still struggle to enforce this separation. SO(3)-equivariant shape completion [13,
14] typically normalizes inputs using ground-truth centroids and scales, while SE(3)-equivariant
variants [10, 15, 16] still rely on ground-truth scale to canonicalize scans. Relying on such privileged
information effectively reduces these models to explicit canonicalization (Fig. 1), undermining the
true purpose of equivariance. To our knowledge, no existing architecture fully eliminates alignment
bias, as all still require some ground-truth alignment that is unavailable in practice.
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We argue that true generalization
hinges on handling arbitrary similar-
ity transforms, SIM(3), including ro-
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learns representations agnostic to pose
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transform applied to the input induces Figure 1: Three paradigms for shape completion. Explicit
identical changes in the prediction canonicalization, including SO(3)- and SE(3)-equivariant
(Fig. 1). To recover the completed variants, leak pose and scale cues and fail on non-canonical
shape in the sensor frame, we intro- inputs. Data augmentation mitigates the alignment bias but
duce a lightweight restoration path incurs ambiguity. We present a SIM(3)-equivariant approach
that re-injects the transform informa- that generalizes to arbitrary similarity transforms.

tion progressively. By disentangling

intrinsic geometry from extrinsic transforms, our model trained on synthetic data transfers directly to
real scans under a fair, de-biased evaluation protocol. In summary, our contributions include:

1. Problem identification. We reveal pose and scale bias in existing shape completion methods,
and identify SIM(3) equivariance as a prerequisite for reliable, in-the-wild generalization.

2. Generalizable framework. We develop the first fully SIM(3)-equivariant network for shape
completion. It integrates feature canonicalization, similarity-invariant geometric reasoning, and
a transform restoration path into a modular design, generalizing from synthetic to real scans.

3. Protocol and resources. We establish a rigorous evaluation protocol that eliminates hidden
pose and scale bias, release code for reproducibility, and provide thorough analyses that pinpoint
where equivariance delivers its gains. Under this protocol our method sets a new state of the art.

2 Related Work

Equivariant 3D representations. Equivariant neural networks learn features that transform con-
sistently under input symmetry operations. Grounded in group theory and representation learn-
ing [11, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], 3D equivariant models have been developed
to handle variability in data transforms. One approach employs group convolution [28, 29, 30] to
encode symmetry, but these methods often remain bound to specific architectures and lack gener-
ality. Another leverages tensor algebra with spherical harmonics as irreducible representations to
achieve equivariance [12, 31]. Vector neurons (VN) [32] replaced high-order tensors with structured
3D vectors, providing a modular SO(3)-equivariant alternative. Subsequent extensions integrated
attention mechanisms [33] and translation equivariance [34], yet most VN-based networks remain
relatively shallow, which limits their applicability to complex 3D tasks. Nonetheless, both paradigms
have driven advances in 6-DoF pose estimation [35, 36, 37], point cloud registration [38, 39], robotic
manipulation [40, 41], and 3D reconstruction [42, 43, 44], among others [45, 46]. However, most
methods are confined to SO(3) or SE(3) equivariance and require centering or scale normalization.
Both assumptions break down in real-world scenarios without ground truths. Although SIM(3)-
equivariance can overcome these limitations, existing efforts [40, 41, 46] remain sparse, depend on
near-complete inputs, and struggle on partial observations. We close this gap with a fully SIM(3)-
equivariant Transformer architecture.

3D shape completion. Early methods represented geometry in voxels and applied 3D CNNss [5,
47, 48, 49], but cubic complexity limited resolution. The use of symmetric functions for permuta-
tion invariance [50] led to the development of shape completion networks that directly consume
3D points [51, 52]. More recently, Transformers [53] have recast shape completion as set-to-set
translation [6], and now lead the field [7, 8, 54, 55, 56, 57]. Almost all prior work, however, presumes
that inputs are pre-aligned to the training frame, letting pose and scale cues leak into models and
collapse performance on raw scans without special adaptation [9, 58]. Existing remedies follow
two paradigms. Data augmentation randomizes transforms during training, but entangles extrinsic
transforms with intrinsic geometry and incurs ambiguity at test time. Equivariance-based methods



either estimate a canonical pose prior to completion [15, 16] or replace standard layers with equiv-
ariant variants [10, 13]. The former relies on a fragile pose estimator that misaligns under partial
observations and propagates errors for the downstream completion. The latter often loses fine-grained
details and underperforms Transformer models with data augmentation [13]. A recent anchor-point
scheme extends equivariance to SE(3) [10], but its dependence on brittle anchor selection hampers
performance and still falls behind augmented baselines. Moreover, all these methods still rely on
ground-truth bounding boxes to cancel scale variance, re-introducing the very cues they aim to discard.
In contrast, we integrate full SIM(3) equivariance into every layer, inherently agnostic to arbitrary
pose and scale, delivering the first shape completion method that truly generalizes to completely
unaligned real-world scans.

3 Method

3.1 Preliminaries

Formulation. Shape completion, fy: x — ¥, takes a partial observation x = {z; € R?’}lNz“i (e.g.,
a point set) and aims to reconstruct a set § = {g; € R3}fi°i”' representing the completed shape, both
expressed in the original sensor frame. Due to varying capture conditions, x and its ground truth y

may undergo a shared unknown similarity transform g = (s, R, t) € SIM(3):
X =g -x=sRx+t, y =g -y=sRy+t, seRy, ReSO(3), teR3 (1)

where x’ and y’ are transformed representations of the same object. Although the transform g alters
coordinates, the intrinsic geometry remains invariant. To guarantee consistent predictions under any
similarity transform, we enforce SIM(3) equivariance in fy. Paired with a permutation-invariant loss
L ( fo(x), y) (e.g., Chamfer distance), we solve the constrained optimization problem:

min L(fo(x),y) st folg-x) =g fo(x) Vg € SIM(3). @)

Vector neurons. To enforce the equivariance constraint in Eq. (2), we build on the vector neuron
(VN) framework [32], which replaces scalar neurons with 3D vector ones. At layer [, we organize D'
vector channels into M vector features:

Vi= (VM - vieRPE, 3)

The VN framework defines linear, nonlinear, and pooling operations on these vector neurons to
preserve symmetry under the SO(3) group action. We adapt VN representations and integrate these
operations as building blocks into our SIM(3)-equivariant architecture. For simplicity, we omit the
layer index [ in the following unless cross-layer operations are involved. See Appendix C for details.

