
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

STEPWISER: STEPWISE GENERATIVE JUDGES FOR
WISER REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

As models increasingly leverage multi-step reasoning strategies to solve complex
problems, supervising the logical validity of these intermediate steps has become
a critical research challenge. Process reward models address this by providing
step-by-step feedback, but current approaches have two major drawbacks: they
typically function as classifiers without providing explanations, and their reliance
on supervised fine-tuning with static datasets limits generalization. Inspired by
recent advances, we reframe stepwise reward modeling from a classification task
to a reasoning task itself. We thus propose a generative judge that reasons about
the policy model’s reasoning steps (i.e., meta-reasons), outputting thinking tokens
before delivering a final verdict. Our model, STEPWISER, is trained by reinforce-
ment learning using relative outcomes of rollouts. We show it provides (i) better
judgment accuracy on intermediate steps than existing methods; (ii) can be used to
improve the policy model at training time; and (iii) improves inference-time search.

1 INTRODUCTION

As large language models (LLMs) increasingly tackle complex problems, they rely on multi-step
reasoning strategies like Chain-of-Thought (CoT) (Wei et al., 2022) and ReAct (Yao et al., 2022) to
decompose tasks and formulate better solutions. Consequently, ensuring these intermediate reasoning
steps possess logical validity has become a critical research challenge. Process Reward Models
(PRMs) have emerged as a potential tool to meet this need, providing step-by-step feedback for
supervising learning, instead of relying on a single, often sparse, outcome-based reward (Lightman
et al., 2023; Wang et al., 2023). However, this approach suffers from two major drawbacks. First,
current PRMs typically function as “black-box” classifiers, providing a score or label without
explaining why a step is correct or flawed. Second, their reliance on supervised fine-tuning (SFT)
with static datasets can limit their ability to generalize to new reasoning patterns (Lightman et al.,
2023; Luo et al., 2024; Wang et al., 2023; Xiong et al., 2024b; Zhang et al., 2024a). In contrast,
reasoning models themselves are trained to produce CoTs with reinforcement learning (RL) for best
performance (DeepSeek-AI et al., 2025).

In this paper we propose to reward intermediate reasoning steps by first reasoning about those
reasoning steps, before making a judgment – a meta-reasoning process which itself is trained by
RL. Our overall method (as shown in Figure 1) to build such a stepwise generative judge involves 3
components: (1) a new self-segmentation technique to equip the base policy model with the ability to
produce coherent and informative reasoning chunks (chunks-of-thought); (2) assignment of target
rewards to chunks via relative outcomes of rollouts; and (3) online training of judgment reasoning
chains (i.e., reasoning about reasoning) and final reward judgments via RL. Our stepwise judge,
termed STEPWISER, can then be used to provide rewards either at training time or inference time in
order to improve the reasoning ability of the policy model.

We conduct a comprehensive evaluation of our method across three key dimensions: (i) the judge’s
classification accuracy on intermediate steps, e.g., via its score on ProcessBench (Zheng et al., 2024);
(ii) its performance in a new inference-time search paradigm where the judge cleans up the reasoning
history and re-samples – a method we propose for efficiently scaling sequential computation while
maintaining the original generation length; and (iii) its utility in data selection for downstream model
training. Our experiments demonstrate that our RL-trained generative stepwise judge significantly

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Thoughts

Response

Monte-Carlo rollouts to
estimate success rates after

each chunk

Question

Final successes

0 1 0…

⅜ success

Before:
⅜ success

After:
⅞ success

Current
chunk Judge

Split CoT
thinking into

coherent chunks

Label chunks by
comparing before and

after success rates

Judge CoT
+

decision
(good/bad)

Thought
chunks

Response

Question

Current
chunk

Question

Previous
chunks

RL training rewardup → good
down → bad

Use the labels to RL train a
stepwise judge that evaluates

each chunk using CoT

If success is:

Figure 1: Overview of our STEPWISER training method: we teach the model to segment its
chain-of-thought (CoT) into coherent chunks. Then after each chunk, we generate Monte-Carlo
rollouts to estimate the average success rate (i.e. Q-value) starting from that point. If the success rate
goes up (or down) after a given chunk, we label it as good (or bad). Using these labels, we RL train a
stepwise judge model that determines the quality of a given chunk after its own CoT reasoning.

outperforms traditional SFT-based baselines and other existing methods across all axes of evaluation,
where the ability to meta-reason – trained via RL – is the critical factor.

2 RELATED WORK

2.1 PROCESS REWARD MODELS IN LLM MATH REASONING

To improve the reliability of multi-step reasoning in LLMs, one can consider methods beyond
evaluating only the final answer, termed Outcome Reward Models (ORMs), by instead evaluating
each intermediate step, a method pioneered by Process Reward Models (PRMs). Lightman et al.
(2023) first demonstrated that a process-supervised model can significantly outperform an outcome-
supervised one in guiding best-of-n sampling. However, their PRM800K dataset relied on intensive
human annotation for each reasoning step, which is generally infeasible for larger, more diverse and
challenging datasets.

Subsequent research has focused on automating this annotation process. Wang et al. (2023) proposed
using Monte Carlo (MC) rollouts to estimate the Q-value of each step, while Luo et al. (2024)
introduces a binary search method to efficiently identify faulty steps. Our work builds upon the
MC-based annotation approach, exploring various methods for converting these Q-value estimates
into effective learning signals.

In parallel, another line of work has established a theoretical connection between intermediate step
values and the final outcome within the framework of KL-regularized Markov Decision Processes
(Zhong et al., 2024; Rafailov et al., 2024). This result has been used to derive DPO-like objectives for
learning an implicit PRM from outcome-only data (Xiong et al., 2024a; Cui et al., 2025; Zhou et al.,
2025) or a KL-regularized version of the MC-based estimator (Zhang et al., 2024a). A recent work
(Zha et al., 2025) prompts LLMs to evaluate each individual step before producing a final judgment,
but critically, supervises only the evaluation of the final answer. In contrast, our work demonstrates
that providing explicit supervision for the evaluation of each intermediate step is a far more effective
strategy. Our experiments conclusively show that leveraging these rich, dense feedback signals leads
to a significantly more powerful and accurate judge model.

Concurrent work by He et al. (2025) uses a prompting approach to segment thought process into
coherent chunks similar to ours. However, their stepwise judge is based only on prompting techniques
that leverages hints in CoT like “Wait, I made a mistake”. In contrast, our method focuses on training
a judge using stepwise labels grounded in final verified answers.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2 JUDGE ARCHITECTURES

The process labels and signals described above can be used to train judges with different distinct
architectures and training paradigms.

Discriminative PRMs The most straightforward approach is to treat the task as a classification
problem. This involves replacing the language model’s final layer with a linear head and fine-tuning
it to predict a binary label for each step using a cross-entropy loss (Lightman et al., 2023). A
more recent method formulates the task as next-token prediction, prompting the LLM to generate a
pre-defined token (e.g., + or -) as its judgment (Wang et al., 2023; Xiong et al., 2024b). This approach
further dates back to preference reward model training (Dong et al., 2024; Liu et al., 2023). Although
this method uses a generative mechanism, its function remains purely discriminative, as it outputs a
simple judgment without justification. We therefore group both under the discriminative category.

Generative judges with CoT reasoning In sharp contrast, the second and most recent paradigm
is the generative reasoning judge. Here, the evaluation itself is framed as a reasoning task. The
judge first generates an explicit CoT to explain its rationale before outputting its final judgment.
This approach was initially explored for preference learning and ORMs (Zhang et al., 2024b; Chen
et al., 2025). There are also a few very recent works studying this paradigm shift in the context of
stepwise judges, including Zhao et al. (2025); Zha et al. (2025); Khalifa et al. (2025). Though we
share similar spirit of leveraging the inherent reasoning ability of the LLMs to train a stepwise judge,
the algorithmic designs are distinctly different.

Comparison to Recent Work First, in contrast to works focusing on offline rejection sampling
fine-tuning (Zhao et al., 2025; Khalifa et al., 2025), we identified critical scalability issues with such
static methods. While offline fine-tuning provides dramatic initial performance gains, we observed
that learning quickly plateaus. Specifically, the model’s loss stagnates after training on a relatively
small dataset (e.g., 10k samples), preventing further improvement. In contrast, we observe that
online RL framework allows for continuous learning and scalability, successfully showing sustained
improvement on over 800k samples.

Second, our approach fundamentally diverges from RL methods that rely on sparse, trajectory-level
supervision, such as Zha et al. (2025). Specifically, they prompt the LLMs to evaluate each individual
step and final answer but only the final verification is supervised. Their approach assumes that to get
an accurate evaluation of the final answer, models implicitly become a stepwise judge. Our divergence
is rooted in strong theoretical evidence from preference learning, where an exponential gap in sample
complexity can exist between learning from sparse final outcomes versus dense intermediate rewards
(Zhong et al., 2024, c.f. Proposition 3.2).

This motivated our central hypothesis that a similar principle governs the training of generative
judges. However, applying RL to decoupled, individual steps is non-trivial. We discovered that this
fine-grained approach introduces unique challenges, namely (1) a susceptibility to majority class bias,
and (2) noisy signals arising from naive trajectory segmentation. To address these, our framework
incorporates two targeted solutions: self-segmentation fine-tuning to generate coherent reasoning
steps, and prompt set balancing to mitigate bias. As our experiments will demonstrate, it is this
complete framework—harnessing the power of explicit, stepwise signals while actively correcting for
their inherent challenges—that is essential for training state-of-the-art generative judges.

3 METHOD: TRAINING STEPWISE GENERATIVE JUDGES WITH RL

As depicted in Figure 1, our overall method STEPWISER consists of three components:

1. We equip the base policy model with the ability to self-segment Chain-of-Thoughts into
coherent and informative reasoning chunks, called Chunks-of-Thought. This is done by
creating SFT data with informative segments, so that the model can be trained to self-
segment. We show that this causes no loss in performance for the base model and is critical
to reduce the training noises during RL by removing the meaningless chunk.

2. Given the chunks generated by the policy model, we annotate each chunk to create training
data for our generative stepwise judge with binary target labels. This is done by comparing
outcomes of rollouts starting before and after the given chunk using the outcome rewards.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3. We perform online RL training using GRPO which trains our stepwise judge model to
produce judgment reasoning chains (i.e., reasoning about reasoning) and reward final
judgments that match the chunk labels from the previous step.

We describe the three components in detail in the following three subsections.

3.1 COT GENERATION WITH SELF-SEGMENTATION (CHUNKS-OF-THOUGHT)

A core challenge in evaluating reasoning processes is defining what a “step” is. Simple heuristics,
like splitting on double line breaks or predefined tokens like “Step 1, Step 2”, often create fragmented
or logically incomplete steps, making them difficult for a judge to evaluate. We present representative
examples in appendix (Table 11-13), where the model tends to insert double line breaks before and
after a mathematical equation. This breaks an intuitively unified logical step into multiple different
chunks, where one chunk contains a textual explanation, and the next with the corresponding equation.

Achieving better step definition via self-segmentation. To mitigate this issue, we propose a method
to teach the model to generate and simultaneously self-segment its own reasoning chains into more
meaningful steps. First, we define the criteria for a high-quality reasoning step. The core idea is that
each step should represent a complete logical leap or a self-contained part of the problem-solving
process. Our definitions are given in Table 5. We then create our training data by:

1. Generating a set of initial reasoning trajectories from the base model.
2. Using an LLM prompted with our rules, to automatically segment these trajectories into

logically coherent steps.

We fine-tune our base model on this data, thus teaching it to generate and simultaneously self-segment
its own reasoning chains automatically. This self-segmentation ability is crucial for two main reasons.
First, it produces more informative and logically complete steps, which provides better context for
our judge model and improves its evaluation accuracy. Second, this method significantly reduces the
total number of steps per trajectory. This reduction is also important because, as we will show, the
process of annotating each step with a quality label is computationally expensive.

3.2 STEPWISE DATA ANNOTATION

Stepwise data annotation via Q value estimation Previous work has used human labelers to
annotate correctness of each reasoning step (Lightman et al., 2023), although most such data is
collected for proprietary models that we cannot access. Other works annotate steps automatically
using methods like Monte Carlo estimation (Wang et al., 2023). We follow this second approach,
using an estimated Q-value to measure the quality of each step.

