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ABSTRACT

In many task settings, text classification models are likely to encounter examples
from novel classes on which they cannot predict correctly. Selective prediction, in
which models abstain on low-confidence examples, provides a possible solution,
but existing models are often overly confident on OOD examples. To remedy this
overconfidence, we introduce Contrastive Novelty Learning (CNL), a two-step
method that generates OOD examples representative of novel classes, then trains
to decrease confidence on them. First, we generate OOD examples by prompting
a large language model twice: we prompt it to enumerate novel classes relevant
to the label set, then generate examples from each novel class matching the task
format. Second, we train our classifier with a novel contrastive objective that
encourages lower confidence on generated OOD examples than training examples.
When trained with CNL, classifiers improve in their ability to detect and abstain
on OOD examples over prior methods by an average of 2.3% AUAC and 5.5%
AUROC across 4 NLP datasets, with no cost to in-distribution accuracy.1

1 INTRODUCTION

Recent progress in NLP has led to text classification models that are accurate not only in-distribution,
but also on some out-of-domain data (Arora et al., 2021). Nonetheless, some categories of real-
world distribution shift still pose serious challenges. For instance, in open-set label shift, the test
data includes examples from novel classes not present in the training data, making it impossible for a
standard classifier to predict correctly (Scheirer et al., 2013). Moreover, novel class examples can be
difficult to detect with conventional OOD detection methods, as they typically bear a strong surface
resemblance to training examples (Ţifrea et al., 2021). In this paper, we frame open-set label shift
as a selective prediction problem (El-Yaniv & Wiener, 2010; Geifman & El-Yaniv, 2017) that we
call open-set selective classification (OSSC). OSSC requires text classifiers to predict correctly on
closed-set examples while abstaining on novel class examples.

To perform well on OSSC, a classifier must have lower confidence on novel class examples
than closed-set examples by learning features which differentiate novel classes from closed-set
classes (Perera et al., 2020). In order to supervise this representation learning, it is useful to identify
what examples from novel classes might look like. Prior work has explored automatically generat-
ing OOD images by adding random perturbations to ID examples (Setlur et al., 2022). Text inputs,
however, are composed of discrete tokens, and modifying even a single token can unpredictably
alter the meaning of a sentence. We seek an automatic generation method that addresses these limi-
tations, leveraging the generative ability of large language models (LLMs) like GPT-3 (Brown et al.,
2020). LLMs are a desirable source for novelty, as their generation is informed by a broad corpus of
examples seen during pretraining, allowing them to reliably generate from classes outside a dataset.

We present Contrastive Novelty Learning (CNL), a method to improve the OSSC ability of a clas-
sifier by automatically generating OOD examples and then training to abstain on them. To generate
a diverse set of OOD examples that anticipate different potential test-time shifts, we introduce Nov-
elty Prompting, a method that augments a source dataset with novel class examples generated by a
LLM. We first perform label generation, prompting our LLM to extend the closed-set labels with
novel labels. We then prompt the LLM to generate new examples conditioned on each novel label

1Code and data have been uploaded and will be released.
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Figure 1: Contrastive Novelty Learning pipeline. We Novelty Prompt a generator model to produce
a novel set DOOD, then train with a contrastive confidence loss (CCL) on our original train set DID
and DOOD, ensuring that our classifier is less confident on generated novel examples than closed-set
examples. Finally, we abstain based on model logits.

to form a large set of probable novel examples. Finally, we propose a contrastive confidence loss
(CCL) for training, which encourages both high accuracy on the ID training set and lower relative
confidence on the generated novel examples. We show that CCL outperforms stricter losses like
Outlier Exposure (Hendrycks et al., 2019), which can adversely affect ID performance. Our full
pipeline is shown in Figure 1. Our method can be viewed as a form of “partial” knowledge dis-
tillation: we leverage an LLM “teacher model” to improve novelty detection performance without
altering the student model’s strong ID classification ability.

We evaluate CNL against state-of-the-art baselines across 14 splits of 4 datasets (AGNews (Zhang
et al., 2015), TREC-10 (Li & Roth, 2002), TACRED (Zhang et al., 2017), Emotion (Saravia et al.,
2018)), finding that it improves both OOD detection and OSSC, by an average of 5.5% AUROC
and 2.3% AUAC over the best prior method. These improvements come at no cost to ID accuracy,
demonstrating that it is possible to distill novelty detection alone without affecting predictive power.
Finally, we analyze the settings in which CNL can improve OSSC performance. In the data dimen-
sion, scale is often optional: with as few as 1000 generated examples, we find an improvement over
vanilla training on all 4 datasets. The same is only partially true for LLM size, as on some datasets
only a sufficiently large model can generate useful examples.

2 PROBLEM SETTING

2.1 OPEN-SET SELECTIVE CLASSIFICATION

In standard classification, an optimal model f should predict the ground-truth label y of an input
example x from a closed set of known labels YID. However, under a more realistic open-set setting,
some test examples are drawn from unknown novel classes YOOD. Without a priori knowledge of
YOOD, a standard discriminative classifier will never correctly classify a novel example. Instead, an
optimal open-set selective classifier f should predict y when y ∈ YID, and abstain otherwise.

For a probabilistic model pθ(y | x) and associated confidence metric, the corresponding prediction
is given by f(x) = (ŷ, c), where ŷ = argmaxy∈YID pθ(y | x) and c denotes the model’s confidence.
When used as a selective classifier with threshold γ, f predicts ŷ when c > γ and abstains other-
wise (Geifman & El-Yaniv, 2017). This differs from OOD detection (Hendrycks & Gimpel, 2017)
in that f must abstain on both novel examples and its own errors and must attain high ID accuracy.

2.2 EVALUATION PROTOCOL

We holistically measure selective classification performance with the area under the accuracy-
coverage curve (AUAC). The accuracy-coverage curve plots accuracy as a function of the fraction of
examples on which the model predicts (i.e., coverage) as the confidence threshold γ varies. For ac-
curacy computation, we treat predictions on all novel class examples as incorrect. AUAC measures
the combined ability of a model in ID classification accuracy, ID calibration, and OOD detection.
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Though we deviate from prior work in reporting AUAC, to demonstrate that our method is still
effective in OOD detection, we additionally compute the Area under the ROC curve (AUROC).
AUROC measures a model’s ability to detect when a test example x is of a novel class (y ∈ YOOD).
Higher is better: 50% AUROC is random, and 100% is perfect.

3 METHOD: CONTRASTIVE NOVELTY LEARNING

Here we describe Contrastive Novelty Learning, a method for automatically improving OSSC. At
a high level, we generate novel examples and then train to ensure that our model is less confident
on generated novel examples than closed-set examples. We first describe desiderata for useful nov-
elty, then introduce a two-phased novel example generation method, Novelty Prompting, and finally
introduce a contrastive confidence loss for classifier training. We illustrate the method in Figure 1.