Challenges. We decompose the overall objective in Eq. (2) into three complementary requirements,
separating geometric reasoning from transform alignment:

. ['(9* - fo (X), y) Req. (1) geometric reasoning
in
0 lg* =1 Req. (3) transform alignment

st. folg-x)=g-fo(x). @

Req. (2) equivariance

Here g* denotes the optimal alignment between the prediction and the ground truth, such that
L (g* - fo(x), y) measures geometric discrepancy independent of pose and scale. In this formulation:

Reg. (1) Geometric reasoning. The network must infer the complete geometry of missing regions,
even when x are sparsely and heterogeneously sampled. This demands strong structural
priors and fine-grained feature extraction that shallow architectures cannot achieve.

Req. (2) Equivariance. The model must respect SIM(3) symmetry, which needs to be enforced
throughout, because any single layer that is not equivariant will break global equivariance.
Thus, each operator must be redesigned to commute with the group actions.

Req. (3) Transform alignment. The completed shape f(x) must be presented in the sensor frame so
that no further alignment is required for downstream tasks. Equivalently, g* should remain
close to the identity transform I under any reasonable metric || - ||. This requires propagating
pose and scale information throughout the network to preserve the original frame.

The next section details how each component of our architecture satisfies these requirements.
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Figure 2: Overview of our SIM(3)-equivariant shape completion pipeline. We extract point patch
features with VN-DGCNN [32] and feed them into a Transformer encoder-decoder. Within each

, we (1) canonicalize features to be translation- and scale-invariant, (iz) reason intrinsic
geometry via SIM(3)-invariant attention, and (7i7) restore the original transform. This guarantees
that both intermediate features and the reconstructed shape adhere to SIM(3) transforms.

3.2 SIM(3)-equivariant shape completion

We progressively address the three challenges in Eq. (4) via L SIM(3)-equivariant blocks, which
enforce the equivariance constraint as in Req. (2) by design:

B'=R'oA' oC, fo(x)=B"0-- 0B (x). )
Each block B! comprises three sequential stages (Fig. 2): (i) feature canonicalization C! produces
translation- and scale-invariant feature vectors; (i4) similarity-invariant shape reasoning A’ optimizes
Req. (1); and (24%) pose and scale are restored via R to satisfy the transform-alignment objective in
Req. (3). By stacking these blocks and end-to-end optimizing Eq. (4), the network iteratively refines
its prediction and converges to the completed shape expressed in the input frame.

Canonicalization. Robust geometric
reasoning requires removing transform
variance embedded in the feature repre-
sentation. As shown in Fig. 3, we ex-
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tended layer normalization is defined as:

V.-V,

ct: Vv, = layernorm(HVi — VZHQ)W (6)
K2 3 2

This procedure canonicalizes features to an implicitly defined canonical feature frame.

Shape reasoning. In the scale- and translation-invariant canonical feature frame after C', we
perform similarity-invariant shape reasoning via the rotation-invariant attention weights A from
VN-Transformer [33], ensuring no residual rotational bias. Since attention is invariant under any
g € SIM(3), the local form of the objective in Req. (1), for each shape reasoning layer, reduces to:

ALz min £(fo, (A(x), ¥), ™
where  a;; = softmax; (\/% (WoV'y, WKV’j>F> . aij € A(x). 3

Here, the query and key projections Wq, W € RP*P included in the model parameters 6, define
how shape features interact. The Frobenius inner product (-)  is invariant to joint rotation of V’; and
V’;, making the attention weights depend solely on their relative geometry. The attention weights
satisfy A(g-x) = A(x) for any g € SIM(3), which decouples intrinsic shape features from transforms.

Transform restoration. SIM(3) equivariance alone does not guarantee that the shape reasoning
output is aligned with the original sensor frame, as it preserves only relative pose and scale. The
final challenge is to recover this absolute alignment, as required in Req. (3). To achieve this, we
introduce a transform restoration path to propagate input pose and scale via residual connections
(Fig. 2). After each SIM(3)-invariant shape reasoning step, the restoration path reinjects translation
and scale to recover spatial grounding. Rotation is implicitly preserved through the attention output
Z; =%, ai;WvV';, where Wy is the value projection weight. Translation and scale are injected in
accordance with their group actions via addition and multiplication, respectively:

R VL =V L 0(4'Z), 9)

where ' = Ep: ||Ei (Vi —V1)]|, is a global scale statistic computed from the average norm of centered
input features, and ® is a VN linear layer that fuses spatial and geometric features to guide alignment.
By restoring translation and scale at each stage, we reestablish full SIM(3) equivariance at the module
output (see Appendix C for the proof), ensuring consistent spatial grounding across layers, as shown
in Fig. 4.

3.3 Network architecture

We build on the AdaPoinTr [7] backbone,

which features a coarse-to-fine shape comple- None Rotated Scaled  Translated
tion scheme. We replace the original DGCNN
with VN-DGCNN [32] for local geometric fea-
ture extraction while retaining SIM(3) equiv-
ariance, and replace every Transformer layer
with our SIM(3)-equivariant module intro-
duced in Sec. 3.2. Key components, such
as the query generator and the reconstruction 5 4 -
head, are likewise implemented to be equiv- .
ariant or invariant when appropriate. The net-
work takes a partial input point cloud with
2,048 (Ni,) points and predicts a complete
shape of 16,384 (Nyyt) points. Aside from  Figure 4: SIM(3) equivariance. Our outputs follow
these changes, we retain AdaPoinTr’s network  arbitrary similarity transforms applied to inputs.
depth, loss function, and training settings to

ensure a fair comparison. Fig. 2 illustrates the architecture. Further architecture and implementation
details are provided in Appendix C and D.
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4 Experiments

4.1 Experimental setup

Datasets and baselines. We first evaluate on the PCN benchmark [51], which comprises eight
categories from ShapeNet [61] with paired partial and complete point clouds. To assess cross-domain
transferability, we directly apply PCN-trained models, without further normalization, to real-world
scans from KITTI [62] and OmniObject3D [63]. We compare against leading non-equivariant shape
completion methods, namely PoinTr [6], SeedFormer [54], SnowflakeNet [64], AnchorFormer [&],
and AdaPoinTr [7], each trained with SIM(3) augmentations for fairness. Because no prior model
offers full SIM(3) equivariance, we resort to including the SO(3)-equivariant EquivPCN [13] and
the SE(3)-equivariant SCARP [15] and ESCAPE [10] as baselines.