For a given training prompt x with verifiable outcome rewards, we generate a response from our
policy model π which segments its CoT into chunks a = [a1, a2, · · · , aH], where ai is the i-th
reasoning chunk. Then, the Q value of an individual step ai and its history is the expected final
reward starting from that point:

Qπ
(
[x, a1:i−1], ai

)
:= Qπ(si−1, ai) = Eai+1:H∼π(·|x,a1:i)r

⋆(x, a1:H), (1)

where si := [x, a1:i−1] is the history, and r⋆ is a final reward, which can be 1 for correct answers and
0 otherwise. We estimate this Q-value by generating M full completions aji+1:H from that step ai
and calculating the average final reward, i.e. the ratio of correct final answers:

Q̂π
(
si−1, ai

)
=

1

M

M∑
j=1

r⋆(x, a1:i, a
j
i+1:H). (2)

Following prior work (Wang et al., 2023; Xiong et al., 2024b), we can then assign a binary label to
the step based on this Q-value:

yi =

{
+ if Q̂π

(
si−1, ai

)
> 0,

− if Q̂π
(
si−1, ai

)
= 0.

For convenience, we refer to this labeling approach as Absolute Q value thresholding (Abs-Q).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Prompt Template for our STEPWISER judge.

Prompt Template for STEPWISER Judge

Instruction:
You are a reasoning validator for mathematical problems. Your task is to think step by step and determine
if the “New Reasoning Chunk” contains any explicit errors based on the problem description and
historical context.
First, you must always perform a step-by-step chain of thought analysis to justify your final judgment.
Then, based on your analysis, you will make a definitive judgment. It is OK that the chunk does not
contain any numerical calculation.
Based on your evaluation, provide your final judgment:
• Use Positive if the reasoning chunk is free of mistakes.
• Use Negative if the reasoning chunk contains one or more mistakes.

Input:
Mathematical Problem: {problem}
Historical Reasoning Path: {history}
New Reasoning Chunk: {chunk}

Output format:
1. Analysis: [Always provide a step-by-step analysis here. First, briefly state the goal of the current

reasoning chunk. Second, verify the logic, method, and any calculations against the problem’s
requirements and the historical path. If an error is found, clearly explain the error and why it’s wrong.
If the reasoning is correct, explain why it is a valid and logical step forward.]

2. Final Judgment: [Provide the final judgment within \boxed{}. Examples: \boxed{Positive}
or \boxed{Negative}.]

Rewarding the progress One drawback of Abs-Q is its insensitivity to the dynamics of the
reasoning process. For instance, it does not differentiate between a step that raises the success
probability from 10% to 50% and one that drops it from 60% to 55%. To reward progress, we also
explore methods that consider the change in Q-value.

Setlur et al. (2024) proposes to consider the change in value. Specifically, they define the notion of
effective reward as a combination of Q value and advantage function of the best-of-n policy induced
by r⋆:

Qπ(si−1, ai) + α ·Aµ(si−1, ai), (3)
where α > 0 is a hyperparameter, and Aµ(si−1, ai) := Qµ(si−1, ai)−Qµ(si−2, ai−1). Here µ is
taken as the best-of-n policy with r⋆. In other words, we generate n responses from π and use r⋆ to
select the best one. In this case, µ satisfies that Qµ(si−1, ai) = 1− (1−Qπ(si−1, ai))

n1. Therefore,
the effective reward can also be estimated via Q value estimation. Accordingly, we consider an
alternative approach of data annotation:

yi =

{
+ if Q̂π

(
si−1, ai

)
+ α · Âµ

(
si−1, ai

)
> 0,

− if Q̂π
(
si−1, ai

)
+ α · Âµ

(
si−1, ai

)
= 0,

where Âµ is the estimated advantage through the Monte-Carlo estimation of the Q value. We refer to
this labeling approach as Relative Effective Reward Thresholding (Rel-Effective).

As a simpler alternative to capture relative improvement, we also consider a method based on the
value ratio, where the label is determined by if Q̂π

(
si−1, ai

)
/Q̂π

(
si−2, ai−1

)
> γ. We refer this

labeling approach as Rel-Ratio.

Using one of these methods, we can assign binary label yi to every step ai in a reasoning trajectory.
Since these labels come from unbiased estimates of the actual Q-values, they are likely to be more
reliable compared to more ad-hoc methods. For example, if a step ai is the first step with a mistake,
rollouts starting after ai are more likely to fail compared to ones that start before the flawed step ai.

1Assuming binary {0, 1} outcome rewards where (1−Qπ(si−1, ai))
n is the probability of n rollouts failing.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.3 TRAINING THE JUDGE VIA REINFORCEMENT LEARNING

Our goal is to train a stepwise judge using the segmented (chunked) reasoning chains and stepwise
target labels. While a standard approach is to train a discriminative judge via SFT (Wang et al., 2023;
Xiong et al., 2024b), we adopt a generative formulation inspired by recent studies (Zhang et al.,
2024b; Chen et al., 2025; Whitehouse et al., 2025). We frame the evaluation as a reasoning task
where the judge first generates a CoT analysis of the step in question, then outputs a final judgment.
This generative process is compelling because it forces the judge to “show its work,” leading to a
more transparent and potentially more accurate evaluation.

0 500 1000 1500 2000 2500
Optimization steps

0.67

0.68

0.69

0.70

0.71

0.72

Tr
ai

ni
ng

 lo
ss

Rel-Ratio + Rejection SFT

Figure 2: The training loss of of-
fline RFT on a static dataset. The
loss saturates quickly, indicating
that learning has stagnated.

The Insufficiency of Offline Fine-tuning. We first consid-
ered a simpler offline approach, rejection sampling fine-tuning
(RFT), but found it has a critical limitation. On a static dataset,
the training loss plateaus very quickly after very few optimiza-
tion steps (Figure 2). This demonstrates that static methods
are insufficient for this complex task, motivating our adoption
of an online RL framework to leverage a continuous and more
diverse set of learning signals.

RL Task Formulation and Training. We formulate the train-
ing as a step-level judgment task. For each step, the judge
model is given the original problem x, the reasoning history
a1:i−1, and the current chunk ai to evaluate. It is then prompted
to generate a CoT rationale explaining its analysis, followed by
a final verdict (see prompt template in Table 1).

Prompt balancing. A critical challenge we identified in this
stepwise setting is the severe label imbalance produced by our
data annotation process (e.g., over 70% positive labels with Abs-Q). Our early experiments showed
this leads to degenerate judges that simply learn to always predict majority class. To address this, we
incorporate prompt dataset balancing by down-sampling the majority class to ensure a 1:1 ratio of
positive and negative examples. This simple technique proved essential for stable training and robust
performance, an impact we quantify in our ablation study in Section 4.3.

The RL training itself is straightforward. The judge receives a reward of 1 if its verdict matches the
target label yi and 0 otherwise. We use the GRPO algorithm (Shao et al., 2024) for optimization.

4 EXPERIMENTS

We use the Qwen2.5-1.5B-it and 7B-it models (Yang et al., 2024) as our base models. The prompts
come from a subset of NuminaMath-CoT dataset (Beeching et al., 2024), which we preprocess by
removing duplicates and filtering for problems verifiable by Math-Verify. This section highlights a
key result that enables our pipeline’s feasibility; full implementation details for all training stages,
hyperparameters, and additional ablations are deferred to Appendix B.

4.1 SELF-SEGMENTATION FINE-TUNING

We first fine-tune the base policy to segment its own reasoning into meaningful “chunks”. This is
achieved by generating solutions to 20k problems, using a powerful teacher model (Llama-3.1-70B-it)
to segment them into high-quality steps, and then fine-tuning our policy on this data. As shown in
Table 6, this crucial pre-training step significantly reduces the number of steps per solution (e.g., from
9.6 to 6.0) without harming task performance.

This reduction in complexity is vital for two reasons: it (1) substantially lowers the computational
cost of our subsequent data annotation stage, and (2) provides a cleaner, less noisy signal for the
final RL training by filtering out trivial or meaningless steps. We provide detailed ablation studies in
Appendix C.1 that further verify the effectiveness of this approach.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: ProcessBench results. Average accuracy (Avg) of our method STEPWISER is better than all
variants of our discriminative baselines, and existing baselines in the literature (first rows). Further
comparisons are given in Appendix Table 9.

Method Learning signal GSM8K MATH Olympiad Omni-MATH Avg ↑

Existing Reference Models
Math-Shepherd-PRM-7B Abs-Q 47.9 29.5 24.8 23.8 31.5
RLHFlow-Llama3-8B-it Abs-Q 50.4 33.4 13.8 15.8 28.4
Skywork-Qwen2.5-Math-7B-it Abs-Q 70.8 53.6 22.9 21.0 42.1
Eurus-Qwen2.5-Math-7B-it (DPO) Outcome 56.6 43.0 27.3 26.8 35.1
RL-TANGO-Qwen2.5-7B-it Outcome 53.1 48.2 37.8 36.3 43.9

Qwen2.5-1.5B-chunk
Discriminative + SFT Abs-Q 39.3 32.1 19.3 18.9 27.2
Discriminative + SFT Rel-Effective 40.8 37.2 18.7 20.1 29.2
Discriminative + SFT Rel-Ratio 32.1 32.0 14.2 18.0 24.1
Generative CoT + RL (STEPWISER) Abs-Q 49.2 40.5 23.8 31.0 36.1
Generative CoT + RL (STEPWISER) Rel-Effective 48.2 43.6 22.1 25.3 34.8
Generative CoT + RL (STEPWISER) Rel-Ratio 46.9 43.4 26.3 28.4 36.2

Qwen2.5-7B-chunk
Discriminative + SFT Abs-Q 54.8 45.9 28.0 26.9 38.9
Discriminative + SFT Rel-Effective 55.6 48.7 26.4 28.3 39.7
Discriminative + SFT Rel-Ratio 48.6 46.9 21.9 25.4 35.7
Generative CoT + RL (STEPWISER) Abs-Q 61.9 61.0 48.4 43.9 53.8

+ Maj@8 Abs-Q 65.5 62.1 49.7 45.7 55.8 (+2.0)
Generative CoT + RL (STEPWISER) Rel-Effective 72.4 68.3 54.4 52.4 61.9

+ Maj@8 Rel-Effective 72.9 72.1 57.3 54.0 64.1 (+2.2)
Generative CoT + RL (STEPWISER) Rel-Ratio 72.6 67.2 52.3 49.8 60.5

+ Maj@8 Rel-Ratio 74.3 69.0 53.8 50.2 61.8 (+1.3)

4.2 EVALUATION ON PROCESSBENCH

We first evaluate STEPWISER on ProcessBench (Zheng et al., 2024), a benchmark for identifying
the first incorrect step in a reasoning process. Performance is measured by the harmonic mean of
accuracy on problems with correct (acc1) and incorrect (acc2) final answers, calculated as 2×(acc1×
acc2)/(acc1 + acc2).

STEPWISER significantly outperforms SFT and RL baselines. Our primary results in Table 2
show that our RL-trained generative judge, STEPWISER, consistently and substantially outperforms
baselines. First, it is far superior to SFT-trained discriminative judges across all signals and model
scales. For instance, our 7B model with the Rel-Effective signal scores 61.9, beating the SFT
baseline’s 39.7. Its performance also surpasses that of similar community-trained PRMs.

Our RL-trained STEPWISER judge significantly outperforms existing RL-trained judges.
Furthermore, we benchmark STEPWISER against other models trained with online methods like
online DPO (Xiong et al., 2023; Xu et al., 2023) or GRPO (Shao et al., 2024) (e.g., Eurus-7B,
RL-TANGO-7B). Unlike our method, these models are supervised at the trajectory level, using only
the final answer’s correctness as a reward signal, denoted by “Outcome” in Table 2. For instance,
our best 7B model’s score of 61.9 is well ahead of RL-TANGO’s 43.9. This result provides strong
evidence for our core hypothesis: that direct, dense, step-level supervision provides a much richer
and more effective learning signal for training process reward models.

4.3 ANALYSIS OF KEY COMPONENTS TO THE PERFORMANCE GAP

To understand the source of this performance gap, we conduct a series of ablation studies comparing
our full STEPWISER method against baselines that remove one key component at a time: (1) Ablate
RL by using offline rejection sampling (RFT) (Dong et al., 2023); (2) Ablate CoT by training a
discriminative judge with RL where the model directly outputs a token to indicate the judgment; and
(3) Ablate prompt dataset balancing. For brevity, we focus on the Rel-Ratio signal here, as the
trends are consistent across others (see Appendix for more).

Online RL contributes to the performance improvement. The importance of online learning is
evident when comparing our full STEPWISER model to the RFT baseline. On ProcessBench using

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Ablation study results on ProcessBench. The results show that both the generative CoT
reasoning and RL components of our STEPWISER method are important for overall results.