3.1 NOVELTY PROMPTING

Desiderata of Novelty Generation Inspired by previous work which utilize known, representative
OOD data to train selective prediction and OOD detection models (Kamath et al., 2020; Hendrycks
et al., 2019), we focus on creating an generated “novel set” that is representative of potential label
shifts at test time. The “novel set” must be (1) plausible, meaning that it should bear a surface
resemblance to the training data, e.g., we should create news examples for a news dataset, and (2)
semantically novel, meaning that these examples should be from new classes. For example, selecting
data from an entirely separate dataset, as is done in Hendrycks et al. (2019), violates plausibility.
Meanwhile simply editing surface features or recombining examples as is done in mixup (Zhang
et al., 2018) might induce a distribution shift but would not result in semantic novelty.

To satisfy these desiderata, we propose a two-stage generation method called Novelty Prompting
(NP). To encourage semantic novelty, we first generate novel labels given a dataset’s extant labels.
We then show existing examples to a language model (to encourage plausibility) and ask it to gen-
erate a new example conditioned on one of the new labels. Figure 1 shows both prompt formats.

Label Generation Though prompting with large autoregressive language models (LLMs) like GPT-
3 has typically been explored in the context of few and zero-shot learning to perform standard NLP
tasks Brown et al. (2020), we find that LLMs are also capable of “expanding” a set of topically
related concepts that might realistically co-occur via sequence continuation.

We leverage this capability to generate novel labels. We prompt the largest GPT-3 model available
(Davinci) with a task-specific instruction as well as the concatenation of the normalized known (YID)
labels. 2 By taking the union over continuations of one or more novel labels N times, we obtain a
diverse “novel label set.” We combine multiple completions because in preliminary experiments, we
observed that single completions tend to overgenerate labels from a narrow subcategory of possible
novel classes. To remedy concerns about data leakage due to dataset examples of the true unknown
class possibly appearing in LLM pretraining, we remove instances of the gold novel label(s) from
this set. In practice, predicting the true novel test-time labels is both permissible and desirable, so
our experimental setup likely underestimates our method’s performance.

Finally, we filter out generated labels that are closely related to ID labels. For example, if joy
appears in the ID labels, we remove synonyms like happiness. We use a large online thesaurus3 to
identify synonyms from the final novel label set. We analyze the impact of filtering in Appendix A.8.

Example Generation To generate each novel example, we randomly sample a novel label from
our set and prompt a LLM (we use GPT-J) to generate an example of that label. We prime this
model with one random sampled label-example pair from each ID class in the training dataset in the
prompt, resulting in 3-6 in-context examples, varying based on the dataset. Providing these context
pairs ensures that our generation is plausible: the model is encouraged to generate a specific style
of text. We perform this generation procedure repeatedly to form a novel example set. We show the
prompt we use for this step in Appendix A.1, and several generated label-example pairs in Figure 2.

2Though this requires some human intervention, it both (1) satisfies the true zero-shot nature of test-time
label shift as it requires no knowledge of the unknown labels and (2) requires minimal effort, typically only
involving converting an abbreviation label such as LOC into Location.

3https://moby-thesaurus.org/
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3.2 CONTRASTIVE CONFIDENCE LOSS TRAINING

Our second contribution is an improved loss function for training models to have lower confidence
on OOD examples than ID examples. Prior work has used the Outlier Exposure (Hendrycks et al.,
2019) objective, which encourages the model f to output a uniform probability distribution over
closed-set classes when given a novel example x. Hendrycks et al. (2019) successfully used Outlier
Exposure to train models on OOD data gathered from a different dataset (e.g., Wikitext), since there
was very little risk of this data overlapping with ID data. In contrast, we automatically generate
plausible novel examples, which runs the risk that some of our novel examples will inevitably be in
distribution. Since Outlier Exposure encourages models to have the lowest possible confidence on
novel examples, it can hurt predictive accuracy when some examples x actually resemble closed-set
examples. Instead, we seek a solution which treats outliers more flexibly.

We propose a novel contrastive confidence loss (CCL) that encourages models to be less confident on
OOD examples than ID examples. This is a less strict objective as models can achieve minimum loss
without predicting a perfectly uniform distribution for the generated novel examples. For an input
x, let pθ(y | x) be the model’s predicted distribution over YID. Let cθ(x) = maxy∈YID pθ(y | x),
the Maximum Softmax Probability (MaxProb) (Hendrycks & Gimpel, 2017), which we use as our
confidence metric. Finally, let ℓ denote the cross-entropy loss with a one-hot target vector, and DID
and DOOD denote the training set and novel set respectively. We define CCL as follows:

L(θ) = E(xid,yid)∼DID [ℓ(pθ(y | xid), yid)] + λExid∼DID,xood∼DOOD [max(0, cθ(xood)− cθ(xid))]. (1)

That is, we penalize the confidence of novel examples which have higher confidence than any closed-
set example. While this still induces our model to learn lower confidence on novel examples, it
simultaneously permits our model to learn that some novel examples can be more novel than others,
rather than learn minimal confidence on all members of the generated novel set. In practice, we
obtain an unbiased estimate of the second term by sampling a batch of n ID and n OOD examples at
each step and computing the second term pairwise between each of the n2 ID-OOD example pairs.
We arbitrarily choose λ = 1.0, weighting the two terms of the objective equally.

4 EXPERIMENTAL SETUP

4.1 DATASETS

We construct artificial dataset splits from 4 popular NLP classification datasets by holding out one or
more labels from training and moving all examples of that label to the test split, removing classes that
are too small to yield statistical significance in our evaluations. Specifically, we evaluate a question
intent detection dataset, TREC-10 (Li & Roth, 2002) and construct 5 splits. We also evaluate two
popular topic classification datasets, AGNews (Zhang et al., 2015), a news classification dataset,
and Emotion (Saravia et al., 2018), a tweet classification dataset. We construct 4 splits for each.
Finally, we evaluate TACRED (Zhang et al., 2017), a strongly class-imbalanced sentence relation-
classification dataset with a large set of 41 possible relations, for which we construct a single split
where we hold out the 35 smallest classes. Further dataset details are outlined in Appendix A.6.
Results for each dataset are averaged across all splits.