Evaluation protocol. For our model, which requires no training-time augmentation, we adopt the
train/test setting of I/SIM(3) where I denotes the identity transform. Each baseline is first evaluated
under the group it was designed for (i.e., I/SO(3) for EquivPCN [13], I/SE(3) for ESCAPE [10],
and SE(3)/SE(3) for SCARP [15]) to reveal their upper-bound performance when pose/scale cues
are still partly available. We then report their performance under SIM(3)/SIM(3) with additional
data augmentation. On PCN, rotations are sampled uniformly from SO(3), while each partial
input is itself centered and scaled to the unit sphere. This prevents cue leakage from ground truths
and realistically simulates real-world inputs that models actually have access to. On KITTI and
OmniObject3D, we transfer our model without any cue leakage, while competing equivariant methods
receive canonicalized inputs via ground-truth alignment; otherwise, they fail completely. For PCN
and OmniObject3D, we report Chamfer distance ¢; (CD-¢1, scaled by 103) and F-score@1% (F1).
For experiments on KITTI, we follow prior practices [0, 7, 8, 54] and report the Fidelity and Minimal
Matching Distance (MMD) metrics. All metrics are computed in the common canonical frame with
unit scale for direct comparison. We refer to our method as SIMECQO in all comparisons.

4.2 De-biased benchmark evaluation

Against data augmentation. Table 1 compares our SIM(3)-equivariant model against leading
non-equivariant networks trained with augmentation. Our method achieves the lowest average CD-{;
and the highest F1 score, outperforming AdaPoinTr by 10% and 8%, respectively. It yields the best
score in every category, with consistent error reductions across the board. Qualitative results in Fig. 5
show that our completions faithfully recover fine geometric details such as sharp airplane wings,
slender lamp stems, and thin table legs, whereas the augmentation-based baseline produces blurrier or
distorted shapes. Notably, AdaPoinTr without augmentation collapses under the de-biased protocol.
These results confirm the superiority of our architectural equivariance over heavy data augmentation.

Table 1: Evaluation on PCN. We compare methods supporting only SO(3) (top) and SE(3) (middle),
and those with STM(3) augmentation (bottom). “Transform” indicate train/test settings. Our model
outperforms competitors limited to partial transform groups and those with data augmentation. CD-¢;
values are scaled by a factor of 1000. Bold numbers indicate the best STM(3) results.

Method Transform | Airpl. Cab. Car  Chair  Lamp Sofa  Table Wat. | CD-f; | F1 1
EquivPCN [13] 1/S0(3) 8.38 13.74 11.81 14.31 12.50 15.68 12.86 11.02 12.54 0.569
AdaPoinTr [7] SO(3)/SO(3) 5.76 11.27 9.63 9.61 6.71 11.53 8.15 7.81 8.81 0.693
SCARP [15] SE(3)/SE(3) 10.05 40.82 23.02 22.92 29.17 62.51 57.82 37.59 35.49 0.223
ESCAPE [10] I/SE(3) 8.13 13.18 10.43 10.62 8.07 13.74 9.35 9.81 10.41 0.650
AdaPoinTr [7] SE(3)/SE(3) 6.16 12.56 10.48 9.77 7.10 12.36 8.34 8.57 9.42 0.685
Evaluation under de-biased protocol
AdaPoinTr [7] I/SIM(3) 31.93 78.90 63.51 60.56 61.47 70.77 71.94 42.74 60.23 0.206
EquivPCN [13] SIM(3)/SIM(3) 9.10 14.60 13.09 15.74 13.74 16.42 14.74 11.74 13.65 0.523
ESCAPE [10] SIM(3)/SIM(3) 12.59 22.54 18.63 15.86 12.68 24.38 14.17 14.48 16.88 0.515
PoinTr [6] SIM(3)/SIM(3) 10.18 17.97 15.61 16.94 13.39 16.80 17.75 12.18 15.10 0.434
SeedFormer [54] SIM(3)/SIM(3) 8.42 17.32 15.08 12.10 8.25 17.19 11.38 9.62 12.42 0.616
Snowflake [64] SIM(3)/SIM(3) 7.99 15.59 13.81 11.89 8.58 15.66 10.59 9.72 11.73 0.621
AnchorFormer [8] SIM(3)/SIM(3) 7.77 13.61 12.13 12.71 9.16 14.26 10.95 9.35 11.24 0.599
ODGNet [56] SIM(3)/SIM(3) | 616 1160 1115 1013 681 1312 948 8.9 9.58  0.659
AdaPoinTr [7] SIM(3)/SIM(3) 6.46 12.17 10.51 10.29 7.59 12.26 8.90 8.14 9.54 0.661
SIMECO (ours) I/SIM(3) 6.02 10.75 9.27 9.25 6.66 11.16 7.82 7.77 8.59 0.714




Against equivariant networks. Table | benchmarks our method against other SO(3)- and SE(3)-
equivariant networks, each evaluated under its native transform group. In contrast, by tackling the
full SIM(3) group, we address a substantially harder setting. Despite this, our model reduces average
CD-/; from 10.41 to 8.59 (—17%) and raises F1 from 0.650 to 0.714 (+10%) relative to ESCAPE,
which uses the same AdaPoinTr backbone. EquivPCN (SO(3)) and SCARP (SE(3)) lag even further,
confirming that full SIM(3) equivariance enables learning more intrinsic shape representations.
Moreover, neither EquivPCN nor ESCAPE can outperform augmentation-based baselines in their
respective groups. And training ESCAPE and EquivPCN with SIM(3) augmentation degrades their
performance, highlighting that equivariance not built into the architecture is hard to acquire through
augmentation alone. Figs 5 and 6 respectively demonstrate that our model preserves fine details and
delivers consistent outputs under various pose and scale perturbations.