Method GSM8K MATH Olympiad Omni-MATH Avg ↑

Qwen2.5-1.5B-chunk
Discriminative + SFT (Baseline) 32.1 32.0 14.2 18.0 24.1
STEPWISER (Generative Reasoning + RL) 46.9 43.4 26.3 28.4 36.2

– Ablate RL (use RFT) 32.8 23.9 16.3 19.6 23.1
– Ablate CoT (use Discriminative format + RL) 42.0 43.2 23.6 28.7 34.3

Qwen2.5-7B-chunk
Discriminative + SFT (Baseline) 48.6 46.9 21.9 25.4 35.7
STEPWISER (Generative Reasoning + RL) 72.6 67.2 52.3 49.8 60.5

– Ablate CoT (use Discriminative format + RL) 58.7 49.4 40.8 42.7 47.9
– Ablate Prompt Balancing (Generative Reasoning + RL) 58.8 54.8 41.0 36.9 47.9

Qwen2.5-1.5B-chunk, the RFT model achieves an average score of only 23.1, which is substantially
lower than STEPWISER’s score of 36.2 and is even worse than the standard discriminative SFT
baseline (24.1). From Figure 2, we notice that its training loss on a large, static dataset plateaus
quickly. This trend is consistent across other learning signals and the larger 7B model, indicating that
offline methods are insufficient to capture the complexity of CoT reasoning and reward modeling,
making online RL a critical component.

STEPWISER judge with CoT leverages intrinsic reasoning ability to obtain better evaluation The
benefit of the generative CoT format is illustrated by the “Ablate CoT” baseline. With the Qwen2.5-
1.5B-chunk model, augmenting a discriminative-style judge with RL boosts the ProcessBench score
from 24.1 (SFT) to 34.3 (RL), but it still falls short of the STEPWISER model’s 36.2. Moreover, the
in-distribution accuracy results in Figure 5 show that the STEPWISER model with CoT reasoning
achieves higher accuracy on the held-out data. This suggests that generating explicit rationales
provides a more expressive and informative structure for learning and modeling the stepwise reward
signal. The gap between the generative CoT model and the discriminative model becomes much
larger with the stronger Qwen2.5-7B-chunk. Specifically, the generative STEPWISER model reaches
an average score of 60.5, while the discriminative model only achieves 47.9. This is because we
are leveraging the intrinsic reasoning ability of the base model through CoT in the judgment so the
stronger model offers more advantages.

Prompt dataset balancing stabilizes training and mitigates overfitting. The practice of balancing
the prompt dataset is also crucial for robust performance. Our ablation study on the Qwen2.5-7B-
chunk model shows that removing this balancing step causes a substantial performance drop, with
the average ProcessBench score dropping from 60.5 to 47.9. A deeper analysis reveals that while
both the “Ablate CoT” ablation and the lack of dataset balancing hurt performance, their underlying
failure modes are different. The “Ablate CoT” model suffers from a general decline in its ability to
recognize correct and incorrect steps. In contrast, without balancing, the prompt dataset is heavily
biased towards positive examples. This trains the model to be overly optimistic, developing a strong
bias towards predicting any given step as correct. This bias is particularly enhanced during online
training, which eventually leads to training instability and model collapse. A detailed analysis of this
phenomenon is provided in the Appendix C.2.

4.4 USING THE STEPWISER JUDGE TO OBTAIN BETTER SOLUTIONS

In this section, we evaluate the practical utility of our RL-trained STEPWISER judge by using it to
guide an LLM’s reasoning process at inference time. We employ a search strategy called Chunk-Reset
Reasoning. The base policy model generates a solution “chunk-by-chunk”. After each chunk is
produced, our STEPWISER judge evaluates it. If the chunk is deemed correct, it is accepted, and the
model proceeds. If it is rejected, the flawed chunk is discarded, and the policy model re-generates
a new one from the same point (up to 5 attempts). This allows the model to explore alternative
reasoning paths without committing to an early mistake. This paradigm effectively scales sequential
compute (i.e., compute used to extend a single trajectory) while keeping the final accepted token
count similar.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Inference time search via Chunk-Reset Reasoning. We report results with both Qwen2.5-
1.5B-chunk and Qwen2.5-7B-chunk, using them as both the response generators and the initialization
checkpoints for the STEPWISER judge. We see clear improvements using STEPWISER across both
model sizes, with similar accepted responses lengths (on MATH500). Rejected length is the number
of tokens in removed chunks during inference time search.

Learning NuminaMath Accepted Rejected
Method signal MATH500 Heldout-1K Avg ↑ length length

Qwen2.5-1.5B-chunk - 44.7 17.6 31.2 616.0 0.0
Discriminative + SFT Abs-Q 47.7 19.1 33.4 625.2 218.7
Discriminative + SFT Rel-Effective 47.4 19.6 33.5 612.7 302.4
Discriminative + SFT Rel-Ratio 50.4 20.0 35.2 596.0 475.8
Generative CoT + RL (STEPWISER) Abs-Q 51.4 19.8 35.6 599.1 1069.2
Generative CoT + RL (STEPWISER) Rel-Effective 52.1 21.2 36.7 602.0 947.4
Generative CoT + RL (STEPWISER) Rel-Ratio 51.9 21.8 36.9 596.4 884.7

Qwen2.5-7B-chunk - 73.3 41.5 57.4 609.5 0.0
Discriminative + SFT Abs-Q 74.8 44.4 59.6 654.0 168.2
Discriminative + SFT Rel-Effective 76.9 46.1 61.5 654.6 186.5
Discriminative + SFT Rel-Ratio 76.7 45.8 61.3 641.4 219.7
Generative CoT + RL (STEPWISER) Abs-Q 77.5 46.3 61.9 658.5 345.7
Generative CoT + RL (STEPWISER) Rel-Effective 78.3 48.1 63.2 660.8 425.8
Generative CoT + RL (STEPWISER) Rel-Ratio 79.0 47.5 63.3 653.0 295.4

Inference-time search consistently improves performance. As shown in Table 4, using our
STEPWISER judge for guidance leads to superior outcomes. With the Rel-Ratio learning signal,
our approach steers the 1.5B model to an average accuracy of 36.9%, a significant improvement over
the 31.2% of the base model without guidance. We observe a clear trend of our STEPWISER judge
being superior to the discriminative models across all learning signals, and this trend holds for the 7B
model, demonstrating the scalability of our approach.

Superior error detection enables effective self-correction. The “Accepted Length” column in
Table 4 shows that the final solutions are of a similar length to the baselines. However, the “Rejected
Length” column, which tracks discarded chunks, is significantly higher when using STEPWISER. We
interpret this as direct evidence of STEPWISER’s superior ability to identify incorrect or unproductive
steps. This triggers the reset mechanism more effectively, forcing the model to discard flawed
reasoning and find a better path, which is consistent with its higher accuracy on ProcessBench.

Relative signals prove more effective for guidance. The inference-time search results also reinforce
a key finding of this paper: training signals that reward relative progress (Rel-Effective,
Rel-Ratio) consistently yield better judges than a signal that only measures a step’s absolute
quality (Abs-Q). For example, the Rel-Effective judge guides the 7B model to 64.3% accuracy,
outperforming the Abs-Q judge (61.9%). This pattern, further confirmed by our data selection
experiments in Appendix C.4, shows that modeling the dynamics of reasoning is a more effective
strategy for training useful judges.

5 CONCLUSION

Reasoning models that output internal thought tokens before a final response have proven to outper-
form non-reasoning models. In this paper we have shown that further improvements can be found
by making models reason about the reasoning decisions made within those internal thoughts. We
provide a recipe to: (1) segment reasoning into chunks-of-thought; (2) assign rewards to chunks via
relative outcomes of rollouts; and (3) train a judge model to reason about the quality of CoT chunks
via reinforcement learning (RL).

Our stepwise generative judge STEPWISER is shown to be superior to existing methods on Process-
Bench, to provide improved inference time search, and better training time rewards for building better
response models. We show that both the use of reasoning during judgment, and training with RL in
order to reason about reasoning, are important components to achieve this performance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Edward Beeching, Shengyi Costa Huang, Albert Jiang, Jia Li, Benjamin Lipkin, Zihan Qina, Kashif
Rasul, Ziju Shen, Roman Soletskyi, and Lewis Tunstall. Numinamath 7b cot. https://
huggingface.co/AI-MO/NuminaMath-7B-CoT, 2024.

Xiusi Chen, Gaotang Li, Ziqi Wang, Bowen Jin, Cheng Qian, Yu Wang, Hongru Wang, Yu Zhang,
Denghui Zhang, Tong Zhang, et al. Rm-r1: Reward modeling as reasoning. arXiv preprint
arXiv:2505.02387, 2025.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang,
Yuan Yao, Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou, and Ning
Ding. Process reinforcement through implicit rewards, 2025. URL https://arxiv.org/
abs/2502.01456.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, KaShun SHUM, and Tong Zhang. RAFT: Reward ranked finetuning for generative
foundation model alignment. Transactions on Machine Learning Research, 2023. ISSN 2835-8856.
URL https://openreview.net/forum?id=m7p5O7zblY.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf.
arXiv preprint arXiv:2405.07863, 2024.

Tao He, Rongchuan Mu, Lizi Liao, Yixin Cao, Ming Liu, and Bing Qin. Good learners think their
thinking: Generative prm makes large reasoning model more efficient math learner. arXiv preprint
arXiv:2507.23317, 2025.

Muhammad Khalifa, Rishabh Agarwal, Lajanugen Logeswaran, Jaekyeom Kim, Hao Peng, Moon-
tae Lee, Honglak Lee, and Lu Wang. Process reward models that think. arXiv preprint
arXiv:2504.16828, 2025.

10

https://huggingface.co/AI-MO/NuminaMath-7B-CoT
https://huggingface.co/AI-MO/NuminaMath-7B-CoT
https://arxiv.org/abs/2502.01456
https://arxiv.org/abs/2502.01456
https://arxiv.org/abs/2501.12948
https://openreview.net/forum?id=m7p5O7zblY

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J Liu, and Jialu Liu.
Statistical rejection sampling improves preference optimization. arXiv preprint arXiv:2309.06657,
2023.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, et al. Improve mathematical reasoning in language models by automated
process supervision. arXiv e-prints, pp. arXiv–2406, 2024.

Meta. Introducing meta llama 3: The most capable openly available llm to date. Meta AI Blog, 2024.
https://ai.meta.com/blog/meta-llama-3/.

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From r to q*: Your language model is
secretly a q-function. arXiv preprint arXiv:2404.12358, 2024.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
process verifiers for llm reasoning. arXiv preprint arXiv:2410.08146, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Y Wu,
and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Vaishnavi Shrivastava, Ahmed Awadallah, Vidhisha Balachandran, Shivam Garg, Harkirat Behl, and
Dimitris Papailiopoulos. Sample more to think less: Group filtered policy optimization for concise
reasoning. arXiv preprint arXiv:2508.09726, 2025.

Yuxuan Tong, Xiwen Zhang, Rui Wang, Ruidong Wu, and Junxian He. Dart-math: Difficulty-aware
rejection tuning for mathematical problem-solving. arXiv preprint arXiv:2407.13690, 2024.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. CoRR,
abs/2312.08935, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Chenxi Whitehouse, Tianlu Wang, Ping Yu, Xian Li, Jason Weston, Ilia Kulikov, and Swarnadeep
Saha. J1: Incentivizing thinking in llm-as-a-judge via reinforcement learning. arXiv preprint
arXiv:2505.10320, 2025.

Wei Xiong, Hanze Dong, Chenlu Ye, Han Zhong, Nan Jiang, and Tong Zhang. Gibbs sampling from
human feedback: A provable kl-constrained framework for rlhf. arXiv preprint arXiv:2312.11456,
2023.

Wei Xiong, Chengshuai Shi, Jiaming Shen, Aviv Rosenberg, Zhen Qin, Daniele Calandriello, Misha
Khalman, Rishabh Joshi, Bilal Piot, Mohammad Saleh, et al. Building math agents with multi-turn
iterative preference learning. arXiv preprint arXiv:2409.02392, 2024a.

Wei Xiong, Hanning Zhang, Nan Jiang, and Tong Zhang. An implementation of generative prm,
2024b.

Wei Xiong, Jiarui Yao, Yuhui Xu, Bo Pang, Lei Wang, Doyen Sahoo, Junnan Li, Nan Jiang, Tong
Zhang, Caiming Xiong, et al. A minimalist approach to llm reasoning: from rejection sampling to
reinforce. arXiv preprint arXiv:2504.11343, 2025.

11

https://ai.meta.com/blog/meta-llama-3/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, and Jason Weston. Some things are more cringe than
others: Preference optimization with the pairwise cringe loss. arXiv preprint arXiv:2312.16682,
2023.