4.2 EXPERIMENTAL DETAILS

For Novelty Prompting, we perform label generation using the best available GPT-3 model, GPT-3
Davinci (Brown et al., 2020) and example generation with a smaller pretrained GPT-J 6B model Ko-
matsuzaki (2021). To generate a sufficiently diverse novelty set, we perform 5 label generation iter-
ations, then generate 100000 examples. We analyze the impact of generation budget in Section 5.3.
We train BERT-base classifiers with CCL for 5000 steps and batch size n = 40. On TACRED, we
permit only generations containing exactly two entities, one of which is a subject and the other an
object, filtering out roughly 90% of generations. This is a task constraint: the relation between any
other number of entities is under- or overspecified. We describe further details in Appendix A.7.
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AUAC (↑) TREC-10 AGNews Emotion TACRED Average

Vanilla 89.2±2.2 87.9±0.6 90.3±1.0 89.6±0.1 89.3
kFolden 93.5±0.6 85.8±1.6 90.6±0.9 84.9±3.5 88.7
Contrastive 92.0±0.4 87.0±0.9 92.2±0.4 88.8±0.7 90.0

CCL + Wikitext 91.2±1.4 88.6±0.6 92.0±0.4 89.3±0.5 90.3
CCL + Zero-Shot 92.5±0.8 89.1±0.4 92.6±0.2 88.9±0.4 90.8
CCL + Few-Shot 93.5±0.3 89.7±0.3 93.3±0.1 90.8±0.1 91.8
OE + Wikitext 92.6±0.8 88.9±0.4 91.6±0.6 89.8±0.1 90.7
OE + Novelty Prompting 83.6±0.4 90.6±0.2 92.4±0.1 91.3±0.3 89.5

Contrastive Novelty Learning 94.3±0.2 90.5±0.3 93.4±0.1 91.1±0.2 92.3

CCL + Gold Label † 94.8±0.3 91.4±0.3 93.7±0.1 91.0±0.2 92.7
CCL + Gold Data † 96.6±0.1 93.5±0.1 94.8±0.2 94.3±0.4 94.8
OE + Gold Data † 96.5±0.2 94.8±0.0 95.2±0.0 96.2±0.2 95.7

Table 1: OSSC Results of Contrastive Novelty Learning. Methods listed below CNL are upper
bounds. All outlier exposure (OE) methods are trained on 100K outlier generations. We average
over the results of 5 seeds of all splits and report standard error of the mean in subscript. We report
macro-average of all datasets in the rightmost column. Oracle methods are marked with a †. We
find that CNL significantly outperforms all prior methods on 3 of 4 datasets, and both the Novelty
Prompting and CCL loss components are important for strong performance.

4.3 BASELINES

We evaluate our method against OSSC baselines from prior work, CCL baselines with other novel
sets, and Outlier Exposure (Hendrycks et al., 2019). For all methods, we train a BERT-base model
and use hyperparameters from the original papers unless otherwise specified. Of the basleines, only
CCL and Outlier Exposure use an explicit novel set.

Vanilla We evaluate vanilla cross-entropy loss training, calculating confidence using MaxProb.

kFolden We evaluate kFolden (Li et al., 2021), a method that trains an ensemble of k individual
classifiers, each trained on k − 1 labels. The average of the ensemble probability distributions is
used for confidence computation.

Contrastive We evaluate Contrastive OOD Detection (Zhou et al., 2021), which uses a contrastive
objective to induce training examples of different classes to be distant and of the same class to be
near. This sparsifies the embedding space, ensuring that most OOD examples are far from feature
representations of ID samples. We use the supervised constrastive loss and the Mahalanobis distance
metric for confidence computation, finding that this setup performed the best on our evaluation.

CCL + Zero/Few-Shot Data Augmentation To measure the impact of explicitly prompting for
novel labels, we generate with an identical pretrained GPT-J model, but prompt with only an in-
struction and one (or zero) ID training example from each class (See Appendix A.1 for the specific
prompt format). Essentially, we perform example generation identically but skip label generation en-
tirely. We perform CCL training and MaxProb inference. While some resultant generations will be
useful, we expect that many will not be semantically novel, resulting in strictly worse performance.

CCL + Wikitext To measure whether plausibility of examples impacts their usefulness for CCL, we
use an entirely different dataset, Wikitext-103, as our novel set. Though these examples represent a
distribution shift, they do not accurately reflect the open-set shift the classifier will encounter.

Outlier Exposure + Novelty Prompting We pair our novel set with Outlier Exposure
(OE) (Hendrycks et al., 2019) as described in Section 3.2 and compute confidence with MaxProb.

5 RESULTS

5.1 OSSC RESULTS

CNL outperforms prior work. We report comparisons of CNL against baselines in Table 1.
Broadly, we find that while baselines like kFolden and Contrastive training struggle to consistently
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Label Generated Example

CURIOSITY i am still interested but more in-
terested to visit the pyramids and
learn more

DESPAIR i love my friends but sometimes i
feel like im not good enough

DISAPPOINTMENT i am a human nothing is going to
keep me from flying away

Figure 2: Example novel generations for Emo-
tion. In this split, the gold novel label is “sad-
ness”. Though we remove the gold novel label
before example generation, many generations are
still relevant to this label. More generation exam-
ples are shown in Appendix A.4.
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Figure 3: Noisy novel sets hurt accuracy for
OE. We plot the ID accuracy of classifiers
trained with OE and CCL on mixtures of held-
out TREC-10 OOD and ID data as an novel set.
ID accuracy with OE decreases as we introduce
more noise, while CCL stays stable.

outperform vanilla training (e.g., on TACRED), CNL improves selective classification over vanilla
across all datasets. We outperform the best prior method (Contrastive) by 2.3% AUAC, and on
three of four datasets, our method significantly outperforms all prior methods. Furthermore, we
outperform kFolden by 3.6% AUAC despite its ensemble totaling many times the capacity of our
single classifier. CNL also results in zero or insignificant accuracy drop (less than 0.2 points) for all
datasets. In Appendix A.2, we show full ID accuracy results for all datasets.

Other choices of novel set for CCL training can still be beneficial. Prompting with only a task-
relevant instruction (zero-shot) generates sufficiently useful novel examples to slightly outperform
the vanilla baseline by 1.5% AUAC. Using Wikitext as our novel set performs roughly on par with
zero-shot generation: though Wikitext examples are less noisy than generations, they also tend to be
less dataset-relevant. Few-shot generation, which generates more plausible examples, is significantly
better than all prior methods, though it performs worse than Novelty Prompting on 3 of 4 datasets.

To further test the importance of novel set selection, we compare with two oracle methods. In the
Gold Data setting, we train with CCL against held out data of the gold novel test class(es) as a strict
upper bound for both label and example generation. In the Gold Label setting, we eliminate the
label generation step, fixing the gold label as the sole member of our novel label set. We perform
example generation as normal using this gold label alone. This setting is overly optimistic as we
cannot know what new labels will appear at test-time.4 We find that CCL in the Gold Label setting
slightly outperforms CNL, but paired with gold novel data can achieve significantly stronger OSSC.