Input GT SIMECO (ours)  AdaPoinTr ESCAPE EquivPCN SCARP
1/SIM(3) SIM(3)/SIM(3) 1/SE(3) 1/S0(3) SE(3)/SE(3)

Airplane
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Figure 5: Comparison on PCN. Our STM(3)-equivariant model outperforms other equivariant meth-
ods restricted to SO(3) and SE(3) and non-equivariant baseline trained with SIM(3) augmentation.

4.3 Cross-domain generalization

Unseen driving scans (KITTI). Table 2 presents cross-domain performance on KITTI using
models trained solely on synthetic, canonicalized PCN data. Even under full SIM(3) variation, our
model reduces MMD from 6.47 to 5.35 (—17%) compared to the strongest non-equivariant baseline
and cuts ESCAPE’s Fidelity error from 1.81 to 0.56 (—69%). EquivPCN achieves even lower MMD,
but only under its native SO(3) setting. Crucially, all competing methods, apart from those using
data augmentation, rely on ground-truth bounding boxes to normalize KITTI inputs. SO(3) models
use them for translation and scale normalization; SE(3) models use them for scale. This requirement
leaks information and is impractical in real deployments. By contrast, our fully SIM(3)-equivariant
architecture requires no external normalization. In Fig. 7, our model recovers car wheels and indoor
details more faithfully, while AdaPoinTr with augmentation produces oversmoothed outputs.
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Figure 6: Robustness to pose and scale perturbations. Under larger pose and scale changes, our
SIM(3)-equivariant model maintains completion quality, whereas competing methods degrade.
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Figure 7: Cross-domain generalization to real Figure 8: Feature consistency. Despite sig-

scans. Our PCN-trained model completes driv- nificant SIM(3) variations, feature maps from
ing (KITTI) and indoor (OmniObject3D) scans, the PCN sample (outlined) and OmniObject3D
with more details than the augmented baseline. scans exhibit matching structural patterns.

Unseen indoor scans (OmniObject3D). Table 3 Table 2: Cross-domain performance on
presents cross-domain results on the diverse OmniOb- KITTI. All methods are trained on PCN
ject3D benchmark. Our model achieves the lowest Cars.

average CD-{; and highest F1. Compared to the

. . N Method Transform \ Fidelity | MMD |
top non-equivariant baseline, we reduce CD—/{; by -
14% and increase F1 by 5%. Relative to the SE(3)- FavPENTL] USO@)| 0413 3293
equivariant ESCAPE, we achieve a 17% reduction in EgéARgé I[SI})] SE(%@E% ‘ %SS ‘5‘)§(’32()°
CD-/;. These gains hold across all seven categories, : :
with particularly notable improvements on Cabinet gﬁ:g;ig}lrm 2%%2%8; g-ggg gzgg
(1469 vs. 1715) and Lamp (1 1.07 vs. 1403) Aside SIMECO (ours) I/SIM(3) 0:558 5:353

from augmentation-based methods, ours is the only



model that generalizes without bounding-box normalization. Fig. 7 shows that our completions better
preserve intricate geometric details.

Table 3: Cross-domain performance on OmniObject3D. Our model outperforms SO(3)- and
SE(3)-equivariant methods and non-equivariant baselines trained with SIM(3) augmentation.

Method Transform ‘ Airpl. Cab. Car Chair ~ Lamp Sofa Wat. ‘ CD-4; | F1 1
EquivPCN [13] I/SO(3) | 12.05 16.06 1391 13.68 16.84 1347 1267 | 1410  0.543
SCARP [15] SE(3)/SE(3) 3740  56.64 4479 4599 7024  38.66  59.50 50.46  0.106
ESCAPE [10] I/SE(3) 9.89 1579  11.87 7.78 19.49 11.12 1041 1234  0.679
PoinTr [6] SIM(3)/SIM(3) 12.11 26.40 18.98 1248  25.38 16.83 14.81 18.14  0.515
AdaPoinTr [7] SIM(3)/SIM(3) 11.48 17.15 12.10 7.44 14.03 10.73 10.38 11.90  0.664
SIMECO (ours) I/SIM(3) 1120  14.69  10.10 6.44 11.07 9.11 9.12 10.25  0.698

Feature visualization. Fig. 8 compares feature maps for a PCN sample alongside those from
several OmniObject3D scans under different SIM(3) transforms. Despite large variations in pose
and scale, the feature maps share strikingly similar structures, demonstrating that our network learns
pose- and scale-invariant features that generalize effectively to real-world data.

4.4 Ablations and analyses

Can pose estimation replace equivariance? To assess whether an explicit pose estimator can
substitute for built-in equivariance, we prepend ConDor [36], a state-of-the-art self-supervised SE(3)
pose canonicalizer (no equivalent exists for SIM(3) to our knowledge), to two non-equivariant
baselines (PoinTr and AdaPoinTr) on the PCN dataset. As shown in Table 4, ConDor + AdaPoinTr
still fails to match the augmentation-based baseline (Table 1), and yields a CD—¢; 15% higher and an
F1 score 3% lower than our SIM(3)-equivariant model; ConDor + PoinTr performs even worse. In
contrast, our approach achieves superior accuracy without any explicit pose estimation, demonstrating
that architectural equivariance is a more effective design choice.