Zhenghai Xue, Longtao Zheng, Qian Liu, Yingru Li, Xiaosen Zheng, Zejun Ma, and Bo An. Sim-
pletir: End-to-end reinforcement learning for multi-turn tool-integrated reasoning. arXiv preprint
arXiv:2509.02479, 2025.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Chenlu Ye, Zhou Yu, Ziji Zhang, Hao Chen, Narayanan Sadagopan, Jing Huang, Tong Zhang, and
Anurag Beniwal. Beyond correctness: Harmonizing process and outcome rewards through rl
training. arXiv preprint arXiv:2509.03403, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale.
arXiv preprint arXiv:2503.14476, 2025.

Kaiwen Zha, Zhengqi Gao, Maohao Shen, Zhang-Wei Hong, Duane S Boning, and Dina Katabi.
Rl tango: Reinforcing generator and verifier together for language reasoning. arXiv preprint
arXiv:2505.15034, 2025.

Hanning Zhang, Pengcheng Wang, Shizhe Diao, Yong Lin, Rui Pan, Hanze Dong, Dylan Zhang,
Pavlo Molchanov, and Tong Zhang. Entropy-regularized process reward model, 2024a. URL
https://arxiv.org/abs/2412.11006.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
Generative verifiers: Reward modeling as next-token prediction. arXiv preprint arXiv:2408.15240,
2024b.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301, 2025.

Jian Zhao, Runze Liu, Kaiyan Zhang, Zhimu Zhou, Junqi Gao, Dong Li, Jiafei Lyu, Zhouyi Qian,
Biqing Qi, Xiu Li, et al. Genprm: Scaling test-time compute of process reward models via
generative reasoning. arXiv preprint arXiv:2504.00891, 2025.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. Processbench: Identifying process errors in mathematical reasoning.
arXiv preprint arXiv:2412.06559, 2024.

Han Zhong, Guhao Feng, Wei Xiong, Li Zhao, Di He, Jiang Bian, and Liwei Wang. Dpo meets ppo:
Reinforced token optimization for rlhf. arXiv preprint arXiv:2404.18922, 2024.

Yifei Zhou, Song Jiang, Yuandong Tian, Jason Weston, Sergey Levine, Sainbayar Sukhbaatar, and
Xian Li. Sweet-rl: Training multi-turn llm agents on collaborative reasoning tasks. arXiv preprint
arXiv:2503.15478, 2025.

A LLM USAGE STATEMENT

In the final stages of preparing this manuscript, we utilized a large language model (LLM) as a
writing assistant. The scope of its use was strictly limited to proofreading and refining the grammar,
and clarity of the text after all scientific work, experiments, and the initial draft were completed
by the authors. All authors reviewed, edited, and approved the LLM’s suggestions and take full
responsibility for the final content of this paper.

12

https://arxiv.org/abs/2412.11006

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Table 5: Rules that we provide for an LLM to create segmented Chunks-of-Thought SFT data.

Rules for CoT Trajectory Segmentation

Segmentation Principles
1. Unified purpose: A chunk should serve a single, clear objective. For example: setting up an

initial equation, executing a self-contained calculation (like integration by parts), or stating a
final/intermediate conclusion. All content within the chunk must directly serve this one core goal.

2. Logical Cohesion: All lines within a chunk must form a continuous and uninterrupted logical flow.
A new chunk should begin as soon as the focus or purpose of the reasoning shifts.

3. Clear Transition: A new chunk must begin when the problem-solving process enters a new phase.
This includes transitioning from ”solving for a variable” to ”verifying the answer,” or inserting an
”explanatory side-note” into the main workflow.

Format rules.
1. Use <chunk>... </chunk> to mark the beginning and end of each segment. The text and

newlines inside the tags must not be altered.

2. The final output should only contain the tagged content, without any additional text, titles, or blank
lines.

3. You must preserve all original text and newlines exactly as they appear within the tags.

Table 6: Comparison of the base policy with and without self-segmentation fine-tuning. Overall
performance is comparable, but self-segmentation results in less chunks than using split by \n \n.
Here Avg@32 is the test accuracy averaged over 32 trajectories with random seeds.

Generator Method # Steps # Tokens Avg@32 on MATH500

Qwen2.5-1.5B-it Split by \n\n 9.6 686.7 44.2
Qwen2.5-1.5B-chunk Self-segmentation 6.0 714.1 44.7

Qwen2.5-7B-it Split by \n\n 9.9 733.0 73.3
Qwen2.5-7B-chunk Self-segmentation 6.8 768.1 73.3

B EXPERIMENT SETUPS AND IMPLEMENTATION DETAILS

B.1 BASE MODELS AND DATA PREPROCESSING.

The base models used in our experiments are Qwen2.5-1.5B-it and Qwen2.5-7B-it (Yang
et al., 2024), both featuring a context window of 8192 tokens. Our training data is sourced from
the NuminaMath-CoT dataset (Beeching et al., 2024). Ground-truth verification for mathematical
problems is performed using the Math-Verify tool. The preprocessing pipeline for the training data is
as follows:

• Deduplication: Duplicate prompts are removed from the dataset.
• Verification and Filtering: We use Math-Verify to extract and score the final answer from

each reference solution. Prompts where the answer cannot be reliably verified are discarded.

Unless stated otherwise, the same base model is used to initialize both the policy and the judge.

B.2 IMPLEMENTATION DETAILS OF SELF-SEGMENTATION FINE-TUNING

To enable our models to structure their own reasoning, we first established a set of principles for
segmenting CoT trajectories into meaningful “chunks”. These rules, detailed in Table 5, are designed
to guide a powerful teacher model in creating a high-quality dataset for subsequent self-segmentation
fine-tuning.

We then used these rules to generate the self-segmentation dataset via the following multi-step
pipeline:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

• Initial Generation: From a random subset of 20k NuminaMath-CoT prompts, we generate
16 responses per prompt using the base policy model.

• Solution Filtering: We discard incorrect responses, keeping a maximum of 4 correct
solutions for each prompt.

• Segmentation by Teacher Model: We prompt a powerful teacher model,
Llama-3.1-70B-it (Meta, 2024), to segment the correct solutions into meaningful
chunks based on the rules outlined in Table 5.

• Segmentation Filtering: For each solution, we generate 8 segmented versions and retain
only those that perfectly reconstruct the original text and adhere to the specified format.

The base model is then fine-tuned on this curated dataset. Fine-tuning is performed using the Axolotl
package with the following hyperparameters: a learning rate of 1e−5, a packing block size of 8192,
and a global batch size of 32. The prompt template is provided in Table 10. This process successfully
teaches the model to generate more structured reasoning, significantly reducing the number of steps
compared to naive splitting methods, as detailed in Table 6. Meanwhile, we observe that for most
current open-source thinking models that do long reasoning before answering, the number of steps
exceeds 150 when trajectories are segmented using \n\n, with each step containing only about 30
tokens. While a broader application of our technique is beyond the scope of this work due to resource
constraints, we believe it holds particular promise for these long-reasoning scenarios, which we leave
for future exploration.

B.3 DETAILS OF STEPWISE DATA ANNOTATION

To automatically generate supervisory signals for each reasoning step, we adopt a framework based
on Monte Carlo estimation of Q-values. In Section 3.2, we described our high-level approach for
data annotation. Here, we provide the detailed mathematical formulations.

B.3.1 STEPWISE DATA ANNOTATION VIA Q VALUE ESTIMATION

B.3.2 IMPLEMENTATION DETAILS OF STEPWISE DATA ANNOTATION

We select a subset of 40k prompts from NuminaMath for stepwise data annotation based on a pre-
filtering process using the pass@k metric. Specifically, for each prompt, we generate 16 responses
using our chunk-tuned models (e.g., Qwen2.5-1.5B-chunk). To ensure the selected prompts are of a
suitable difficulty, we filter out prompts where the responses were either all correct or all incorrect.
During generation, we use a temperature of 1.0 and set the maximum token limit to 8192, or until the
model produced a final answer. Then, for each intermediate step in a solution, we sample another
M = 16 completions staring from that step for estimating Q-values.

While we follow the well-established annotation framework from prior literature (Wang et al., 2023;
Xiong et al., 2024b), we note that advanced techniques like model ensembles or human verification
could further enhance label quality (Zhang et al., 2025). These engineering improvements are
orthogonal to our core investigation and could be integrated in future work. The full annotation
process is rather computationally intensive, taking approximately 14 days on 8 A100 GPUs for the
Qwen2.5-7B-chunk model. Notably, the self-segmentation fine-tuning described previously plays a
crucial role here, as it significantly reduces the total number of chunks per trajectory, thereby saving
substantial compute and annotation time.

B.4 JUDGE MODEL TRAINING DETAILS

We train and compare two types of stepwise judges: a discriminative judge trained via SFT, which
serves as a strong baseline, and our proposed generative judge trained with RL, which learns to
produce CoT reasoning before its final decision.

B.4.1 PRELIMINARIES: HYPERPARAMETER SEARCH FOR LABELING SIGNALS

We conduct hyperparameter tuning for the learning signals labeling. We mainly search by training
discriminative models and SFT training, as this is more computationally efficient than full RL
training. For Rel-Ratio, we search over γ ∈ {0.6, 0.7, 0.8, 1.0, 1.2}, and for Rel-Effective,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

we search over α ∈ {0.2, 0.4, 0.6, 0.8, 1.0} with µ set as the best-of-4 policy induced by the base
policy. For Qwen2.5-1.5B-chunk, we choose γ = 0.8 and α = 0.4, while for Qwen2.5-7B-chunk,
we use γ = 0.7 and α = 0.8.

B.4.2 BASELINE: DISCRIMINATIVE JUDGE VIA SFT

We follow Xiong et al. (2024b) to formulate the discriminative stepwise judge as a multi-turn
conversation task. Specifically, in every user turn, we provide a single step of reasoning, while in the
next assistant turn, the model will decode either “+” or “-” token to indicate its judgment.

For training, we use standard SFT code. The data is packed into a block with length 8192 tokens. We
use a learning rate of 1e− 5, a global batch size of 32. We also mask out the user turn’s loss. We
present the representative training loss curves in Figure 3.

0 200 400 600 800 1000 1200 1400
Optimization Steps

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Tr
ai

ni
ng

 L
os

s

Discriminative: Rel-Effective + SFT, 1.5B
Discriminative: Rel-Ratio + SFT, 1.5B
Discriminative: Abs-Q + SFT, 1.5B

0 200 400 600 800 1000
Optimization Steps

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ai

ni
ng

 L
os

s

Discriminative: Rel-Effective + SFT, 7B
Discriminative: Rel-Ratio + SFT, 7B
Discriminative: Abs-Q + SFT, 7B

Figure 3: The training loss curves of discriminative stepwise judge under different learning signals.
Left: 1.5B model, Right: 7B model.

B.4.3 OUR METHOD: GENERATIVE JUDGE VIA RL

We train the judge model using the GRPO algorithm (Shao et al., 2024), implemented with the verl
library (Sheng et al., 2024).

• Hyperparameters: We use a learning rate of 1e−6, a per-prompt batch size of 1024, and a
gradient update mini-batch size of 256. The judge generates 4 responses per prompt. The
maximum prompt length is set to 3096 tokens, and the model can generate up to 3096 new
tokens.

• Training Stability: We identified and addressed two primary stability issues. First, to
counteract rapid entropy decay and the resulting zero-gradient problem, we employed the
clip higher technique (Yu et al., 2025) with ϵh = 0.28 and ϵl = 0.2. Second, to mitigate
bias from imbalanced labels, we created a balanced training set by down-sampling the
majority class. We also apply a heuristic filtering process to remove prompts that were
overly short or excessively long.

The RL training for the 7B model took approximately 5 days on 8 A100 GPUs. Figure 4 illustrates
the training dynamics. The model is Qwen2.5-7B-chunk and the learning signal is Rel-Ratio
with threshold 0.7. We can see that clip higher helps to encourage exploration and leads to a higher
training curve.

C ADDITIONAL RESULTS AND ABLATION STUDIES

C.1 ABLATION ON SELF-SEGMENTATION

To validate the effectiveness of our self-segmentation approach, we compare its performance against
a naive baseline that splits reasoning trajectories by \n\n. The results, presented in Table 7, show
that the benefits of self-segmentation are most apparent in the context of RL training.