Training loss choice matters for generated data. Although OE training with Novelty Prompting
data improves OOD detection over vanilla, it causes a sharp decrease in accuracy on TREC-10
(96.6% → 71.3%) and an average of 0.6% accuracy on the other three datasets (see Appendix A.2).
We attribute this behavior to generation noise: some generated examples are similar to ID examples,
and thus greatly affect the model’s ID predictions when training with OE. To verify this hypothesis,
we conduct an experiment where we train classifiers with novel sets formed by noising heldout
OOD data with various amounts of heldout ID data. In Figure 3, we show that as the simulated ID
noise ratio increases, OE training hurts accuracy, whereas CCL models retain accuracy. Though this
phenomenon is most salient on TREC-10, we show in Appendix A.10 that it also occurs on other
small datasets, and is more severe when the novel set is larger than the training set.

When the novel set is sampled from held-out gold OOD data instead of being generated by a LLM,
OE outperforms CCL in AUAC and AUROC, suffering only a small accuracy drop (an average
of 0.4%). In contrast, we find that CCL training maintains accuracy on all generated novel data
settings (see Appendix A.2), as it does not enforce a uniform probability distribution on all novel set
examples. CCL with both zero- and few-shot augmented novel sets outperforms all prior methods,
and our full CNL method (CCL+NP) significantly outperforms prior methods on all but one dataset.

4In practice, expert knowledge of the novelty we expect to see at test-time is sometimes available, and as
shown in our results, can be leveraged for better performance.
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AUROC (↑) TREC-10 AGNews Emotion TACRED Average

Vanilla 76.6±4.4 76.4±1.0 85.0±2.4 46.3±0.1 71.1
kFolden 84.7±2.0 72.5±2.2 85.3±1.8 53.1±6.2 73.9
Contrastive 79.8±1.3 76.5±1.8 89.1±1.7 45.7±1.2 72.3

CCL + Wikitext 81.0±2.6 78.1±0.8 90.3±0.8 45.2±1.2 74.1
CCL + Zero-Shot 84.8±1.4 78.8±0.8 90.7±0.7 44.2±1.0 74.6
CCL + Few-Shot 88.4±0.6 80.5±0.7 92.8±0.5 49.7±0.3 77.9
OE + Wikitext 85.0±1.7 78.3±0.8 88.8±1.1 46.2±0.5 74.6
OE + Novelty Prompting 74.2±0.5 85.5±0.3 91.0±0.3 53.5±0.7 76.0

Contrastive Novelty Learning 90.8±0.6 82.6±0.6 93.4±0.3 50.9±0.5 79.4

CCL + Gold Label † 92.0±0.8 84.9±0.4 94.2±0.3 51.2±0.6 80.6
CCL + Gold Data † 98.3±0.3 91.7±0.3 98.8±0.1 63.1±0.2 88.0
OE + Gold Data † 99.1±0.2 98.8±0.3 99.7±0.0 89.0±0.5 96.7

Table 2: OOD Detection Results of Contrastive Novelty Learning. Methods same as in Table 1.
We find that CNL signficantly improves OOD detection AUROC over all prior methods on 3 of 4
datasets. While OE training results in better AUROC on some datasets, it hurts ID accuracy.
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5.2 OOD DETECTION RESULTS

To confirm that CNL improves a classifier’s ability to disambiguate novel class examples, we com-
pare CNL against the same baselines on OOD detection in Table 2. We find similar improvements,
outperforming the best prior method (kFolden) by 5.5% AUROC. We interpret this result in Ap-
pendix A.11, showing that CNL improves ID/OOD separability. Unlike other datasets, TACRED
exhibits strong OOD overconfidence: all baselines except kFolden yield worse-than-random OOD
detection (below 50% AUROC). We hypothesize that this could be due to models incorrectly as-
suming that an NER tag pair seen at training time in only a single class could not belong to a novel
relation. OOD detection on TACRED remains a challenging goal for future work, as the strong per-
formance of CCL training with gold heldout data indicates significant remaining headroom. In fact,
on all three other datasets, models achieve greater than 90% AUROC when trained with gold heldout
data. While OE results in better AUROC performance on AGNews, ID accuracy also decreases.

5.3 PERFORMANCE ANALYSIS

Label Generator Model We investigate whether a smaller, open-source model can suffice as the
label generator. Specifically, we replace the label generator with GPT-J and use 100 label generation
iterations. We find that GPT-J performs on-par with GPT-3 on 3 of 4 datasets in all metrics, except
on AGNews where it performs within 1 point AUAC. We provide full details in Appendix A.3.
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Figure 6: Selective prediction performance is positively correlated with generation quota. We mea-
sure selective prediction against the total number of examples generated, showing various baselines
in horizontal lines. On most datasets, even a low quota can meaningfully improve AUAC.

Example Generator Size Since model scale often affects prompting performance Sanh et al. (2021);
Brown et al. (2020), we compare generator models ranging in size from 125M parameters to 6B
parameters. For each, we generate 100K examples, and compare CNL results in Figure 4. All
generators improve over the Vanilla baseline. GPT2-Neo 125M is competitive with GPT2-Large
despite being roughly 5x smaller, suggesting that its larger pretraining corpus (the Pile) aids gener-
ation ability. We observe that novel generation is easier on simpler tasks: on Emotion, where labels
(or synonyms) can appear directly in the example, inter-generator differences are small. We posit
that even larger generators such as GPT-3 could yield better performance across abstract tasks.5

Other Classifier Models We investigate the generalizability of CNL to two other classifier architec-
tures, RoBERTa (Liu et al., 2019) and DeBERTa-v3 (He et al., 2021), of both base and large sizes,
with results in Figure 5. Averaged over datasets, CNL improves AUAC for all classifiers, though
these improvements are most apparent with the smaller base models. Larger classifiers are better at
OSSC: vanilla RoBERTa-large improves over BERT-base by 2.8% AUAC. Vanilla RoBERTa-base
slightly outperforms vanilla BERT-base, but after CNL training, the two perform on-par, suggesting
that learning from generated examples can make up for BERT’s smaller pretraining corpus.

Generation Quota Since large-scale LLM prompting is costly, we analyze the performance tradeoff
of shrinking the generation quota, the number of novel examples that we can generate. In Figure 6,
we show that on some datasets, using orders of magnitude smaller novel sets can still improve se-
lective prediction. For example, 1000 generations is sufficient to improve AUAC across all datasets,
and for most datasets we require far fewer. In such cases where a low quota is sufficient, novelty
prompting is nearly as efficient as vanilla classifier training.