Table 4: Pose estimation vs. equivariance. Our model Table 5: Sensitivity to training-time
ourperforms baselines with pose estimator on PCN. transforms on PCN Car.
Method Transform | CD-6; |  F11 Transform | CD-£1 | F17
ConDor [36] + PoinTr [6] SE(3)/SE(3) | 1856  0.408 S%gggg%g% s88 070
ConDor [36] + AdaPoinTr [7]  SE(3)/SE(3) 9.92 0.692 SO(3)/SIM(3) 878 0.708
SIMECO (ours) I/SIM(3) 8.59 0.714 I/SIM(3) 8:76 0:712
How much equivariance is necessary? Figure 9 plots 0.8

performance on the PCN Car subset as we progressively —
swap non-equivariant for SIM(3)-equivariant layers in
the encoder/decoder. The non-equivariant baseline [0/0]
yields the worst CD—/; and lowest F1. Equipping the en-
coder with six equivariant layers [6/0] reduces CD-¢; and L 0.6 —
boosts F1. Further introducing four equivariant decoder -
layers [6/4] yields a slight performance drop, likely due to

the overhead from mixing equivariant and non-equivariant / 03
modules. Nevertheless, the fully equivariant setup [6/8] (/

attains the best CD-¢; and F1, confirming that preserv- . i i i i
ing end-to-end SIM(3) symmetry is essential for optimal S » & @ &
shape completion. [Encoder/Decoder] equivariant layers

Which equivariance group matters most? We ablate Figure 9: Equivariant layers ablation.
training-time equivariance on the PCN Car subset across On PCN Car, performance increases as
four operational design domains (ODD): rotation (R), ro- non-equivariant layers are progressively
tation + translation (R + T), rotation + scale (R + S), and replaced with SIM(3)-equivariant ones
full SIM(3) (R 4+ S + T). When directly transferred to in the encoder/decoder. The fully equiv-
KITTI scans (Fig. 10), only the SIM(3) model attains the ariant setup delivers the best results.

best Fidelity and MMD. Omitting scale (R + T) or translation (R + S) equivariance increases errors



on both metrics. Notably, the gap between SIM(3) and its subgroups highlights how much more
challenging full SIM(3) equivariance is compared to the subgroups. This synthetic-to-real analysis
confirms that SIM(3) equivariance is essential for robust, in-the-wild shape completion and further
validates our model’s advantage over methods limited to SO(3) or SE(3).

Must we canonicalize training data? Real-world data seldom provide objects in a common
reference frame, so a practical completion model should tolerate arbitrary pose and scale at training
time as well. We therefore train our network on the PCN Car subset under four configurations,
I, SO(3), SE(3), and SIM(3), and report test performance in Table 5. Across these settings, the
average CD-/¢; varies by less than 0.15 and the F-score by at most 0.007. The negligible difference
demonstrates that our SIM(3)-equivariant architecture learns shape priors that are robust to the
transform of training data. Thus, explicit canonicalization of the training data is not required.

Robustness to input noise and point dropout. Our model, trained exclusively on clean PCN
data, degrades gracefully under Gaussian noise up to 0.5% of the object scale, with average CD-{;
rising modestly from 8.59 to 9.34 (Fig. 11). It also tolerates substantial point dropout: with a 25%
additional dropout rate, F1 remains above 0.69 while CD-¢; stays near its drop-free level. These
results demonstrate the robustness of our architecture to real-world scans subject to noise and sparsity.
We provide additional analyses in Appendix B.

3 OursR [ OursR+S [ OursR+T [ Ours R+T+S
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Figure 10: Equivariance group ablation. PCN- Figure 11: Robustness to noise and dropout.
trained models evaluated directly on KITTI are  Shaded regions show category-wise min-max.
endowed with equivariance to rotation (R), trans- Trained solely on clean PCN data, our model
lation (T), and scale (S). Each added symmetry remains robust under increasing Gaussian noise
group improves performance, with the full SIM(3)  and up to 25% additional point dropout.

model performing best in real-world ODD.

5 Conclusion

We identified SIM(3) equivariance as essential for tackling the persistent pose and scale bias in shape
completion and achieving robust generalization. To this end, we introduced the first shape completion
architecture composed of inherently SIM(3)-equivariant modules, which effectively disentangle
intrinsic geometry from extrinsic transforms. Under a strict, unbiased evaluation protocol that
removes all alignment cues, our method sets a new state of the art both on synthetic benchmarks and
in direct transfer to unconstrained real scans. These results confirm architectural STM(3) equivariance
as a principled remedy for truly generalizable shape completion. While our current implementation is
limited to single-shape completion, extending this framework to multi-object and large-scale scene
modeling opens compelling avenues for future work.
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A Reproducibility

The code repository and demo are publicly accessible via the project page'. Detailed instructions for
setup and running the code are described in the repository’s README . md file.

B Additional Analysis

B.1 Input normalization

Table 6 compares two common scale normalization schemes: per-scan bounding-box extents and
the global category maximum. Both schemes are consistently applied at training and testing. We
observe that the non-equivariant AdaPoinTr [7] is sensitive to the choice and performs better with
bounding-box normalization, which we adopt for all competing methods in Sec. 4.2. Our model
outperforms AdaPoinTr by a substantial margin, with only marginal improvements when ground-truth
extents are available.

Table 6: Effect of input scale normalization. “B. box” scales each scan by its bounding box extent,
while “max” uses the category’s global maximum extent.

Method Source  Extent CD-¢; | F1 7
AdaPoinTr [7] Input B. box 9.97 0.629
AdaPoinTr [7] Input Max 12.46 0.557
SIMECO (ours) Input B. box 8.88 0.705
SIMECO (ours) GT B. box 8.76 0.712

B.2 VN-SPD constraint

Imposing the VN-SPD constraint [34] on linear weights yields a more principled optimization than
centering-based VN networks, since the center is learned rather than fixed. We validate this with an
ablation that replaces VN-SPD with standard VN layers plus centering and normalization on partial
inputs. As shown in Table 7, our full model clearly outperforms the centering variant.

Table 7: Effect of VN-SPD constraint [34]. The constraint yields a more principled optimization
than the centering-based variant.

Method Transform ‘ Airpl. Cab. Car  Chair Lamp Sofa  Table  Wat. ‘ CD-41 | F1 1
AdaPoinTr [7] SIM(3)/SIM(3) 6.46 12.17  10.51 10.29 759 1226 890 8.14 9.54  0.661
SIMECO (centered) 1/SIM(3) 6.10 11.77 1024 10.05 7.50 1216 857  8.10 9.31  0.673
SIMECO (ours) 1/SIM(3) 6.02 10.75 9.27 9.25 6.66 11.16 782 177 859 0.714

B.3 Computational efficiency

With a batch size of 40, SIMECO trains at about 1 hour per epoch on two NVIDIA A40 GPUs.
Fig. 12 reports training losses and validation metrics of SIMECO and AdaPoinTr [7]. SIMECO
converges much faster in terms of epochs. AdaPoinTr needs about 140 epochs to reduce CD-¢; below
10, whereas our model does so in only 50 epochs.