While the average scores for SFT models are comparable (e.g., 27.5 vs. 27.2 for Abs-Q), models
trained with RL show significant improvements. Specifically, the average score for Abs-Q + RL

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500 600
Optimization Steps

0.58

0.60

0.62

0.64

0.66

0.68

0.70

Tr
ai

ni
ng

 R
ew

ar
d

Generative Reasoning:Rel-Ratio with Clip Higher
Generative Reasoning:Rel-Ratio without Clip Higher

0 100 200 300 400 500 600
Optimization Steps

0.1

0.2

0.3

0.4

0.5

0.6

En
tro

py
 L

os
s

Generative Reasoning:Rel-Ratio with Clip Higher
Generative Reasoning:Rel-Ratio without Clip Higher

0 100 200 300 400 500 600 700
Optimization Steps

400

450

500

550

600

650

700

750

Re
sp

on
se

 L
en

gt
h

Generative Reasoning:Rel-Ratio with Clip Higher
Generative Reasoning:Rel-Ratio without Clip Higher

Figure 4: A representative example of training reward, entropy loss, and response length with
and without clip higher technique. The model is Qwen2.5-7B-chunk and the learning signal is
Rel-Ratio with threshold 0.7.

Table 7: The main ablation results on self-segmentation fine-tuning an chunking.

Method Learning signal # Steps GSM8K MATH Olympiad Omni-MATH Ave

Split by \n\n Abs-Q + SFT 5457820 33.7 37.1 20.2 18.9 27.5
Split by \n\n Abs-Q + RL - 46.3 38.4 19.0 25.8 32.4
Split by \n\n Rel-Ratio + SFT - 28.3 30.9 15.5 21.0 23.9
Split by \n\n Rel-Ratio + RL - 46.3 39.1 17.3 21.3 31.0

Self-segmentation Abs-Q + SFT 3463520 39.3 32.1 19.3 18.9 27.2
Self-segmentation Abs-Q + RL - 49.2 40.5 23.8 31.0 36.1
Self-segmentation Rel-Ratio + SFT - 32.1 32.0 14.2 18.0 24.1
Self-segmentation Rel-Ratio + RL - 46.9 43.4 26.3 28.4 36.2

increased from 32.4 to 36.1, and for Rel-Ratio + RL from 31.0 to 36.2. This disparity suggests
that the self-segmentation process produces a cleaner, more meaningful step-wise signal by filtering
out noisy or trivial intermediate steps. In particular, we refer the interested readers to Table 11-13 for
detailed examples. The RL process, being more sensitive to data and reward quality, benefits greatly
from this higher-quality signal. Conversely, SFT appears more robust to this type of noise, and thus
its performance is less impacted.

C.2 ABLATION ON KEY COMPONENTS OF THE GENERATIVE JUDGE: COT AND PROMPT
DATASET BALANCING

To understand the contributions of the core components of our generative judge, we conduct two key
ablation studies presented in Table 9: (1) removing the generative CoT reasoning and (2) disabling the
dataset balancing mechanism. The results reveal that while the absence of either component degrades
the final F1 score, the underlying reasons for the performance drop are fundamentally different.

The Impact of CoT Reasoning In this ablation, we train the judge to directly output a final
judgment without generating any intermediate reasoning steps. We apply a format penalty of -1.0 if
the model fails to follow this instruction. The results show that removing CoT weakens the model’s

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8 Final
Reasoning steps

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

Ju
dg

e
ac

cu
ra

cy
 (%

)

Discriminative + SFT
Discriminative + RL
StepWiser + RL
StepWiser + Rejection SFT

Figure 5: STEPWISER ablation results. Left: Test stepwise accuracy of various stepwise judge setups.
Both generative CoT and RL training are important for the best stepwise judge. Here we plot the
results of Rel-Ratio using Qwen2.5-1.5B-chunk, other results are presented in Figure 6.

overall ability to discriminate between correct and incorrect reasoning. This is evidenced by a general
decline in accuracy for both “Correct” and “Error” classifications, suggesting that the act of generating
a rationale is integral to the judge’s reasoning capability.

The Impact of Dataset Balancing We also examine the effect of training on the original, imbal-
anced data, where positive labels can be overrepresented (e.g., 70.2% for Abs-Q). Removing the
balancing mechanism introduces a strong class bias. The model learns to over-predict the majority
class (“Correct”), leading to a sharp increase in accuracy for correct steps but a catastrophic drop
in its ability to detect errors. This trade-off is ultimately detrimental, as a judge that cannot identify
mistakes is of little practical use, which is reflected in the significant F1 score degradation.

C.3 ADDITIONAL RESULT ON CLASSIFICATION ACCURACY

Figure 5 and 6 compares the stepwise classification accuracy of our generative judge (STEPWISER)
against the discriminative baseline across the different learning signals.

For the relative signals (Rel-Ratio and Rel-Effective), our RL-trained generative judge
achieves significantly higher test accuracy on both intermediate steps and final answer evaluation.
This suggests that the process of generating CoT reasoning provides the model with greater expressive
capacity, enabling it to better capture these nuanced, dynamic signals.

In contrast, the performance gap narrows for the Abs-Q signal. We attribute this to a data distri-
bution shift: the original Abs-Q dataset is highly imbalanced (70.2% positive samples), and the
necessary downsampling to stabilize RL training adversely affects the judge’s performance on the
original, imbalanced test set. Nevertheless, even under these conditions, our generative judge remains
substantially more accurate at the crucial task of verifying the final answer’s correctness.

C.4 APPLICATION: DATA SELECTION VIA REJECTION SAMPLING FINE-TUNING

While PRMs offer more fine-grained supervision, directly using their scores as a reward signal
for reinforcement learning can be challenging. These signals are often less reliable than final
outcome verification. While this process-level reward usually can improve sample efficiency, it has
not consistently resulted in better final performance compared to well-tuned policies trained with
outcome-based verifiable feedback.

In contrast, a more robust application for process-level feedback is emerging in data selection. Recent
studies consistently demonstrate that using detailed feedback to filter training data is a highly effective

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

2 4 6 8 10
Steps

70

72

74

76

78

80

82

Ac
cu

ra
cy

 (%
)

Abs-Q-Discriminative + SFT
Abs-Q-Generative Reasoning + RL

2 4 6 8 10
Steps

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

Ac
cu

ra
cy

 (%
)

Rel-Ratio-Discriminative + SFT
Rel-Ratio-Discriminative + RL
Rel-Ratio-Generative Reasoning + RL
Rel-Ratio-Generative Reasoning + Rejection SFT

2 4 6 8 10
Steps

70

72

74

76

78

Ac
cu

ra
cy

 (%
)

Rel-Effective-Discriminative + SFT
Rel-Effective-Generative Reasoning + RL

Figure 6: The test stepwise accuracy of different stepwise judges. From left to right, we plot the
results of Abs-Q, Rel-Ratio, Rel-Effective, respectively. The stars at step 10 represent
the accuracy of recognizing the final answer.

Table 8: Data selection via Stepwise Rejection Sampling Fine-Tuning. Our STEPWISER judge
trained with RL provides better quality training data, as measured by final average test performance.
The evaluation is with greedy decoding and a maximal generated length of 8192.

Method Learning signal MATH500 NM-Heldout-1K Average ↑
Qwen2.5-7B-chunk (greedy) - 75.6 44.6 60.1

Outcome-based selection - 76.6 45.2 60.9
Discriminative + SFT Abs-Q 78.4 45.3 61.8
Discriminative + SFT Rel-Effective 78.2 45.2 61.7
Discriminative + SFT Rel-Ratio 78.2 45.7 61.9
Generative CoT + RL (STEPWISER) Abs-Q 79.0 46.1 62.5
Generative CoT + RL (STEPWISER) Rel-Effective 79.4 46.7 63.0
Generative CoT + RL (STEPWISER) Rel-Ratio 79.0 46.8 62.9

strategy, both for offline data curation (Tong et al., 2024) and online RL training (Xiong et al., 2025;
Ye et al., 2025; Shrivastava et al., 2025; Xue et al., 2025). Notably, Ye et al. (2025) show that
employing PRMs to select the best trajectories from a candidate pool robustly enhances final model
performance.

Motivated by these findings, we evaluate our stepwise judge in a practical data selection application:
Rejection Sampling Fine-tuning (RFT) (Dong et al., 2023). The goal of RFT is to improve a
base policy by fine-tuning it on its own best-generated outputs. While standard RFT might select
trajectories based only on final answer correctness, this coarse signal cannot differentiate between
multiple valid reasoning paths that lead to the same answer.

We leverage our generative judge (STEPWISER) to provide a more fine-grained selection criterion.
Specifically, from a pool of trajectories that all reach the correct final answer, we use the judge to
score each individual reasoning chunk. The trajectory with the highest average chunk score is then
selected as the highest-quality reasoning trace for the RFT dataset.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 9: Judge performance on ProcessBench, broken down by four subsets. Each subset reports Error (%),
Correct (%), and F1 score (%). The final column is the average F1 across all subsets. We remark that the F1
score here is indeed the harmonic mean of the accuracies on two classes.

Method Learning GSM8K MATH Olympiad Omni-MATH Avg. F1

Signal Error Correct F1 Error Correct F1 Error Correct F1 Error Correct F1

Qwen2.5-1.5B-chunk
Discriminative + SFT Abs-Q 26.0 80.0 39.3 22.2 57.6 32.1 14.2 30.2 19.3 13.2 28.2 18.0 27.2
Discriminative + SFT Rel-Effect 28.5 72.0 40.8 28.6 53.0 37.2 16.4 21.8 18.7 15.8 27.6 20.1 29.2
Discriminative + SFT Rel-Ratio 22.5 56.0 32.1 26.2 41.0 32.0 14.0 14.4 14.2 15.2 22.0 18.0 24.1
Generative + CoT + RL Abs-Q 42.5 58.5 49.2 36.4 45.6 40.5 31.4 19.2 23.8 32.8 29.4 31.0 36.1
Generative + CoT + RL Rel-Effect 38.5 64.5 48.2 37.8 51.6 43.6 23.2 21.0 22.1 24.0 26.8 25.3 34.8
Generative + CoT + RL Rel-Ratio 35.0 71.0 46.9 37.8 50.8 43.4 27.0 25.6 26.3 28.0 28.8 28.4 36.2
Gen + RL (no CoT) Rel-Ratio 28.5 79.5 42.0 37.0 51.8 43.2 24.4 22.8 23.6 28.6 28.8 28.7 34.3
Gen + CoT + RL (no Chunk) Rel-Ratio 36.0 65.5 46.5 37.0 39.8 38.4 25.4 15.2 19.0 29.4 23.0 25.8 32.4

Qwen2.5-7B-chunk
Discriminative + SFT Abs-Q 41.0 80.5 54.3 36.0 66.4 46.7 28.8 43.4 34.6 21.8 39.6 28.1 40.9
Discriminative + SFT Rel-Effect 40.5 80.0 53.8 36.8 69.6 48.1 27.0 36.2 30.93 24.6 41.0 30.8 38.7
Discriminative + SFT Rel-Ratio 37.5 78.5 50.8 36.6 63.8 46.5 24.0 35.8 28.7 24.2 35.6 28.8 38.7
Generative + CoT + RL Abs-Q 59.5 64.5 61.9 63.2 59.0 61.0 53.0 44.6 48.4 44.4 43.4 43.9 53.8
Generative + CoT + RL Rel-Effect 70.5 74.5 72.4 69.2 67.4 68.3 61.4 48.8 54.4 54.4 50.6 52.4 61.9
Generative + CoT + RL Rel-Ratio 66.5 80.0 72.6 62.6 72.6 67.2 57.2 48.2 52.3 49.4 50.2 49.8 60.5

Qwen2.5-7B-chunk Ablation
Gen + CoT + RL (no Balancing) Abs-Q 31.5 94.0 47.2 34.0 79.6 47.7 25.0 58.0 34.9 23.2 43.2 30.2 40.0
Gen + CoT + RL (no Balancing) Rel-Effect 45.0 94.0 60.9 44.8 79.0 57.2 35.8 59.2 44.6 27.0 48.8 34.8 49.4
Gen + CoT + RL (no Balancing) Rel-Ratio 42.5 95.5 58.8 41.6 80.2 54.8 29.8 65.8 41.0 29.4 49.6 36.9 47.9
Gen + RL (no CoT) Rel-Ratio 45.5 82.5 58.7 37.6 72.0 49.4 36.0 47.0 40.8 40.2 45.6 42.7 47.9

Table 10: Prompt template for solver model to produce self-segmented CoTs.

Prompt Template for Policy Model

You are a helpful assistant designed to solve mathematical problems step-by-step. Your task is to think
step-by-step and provide a detailed solution process following a specific format.
You MUST follow the following format:
1. Enclose each part of your step-by-step reasoning within <chunk> and </chunk> tags.

2. After completing the chain-of-thought reasoning, provide the final answer within \boxed{{}}.
Ensure strict compliance with this format for every response.

Problem: {problem}

The results of this approach, presented in Table 8, confirm the benefits of our fine-grained selection
signal. Models fine-tuned on data selected by our generative judge achieve the highest average
performance (63.0%). This surpasses not only the original base model (60.1%) and simple outcome-
based selection (60.9%), but also data selected by the discriminative baseline judge (61.9%). This
result strongly demonstrates that our judge’s nuanced, step-level evaluations provide a superior signal
for identifying high-quality reasoning data for model training.