Generation Analysis To evaluate the remaining errors in OOD generation, we perform two types
of manual analysis on Novelty Prompting (NP). First, we categorize the labels generated by NP
after filtering, finding that 70%+ of GPT-3 generated labels are novel on all datasets except TREC-
10, where only 40% are novel, and the vast majority of the others are valid closed-set examples.
This highlights one source of generation noise in our pipeline. Second, we categorize the examples
generated by NP and a well-performing baseline method, Few-shot data augmentation (FS). Specif-
ically, for each of 4 splits of AGNews, we annotate 100 NP and 100 FS examples. We find that on
average 41% of NP generations come from novel classes, compared to only 26% of FS generations,
explaining CNL’s stronger performance over CCL + Few-Shot. We provide further analysis in Ap-
pendix A.5. Our method performs well despite the high fraction (50.5%) of closed-set examples
generated in NP, showing that CCL is robust to noise in the novel example generation process.

6 RELATED WORK

6.1 IDENTIFYING OOD DATA

OOD Detection. Significant prior work has focused on OOD detection, which asks a model to detect
when a test example originates from a new distribution (Hendrycks & Gimpel, 2017). Many of these
change the training objective of a model, e.g., with a contrastive training objective (Winkens et al.,

5We evaluate GPT-3 for label generation but not for example generation, as the latter requires many more
API calls.
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2020; Sehwag et al., 2021; Zhou et al., 2021). When the nature of the distribution shift is known,
the model can directly be trained to be uncertain on known OOD examples (Dhamija et al., 2018;
Hendrycks et al., 2019). We draw on the success of these known-shift methods, but eliminate the
need for known OOD data by using generative models.

Recently, many works on OOD detection have explored alternative modeling paradigms. By draw-
ing on assumptions about the IID nature of neural network errors, confidence can be predicted from
model ensembles (Ţifrea et al., 2021; Li et al., 2021; Lakshminarayanan et al., 2017). Simple meth-
ods like deep nearest-neighbors Sun et al. (2022); Bergman et al. (2020) can also perform surpris-
ingly well. Further performance improvements can be achieved by modifying the confidence metric.
Podolskiy et al. (2021) find that Mahalanobis distance better exploits the geometry of the learned
embedding space, explaining strong performance achieved by replacing probability-based scoring
mechanisms (Lee et al., 2018; Ren et al., 2021). We show that standard models are sufficient: Max-
Prob scoring with a standard classifier can perform well when given proper OOD demonstrations.

OOD Selective Prediction. Selective prediction work focuses on a different paradigm altogether,
fusing abstention (detection) with prediction (El-Yaniv & Wiener, 2010; Geifman & El-Yaniv,
2017). External calibrators popularized by Kamath et al. (2020) have become popular as a selective
prediction framework Zhang et al. (2021); Ye & Durrett (2021); Varshney et al. (2022). However,
calibrators are typically smaller than classifier models (Tajwar et al., 2021), limiting their capacity
to learn the volume of outliers we generate and swaying us to consider using no auxiliary model to
detect novel examples. Additionally, methods such as ours which train a model to predict their own
confidence can be deployed with no additional inference overhead. For example, large generative
LMs can be trained to self-verify on challenging question answering tasks (Kadavath et al., 2022).

6.2 OPEN-SET CLASSIFICATION

Open-set classification is well-explored in the image classification space, as tasks like CIFAR-100
tend towards large label spaces (Scheirer et al., 2013; Geng et al., 2021). Some methods for detecting
open-set examples build on the classifier, e.g., by classifying over the model’s activations (Bendale
& Boult, 2016) or adding an additional reconstruction model (Oza & Patel, 2019). Our work is
most closely related to methods which generate near-OOD examples and regularize confidence on
them (Ge et al., 2017; Du et al., 2022; Kong et al., 2020; Vernekar et al., 2019; Möller et al., 2021;
Setlur et al., 2022). However, methods like perturbation and embedding space sampling align poorly
with the discrete nature of text, prompting us to investigate powerful generative language models.
Esmaeilpour et al. (2022) is closely related to our work in that they also generate novel labels, but
directly use these labels as input to a classifier.

Open-set classification for text has been less explored. Early works built upon the k-way, 1-vs-rest
paradigm of SVMs, classifying an example as “novel” if all k scores fall below a threshold (Fei &
Liu, 2016; Shu et al., 2017; Doan & Kalita, 2017). Many recent works explore similar methods as
prior vision work, but focus on the intent detection setting, as task-oriented dialogue models should
abstain on unknown intents (Zeng et al., 2021; Zheng et al., 2020; Lin & Xu, 2019). To the best of
our knowledge, we are the first work to generate novel examples for open-set text classification.

7 DISCUSSION AND FUTURE WORK

In this work, we introduce Contrastive Novelty Learning, a method for generating novel examples
which simulate open-set shift and training to abstain on them. Through extensive experiments,
we demonstrate that by presenting generated examples to a classifier, we can significantly improve
its ability to abstain on examples from novel classes against state-of-the-art baselines. Our work
provides a generalizable framework for improving OSSC and OOD detection: in fact, we show
through CCL training’s strong performance with gold heldout data that there remains significant
headroom for novel example generation. Additionally, CNL is modular, as it provides additional
supervision signal but does not alter the classifier model’s architecture, and thus remains extensible
with other training objectives or classification metrics. Finally, given recent interest in the emergent
capabilities of large language models, we hope that future work on classification in the presence
of distribution shifts can better leverage large language models to both directly identify shifts and
improve the abstention ability of smaller classifiers.
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8 REPRODUCIBILITY STATEMENT

We provide a full code implementation of Contrastive Novelty Learning, including Novelty Prompt-
ing and CCL and OE training. We detail hyperparameters for our experiments in Section 4.2, prompt
formats in Appendix A.1, and data processing details in Appendices A.6 and A.7. CNL can be run
with any text dataset and discriminative classifier model. We release generated novel examples from
Novelty Prompting and several generation baselines for reproducibility.
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Alexandru Ţifrea, Eric Stavarache, and Fanny Yang. Novelty detection using ensembles with regu-
larized disagreement. arXiv preprint arXiv:2012.05825, 2021.

A APPENDIX

A.1 PROMPT FORMAT

We use the same format for label generation for all datasets, shown in Figure 7, but customize the
instruction for each dataset, as shown in Figure 8.

Instruction Generate a diverse list of news genres:
ID Labels [World, Sports, Sci/Tech,

Figure 7: Label Generation prompt for AGNews.

Dataset Instruction
Emotion Generate a diverse list of emotions
AGNews Generate a diverse list of news genres
TREC-10 Generate a diverse list of entity types
TACRED Generate a diverse list of relations between entities

Figure 8: Label Prompts for each Dataset.

For example generation, we prompt with an example sampled from each class and a random novel
label. We use the same instruction for all datasets. An example prompt is shown in Figure 9.

Instruction Given a label, generate a corresponding example:
ID Label 1 business
ID Example 1 Starwood Names New Chief Executive SEPTEMBER 21,

2004 -- White Plains, NY -- Former Coca-Cola Company
president Steven Heyer today was named the new chief
executive of Starwood Hotels, effective Oct. 1.
Heyer succeeds Starwood founder Barry

ID Label 2 sports
ID Example 2 Marino, Young Considered for Hall of Fame Dan Marino

and Steve Young highlighted a list Friday of 25
candidates for the Pro Football Hall of Fame.