Table 8 reports the per-scan latency on PCN. Our model processes a scan in 76 ms end-to-end, about
twice as fast as the next-quickest equivariant competitor, ESCAPE [10] (148 ms), and more than twice
as fast as EquivPCN [13] (172 ms) and SCARP [15] (172 ms). ESCAPE and SCARP spend extra
time in post-processing alignment steps, which inflate total latency beyond the raw inference cost.
AdaPoinTr remains faster at 16 ms but achieves this speed without any built-in equivariance. Overall,
our method offers the best combination of speed and high-level SIM(3) symmetry preservation.

To isolate the effect of built-in SIM(3) equivariance from model capacity, we compare methods
under a similar parameter budget on PCN (Table 9). When scaled to a comparable parameter count,
AdaPoinTr improves over its smaller variant yet still trails our model by 0.34 in CD-/¢;, suggesting
that the advantage of equivariance persists after controlling for parameter count.

"https://sime-completion.github.io
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Figure 12: Training losses and validation metrics. Our model converges faster than the baseline.

Table 8: Average per-scan latency on PCN. “Inference” denotes the network forward time, measured
on an NVIDIA A40 GPU; “Total” adds any post-processing overhead.

Latency (ms)

Method Equivariance @~ ———
Inference Total
AdaPoinTr [7] I 16.4 16.4
EquivPCN [13] SO(3) 171.6 171.6
SCARP [15] SE(3) 159.2 172.0
ESCAPE [10] SE(3) 18.1 148.4
SIMECO (ours) SIM(3) 76.4 76.4

Table 9: PCN results by parameter count. “#Param. (M)” is the number of parameters (millions).

Method Transform #Param. (M) CD-¢; | F1 1
AdaPoinTr [7] SIM(3)/SIM(3) 32.49 9.54 0.661
AdaPoinTr [7] SIM(3)/SIM(3) 57.12 8.93 0.693
SIMECO (ours) I/SIM(3) 56.96 8.59 0.714

B.4 Performance on thin structures

To evaluate performance on shapes with pronounced thin structures, we compute a local PCA-based
anisotropy score: L = 010;102 on each point’s k-nearest neighbors (k = 30), where o1 > 02 > 03
are the singular values of the local covariance matrix. A high L indicates a spindly, edge-like
neighborhood. We then select shapes in which more than 0.5% of points satisfy L > 0.8, yielding
50 thin-structure cases out of 1200 total. Quantitatively, on this subset, our method achieves an
average CD-/1 of 6.83, compared to 8.59 over the entire test set, demonstrating even better overall
performance on such samples with thin structures. Moreover, qualitative examples such as chair and
table legs in Fig. 5 and Fig. 7 further confirm that our method preserves fine details effectively.

B.5 Limitations

Despite its strengths, our approach has several limitations:
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1. Pose- and scale-dependent features. By construction, we remove any dependence on absolute
pose or scale. While this makes the model robust to arbitrary similarity transforms, it can also
discard helpful cues when objects always appear in a canonical frame. For instance, a chair
back with no visible legs might be mistaken for a sofa because the two shapes coincide under a
similarity transform (see Fig. 13). Nevertheless, in realistic settings our method consistently
outperforms non-equivariant baselines.

2. Symmetries across partial observations. The equivariance property in our framework is
defined with respect to a single partial scan. For different partial observations of the same
object, initialization variability cannot be fully eliminated, thus cross-view symmetries cannot
be explicitly enforced and must be learned implicitly from data.

3. Articulated complex scenes. Our method excels at completing shapes under arbitrary similarity
transforms, but it does not explicitly account for independently moving sub-parts (e.g., human
joints, robotic arms, or scenes with multiple objects). Incorporating category-specific shape
priors or allowing multiple local transforms would be natural extensions to address these more
complex scenarios.

4. Computational overhead. Vector-valued features and fully equivariant modules incur substan-
tial computation by a factor of three compared to scalar-valued layers. As a result, runtime
latency is higher than that of non-equivariant baselines (see Table 8), which may limit real-time
or resource-constrained deployments.

B.6 Failure cases

Fig. 13 shows two failure cases that rarely occurred in our experiments. Ambiguous partial geometry
can entice the network to produce a completion that is plausible yet incorrect. Severe sparsity or noise
may disrupt the transform restoration and cause the completed shape to drift from the input frame.

Input GT SIMECO (ours) Input GT SIMECO (ours)

N.A.

Figure 13: Failure cases. Top: ambiguous partial scans leave the network unsure how to complete the
shape. Bottom: poor input quality disrupts the transform restoration module and yields misalignment.

C Proof of SIM(3) Equivariance

In this section, for convenience, we represent 3D vectors as row vectors and stack them into matrices.
Specifically, let V € RP*3 denote a vector feature, where V[d] € R? is its d-th channel, and collect
M such features in the set V = {V;}, . Broadcast vectors (e.g., 1p = [1,1,...,1]T € RP*!)are
column vectors.

C.1 Definitions

Definition 1 (Group invariance). A mapping f is G-invariant (e.g., SIM(3)-invariant) if it satisfies
f(g-x) = f(x) forall g € G and admissible inputs x.

Definition 2 (Group equivariance). A mapping f is G-equivariant (e.g., SIM(3)-equivariant) if it
satisfies f(g-x) = g - f(x) forall g € G and admissible inputs x.
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C.2 SIM(3)-equivariant vector neurons

We assume the input is transformed by an arbitrary g = (s, R, t) € SIM(3), acting on each 3D vector
in the VN architecture [32] and the associated matrix as follows:

g-V|d] = sRV[d] +t, g-V=sVR+1pt, s € R+, R€S0O(3), teR3.  (10)

VN-Linear. The VN-Linear layer is defined as a linear transformation shared across the three
columns of V:

VN-Linear(V) = WV, W e RP*P. (11)
For translation equivariance, we constrain each row of the weight matrix W to sum to one [34]:
D
dwiy=1, w; €W Vie{l,....D'}, < Wlp=1p. (12)
j=1

Proposition 1. VN-Linear(-) is SIM(3)-equivariant.