D TEMPLATE, EXAMPLE, AND ADDITIONAL TABLES

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 11: A representative example illustrating CoT segmentation methods based on a response from
Qwen2.5-1.5B-it. Standard splitting by newlines (left) produces too many chunks without a clear
logical step. For example, chunk 3 and chunk 4 are logically a whole, but they are separated, resulting
in poor independence of each step and the inability to form a complete thinking unit.

Split by \n\n LLM-based self-segmentation
(Chunks-of-Thought)

chunk 1
To find the value of f(5) for the given function

f(x) =

{
x− 3, x ≥ 6

f(f(x+ 5)), x < 6
,

we need to follow the recursive definition of the func-
tion for x < 6.

chunk 2
Since 5 < 6, we use the second case of the piecewise
function:

f(5) = f(f(5 + 5)) = f(f(10)).

chunk 3
Now, we need to evaluate f(10). Since 10 ≥ 6, we
use the first case of the piecewise function:

f(10) = 10− 3 = 7.

chunk 4
So, we have:

f(5) = f(7).

chunk 5
Next, we need to evaluate f(7). Again, since 7 ≥ 6,
we use the first case of the piecewise function:

f(7) = 7− 3 = 4.

chunk 6
Thus, we have:

f(5) = 4.

chunk 7
The final answer is:

4

.

chunk 1 (Initial Expansion)
To find the value of f(5) for the given function

f(x) =

{
x− 3, x ≥ 6

f(f(x+ 5)), x < 6
,

we need to follow the recursive definition of the func-
tion for x < 6.
Since 5 < 6, we use the second case of the piecewise
function:

f(5) = f(f(5 + 5)) = f(f(10)).

chunk 2 (Calculate Inner Function and Substi-
tute)
Now, we need to evaluate f(10). Since 10 ≥ 6, we
use the first case of the piecewise function:

f(10) = 10− 3 = 7.

So, we have:
f(5) = f(7).

chunk 3 (Final Calculation)
Next, we need to evaluate f(7). Again, since 7 ≥ 6,
we use the first case of the piecewise function:

f(7) = 7− 3 = 4.

Thus, we have:
f(5) = 4.

The final answer is:

4

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 12: A representative example illustrating CoT segmentation methods based on a response from
Qwen2.5-1.5B-it. Standard splitting by newlines (left) produces too many chunks without a clear
logical step.

Split by \n\n LLM-based self-segmentation (Chunks-of-Thought)

chunk 1
To solve the given problem, we start by expressing z in its standard form
z = x + yi, where x and y are real numbers. The given equation is:

chunk 2 ∣∣∣∣∣ z
2 + 1

z + i

∣∣∣∣∣ +
∣∣∣∣∣ z

2 + 4i − 3

z − i + 2

∣∣∣∣∣ = 4.

chunk 3

First, let’s express the magnitudes of the complex numbers. For the first term,
we have:

chunk 4 ∣∣∣∣∣ z
2 + 1

z + i

∣∣∣∣∣ =

∣∣∣∣∣ (x + yi)2 + 1

x + yi + i

∣∣∣∣∣ .
chunk 5

Since (x + yi)2 = x2 − y2 + 2xyi, we get z2 + 1 = x2 − y2 +

2xyi + 1 = (x2 − y2 + 1) + 2xyi. Therefore, the magnitude is:

chunk 6 ∣∣∣(x2 − y
2
+ 1) + 2xyi + i(x + yi)

∣∣∣
=

∣∣∣(x2 − y
2
+ 1 + x + y) + (2xy + x + y)i

∣∣∣ .
chunk 7
This magnitude can be simplified to the square root of the sum of the squares
of the real and imaginary parts:

chunk 8 √
(x2 − y2 + 1 + x + y)2 + (2xy + x + y)2.

chunk 9

Similarly, for the second term, we have:

chunk 10 ∣∣∣∣∣ z
2 + 4i − 3

z − i + 2

∣∣∣∣∣ =

∣∣∣∣∣ (x + yi)2 + 4i − 3

x + yi − i + 2

∣∣∣∣∣ .
chunk 11

Since z2 + 4i − 3 = x2 − y2 + 2xyi + 4i − 3 = (x2 − y2 −
3) + (2xy + 4)i, we get:

chunk 12

z − i + 2 = x + (y − 1) = x + yi − i + 2 = (x + 2) + yi.

chunk 13

Using the same logic as above, the magnitude is:

...

chunk 21

0 .

chunk 1 (Express the Equation in Terms of Real and Imaginary Parts)
To solve the given problem, we start by expressing z in its standard form
z = x + yi, where x and y are real numbers. The given equation is:∣∣∣∣∣ z

2 + 1

z + i

∣∣∣∣∣ +
∣∣∣∣∣ z

2 + 4i − 3

z − i + 2

∣∣∣∣∣ = 4.

chunk 2 (Simplify the first Term)
First, let’s express the magnitudes of the complex numbers. For the first term,
we have: ∣∣∣∣∣ z

2 + 1

z + i

∣∣∣∣∣ =

∣∣∣∣∣ (x + yi)2 + 1

x + yi + i

∣∣∣∣∣ .
Since (x + yi)2 = x2 − y2 + 2xyi, we get z2 + 1 = x2 − y2 +

2xyi + 1 = (x2 − y2 + 1) + 2xyi. Therefore, the magnitude is:∣∣∣(x2 − y
2
+ 1) + 2xyi + i(x + yi)

∣∣∣
=

∣∣∣(x2 − y
2
+ 1 + x + y) + (2xy + x + y)i

∣∣∣ .
This magnitude can be simplified to the square root of the sum of the squares
of the real and imaginary parts:√

(x2 − y2 + 1 + x + y)2 + (2xy + x + y)2.

chunk 3 (Simplify the Second Term and Formulate Equations)
Similarly, for the second term, we have:∣∣∣∣∣ z

2 + 4i − 3

z − i + 2

∣∣∣∣∣ =

∣∣∣∣∣ (x + yi)2 + 4i − 3

x + yi − i + 2

∣∣∣∣∣ .
Since z2 + 4i − 3 = x2 − y2 + 2xyi + 4i − 3 = (x2 − y2 −
3) + (2xy + 4)i, we get:

z − i + 2 = x + (y − 1) = x + yi − i + 2 = (x + 2) + yi.

Using the same logic as above, the magnitude is:√(
x2 − y2 − 3 + x + y + 2

)2 + (2xy + 4 + x + y)2

=

√(
x2 − y2 − 1 + x + y

)2 + (2xy + x + y + 4)2.

chunk 4 (Solve the System of Equations to Find z)
Given that these two magnitudes sum to 4, and recognizing that the equality
a2 + b2 = 4 indicates that each term must separately be 2 (because the
maximum magnitude of any complex number is 2), we derive:

(x
2 − y

2
+ 1 + x + y)

2
+ (2xy + x + y)

2
= 4,(

x
2 − y

2 − 3 + x + y + 2
)2

+ (2xy + 4 + x + y)
2

= 4.

This leads to x2 − y2 + x = 1 and x2 − y2 − x = −1. Solving these
equations simultaneously, we get x = 1 and y = 0, so z = 1.

chunk 5 (Calculate the Final Minimum Value)
Finally, we need to find the minimum value of |z − 1|. This simplifies to:

|z − 1| = |1 − 1| = 0.

Thus, the minimum value of |z − 1| is:

0 .

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 13: A representative example illustrating CoT segmentation methods based on a response from
Qwen2.5-1.5B-it. Standard splitting by newlines (left) produces too many chunks without a clear
logical step.

Split by \n\n LLM-based self-segmentation (Chunks-of-Thought)
chunk 1
Let’s start by analyzing the given conditions: 1. When 5655 is divided by N ,
the remainder is 11. This can be written as:

5655 = qN + 11

where q is some integer.

chunk 2
2. When 5879 is divided by N , the remainder is 14. This can be written as:

5879 = mN + 14

where m is some integer.

chunk 3
We can express these equations as:

5655 − 11 = 5644 = Nq

5879 − 14 = 5865 = Nm

chunk 4
We know that N is a two-digit positive integer. Therefore, we need to find a
value of N that satisfies the above conditions for integer q and m.

chunk 5
First, let’s determine the possible values of N by factoring 5644 and 5865:

5644 = 2
2 · 7 · 112

5865 = 3 · 5 · 132

chunk 6
We need to find a common divisor for both 5644 and 5865. Let’s check the
common divisors:

Common divisors are: 1, 7, 11, 143

chunk 7
Since N is a two-digit positive integer, we consider the possible values:

N = 11 (if 11 is a divisor of both 5644 and 5865)

chunk 8
Let’s test N = 11: 1. Check if 11 divides 5644 exactly:

5644 = 11 × 513 Yes

2. Check if 11 divides 5865 exactly:

5865 = 11 × 533 Yes

chunk 9
Since N = 11 divides 5644 and 5865 exactly, N = 11 satisfies the
conditions. Now we have:

Nq = 5644 and Nm = 5865

chunk 10
Using the Law of Cosines (not needed for this case, but for completeness):

cos(θ) =
a2 + b2 − c2

2ab

where a = 5644, b = 5865, and c is the hypotenuse (since 11 * 11 * 1 is
our N).

chunk 11
Sum of the digits of N :

1 + 1 = 2

chunk 12
Thus, the sum of the digits of N is:

2

chunk 1 (Formulating the Equations)
Let’s start by analyzing the given conditions: 1. When 5655 is divided by N ,
the remainder is 11. This can be written as:

5655 = qN + 11

where q is some integer.
2. When 5879 is divided by N , the remainder is 14. This can be written as:

5879 = mN + 14

where m is some integer.
We can express these equations as:

5655 − 11 = 5644 = Nq

5879 − 14 = 5865 = Nm

chunk 2 (Finding Common Divisors via Factorization)
We know that N is a two-digit positive integer. Therefore, we need to find a
value of N that satisfies the above conditions for integer q and m.
First, let’s determine the possible values of N by factoring 5644 and 5865:

5644 = 2
2 · 7 · 112

5865 = 3 · 5 · 132

We need to find a common divisor for both 5644 and 5865. Let’s check the
common divisors:

Common divisors are: 1, 7, 11, 143

chunk 3 (Verifying the Candidate N)
Since N is a two-digit positive integer, we consider the possible values:

N = 11 (if 11 is a divisor of both 5644 and 5865)

Let’s test N = 11: 1. Check if 11 divides 5644 exactly:

5644 = 11 × 513 Yes

2. Check if 11 divides 5865 exactly:

5865 = 11 × 533 Yes

Since N = 11 divides 5644 and 5865 exactly, N = 11 satisfies the
conditions.

chunk 4 (Final Calculation)
Now we have:

Nq = 5644 and Nm = 5865

Using the Law of Cosines (not needed for this case, but for completeness):

cos(θ) =
a2 + b2 − c2

2ab

where a = 5644, b = 5865, and c is the hypotenuse (since 11 * 11 * 1 is
our N).
Sum of the digits of N :

1 + 1 = 2

Thus, the sum of the digits of N is:

2

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 14: An illustrative example from the Process-Bench dataset, where the ground-truth label is
“correct.” The judge model is STEPWISER with Rel-Ratio and Qwen2.5-7B-chunk.

Example

Mathematical Problem
Cindy’s math and science books weigh 2 pounds each. Her French book weighs 4 pounds and her
English book weighs 3 pounds. Her history book weighs twice as much as her English book. If Cindy
carries all of her books at once, what will be the total weight of the books she is carrying?

Historical Reasoning Path
• To determine the total weight of all Cindy’s books, we need to calculate the weight of each

book individually and then sum these weights.

• Math and Science Books:
- Each math book weighs 2 pounds.
- Each science book weighs 2 pounds.
- Cindy has 2 math books and 2 science books.
- Total weight of math books: 2× 2 = 4 pounds.
- Total weight of science books: 2× 2 = 4 pounds.
- Combined weight: 4 + 4 = 8 pounds.

• French Book:
- The French book weighs 4 pounds.

New Reasoning Chunk
Third, for the English book:

• The English book weighs 3 pounds.

Judgment
To determine if the ”New Reasoning chunk” contains any explicit errors, we need to analyze the
information given in the problem and the reasoning presented.
The new reasoning chunk states: Third, for the English book:

• The English book weighs 3 pounds.

From the problem statement, we know:

• The French book weighs 4 pounds.

• The English book weighs 3 pounds.

• The history book weighs twice as much as the English book, so the history book weighs
2× 3 = 6 pounds.

• The math and science books each weigh 2 pounds, and Cindy has 2 math books and 2 science
books.