ID Label 3 world
ID Example 3 Afghan warlords ’threaten poll’ Afghan warlords

are involved in intimidation which could threaten
October’s elections, Human Rights Watch says.

Novel Label entertainment

Figure 9: Example Generation prompt for AGNews.

Few-shot prompting is done with a task-specific instruction, but does not include labels, as shown
in Figure 10. Zero-shot prompting is done with the task-specific instruction only.

A.2 FULL ACCURACY RESULTS

CNL improves AUAC on all datasets without any cost to ID accuracy, as shown in Figure 11. We
show full ID accuracy results in Table 3. CCL training maintains accuracy across all datasets,
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Instruction Generate a news headline:
ID Example 1 Starwood Names New Chief Executive SEPTEMBER 21,

2004 -- White Plains, NY -- Former Coca-Cola Company
president Steven Heyer today was named the new chief
executive of Starwood Hotels, effective Oct. 1.
Heyer succeeds Starwood founder Barry

ID Example 2 Marino, Young Considered for Hall of Fame Dan Marino
and Steve Young highlighted a list Friday of 25
candidates for the Pro Football Hall of Fame.

ID Example 3 Afghan warlords ’threaten poll’ Afghan warlords
are involved in intimidation which could threaten
October’s elections, Human Rights Watch says.

Figure 10: Few-Shot Generation prompt for AGNews.
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Figure 11: CNL training main-
tains accuracy. Training with
novelty prompted examples does
not significantly alter ID accuracy,
but improves selective prediction
across all datasets.

(↑) TREC-10 AGNews Emotion TACRED Avg

V
an

ill
a AUAC 89.2±2.2 87.9±0.6 90.3±1.0 89.6±0.1 89.3

AUROC 76.6±4.4 76.4±1.0 85.0±2.4 46.3±0.1 71.1
ID Acc 96.6±0.2 96.1±0.0 97.7±0.1 95.0±0.1 96.4

G
PT

-3 AUAC 94.3±0.2 90.5±0.3 93.4±0.1 91.1±0.2 92.3
AUROC 90.8±0.6 82.6±0.6 93.4±0.3 50.9±0.5 79.4
ID Acc 96.4±0.2 96.2±0.0 97.8±0.1 94.9±0.1 96.3

G
PT

-J AUAC 94.2±0.3 89.8±0.3 93.5±0.1 91.0±0.2 92.1
AUROC 90.0±0.6 80.8±0.6 93.5±0.3 50.4±0.4 78.7
ID Acc 96.4±0.1 96.2±0.0 97.9±0.1 94.9±0.0 96.4

Figure 12: GPT-J is also a strong label generator. We com-
pare label generation using GPT-3 and GPT-J, using GPT-J
as the example generator for both methods. GPT-J performs
within a negligible margin of GPT-3 on TREC-10 and Emo-
tion, but slightly worse on AGNews and TACRED.

while OE training decreases accuracy on 3 of 4 datasets, with a very sharp drop on TREC-10. In
Appendix A.10, we show through analyses on two datasets that this steep accuracy drop is not an
anomaly: when paired with generated data, OE training is sensitive to the sizes of the novel set and
training set, and can signficantly hurt ID accuracy when the novel set is much larger than the training
set. Additionally, despite improving selective prediction performance, training with gold held-out
data curiously hurts accuracy on TACRED.

A.3 CNL PERFORMS WELL WITHOUT GPT-3

In our main experiments, we use GPT-3 as the label generator and GPT-J 6B as the example gen-
erator. In Section 5.3, we show that smaller models can be used as example generators. Here we
investigate whether a smaller, open-source language model can be used as a label generator. In
Table 12, we show that GPT-J 6B also performs well at label generation. We empirically observe
that GPT-J generates shorter and noisier completions, requiring us to increase the number of model
calls from 5 to 100 and filter out all labels containing punctuation marks. We find that the differ-
ence between GPT-J and GPT-3 label generation is only significant on 1 of 4 datasets (AGNews),
suggesting that CNL with GPT-J only can still work well.

A.4 GENERATION EXAMPLES

We show examples of the generations from Novelty Prompting for AGNews in Table 4. Recall that
we do not allow the gold novel label to be generated to hedge against data leakage from LLM pre-
training. However, we observe that our generator is still capable of producing relevant examples to
the gold novel label due to signal from similar novel labels. Despite many generations not being
directly relevant to the gold novel label, we observe that the generated novel labels are sufficiently
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ID Acc (↑) TREC-10 AGNews Emotion TACRED

Vanilla 96.6±0.2 96.1±0.0 97.7±0.1 95.0±0.1

kFolden 96.5±0.1 96.0±0.1 97.2±0.2 88.3±0.0

Contrastive 95.3±0.1 96.0±0.0 98.0±0.1 94.8±0.2

CCL + Wikitext 96.6±0.1 96.1±0.1 97.6±0.1 94.9±0.1

CCL + Zero-Shot 96.5±0.2 96.3±0.0 97.6±0.1 94.9±0.2

CCL + Few-Shot 96.3±0.2 96.1±0.0 97.8±0.1 94.8±0.2

OE + Wikitext 96.6±0.2 96.1±0.0 97.6±0.1 94.8±0.1

OE + Novelty Prompting 71.3±0.9 95.6±0.0 96.4±0.2 94.8±0.2

Contrastive Novelty Learning 96.4±0.2 96.2±0.0 97.8±0.1 94.9±0.1

CCL + Gold Label † 96.5±0.2 96.1±0.0 97.7±0.1 94.9±0.1

CCL + Gold Data † 96.0±0.2 95.8±0.1 97.6±0.1 93.8±0.1

OE + Gold Data † 96.4±0.1 95.8±0.0 97.9±0.1 93.6±0.2

Table 3: Full Accuracy Results of Contrastive Novelty Learning

Dataset Label Type Frequency Example Label

TREC-10
Implausible 7.8% August 27
Novel 40.0% time
Closed-Set 52.2% person

AGNEWS
Implausible 14.9% ology
Novel 81.7% food
Closed-Set 3.3% technology

EMOTION
Implausible 5.1% app
Novel 83.9% serenity
Closed-Set 11.1% frustration

TACRED
Implausible 14.3% ualifications
Novel 73.6% parent company
Closed-Set 12.1% current location

Figure 13: Error Analysis on Label Generation. We
manually annotate generated label sets across all splits
of each dataset, recording the frequency of novel and
plausible labels.
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Figure 14: Error Analysis on Exam-
ple Generation. For each split of AG-
News, we manually annotate 100 gen-
erations each for two generation meth-
ods and compute the frequency of novel
class examples, closed-set class exam-
ples, and implausible examples.

distinct from the closed-set labels that most generated examples still provide useful “novelty” super-
vision signal to the classifier.