Proof. For all g € SIM(3),

VN-Linear(g- V) = W(sVR+ 1pt) (13)
— sWVR+Wilpt (14)

— s(WV)R+1pt (15)

= s VN-Linear(V)R+ 1p/ ¢ (16)

= g - VN-Linear(V). (17

O

VN-ReLU. The VN-ReLU layer is constructed via three VN-Linear layers that produce a feature
F, a direction B, and an origin O, followed by centering with respect to O:

(F, B, O) .= VN-Linear(V), Fo=F-0, Bo=B-0. (18)
The nonlinearity removes the negative projection of F g onto the normal B of the plane through O:
O+ Fo if<Fo,Bo>FZO
VN-ReLU(V) = < Bo Bo
O+ Fop — ( Fo, 0.W.
[Boll2/  [Boll2
F if<Fo,Bo>FZO
Bo . (19)
F — <F0, B0> s 0.W.
"lBoll3

Proposition 2. VN-ReLU(-) is SIM(3)-equivariant.

Proof. For all g € SIM(3),

o [9°F if (sFoR, sBoR)r > 0
VN-ReLU(g - V) & - sBoR (20)
sFR+1pt— (sFoR, sBoR)p 7||3B0R||§ 0.W.
o [9°F if s*(Fo, Bo)r >0
= BoR 21
sFR+1pt—s? <FO’BO>F28H70H§ 0.W. @D
if (Fo, Bo)r >0
sFR+1pt—s(Fo, Bo)x % 0.W. 22)
IBoll3
if (Fo, Bo)r >0
Bo 23
— (Fo, Bo) Bo HQ)RJrlDt 0.W. 23)
{ if (Fo, Bo)r >0
Bo 24)
—(Fo,Bo)r i 5—3
)" [Bol3)
=g - VN-ReLU(V 25)
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Here, () holds because F, B, O are SIM(3)-equivariant (Prop. 1), and translation cancels in Fo
and Bo. (*x*) holds as the Frobenius inner product and the ¢>-norm are rotation-invariant. O

VN-LeakyReLU. The VN-LeakyReLU layer is a minor variant of VN-ReLU:
VN-LeakyReLU(V) = aV + (1 — @) VN-ReLU(V), « € (0,1). (26)

This operation is trivially SIM(3)-equivariant.

VN-Max. The VN-Max layer is defined on a set of vector features )V by applying two shared

VN-Linear layers to each V; € V, producing a direction B; and an origin O;, followed by centering
with respect to O;:

(Bi, Oz) = VN—Linear(Vi), BO,i = Bi — Oi, VOJ‘ = Vz — Ol (27)
VN-Max selects, for each channel d, the feature whose centered representation Vo ;[d] is most
aligned with its corresponding centered direction B ;[d]:

VN-Max(V)[d] = V;-[d], with ¢* = argmax(Vo;[d], Bo[d])F. (28)
Proposition 3. VN-Max(-) is SIM(3)-equivariant.

Proof. Forall g € SIM(3),
VN-Max(g - V)[d] = g- V;+[d], with i* = argmax(sVo;[d|R, sBo[d|R)r (29)

*

® argmax s>(Vo ;[d], Boi[d])r (30)

(%) arg m;’iX<VO,i[d]a Bo.i[d)) r (31)

VN-Max(g - V)[d] = g - VN-Max(V)[d] <= VN-Max(g-V) =g- VN-Max(V). (32)

Here, () holds since the Frobenius inner product is rotation-invariant. (xx) holds as the positive
scaling factor s2 preserves the ordering, so the index i* remains unchanged. [

C.3 SIM(3)-equivariant Transformer

Canonicalization. VN-LayerNorm follows the definition in Sec. 3.2:

- D
V'’ = VN-LayerNorm(V) = layernorm (HV — V||2) . M, with V = % Z V[d].
- V2 —
d=1 33)
Proposition 4. VN-LayerNorm(-) is invariant to scaling and translation, and equivariant to rota-
tion.
Proof. For all g € SIM(3),
VN-LayerNorm(g - V) © layernorm (HsVR — SVRH2) . m (34)
s —s
2
Kok — V — V
(=) layernorm (s ||V — VH2) . W (35)
2
ok — V — V
(:)layernorm (J[v—=v],) - W (36)
2
= VN-LayerNorm(V)R. (37)

(*) holds since V is STM(3)-equivariant, and translation cancels in differences. () holds because the
{5-norm is rotation-invariant. (* x %) holds as layer normalization is invariant to positive scaling. [J
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Shape reasoning. VN-Attn follows the definition in Sec. 3.2. For self-attention, the input features
satisfy Vi = V) = V’; for cross-attention, V; and V; may differ. These features are the outputs of
the canonicalization step, which removes the effects of translation and scale. The query and key are
computed via shared VN-Linear layers:

Q; = VN—Linear(V(’m), K; = VN—Linear(Vfc)j). (38)
The attention weight and output are then computed following VN-Transformer [33]:
1
ai,j = VN-AttH(QZ‘, KJ) = SOftman <@ <QZ, Kj>F) y (39)
Z; =) aj;- VN-Linear(V}, ;). (40)

J

Proposition 5. VN-Attn(-, -) is invariant to rotation, and Z; is equivariant to rotation.

Proof. Rotation invariance of VN-Attn(-, -) follows immediately from the fact that the Frobenius
inner product is rotation-invariant. Because a; ; is rotation-invariant and, by Prop. 1, VN-Linear(-)
is rotation-equivariant, it follows that Z; is rotation-equivariant. O

Transform restoration. Transform restoration follows the definition in Sec. 3.2. Given the module
input V and the attention output Z, the restored output is then computed as

D
: , _ _ 1
TR(p, V,Z) = V + VN-Linear(pZ), with p=Ep|/E;(V; — VZ-)HQ, V= ) ;Vi[d].