The new reasoning chunk simply states that the English book weighs 3 pounds, which is directly given
in the problem statement. Therefore, this statement is correct and logical. Thus, the final judgment is:

Positive

.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 15: An illustrative example from the Process-Bench dataset, where the ground-truth label is
“correct.” The judge model is STEPWISER with Rel-Ratio and Qwen2.5-7B-chunk.

Example

Mathematical Problem
An n-label is a permutation of the numbers 1 through n. For example, J = 35214 is a 5-label and
K = 132 is a 3-label. For a fixed positive integer p, where p ≤ n, consider consecutive blocks of p
numbers in an n-label. For example, when p = 3 and L = 263415, the blocks are 263, 634, 341, and
415. We can associate to each of these blocks a p-label that corresponds to the relative order of the
numbers in that block. For L = 263415, we get the following:

263 415 → 132; 263415 → 312; 263415 → 231; 263415 → 213

Moving from left to right in the n-label, there are n− p+ 1 such blocks, which means we obtain an
(n− p+ 1)-tuple of p-labels. For L = 263415, we get the 4-tuple (132, 312, 231, 213). We will call
this (n− p+ 1)-tuple the p-signature of L (or signature, if p is clear from the context) and denote it by
Sp[L]; the p-labels in the signature are called windows. For L = 263415, the windows are 132, 312,
231, and 213, and we write

S3[263415] = (132, 312, 231, 213)

More generally, we will call any (n− p+ 1)-tuple of p-labels a p-signature, even if we do not know of
an n-label to which it corresponds (and even if no such label exists). A signature that occurs for exactly
one n-label is called unique, and a signature that doesn’t occur for any n-labels is called impossible. A
possible signature is one that occurs for at least one n-label.
In this power question, you will be asked to analyze some of the properties of labels and signatures.
Compute the 3-signature for 52341.

Historical Reasoning Path
To compute the 3-signature of the 5-label L = 52341, we need to identify all the consecutive blocks of
3 numbers in the label and then convert each block into its corresponding 3-label based on the relative
order of the numbers.

First, identify the first block: 523. The relative order of the numbers 5, 2, and 3 is 3, 1, and 2
respectively. Therefore, the 3-label for this block is 312.

Second, identify the second block: 234. The relative order of the numbers 2, 3, and 4 is 1, 2, and 3
respectively. Therefore, the 3-label for this block is 123.

New Reasoning Chunk
Third, identify the third block: 341. The relative order of the numbers 3, 4, and 1 is 2, 3, and 1
respectively. Therefore, the 3-label for this block is 231.

Judgment
To determine if the ”New Reasoning chunk” contains any explicit errors, we need to verify the logic for
identifying the 3-label of the block 341 in the 5-label 52341.
The new reasoning chunk states:

Third, identify the third block: 341. The relative order of the numbers 3, 4, and 1 is
2, 3, and 1 respectively. Therefore, the 3-label for this block is 231.

Let’s check the relative order of the numbers in the block 341:

• The number 3 is greater than 1 but less than 4.

• The number 4 is greater than both 3 and 1.

• The number 1 is the smallest.

Thus, the relative order of the numbers 3, 4, and 1 is indeed 2, 3, and 1 respectively. This means the
3-label for the block 341 is 231.

Since the reasoning follows correctly from the definition of a 3-label, the ”New Reasoning chunk” does
not contain any explicit errors.

Therefore, the final judgment is:

Positive

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 16: An illustrative example from the Process-Bench dataset, where the ground-truth label
is “incorrect.” The judge model is STEPWISER with Rel-Ratio and Qwen2.5-7B-chunk. We
highlight the key parts of the reasoning trajectory in red.

Example

Mathematical Problem
There are 60 empty boxes B1, . . . , B60 in a row on a table and an unlimited supply of pebbles. Given a
positive integer n, Alice and Bob play the following game.
In the first round, Alice takes n pebbles and distributes them into the 60 boxes as she wishes. Each
subsequent round consists of two steps:
(a) Bob chooses an integer k with 1 ≤ k ≤ 59 and splits the boxes into the two groups B1, . . . , Bk and
Bk+1, . . . , B60.
(b) Alice picks one of these two groups, adds one pebble to each box in that group, and removes one
pebble from each box in the other group.
Bob wins if, at the end of any round, some box contains no pebbles. Find the smallest n such that Alice
can prevent Bob from winning.

Historical Reasoning Path
To find the smallest n such that Alice can prevent Bob from winning, we need to understand the
constraints imposed by Bob’s moves and how Alice can counter them. Let’s consider the minimum
number of pebbles each box must have after the first round. Since there are 60 boxes and Alice
distributes n pebbles among them, the minimum number of pebbles each box will get is

⌊
n
60

⌋
, where

⌊x⌋ represents the greatest integer less than or equal to x.

New Reasoning Chunk
Now, let’s analyze Bob’s move in each round. In step (a), he splits the boxes into two groups of size k
and 60− k. In step (b), Alice adds a pebble to each box in the chosen group and removes a pebble from
each box in the other group. For Alice to prevent Bob from winning, each box must have at least one
pebble after her move. This means that the difference between the total number of pebbles in the chosen
group and the other group should be at most 1.

Judgment
Let’s break this down step by step:

1. **Understanding Bob’s Move**: In step (a), Bob splits the boxes into two groups of size k
and 60− k. In step (b), Alice adds one pebble to each box in the chosen group and removes
one pebble from each box in the other group. This means that the total number of pebbles in
the chosen group increases by k and the total number of pebbles in the other group decreases
by 60− k.

2. **Condition for Alice to Prevent Bob from Winning**: For Alice to prevent Bob from
winning, each box must have at least one pebble after her move. However, the statement
”the difference between the total number of pebbles in the chosen group and the other group
should be at most 1” is not necessarily true. The correct condition would be that the difference
in the total number of pebbles between the two groups after Alice’s move should not cause
any box to have zero pebbles.

The reasoning in the new reasoning chunk assumes that the difference in the number of pebbles
between the two groups should be at most 1, which is not necessarily the case. The correct
condition would be that after Alice’s move, the number of pebbles in each box should be at least 1, not
necessarily that the difference in the total number of pebbles between the two groups should be at most 1.

Therefore, the ”New Reasoning chunk” contains explicit errors. The correct interpretation of the
condition for Alice to prevent Bob from winning is not correctly stated in the new reasoning chunk.

The final judgment is:
Negative

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 17: An illustrative example from the Process-Bench dataset, where the ground-truth label
is “incorrect.” The judge model is STEPWISER with Rel-Ratio and Qwen2.5-7B-chunk. We
highlight the key parts of the reasoning trajectory in red.

Example

Mathematical Problem
Let n and k be fixed positive integers of the same parity, k ≥ n. We are given 2n lamps numbered 1
through 2n; each of them can be on or off. At the beginning all lamps are off. We consider sequences of
k steps. At each step one of the lamps is switched (from off to on or from on to off).

Let N be the number of k-step sequences ending in the state: lamps 1, . . . , n on, lamps n+1, . . . , 2n off.

Let M be the number of k-step sequences leading to the same state and not touching lamps
n+ 1, . . . , 2n at all.

Find the ratio N/M .

Historical Reasoning Path
To solve the problem, we need to determine the number of k-step sequences that end in the state where
lamps 1, . . . , n are on and lamps n+1, . . . , 2n are off, and compare it to the number of such sequences
that do not touch lamps n+ 1, . . . , 2n at all.

New Reasoning Chunk
First, we determine N . The total number of lamps is 2n, and we need exactly n of them to be on
and n to be off. Since the sequence ends with lamps 1, . . . , n on and n + 1, . . . , 2n off, we need to
switch exactly n times among the first n lamps and the remaining k − n times among the last n lamps.
However, since the last n lamps are always off, these k− n switches do not affect their state. Therefore,
we only need to count the number of ways to choose n steps out of k to switch the first n lamps. This is
given by the binomial coefficient:

N =

(
k

n

)
.

Judgment
To determine if the ”New Reasoning chunk” contains any explicit errors, we need to carefully analyze
the statement and check its logic step by step.

The reasoning chunk suggests that N , the number of k-step sequences ending in the state where lamps
1, . . . , n are on and lamps n + 1, . . . , 2n are off, is given by the binomial coefficient

(
k
n

)
. However,

this conclusion is not necessarily correct because it does not take into account the specific sequence of
switching the lamps.

The correct approach to find N is to consider that we need exactly n switches among the first n lamps
to turn them on, and the remaining k − n switches can be any combination of the n lamps (including
possibly switching some lamps on and off multiple times, but ensuring that at the end, each of the first
n lamps is on). The number of such sequences is not simply

(
k
n

)
, because it does not account for the

specific order in which the switches occur.

In fact, the correct way to calculate N is more complex and involves considering the parity of k and
n (which are the same) and the specific sequences of switching. The reasoning chunk simplifies the
problem incorrectly by assuming that any n switches among the first n lamps will result in all of them
being on, without considering the constraints of the problem.

Therefore, the ”New Reasoning chunk” contains explicit errors. The correct reasoning would involve a
more detailed analysis of the sequences of switches, taking into account the parity and the specific
requirements of the problem.

The final judgment is:
Negative

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 18: An illustrative example from the Process-Bench dataset, where the ground-truth label
is “incorrect.” The judge model is STEPWISER with Rel-Ratio and Qwen2.5-7B-chunk. We
highlight the key parts of the reasoning trajectory in red.

Example

Mathematical Problem
Determine all functions f from the set of positive integers into the set of positive integers such that for
all x and y there exists a non degenerated triangle with sides of lengths

x, f(y) and f(y + f(x)− 1).

Historical Reasoning Path
To determine all functions f from the set of positive integers into the set of positive integers such that
for all x and y there exists a non-degenerate triangle with sides of lengths x, f(y), and f(y+ f(x)−1),
we need to use the triangle inequality. The triangle inequality states that the sum of the lengths of any
two sides of a triangle must be greater than the length of the remaining side. Therefore, we have the
following three inequalities: First, x+ f(y) > f(y+ f(x)− 1) Second, x+ f(y+ f(x)− 1) > f(y)
Third, f(y) + f(y + f(x)− 1) > x
We will analyze these inequalities one by one.
Step 1: Analyze the inequality x+ f(y) > f(y + f(x)− 1)
This inequality can be rewritten as:

f(y + f(x)− 1) < x+ f(y)

This tells us that f(y + f(x)− 1) is strictly less than x+ f(y).

New Reasoning Chunk
Step 2: Analyze the inequality x+ f(y + f(x)− 1) > f(y)
This inequality can be rewritten as:

f(y + f(x)− 1) > f(y)− x

This tells us that f(y + f(x) − 1) is strictly greater than f(y) − x. Since f(y) and x are positive
integers, f(y)− x could be negative or zero, but f(y+ f(x)− 1) must be a positive integer. Therefore,
the smallest possible value for f(y)− x is 0, which means f(y) ≥ x.

Judgment
To determine if the ”New Reasoning chunk” contains any explicit errors, we need to analyze the given
inequality x+ f(y + f(x)− 1) > f(y) and see if it leads to the conclusion that f(y) ≥ x.

Starting with the inequality:
x+ f(y + f(x)− 1) > f(y)

we can rearrange it to:
f(y + f(x)− 1) > f(y)− x

Since f(y) and x are positive integers, f(y)− x could be negative or zero. However, f(y + f(x)− 1)
must be a positive integer. This means that f(y)− x must be less than f(y + f(x)− 1), but it does
not necessarily mean that f(y) ≥ x. The inequality f(y + f(x) − 1) > f(y) − x only tells us that
f(y)− x is less than a positive integer, which does not imply that f(y) itself must be at least x.

Therefore, the reasoning in the new reasoning chunk contains an explicit error in its conclusion
that f(y) ≥ x. The correct interpretation of the inequality f(y + f(x) − 1) > f(y) − x does not
necessarily lead to f(y) ≥ x.

The final judgment is:
Negative

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 19: An illustrative example from the Process-Bench dataset, where the ground-truth label
is “incorrect.” The judge model is STEPWISER with Rel-Ratio and Qwen2.5-7B-chunk. We
highlight the key parts of the reasoning trajectory in red.

Example

Mathematical Problem
How many ways are there to put 4 balls in 3 boxes if the balls are distinguishable but the boxes are not?

Historical Reasoning Path
To solve this problem, we need to consider the number of ways to distribute 4 distinguishable balls into 3 indistinguishable boxes.

Step 1: Counting the total number of distributions if the boxes were distinguishable. If the boxes were distinguishable, each ball
would have 3 choices (3 boxes). Since there are 4 distinguishable balls, the total number of distributions would be 34 = 81.
However, since the boxes are indistinguishable, we need to adjust for overcounting.