A.5 NOVELTY PROMPTING ERROR ANALYSIS

Though CNL improves OSSC ability on all datasets, we still find headroom between Novelty
Prompting generated data and gold OOD data (92.3 → 94.8) in Table 1. To understand the remain-
ing failure modes of Novelty Prompting, we manually inspect the generated labels and examples
from our method. Broadly, we seek to attribute “generation noise,” or the frequency with which the
purported novel sets which we generate instead contain closed-set class examples.

First, we manually annotate GPT-3 generated labels from all dataset splits, categorizing a label
into “implausible” if it does conform to the dataset’s format, “closed-set” (ID) if it is synonymous
with a class seen in training, and “novel” (OOD) if it describes a class distinct from all closed-set
classes. In Figure 13, we perform this analysis for all four datasets. Across all datasets, less than
15% of generations are implausible, suggesting that the model is usually able to generate reasonable
additional labels given only 3-6 ID classes. We also observe that while on 3 of 4 datasets less than
15% of generated classes are closed-set, on TREC-10 more than half of generated labels are closed-
set. One reason for this label generation noise is that the TREC-10 labels are very broad (e.g.,
“entity” describes questions about any subcategory of an entity, including all objects and events), so
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WORLD

HEALTH The Top 5 Places to Take a Break From the Rat Race This sum-
mer could be the best one in years to take a break and recharge
the ol’ batteries.

TRAVEL U.S. Airlines Say They Won’t Raise Rates to Pay for the New
Security Fee and The government, for its part, has set a deadline
for some of the other fees at the beginning of this month.

POLITICS The Real Reason Republicans Cautiously Endorse the ’Ob-
scure’ Paul Ryan - CNN Politics If we’re going to pick fights
with the other party, we might as well pick fights with the right
people.

SPORTS

ENTERTAINMENT David Beckham And Victoria Beckham Are Exiting The Lon-
don Home They Have Shared With The NBA Star. LONDON
(AP) - David Beckham has been kicked out of the house that
he shared with his British soccer team, the Los Angeles Galaxy.
The couple and the couple’s kids are moving into an apartment

FASHION In search of fashion in South Africa What will the fashion world
be wearing next year? Will the world need another white wed-
ding dress?

CRIME The Police Are Going To Find You a Lot Easier in the Future:
Security Advances of 2008 (Video) The police are going to find
you a lot easier in the future: Security advances of 2008

BUSINESS

FOOD/DRINK How to Make a Fried Sausage Slider (Fast) - YouTube A couple
of weeks ago, I made a fried sausage slider and they’re awe-
some! A few friends have asked me to go through this again but
in a shorter time to make up a batch quickly for them.

WEATHER Snowstorm Blasts Northeast with Another Round of Winter
Storms to Leave Snow, Ice and Blowdowns A big nor’easter
is expected to bring sleet, ice and another round of dangerous
wind gusts around New Year’s Eve. Winter storms are expected
to roll through Wednesday and Thursday in the

RELATIONSHIPS AP - Michael Phelps and his wife will be moving back to Wash-
ington State from Arizona while he finishes his Olympic career.

SCI/TECH

LIFESTYLE A new batch of Apple iPhone 3Gs have gone up for sale in the
UK, with all six major networks now having a network price.
Apple unveiled the 3Gs on Wednesday, making a number of
changes to the device, which is expected to be hugely popular
in the market.

ENTERTAINMENT THE FILM: JERSEY GIRL ”Jersey Girl” tells the story of
the love-hate relationship between an Irish-American girl from
New Jersey and a native New Jerseyan. Directed by Elizabeth
Swados.

TECHNOLOGY Yahoo Japan to buy a majority stake in Nikkei Corp Yahoo
Japan Corporation announced it plans to buy a 69.8 per cent
stake of Nikkei for 1.43billion, the two companies said Friday.

Table 4: Example novel generations for AGNews.

while a generated label might differ in definition, it could still overlap with or fall into a subcategory
of a closed-set class.

Second, we manually annotate GPT-J generated examples to understand whether example genera-
tion is a source of generation noise. In Figure 14, we annotate 100 examples of each split of AGNews
for both Few-shot data augmentation and Novelty Prompting. We observe that Novelty Prompting
generates novel class examples significantly more frequently across 3 of 4 splits. Both methods gen-
erate implausible (e.g., agrammatical, non-news) examples rarely, as ID demonstrations sufficiently
prime the model to generate text in the style of news. Additionally, under Novelty Prompting, we
find that the fraction of novel class examples (41.3%) is significantly lower than the fraction of
novel labels generated (81.7%), suggesting that GPT-J can easily adhere to the dataset format, but
struggles to extrapolate to the novel label. Future work should thus focus on better specifying the
example generation step to leverage the generated labels.
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(↑) TREC-10 AGNews Emotion TACRED Avg

V
an

ill
a AUAC 89.2±2.2 87.9±0.6 90.3±1.0 89.6±0.1 89.3

AUROC 76.6±4.4 76.4±1.0 85.0±2.4 46.3±0.1 71.1
ID Acc 96.6±0.2 96.1±0.0 97.7±0.1 95.0±0.1 96.4

L
S

AUAC 90.6±1.6 83.5±1.4 82.0±1.7 87.1±1.0 85.8
AUROC 80.5±3.7 72.9±1.7 75.1±2.3 41.2±2.4 67.4
ID Acc 96.7±0.2 96.2±0.0 97.7±0.1 95.0±0.1 96.4

Table 5: Label Smoothing (LS) hurts AUROC and AUAC on all but one dataset.

A.6 DATASET SPLIT DETAILS

TREC-10: We remove the Abbreviation class as it is too small to yield statistically significant
metrics in our task setting, leaving 5 remaining classes.

Emotion (Saravia et al., 2018): We remove two small classes, love and surprise, leaving 4
remaining classes.

TACRED (Zhang et al., 2017): We process the data for training following Joshi et al. (2019). This
dataset is particularly challenging due to its class-imbalanced nature. We evaluate a single split
where we keep the 6 largest classes as ID data, and hold out the other 35. This is the largest class,
and thus results in approximately 80% of examples being OOD at test time.

A.7 TACRED PROCESSING DETAILS

We perform label normalization, removing underscores and prefixes, e.g., converting
per : employee of into employee of. This both helps the label generator model understand our
label space and generate more relevant novel labels and ensures that generated novel labels are
well-formatted for downstream example generation.

For examples, we normalize the Subject and Object token tags into a standard English equivalent
containing the subject or object indicator and the NER tag, e.g., [subject : person]. To ensure
that generated examples satisfy the task format, we filter out examples that do not contain exactly
one subject and one object (many generations contain partial or malformed indicator/NER spans).
Finally, we denormalize tags back into original model input tokens.