(4D)
Proposition 6. TR(-, -, -) can recover SIM(3) equivariance.
Proof. For all g € SIM(3)
TR(g - (1, V,Z)) VR + 1pt+ VN-Linear(suZR) (42)
) $VR+ 1pt + suVN-Linear(Z)R 43)
= $(V + pVN-Linear(Z))R+1pt (44)
=9-TR((1, V., 2)) (43)

Here, (*) holds because the attention output Z encodes only the effect of rotation (Prop. 4 and
Prop. 5). The scalar i scales with s, as translation is eliminated by differencing, and the ¢5-norm is
rotation-invariant. Hence,

Ep||Ei(g- (Vi— Vi), =s-Ep|[E:i(Vi— Vi), (46)
(*x) holds because VN-Linear(-) is SIM(3)-equivariant (Prop. 1). O

C.4 Other modules

VN-DGCNN. VN-DGCNN performs edge feature extraction and aggregation across layers [7, 32]:
M

Vith = VN-Maxjen;, (VNLA (V5 + VI = V) & V), with V! = i SV @
i=1

where N is the KNN neighborhood of point 7, and ¢ denotes feature concatenation. VNLA(+) applies
VN-Linear(-) followed by VN-LeakyReLU(-). Because each edge feature (Vé +Vi-VH Vi
preserves SIM(3) equivariance, and both VNLA (-) and VN-Max(-) are SIM(3)-equivariant (Prop. 1,
Prop. 2, and Prop. 3), each layer output remains equivariant. By layer-wise induction, the entire
VN-DGCNN is SIM(3)-equivariant. We initialize all vector features V' with the 3D coordinates of
the input points.
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Query generator. The query generator produces a fused query set Q = [Qr, Q¢] [7], where Q;
is sampled from the partial input and Qs = VN-Linear(VN-Max(V)), with V denoting the output
of the final encoder layer. Q is SIM(3)-equivariant, as Q; follows the transformed input, and Q¢
inherits equivariance from the encoder through SIM(3)-equivariant operations (Prop. | and Prop. 3).

Reconstruction head. The reconstruction head produces the final output point set y as:

D
_ — 1
§ — VN-Linear(V — V ith V== Vd. 4
y inear( )+ Q, wit D 2 [d] (48)

where V is the decoder output. y is SIM(3)-equivariant, as centering V prevents translation
accumulation from V and Q, with both the VN-Linear(-) and Q preserving equivariance (Prop. 1).

C.5 Summary and approximate equivariance bound

The entire network architecture is SIM(3)-equivariant by construction, since it is built exclusively
from the above-mentioned SIM (3)-equivariant modules. To stabilize training, we follow the practice
of Assaad et al. [33] and introduce a small norm-controlled bias to VN-Linear layers. Although this
modification introduces a minor deviation from exact equivariance, its effect in each layer is bounded
by a constant ¢;, and remains insignificant across layers as proved in VN-Transformer [33]. As a
result, the overall network is effectively €; 1 -approximately equivariant.

D Implementation Details

SIMECO is implemented in PyTorch and optimized using the Adam optimizer with an initial
learning rate of 10~%, a weight decay of 5 x 10~%, and a learning-rate decay factor of 0.9 every 15
epochs. We adopt the same architectural depth and hyperparameters as AdaPoinTr [7]. The models,
including baselines, were trained for 200 epochs on two NVIDIA A40 GPUs. All other completion
methods [6, 7, 8, 10, 13, 15, 54, 64] were used with their default settings.

E More Visualizations

Fig. 14 expands the PCN comparison with more methods. Fig. 15 presents further qualitative results
on KITTI and OmniObject3D scans. Fig. 16 shows how the methods respond to controlled pose and
scale perturbations.
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SIMECO (ours)  AdaPoinTr AnchorFormer ~ SnowflakeNet  SeedFormer PoinTr ESCAPE EquivPCN
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Figure 14: Extended comparison on PCN. Our model outperforms other equivariant methods and
non-equivariant baselines trained with SIM(3) augmentation. Complements Fig. 5.
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Figure 15: Extended cross-domain comparison. Our PCN-trained model completes driving (KITTT)
and indoor (OmniObject3D) scans more accurately than other methods with SIM(3) augmentation.
Complements Fig. 7.

18



Input GT SIMECO (ours) AdaPoinTr ESCAPE EquivPCN
1/SIM(3) SIM(3)/SIM(3) SIM(3)/SIM(3) SIM(3)/SIM(3)

SIM(3)

Figure 16: Extended comparison of robustness to pose and scale perturbations. Under larger pose
and scale changes, our SIM(3)-equivariant model maintains completion quality, whereas competing

methods degrade. Complements Fig. 6.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our contributions and scope are summarized in Sec. 1, and supported by Sec. 3,
Sec. 4, and the Appendix with theoretical and experimental evidence.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We briefly acknowledge application-level constraints in Sec. 5 and provide a
comprehensive discussion of limitations and computational scalability in the Appendix.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Each theorem in Sec. 3, including the equivariance results, states all assump-
tions and refers to formal proofs in the Appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All experimental protocols are detailed in Sec. 4.1 and the Appendix using
public datasets, and our code is provided for full reproduction.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes],

Justification: All datasets are publicly available. Our supplemental material includes code
with instructions, and we will publicly release the repository upon acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Sec. 3.3, Sec. 4.1, and the Appendix detail training, evaluation, and code.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Results are based on single runs over fixed splits, and error bars are omitted
due to computational constraints. However, Sec. 4 demonstrates consistent, statistically
significant performance across multiple datasets.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We detail the hardware specification and runtimes in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our research fully complies with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: Our academic work presents foundational methods evaluated on standard
public benchmarks with no explicit negative societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not foresee any explicit risk for misuse of this work.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have credited them appropriately.
Guidelines:
e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Source code is provided in the Supplementary Material with full documentation
and will be publicly released for reproducibility.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work involves no crowdsourcing or human-subject research.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work involves no human-subject research.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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