Step 2: Identifying the cases where the boxes are indistinguishable. There are three main cases where the boxes are indistinguishable:

First, all 4 balls in one box (1 way).
Second, 3 balls in one box and 1 ball in another box (4 ways, since the balls are distinguishable and we can choose any of the 4 balls
to be alone).
Third, 2 balls in one box and 2 balls in another box (6 ways, since there are 6 pairs of balls that can be in the same box). However,
these cases also include some overcounting since the boxes are indistinguishable. We need to adjust for this overcounting.

New Reasoning Chunk
Step 3: Adjusting for overcounting. In case 2, when we have 3 balls in one box and 1 ball in another box, we counted each distribution
3 times (since there are 3 boxes and we could swap the lone ball with the other balls). So, we divide by 3 for this case. In case 3,
when we have 2 balls in one box and 2 balls in another box, we counted each distribution 6/2 = 3 times (since there are 3 pairs of
boxes). So, we divide by 3 for this case. Now we have:

• Case 1: 1 way

• Case 2: 4 / 3 ways

• Case 3: 6 / 3 ways

Judgment
To determine if the ”New Reasoning chunk” contains any explicit errors, we need to carefully analyze the reasoning step by step.
The new reasoning chunk states: In case 2, when we have 3 balls in one box and 1 ball in another box, we counted each distribution 3
times (since there are 3 boxes and we could swap the lone ball with the other balls). So, we divide by 3 for this case. In case 3, when
we have 2 balls in one box and 2 balls in another box, we counted each distribution 6/2 = 3 times (since there are 3 pairs of boxes).
So, we divide by 3 for this case...

Let’s evaluate each case:

Case 2: 3 balls in one box and 1 ball in another box
When we have 3 balls in one box and 1 ball in another box, we do indeed count each distribution 3 times because we can place the
single ball in any one of the 3 boxes. Therefore, the correct number of distinct distributions for this case is 4 (the number of ways
to choose which ball will be the single ball) divided by 3, but this division is incorrect because it assumes that each distribution is
counted exactly 3 times, which is not necessarily true. The correct approach would be to consider the different ways to assign the
balls without overcounting due to the indistinguishability of the boxes. The correct count for this case is actually 4, not 4/3.
Case 3: 2 balls in one box and 2 balls in another box
When we have 2 balls in one box and 2 balls in another box, we need to count the number of ways to partition the 4 balls into two
groups of 2. The number of ways to choose 2 balls out of 4 is

(4
2

)
= 6, but since the boxes are indistinguishable, we have counted

each distribution twice (once for each way to assign the groups to the boxes). Therefore, the correct number of distinct distributions
for this case is 6/2 = 3, which the reasoning chunk correctly states.

Given the above analysis, the reasoning in the new reasoning chunk contains an explicit error in its calculation for Case 2. Therefore,
the final judgment is:

Negative

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 20: An illustrative example of chunk-reset reasoning. The judge model is STEPWISER with
Rel-Effective and Qwen2.5-7B-chunk. In the first attempt of chunk 3, it contains a significant
algebraic mistake in the formula relating λ and r.

Example

Mathematical Problem
8 singers participate in the arts festival, preparing to arrange m performances, each time 4 of them will perform on stage, requiring
that any two of the 8 singers perform together the same number of times. Please design a scheme so that the number of performances
m is the least.

Chunk 1
To solve this problem, we need to ensure that each pair of singers performs together in the same number of performances. This is a
specific type of combinatorial design problem, and the solution can be approached using the concept of a balanced incomplete block
design (BIBD).

Here are the steps to find the solution: 1. Identify the parameters of the BIBD:

• Let (v = 8) (the number of singers).

• Let (k = 4) (the number of singers performing in each performance).

• Let (r) be the number of performances each singer participates in.

• Let (λ) be the number of performances each pair of singers participates in together.

• Let (b) be the number of performances (the number we need to determine).

Chunk 2
2. Use the BIBD parameters to derive equations: The equation for the number of performances each singer participates in is (
r(k-1) = (v-1)λ). The equation for the number of performances is (b = vr

k).

Chunk 3 (first attempt): This step uses the incorrect formula λ =
4(r−1)

7 instead of the correct one λ = 3r
7 .

3. Determine the value of (λ):

• From the first equation, we can express (λ) as (λ =
r(k−1)
v−1).

• Substituting (v = 8) and (k = 4), we get (λ = 4r−4
7 =

4(r−1)
7).

• Since (λ) must be an integer, (4(r-1)) must be divisible by 7. The smallest positive integer (r) that satisfies this
condition is (r = 2) (since (4(2-1) = 4), and 4 is not divisible by 7, the next is (r = 8) which gives (4(8-1) = 28),
which is divisible by 7).

• Therefore, (λ = 28
7 = 4).

Chunk 3 (second attempt)
3.Calculate the parameters:

• First, we need to find (λ). We know that (r =
(v−1)λ
k−1). For (λ) to be an integer, (v − 1)λ must be divisible by

(k − 1 = 3). So, λ must be a multiple of 3.

• Let’s try (λ = 1). Then (r =
(8−1)·1

4−1 = 7
3), which is not an integer.

• Let’s try (λ = 3). Then (r =
(8−1)·3

4−1 = 21
3 = 7).

• Now, we can calculate (b): (b = 8·7
4 = 14).

Chunk 4
4. Verify the design:

• We need to check if we can indeed arrange 14 performances with 8 singers, 4 at a time, such that each pair of singers
performs together exactly 3 times.

• his can be verified using known designs or by constructing a specific design, but for the sake of this problem, we assume
the existence of such a design.

Therefore, the least number of performances m is
14 .

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 21: An illustrative example of chunk-reset reasoning. The judge model is STEPWISER with
Rel-Effective and Qwen2.5-7B-chunk. In the first attempt of chunk 3, the model fails to verify
the condition.

Example

Mathematical Problem
Which is the two-digit number that, when divided by the digit in the units place, gives a quotient of 9 and a remainder of 6?

Chunk 1
To solve the problem, let’s break it down step by step.
1. Identify the structure of the number and the division operation:

• Let the two-digit number be represented as 10a + b, where a is the tens digit and b is the units digit.

• According to the problem, when this number is divided by the digit in the units place (which is b), the quotient is 9 and the remainder is 6.
This can be expressed as:

10a + b = 9b + 6

Chunk 2
2. **Simplify the equation:

• Rearrange the equation to isolate terms involving a:
10a + b − 9b = 6

• Simplify:10a − 8b = 6

• Further simplify by dividing the entire equation by 2: 5a − 4b = 3

Chunk 3 (first attempt) This step fails verify the condition and stop with b = 3.
3.Solve for a and b:

• We need to find integer values of a and b that satisfy the equation 5a - 4b = 3. Since a and b are digits (0-9) and a cannot be 0 (as 10a would
not be a two-digit number), let’s test possible values for b.

• If b = 2:
5a − 4(2) = 3 =⇒ 5a − 8 = 3 =⇒ 5a = 11

5a = 11 does not give an integer value for a.

• If b = 1:
5a − 4(1) = 3 =⇒ 5a − 4 = 3 =⇒ 5a = 7

5a = 7 does not give an integer value for a.

• If b = 3:
5a − 4(3) = 3 =⇒ 5a − 12 = 3 =⇒ 5a = 15 =⇒ a = 3

This gives an integer value for a.

Chunk 3 (second attempt)
**Determine possible values for a and b:

• Since a and b are digits (0-9), we need to find values that satisfy the equation 5a - 4b = 3.

• We will test possible values for b (since b is the units digit and must be a digit from 1 to 9, as 0 would make the remainder 6 impossible).

– Testing b = 1:

5a − 4(1) = 3 =⇒ 5a − 4 = 3 =⇒ 5a = 7 =⇒ a =
7

5
(not an integer)

– Testing b = 3:
5a − 4(3) = 3 =⇒ 5a − 12 = 3 =⇒ 5a = 15 =⇒ a = 3

a = 3 is an integer, and we need to check if b = 3 is feasible. If a = 3 and b = 3, the number is 33. We need to verify:

33 ÷ 3 = 11 (quotient = 11, remainder = 0) (not a solution)

– Testing b = 4: 5a − 4(4) = 3 =⇒ 5a − 16 = 3 =⇒ 5a = 19 =⇒ a = 19
5

(not an integer)

– Testing b = 5:5a − 4(5) = 3 =⇒ 5a − 20 = 3 =⇒ 5a = 23 =⇒ a = 23
5

(not an integer)

– Testing b = 6: 5a − 4(6) = 3 =⇒ 5a − 24 = 3 =⇒ 5a = 27 =⇒ a = 27
5

(not an integer)

– Testing b = 7: 5a − 4(7) = 3 =⇒ 5a − 28 = 3 =⇒ 5a = 31 =⇒ a = 31
5

(not an integer)

– Testing b = 8: 5a − 4(8) = 3 =⇒ 5a − 32 = 3 =⇒ 5a = 35 =⇒ a = 7. a = 7 is an integer. So, the number is
78. We need to verify:

78 ÷ 8 = 9 (quotient = 9, remainder = 6)

This satisfies the condition.

Chunk 4
4. Conclusion: The two-digit number that meets the condition is 78. Therefore, the final answer is:

78

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Table 22: An illustrative example of chunk-reset reasoning. The judge model is STEPWISER with
Rel-Effective and Qwen2.5-7B-chunk. The idea is to use the commutative law of multiplication
and division to perform large-scale reduction, while the rejected chunks focus on the approximation
for simplifying the expression.

Example

Mathematical Problem
Calculate: 241 × 345 ÷ 678 ÷ 345 × (678 ÷ 241)

Chunk 1 (first attempt) we don’t need the approximation for simplification
Let’s break down the given expression step by step:

241 × 345 ÷ 678 ÷ 345 ×
(

678

241

)
.

First, let’s simplify the expression inside the parentheses:(
678

241

)
= 2.812 ≈ 2 (for simplicity, we can approximate it to 2 if dealing with integers)

However, we’ll use the exact value to be precise: (
678

241

)
= 2.812

Chunk 1 (second attempt)
Let’s break down the given expression step by step:

241 × 345 ÷ 678 ÷ 345 ×
(

678

241

)
.

First, let’s simplify the expression by following the operations order:
1. Calculate the division inside the parentheses first:

678

241
= 2.8 (approximately, but we don’t need the approximation for simplification here, just the fraction)

So the expression becomes:

241 × 345 ÷ 678 ÷ 345 ×
678

241

Chunk 2 (first attempt)
2. Simplify the expression by canceling out common factors:

• The 345 in the numerator and one of the denominators cancel out:

241 × 345 ÷ 678 ÷ 345 ×
678

241
= 241 ×

678

678
×

678

241

• The 678 in the numerator and one of the denominators cancel out:

241 ×
678

678
×

678

241
= 241 × 1 ×

678

241

• The 241 in the numerator and the denominator cancel out:

241 × 1 ×
678

241
= 678 × 1 = 678

Chunk 2 (second attempt)
2. Notice that 345 ÷ 345 = 1, so we can simplify the expression to:

241 × 1 ÷ 678 ×
678

241

= 241 ÷ 678 ×
678

241

Chunk 3
3. Now, we can cancel out 678 in the numerator and the denominator:

241 ×
(

1

678
×

678

241

)

= 241 ×
(

1

241

)
= 241 ×

1

241
= 1

Chunk 4
Therefore, the final answer is:

1

31

	Introduction
	Related Work
	Process Reward models in LLM math reasoning
	Judge architectures

	Method: Training stepwise generative judges with RL
	CoT Generation with Self-Segmentation (Chunks-of-Thought)
	Stepwise Data Annotation
	Training the Judge via Reinforcement Learning

	Experiments
	Self-Segmentation fine-tuning
	Evaluation on ProcessBench
	Analysis of Key Components to the Performance Gap
	Using the StepWiser judge to obtain better solutions

	Conclusion
	LLM Usage Statement
	Experiment Setups and Implementation Details
	Base Models and Data Preprocessing.
	Implementation Details of Self-segmentation Fine-tuning
	Details of Stepwise Data Annotation
	Stepwise data annotation via Q value estimation
	Implementation Details of Stepwise Data Annotation

	Judge Model Training Details
	Preliminaries: Hyperparameter Search for Labeling Signals
	Baseline: Discriminative Judge via SFT
	Our Method: Generative Judge via RL

	Additional Results and Ablation Studies
	Ablation on Self-segmentation
	Ablation on Key Components of the Generative Judge: CoT and Prompt Dataset Balancing
	Additional Result on Classification Accuracy
	Application: Data Selection via Rejection Sampling Fine-tuning

	Template, Example, and Additional Tables