A.8 LABEL FILTERING

After label generation, we perform synonym filtering to reduce occurrences of ID synonyms. We
find this step to have a large impact on datasets for which labels are common English words which
appear in our thesaurus, and less where label names are more abstract. For example, for Emotion and
TREC-10 , where dataset names are words such as “fear” or “human,” filtering removes 21% and
20% of generated labels respectively. Meanwhile on both AGNews and TACRED, label filtering
removes only 2% of labels. In the case of AGNews, news genre overlaps are not easily captured
by synonyms, and even after normalization, many TACRED labels such as “employee of” do not
appear in our thesaurus.

A.9 LABEL SMOOTHING PERFORMS POORLY.

We evaluate label smoothing (LS) (Müller et al., 2019) as an additional baseline for improving
OSSC, which mirrors vanilla training but alters the one-hot target vector to a “smoother” version,
incentivizing uncertainty. Label smoothing has been shown to be effective in domain shift detec-
tion (Kong et al., 2020). We use label smoothing factor α = 0.1 and calculate confidence with
MaxProb. In Table 5, we show that label smoothing performs poorly in our setting. While it does
not affect classifiers’ ID accuracy, it significantly decreases AUROC on all but one dataset (TREC-
10), where it still remains worse than CNL and all of our data generation baselines.
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Figure 15: Outlier Exposure is sensitive to the size of the novel set on TREC-10. We vary the novel
set size from 0 to 100K, finding that both accuracy and AUROC decrease with as few as 100 novel
generations. We indicate with a dashed line the point where the novel set and training set size are
approximately equal.
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Figure 16: Outlier Exposure disproportionately hurts smaller datasets. We subsample the training
set for AGNews, use 100K novel generated examples, and vary the training loss. We find that
CCL achieves similar ID performance as Vanilla at all training set sizes, but OE significantly hurts
accuracy when the training set is smaller than 1000 examples.

A.10 OUTLIER EXPOSURE IS SENSITIVE TO GENERATED DATA

In the setting where Outlier Exposure is originally evaluated, access to some known OOD data
(e.g., Wikitext) is assumed (Hendrycks et al., 2019). However in our setting, where we generate a
potential novel set, there is no guarantee that the generated examples are indeed OOD. For example,
we show in Appendix A.5 that less than 50% of NP generations for AGNews come from novel
classes. Without this guarantee, more generated data is not always better when training with OE.
One risk of using more generated novel data is that the model will see a large number of ID examples
in the novel set relative to in the training set. We conduct two experiments to analyze the impact of
novel set size relative to training set size.

First, we vary the novel set size relative to the training set size. In Figure 15, we train with novel
sets on TREC-10 from size 0 to 100K using both OE and CCL. We observe that training with OE
hurts accuracy and AUROC when the novel set is larger than 100 examples, while CCL continues to
improve as the novel set size grows, and maintains accuracy for all novel set sizes. As the novel set
becomes larger than the size of the training set (to the right of the dashed line), both OOD detection
AUROC and ID accuracy quickly decrease. This result suggests as the ID noise the classifier sees in
OE training outsizes the training set, its ID predictive ability worsens.

Of the datasets in our experiments, TREC-10 is by far the smallest, with only about 2800 training
examples per split. To determine whether OE is also sensitive to the size of the ID set, we subsample
the AGNews dataset into smaller training sets and perform OE and CCL training with 100K-sized
novel sets. We compare the results against Vanilla training with the same ID sets in Figure 16.
Although reducing the training set size decreases the ID accuracy even for vanilla training, CCL
training achieves similar accuracy for all subsampling sizes. We do observe that a sub-10% accuracy
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margin appears between vanilla and CCL at extremely small training set sizes, though this margin
disappears at 1000 or more training examples. OE, meanwhile, decreases ID accuracy by as much
as 35% when the dataset is subsampled to 30 examples, and 25%+ at 300 examples. OE-trained
classifiers are also worse OOD detectors given limited training data: they underperform vanilla
classifiers for all training sets smaller than 3000 examples. Finally, we find that OE does yield better
OOD detectors than CCL for sufficiently large AGNews training sets. This expands on our findings
in Table 2, suggesting that when there is access to a large amount of training data, in this case 10000
examples are more, OE can learn from noisy novel sets (though ID accuracy still decreases). Our
results indicate that TREC-10 is not alone: As training set size becomes smaller, the ID classes
becomes less well-specified, and ID examples present in the novel set induce the model to make
incorrect predictions (and poor confidence estimates) on true ID test examples.

A.11 CNL AND SEPARABILITY

To understand why CNL improves AUROC, we compare the confidence profiles of a vanilla fine-
tuned classifier against those of a CNL trained classifier. Specifically, in Figure 17, we select 50
random ID examples and 50 random OOD examples from each dataset split and compute MaxProb
confidences. We find that CNL decreases confidence on OOD examples, though not to the same ex-
tent on all examples. In datasets like TREC-10 and Emotion where CNL achieves stronger AUROC
gains, the decrease in OOD confidence is more pronounced. Though ID test examples also decrease
in confidence on all dataset splits, this decrease is less pronounced and is likely due to the confi-
dence contrastive objective term incentivizing the model’s confidence distributions to be generally
less peaked.

The shifts reflected in the confidence distributions directly impact the separability of OOD and ID
examples. On the Vanilla model confidence axis, it is difficult to identify a threshold above which
most examples are ID and below which most examples are OOD. Given CNL confidences, OOD
and ID examples are more separable. This visual separability is reflected in the OOD Detection
AUROC metric.

To demonstrate the strictness of the OE objective, we plot the confidences of the same examples
without (Vanilla) and with OE training in Figure 18. First, we observe that the vast majority of
OOD examples have similar confidence after OE training, as they are all pushed towards minimum
confidence (maximum entropy). Second, we observe that OE significantly affects the confidence of
ID test examples, decreasing the confidence of some examples lower than that of OOD test examples.
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Figure 17: CNL improves the separability of ID and OOD examples. We plot the confidences of
50 random ID and 50 random OOD examples on a vanilla finetuned BERT classifier versus a CNL
trained BERT classifier. CNL successfully decreases the confidence of OOD test examples while
minimizing the impact of the confidence of ID test examples.
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Figure 18: OE significantly decreases the confidence of OOD examples, but unfortunately also
decreases confidence on ID examples. We plot the confidences of 50 random ID and 50 random
OOD examples on a vanilla finetuned BERT classifier versus a NP+OE trained BERT classifier. We
also observe that ID examples exhibit a large confidence distribution after OE training: some ID
examples have similar confidence as OOD examples. Note that the axis limits on these plots differ
from the axis limits on Figure 17, as confidences in general are much lower.
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